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Abstract 

Large datasets along with sampling bias represent a challenge for phylodynamic reconstructions, particularly when the study data 
are obtained from various heterogeneous sources and/or through convenience sampling. In this study, we evaluate the presence of 
unbalanced sampled distribution by collection date, location, and risk group of human immunodeficiency virus Type 1 Subtype C using 
a comprehensive subsampling strategy and assess their impact on the reconstruction of the viral spatial and risk group dynamics using 
phylogenetic comparative methods. Our study shows that a most suitable dataset for ancestral trait reconstruction can be obtained 
through subsampling by all available traits, particularly using multigene datasets. We also demonstrate that sampling bias is inflated 
when considerable information for a given trait is unavailable or of poor quality, as we observed for the trait risk group. In conclusion, 
we suggest that, even if traits are not well recorded, including them deliberately optimizes the representativeness of the original dataset 
rather than completely excluding them. Therefore, we advise the inclusion of as many traits as possible with the aid of subsampling 
approaches in order to optimize the dataset for phylodynamic analysis while reducing the computational burden. This will benefit 
research communities investigating the evolutionary and spatio-temporal patterns of infectious diseases.

Keywords: HIV Subtype C; multiple-trait subsampling; ancestral trait reconstruction; phylogenetic comparative methods; subsam-
pling approaches.
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Introduction
Large sequencing efforts have greatly increased the availabil-
ity of genomic data of infectious agents or pathogens in public 
databases (Sheng et al. 2021). This data availability has led to the 
development of novel methods to speed up molecular epidemio-
logical analyses of these datasets (Turakhia et al. 2021; McBroome 
et al. 2022). Yet, although these tools aim to solve the problem 
of data processing, they do not resolve the issue of data rep-
resentativeness by themselves, as seen through the presence of 
sampling bias in large databases, resulting in datasets with a 
skewed distribution of certain traits not truly representing the 
population diversity. Genetic databases, such as GenBank (Sayers 
2022) and the Global Initiative on Sharing All Influenza Data (Elbe 
and Buckland-Merrett 2017), are used as repositories for genomic 
data, which are often deposited at the moment of submission of a 
manuscript to peer-reviewed journals, with a few notable excep-
tions such as the genomic data deposited during the Ebola out-
break in West Africa (Arias et al. 2016), the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 
pandemic (Roncoroni et al. 2021; Furuse 2021), and throughout 

the seasonal influenza virus surveillance efforts to inform vaccine 
composition (Hay and McCauley 2018). In public databases, sam-

pling bias can be seen through the random deposit of samples in 

the database in an unintended way (sequences being deposited 

as project-dependent and not population-dependent) that does 

not reflect a fair representation of the true population, resulting 

in some traits (i.e. genetic diversity, location, and populations at 

greater risk of HIV acquisition [PGRHA]) of the target population 

having a lower or higher sampling probability than others com-

pared to their actual prevalence (Faria et al. 2014; Popejoy and 

Fullerton 2016; Viana et al. 2022; He et al. 2012).
Sampling bias is a persistent concern when performing phylo-

geographic inference (De Maio et al. 2015; Kalkauskas et al. 2021). 
Apart from an increase in taxon sampling having been shown to 
aid in the reduction of phylogenetic error (Zwickl and Hillis 2002), 
several software applications target the reduction of size and 
redundancy for the purpose of phylogenetic analysis (Menardo 
et al. 2018) or the increase in phylogenetic diversity while reducing 
data set size (Minh, Klaere, and von Haeseler 2009). Sequenc-
ing errors and insufficient representation from large datasets can 
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result in incorrect phylogenetic inferences, impeding accurate 
downstream conclusions (Vakulenko, Deviatkin, and Lukashev 
2019), potentially affecting efforts such as lineage tracing (Elliott 
et al. 2020; Turakhia et al. 2020).

Sampling bias can, for example, lead to incorrect inference of 
ancestral locations and migration rates from oversampled regions, 
leading to spurious results that may affect public policy in the 
response of an epidemic (De Maio et al. 2015). The presence of 
sampling bias is challenging for all currently available phylogeo-
graphic models, and mitigating such bias might require large data 
set sizes and the incorporation of associated metadata in those 
models (Layan et al. 2023). Subsampling is typically a strategy to 
mitigate any biases present in a dataset and thus to improve the 
representativeness of the actual patterns of the epidemics. How-
ever, a recent study has shown that such subsampling strategies 
do not consistently improve (discrete) phylogeographic inference 
at intermediate levels of sampling bias and that the improve-
ment is dependent on the actual migration model (Layan et al. 
2023). The major purpose of subsampling is to make phyloge-
netic and phylodynamic analyses of very large genetic datasets 
computationally tractable, such as those for the human immun-
odeficiency virus (HIV) (Faria et al. 2014), seasonal influenza 
viruses (Bedford et al. 2015), and SARS-CoV-2 (Chakraborty et al.
2021).

Representativeness is multi-dimensional, in the sense that a 
single genomic dataset does not only consist of genomic data but 
multiple underlying metadata layers (traits) which when com-
bined allow for a comprehensive view of the population repre-
sented by the dataset. Studies focusing on the spatio-temporal 
dynamics of pathogens often tend to subsample based on loca-
tion, particularly for the challenging discrete (location) trait recon-
struction analysis (Faria et al. 2014). However, even when the 
goal is to purely reconstruct the pathogen’s spatial spread, includ-
ing more traits during the subsampling process might improve 
the representativeness of the actual underlying patterns of the 
epidemics and lead to more accurate results.

Among the existing large genomic data repositories, the Los 
Alamos National Laboratory (LANL) HIV Sequence Database 
(https://www.hiv.lanl.gov) is one of the most widely used 
databases for HIV research. In addition to genomic data, the 
database contains metadata associated with the viral genetic 
sequences, including records of the collection date and sampling 
country along with PGRHA information for certain samples, thus 
making it an ideal database to evaluate sampling bias on multiple 
traits associated with the samples.

HIV-1 Subtypes B and C have the largest number of sequences 
recorded in the LANL HIV Sequence Database (https://www.hiv.
lanl.gov/content/sequence/HIV/mainpage.html). As of 3 August 
2022, there were 535,995 and 152,290 records for HIV-1 Subtypes B 
and C, respectively. Subtype B is the most widespread HIV-1 vari-
ant accounting for approximately 11% of all infections worldwide 
(Junqueira and Almeida 2016) and has been extensively studied 
including in the phylodynamic context (Hong et al. 2020). Despite 
there being studies addressing the global evolution and spatio-
temporal patterns of HIV-1 Subtype C (Novitsky et al. 2010), to the 
best of our knowledge, the present study is the first one to address 
the potential influence of sampling bias on the accuracy of such 
reconstructions within Subtype C.

Many studies tend to focus on genomic analyses for specific 
regions; however, the regional transmission dynamics might not 
fully represent the overall evolutionary and spatio-temporal pat-
terns of the disease worldwide. In this study, we evaluate the 
effect of dataset subsampling based on a combination of traits 

(date, country, and PGRHA) on phylogenetic inference and subse-
quent downstream analysis, such as ancestral trait reconstruction 
and phylogeographic inference. We subsample and analyze two 
large HIV-1 Subtype C datasets with sequences collected globally 
obtained from LANL, encompassing near-complete genome and 
partial pol gene, with associated metadata. We find that subsam-
pling using a combination of genetic sequence and metadata traits 
yields more phylogenetic results closer to patterns in the original 
dataset than the usual subsampling based on a single metadata 
trait while being more computationally efficient.

Materials and methods
Sequence dataset compilation
All available near-complete genome sequences (HXB2 Genome 
Position 790–9417, with minimum fragment length of 6,000 bp) 
and partial pol sequences (HXB2 Genome Positions 2200–3500, 
with minimum fragment length of 600 bp) of HIV-1 Subtype C 
with known sampling dates and geographic information were 
retrieved from the LANL HIV Sequence Database (https://www.
hiv.lanl.gov) on 26 March 2021. Problematic sequences, as defined 
by LANL, were removed, and only one sequence per patient 
was selected before download. The sequence quality was ana-
lyzed using the Quality Control tool from the LANL site, and all 
genotype assignments were confirmed using the Recombinant 
Identification Program v3.0 (Siepel et al. 1995). Hypermutation 
analysis was performed using Hypermut v2.0 (Rose and Korber 
2000). The two final datasets include 1,221 publicly available 
near-complete genome sequences of HIV-1 Subtype C (full1221) 
with known sampling year (1986–2019) and locations (32 coun-
tries) and 34,229 publicly available partial pol sequences of HIV-
1 Subtype C (pol34229) with known sampling year (1986–2019) 
and locations (106 countries). For both full1221 and pol34229 
datasets, we grouped PGRHA into six categories: male who have 
sex with male (SM), people who inject drugs (PI), heterosexual 
(SH), mother-to-baby (MB), not recorded (NR), and other (OT), as 
described at LANL (https://www.hiv.lanl.gov/content/sequence/
HIV/data_dictionary/data_dictionary.html).

Molecular sequence analyses
The full1221 and pol34229 datasets were processed separately. 
Multiple sequence alignments of the two datasets (full1221 and 
pol34229) were obtained using MAFFT v7.427 (Katoh and Standley 
2013) under an automatic algorithm and subsequently adjusted 
manually in BioEdit v7.2.5 (Alzohairy 2011). Next, we excluded 
sequences with more than 50 per cent gaps as well as duplicate 
sequences, defined as having the same collection date, country, 
PGRHA, and nucleotide sequence. This resulted in a full genome 
dataset of 1,210 sequences (full), and a pol gene dataset comprising 
33,859 sequences (pol).

Subsampling was performed using SAMPI (J. L. Cherry, unpub-
lished; https://github.com/jlcherry/SAMPI) to obtain a homoge-
neous collection of samples using the variables country, PGRHA, 
and year while maintaining a manageable dataset size lower than 
1000 sequences for computational efficiency. Three subsets with 
repetitions for full genomes and pol gene were assembled: (CP) 
country, PGRHA, and year, (C) country and year, and (P) PGRHA 
and year. This resulted in the following datasets: fullCP (ten 
sequences per date, country, and PGRHA, n = 626 sequences), fullC 
(ten sequences per date and country, n = 562 sequences), fullP 
(ten sequences per date and PGRHA, n = 393 sequences), polCP 
(one sequence per date, country, and PGRHA, n = 986 sequences), 
polC (one sequence per date and country, n = 698 sequences), and 

https://www.hiv.lanl.gov
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polP (seven sequences per date and PGRHA, n = 727 sequences). 
We selected a higher number of sequences per date and PGRHA 
for polC given the smaller number states of PGRHA and with 
the objective of having a subsampled dataset of similar size to 
other datasets. All subsampling processes were performed using 
the following order of preferences: (1) uniformity of the num-
ber of sequences temporally, (2) completeness of collection date, 
(3) sequences with fewer number of gaps indivisible by three, 
(4) sequences with fewer ambiguous nucleotides, and finally (5) 
sequences longer in length. To examine the reproducibility of the 
datasets and analysis, we performed three independent repeti-
tions of each subsampling strategy.

Multiple iterations of maximum-likelihood (ML) phylogenetic 
reconstruction using RAxML v8.2.12 (Stamatakis 2014) under a 
GTR + Γ4 + I nucleotide substitution model with 1,000 bootstrap 
replicates were performed, with removal of outlier sequences—
those with incongruent sampling dates and root-to-tip genetic 
divergence—via the TempEst software package v1.5.3 (Rambaut 
et al. 2016). This resulted in full genome datasets with 626 (fullCP), 
562 (fullC), and 393 (fullP) sequences and partial pol gene datasets 
with 986 (polCP), 698 (polC), and 727 (polP) sequences.

Phylogenetic reconstruction
ML phylogenetic reconstruction was performed for the original 
datasets and their subsampling replicates (full, fullCP, fullC, fullP, 
polCP, polC, and polP) using RAxML v8.2.12 (Stamatakis 2014) 
under the GTR + Γ4 + I nucleotide substitution model with 1,000 
bootstrap replicates. Due to the large size of the pol dataset 
(n = 33,859 sequences), we were unable to use RAxML v8.2.12 (Sta-
matakis 2014) to reconstruct the ML phylogeny tree, and thus, ML 
phylogenetic reconstruction was performed using a more time-
efficient algorithm, IQ-TREE v2.1.2, with the GTR + F + R10 substi-
tution model (Nguyen et al. 2015). In addition, we used FigTree 
v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) to visualize and 
annotate the phylogenetic trees with geographic location and 
PGRHA.

Phylogenetic tree comparison
In order to understand how subsampling affected the tree topol-
ogy among the shared taxa among all trees for pol and for the 
full genome datasets, we compared the tree topologies using the 
ClusteringInfoDist metric (see below), which provides a similar-
ity score between trees with the same sequences as tips. To this 
end, we first extracted subtrees from each dataset containing the 
intersection of the taxa present in all trees using ybyra_pruner.py
from the ‘YBYRA’ package (Machado 2015). Then, we separately 
compared each subtree set from the near-complete genome and 
partial pol gene using the ‘ClusteringInfoDist’ function from the 
‘TreeDist’ package as implemented in R (Bogdanowicz and Giaro 
2012; Lin, Rajan, and Moret 2012; Smith 2020).

The ‘ClusteringInfoDist’ function performs better than other 
metrics of comparison such as Robinson-Foulds, Quarted and Path 
in quantifying tree similarity across different tree disturbances, 
such as the move length of a taxon within the tree, number of 
tips moved, tree spaces, and degenerate datasets (Smith 2020, 
2022). The ClusteringInfoDist algorithm calculates a normalized 
tree similarity and distance measures based on the amount of 
phylogenetic or clustering information that two trees hold in com-
mon, where a lower value corresponds to trees that are topologi-
cally more similar, with a zero distance corresponding to identical 
trees. The normalization process on ClusteringInfoDist allows for 
a better comparison between the results of analyses coming from 
distinct datasets (i.e. results from pol comparisons vs results from 

full comparisons). We calculated the average and mean and per-
formed a two-tailed distribution t-test assuming two samples of 
unequal variance (heteroscedastic) in order to identify statisti-
cal significance (<0.01) between the ClusterInfoDist values for the 
groups of subsampled trees.

Transmission networks
We explored the robustness of the subsampling method by gen-
erating transmission networks based on our phylogenetic recon-
structions for all datasets. To do this, we employed the parsimony 
ancestral reconstruction method available in StrainHub v1.1.2 
(de Bernardi Schneider et al. 2020). This allowed us to depict 
the dynamics and connectivity between each trait of interest, 
including ‘country’ and ‘PGRHA’.

Through the visualization of these disease transmission net-
works, we hoped to gain a deeper understanding of the disease’s 
behavior and the impact of each network node on disease spread. 
This included identifying whether a single node within the net-
work acted as a super spreader or if the disease spread was evenly 
balanced among all nodes.

An important note is the use of the maximum parsimony 
model in our analysis. Although we acknowledge that this may not 
be optimal for transmission and phylogeography inference due to 
the non-uniqueness of the most parsimonious solution and the 
exponential growth of solutions with the number of traits, it was 
selected given the vast amount of data to be analyzed.

We drew attention to the influence that subsampling can have 
on downstream analyses by demonstrating its impact. Moreover, 
StrainHub does offer compatibility with phylogenetic trees aris-
ing from Bayesian inference output, albeit only for the maximum 
credibility tree analysis (de Bernardi Schneider et al. 2020).

StrainHub generates a transmission network based on charac-
ter state changes in metadata, such as collection location, mapped 
on the phylogenetic tree. The nodes of this transmission network 
represent the relationship of the ancestral and descendant states 
of the pathogen sequences (e.g. changes in geography, host shifts, 
and among PGRHA) (de Bernardi Schneider et al. 2020). We eval-
uated to what extent subsampling interfered with the structure 
of the networks by comparing the networks indirectly through 
the centrality metrics of each network (Rodrigues 2019). Metadata 
were extracted from the sequence headers, and geographic coor-
dinates were extracted from latlong.net. We ranked the datasets’ 
metadata (country and PGRHA) by degree centrality and source 
hub ratio (SHR). Degree centrality is defined as the number of 
edges a trait state has within the network, meaning that the higher 
the degree, the more connected the state is to other states. The 
estimates associated with SHR, a score that ranges from 0 to 1, 
indicate a sink or source behavior of a particular state, respectively 
(hub has a SHR = 0.5), as implemented in StrainHub (de Bernardi 
Schneider et al. 2020). We also calculated the Pearson product-
moment correlation coefficient for all pairs of trait states for all 
original and subsampled full and pol datasets to understand how 
subsampling affects the overall transmission network structure.

Results
Subsampling
In the full dataset, genome sequences collected in South Africa 
(ZA; 49.7 per cent; 601/1,210) and Zambia (ZM; 8.1 per cent; 
219/1,210) and from NR (68.6 per cent; 830/1,210) and SH (26.9 per 
cent; 325/1,210) PGRHA groups are over-represented compared 
to the numbers for other countries and PGRHA groups (Fig. 1). 

http://tree.bio.ed.ac.uk/software/figtree/


4 Virus Evolution

Figure 1. Sampling distributions of metadata traits for the full and subsampled datasets of HIV-1 Subtype C. (A) Country distribution for the full and 
subsampled datasets. The distribution of the original dataset shows a disproportionate amount of samples sampled from BR, BW, IN, MW, SE, TZ, ZA, 
and ZM. (B) PGRHA distribution for the full and subsampled datasets. The distribution of the data shows a large amount of missing data (labeled NR) 
and higher amount of SH in comparison to other PGRHA. The number of sequences for the full dataset is labeled on the right y-axis.

Our subsampling strategy resulted in datasets with the follow-
ing reduced sequence counts (average between three repetitions 
of subsampled datasets) for ZA and ZM: 31.2 per cent (195/626) 
and 14.4 per cent (90/626) in the fullCP datasets, 26.9 per cent 
(151/562) 192 and 13.5 per cent (76/562) in the fullC datasets, and 
34.9 per cent (137.3/393) and 14.0 per cent (55/393) in the fullP 
datasets. Similarly, the subsampling by PGRHA results in datasets 
with the following NR and SH genome sequence counts: 60.9 per 
cent (381/626) and 31.5 per cent (197/626) in the fullCP datasets, 
62.1 per cent (349/562) and 30.2 per cent (170/562) in the fullC 
datasets, and 54.7 per cent (215/393) and 33.1 per cent (130/393) 
in the fullP datasets, respectively.

In the pol datasets (Fig. 2), the partial pol gene sequences 
collected in ZA (51.1 per cent [17,312/33,859]) and India (IN; 
8.6 per cent [2,922/33,859]) and from the NR PGRHA (90.4 per cent 
[30,615/33,859]) are over-represented. After subsampling, the aver-
age between three repetitions of subsampled datasets for the par-
tial pol gene sequences obtained in ZA and IN account for 6.8 per 
cent (67/986) and 5.7 per cent (56/986) in the polCP datasets, 4.0 per 
cent (28/698) and 3.3 per cent (23/698) in the polC datasets, and 
24.4 per cent (177.3/727) and 13.9 per cent (101.3/727) in the polP 
datasets, respectively. Likewise, the subsampled partial pol gene 
sequences collected from the NR PGRHA now account for 62.7 per 
cent (618/986) from the polCP datasets, 75.2 per cent (524.7/698) 
from the polC datasets, and 26.5 per cent (193/727) from the polP 
datasets.

The subsampling of the polP datasets yield a different coun-
try composition in comparison to other datasets (46 or 47 of 105 
countries), given the large amount of data and the subsampling 
method that did not include country as a subsampling trait. For 
downstream analyses, we compared only the intersection of data 
between each dataset, i.e. pol (105 countries) vs polCP (105 coun-
tries); polCP (105 countries) vs polC (105 countries); pol, polCP, or 
polC (46 or 47 of 105 countries) vs polP (46 or 47 countries).

Tree comparisons
For the full datasets (Fig. 3A), the topologies of the subtrees 
subsampled by country (fullC; average = 26.24) are the closest 
in similarity to that of the original dataset (full). Nevertheless, 
fullCP datasets (average = 28.06) have very close values to fullC, 
with fullP (average = 33.94) being the most distant datasets to full. 
For the pol gene dataset (Fig. 3B), the topologies of all subsam-
pled subtrees are mostly equidistant to the original pol dataset 
(polCP average = 34.92; polC average = 34.87; polP average = 36.02). 
We estimated that the datasets were not significantly different 
across full and pol subsamplings, with the exception of fullCP vs 
fullP (P-value = 0.009) and fullC vs fullP (P-value = 0.0005). Never-
theless, we observe overall similar values across subsamplings for 
both full and pol datasets (small variance across subsamplings; 
fullCP = 2.47; fullC = 0.72; fullP = 0.90; polCP = 1.10; polC = 2.49; and 
polP = 3.57).

Transmission networks
We generated transmission networks for all full and pol datasets. 
We observed that there was limited variation of the correlation 
of the degree centrality metric between country and PGRHA with 
the original dataset across repetitions of the same subsampling 
strategy or across the three subsampling strategies for full and 
pol datasets, with the exception of polP (Fig. 4 and Supplemen-
tary Figs. S1 and S2). This means that the degree of connectivity of 
each country or PGRHA node in the overall transmission network 
is maintained irrespective of the subsampling strategy. Despite 
the overall maintenance of the country and PGRHA node impor-
tance, their behaviors (i.e. sink/hub or source of disease), assessed 
using the SHR estimate, varies with the subsampling strategy 
employed. We observed that the correlation of the SHR with the 
original dataset for the country trait is highest for fullCP and 
fullC and lowest for fullP. This pattern is also observed for the pol
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Figure 2. Sampling distributions of metadata traits for the pol and subsampled datasets of HIV-1 Subtype C. (A) Country distribution for the pol and 
subsampled datasets. The distribution of the original dataset shows a larger amount of samples sampled from BR, BW, ET, GB, IN, MW, MZ, TZ, US, ZM, 
and ZW, with a disproportionate amount of samples from ZA. (B) PGRHA distribution for the pol and subsampled datasets. The distribution of the data 
shows a large amount of missing data (labeled NR) and slightly higher amount of SH in comparison to other PGRHA. The number of sequences for the 
pol dataset is labelled on the right y-axis.

subsamplings, even though the overall SHR correlations with the 
original dataset are lower than those for the full dataset.

Interestingly, the correlation of SHR for the PGRHA trait is 
higher for both fullCP and fullC than for fullP. This might sug-
gest that for the full dataset, even when subsampling is done 
solely using country, we obtain a distribution of samples such 
that they are similar to the overall PGRHA trait structure of the 
original full dataset (Fig. 5). However, the limited information for 
PGRHA yields results that do not represent the overall PGRHA trait 
structure in the original dataset. This behavior is not observed 
in the pol subsampling, where polCP and polP have the highest 
SHR correlation with the original dataset, agreeable with the fact 
that both strategies include information for PGRHA, whereas polC 
yields the lowest correlation with the original PGRHA transmission
network.

Looking within the transmission networks geographically, in 
the full genome dataset, the countries with the highest degree 
centrality are (in order of high- to low-degree centrality) ZA, Swe-
den (SE), ZM, Tanzania (TZ), and the United Kingdom (GB) (Fig. 5A). 
However, GB does not rank among the top five countries in the 
fullCP and fullC datasets, where it is replaced by Botswana (BW). 
Moreover, SE does not rank among the top five countries in the 
fullP dataset, but it does include GB and BW. In the pol datasets, 
given the larger number of countries, we elected to display the 
top nine countries for each dataset. The countries with the high-
est degree centrality are (in order of high- to low-degree centrality) 
ZA, ZM, GB, Ethiopia (ET), Zimbabwe (ZW), IN, United States (US), 
TZ, and Burundi (BI). The polCP datasets best represent the pol 
dataset’s top ten, with only two countries being replaced (GB 
and BI by SE and Malawi [MW]), with these two countries being 
replaced as Numbers 8 and 9. The polC dataset replaced three 
of the top nine countries from the original dataset (IN, TZ, BI 
with Australia [AU], Germany, and Israel), and polP replaced three 
countries as well (GB, TZ, and BI with AU, BW, and MW) (Fig. 5B).

We have also summarized the spatial transmission dynam-
ics among the original full and pol datasets and their respec-
tive subsampled dataset. For the full datasets (Supplementary 
Fig. S3), even though there was some variation across replicates, 
we observed an overall similar pattern characterized by viral dis-
semination from Africa to Europe and vice versa, as well as from 
Africa do the US and South Asia. The pol dataset (Supplemen-
tary Fig. S4) depicts more complex spatio-temporal dynamics that 
included the viral movements described for the full datasets, plus 
introductions from North America to Asia, Europe to South Amer-
ica, and Africa to Oceania. The patterns observed for polP were 
sparser, likely due to the reduced number of countries included 
for this dataset compared to other pol datasets.

The transmission network among PGRHA shares a similar 
result across all full datasets, with SH and NR having the high-
est mean degree centrality, therefore contributing to the highest 
number of connections within the network, and OT, PI, MB, and 
SM contributing less (Fig. 5C). For the pol datasets, we see similar 
results with NR and SH having the highest for pol, polCP, and polC 
and a more elevated degree centrality for OT, PI, MB, and SM, with 
polP having a high degree centrality on all PGRHA with an almost 
uniform distribution (Fig. 5D).

The summarized PGRHA transmission dynamics among the 
original full and pol datasets and their respective subsampled 
dataset highlight the results described in the paragraph above. 
In both full and pol datasets (Supplementary Figs. S5 and S6), 
we reconstructed similar PGRHA dynamics with NR acting as the 
main source among PGRHA followed by the SH group, irrespec-
tive of subsampling. In the full datasets, we estimated the large 
majority of transmission dynamics occurring from NR to SH. In 
the pol datasets, the viral transmissions were mostly from NR to 
SH, but we also estimated a substantial proportion of viral seeding 
from NR to MB. The patterns observed for polP were unlike those 
observed for any other dataset, with no particular PGRHA standing 
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Figure 3. Cluster info distance comparison of the phylogenetic topologies of the full (A) and pol (B) with their respective subsampled dataset subtrees. 
Zero cluster info distance equals identical trees. The topologies of the full and pol subsampled dataset subtrees are overall similar to that of their 
respective original datasets.

out in terms of viral source or sink. This is again likely due to the 
reduced number of countries included in this dataset compared 
to other pol datasets.

Discussion
In this study, we investigated HIV-1 Subtype C evolutionary and 
spatio-temporal dynamics while subsampling the genetic data 
to decrease the sequence counts from oversampled traits. Sub-
sampling was performed in order to mitigate biases introduced 
during the sampling of PGRHA, as well as of countries through 
time. To this end, we compiled comprehensive sequence datasets 

of full genomes and the pol gene region and revealed that both 
datasets contained inherent biases irrespective of the trait stud-
ied, as observed through the heterogeneous distribution of the 
datasets (Figs. 1 and 2). We could not compare the subsampled 
dataset distributions to the real population case estimates, which 

are impossible to obtain. The available epidemiological curves are 

not desegregated by HIV-1 type and are biased by time and spa-

tial surveillance coverage and effectiveness (https://cdn.who.int/

media/docs/default-source/hq-hiv-hepatitis-and-stis-library/
key-facts-hiv-2021-26july2022.pdf? sfvrsn=8f4e7c93_5). For these 

reasons, we assumed for this study that an unbiased sampling 

should follow a near-uniform distribution.

https://cdn.who.int/media/docs/default-source/hq-hiv-hepatitis-and-stis-library/key-facts-hiv-2021-26july2022.pdf?%20sfvrsn=8f4e7c93_5
https://cdn.who.int/media/docs/default-source/hq-hiv-hepatitis-and-stis-library/key-facts-hiv-2021-26july2022.pdf?%20sfvrsn=8f4e7c93_5
https://cdn.who.int/media/docs/default-source/hq-hiv-hepatitis-and-stis-library/key-facts-hiv-2021-26july2022.pdf?%20sfvrsn=8f4e7c93_5
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Figure 4. Correlation of SHR and degree centrality metrics as a proxy for transmission network structures of HIV-1 Subtype C for the full and pol with 
respective subsampled datasets by date, country, and PGRHA. The correlation of the transmission network is higher (thus, similar structures) as the 
correlation coefficient approximates to 1. (A) Estimates of similarity of the spatial transmission network structure for all subsampled datasets based 
on SHR metric; (B) estimates of similarity of the spatial transmission network structure of HIV-1 Subtype C for all subsampled datasets based on the 
degree centrality metric; (C) estimates of similarity of the PGRHA transmission network structure of HIV-1 Subtype C for all subsampled datasets 
based on SHR metric; (D) estimates of similarity of the PGRHA transmission network structure of HIV-1 Subtype C for all subsampled datasets based 
on the degree centrality metric. The degree of connectivity of each country or PGRHA node in the overall transmission network is generally 
maintained irrespective of the subsampling strategy; however, there is a discrepancy of the country and PGRHA node behaviors as indicated by the 
varying SHR per subsampling strategy.

Sampling strategies and procedures like subsampling methods 

can help address varying trait representativeness in the meta-

data associated with genomic datasets. There are many studies 
that apply subsampling methods in an attempt to correct for 
bias on sampling date and location. For instance, studies target-
ing the early spread and epidemic ignition of HIV-1 in humans 
(Faria et al. 2014), studies investigating the spatial history of HIV-
1 Subtype B in the US (Hong et al. 2020), and studies exploring 
the rapid epidemic expansion of the SARS-CoV-2 Omicron vari-
ant in southern Africa (Viana et al. 2022). Nevertheless, these 
studies do not comprehensively examine the effects of varying 
representativeness of traits and its implications on phylodynamic 
reconstruction. Here, we have observed that a more comprehen-
sive subsampling strategy that includes as many traits as possible 
(date, location, and PGRHA) yields the best result in retaining the 
original dataset properties, as demonstrated by the high similari-
ties of the transmission networks between the HIV-1 Subtype C full 
and pol and the fullCP and polCP datasets, respectively (Fig. 4). Fur-
thermore, studies that take into account sampling bias are often 
limited to a single replicate of a particular subsampling method 
(Faria et al. 2014; Nasir et al. 2022; Okoh et al. 2022; Viana et al. 
2022). We have demonstrated that this likely does not have harm-
ful implications for the interpretation of the results as there is 
little variation of the overall tree topology across subsampling 
replicates (Fig. 3), as well as in the ancestral trait reconstruction
(Fig. 4).

Comparing the tree topologies of the original full and pol 
datasets with their respective subsampled datasets allows uncov-
ering which subsampling strategies best represent the original 
structure and whether that structure is punctuated by a particular 
trait. Our analyses indicate that both full and pol along with their 
subsampled datasets present comparable variability in tree topol-
ogy among the subsets both in terms of country and PGRHA. How-
ever, there are inherent limitations in both datasets as observed by 
the majority of sequences labeled as NR (PGRHA) in all datasets.

Our analyses indicate that there is a slightly stronger signal 
in the full dataset for location as shown by the smaller distances 
across the original dataset and those subsampled using the loca-
tion trait, whereas the pol dataset seems to hold the same level of 
information for both country and PGRHA traits, indicating a more 
balanced dataset. The comparable ClusterInfoDist metric across 
datasets and respective subsample repetitions suggest that irre-
spective of the subsampling strategy the overall structure of the 
original topology is maintained given the similar values across 
all comparisons (Fig. 3). We can assume that the reason behind 
the original full and pol datasets having a slightly lower degree of 
similarity, as measured through ClusterInfoDist, to the datasets 
subsampled by PGRHA (fullP and polP) might be that the datasets 
are mainly driven by location, regardless of the skewed sam-
pling distribution in certain geographical locations, such as IN and 
ZA (Figs. 1 and 2), which may be in part due to the predominance 
of the HIV-1 Subtype C in these regions (Gartner et al. 2020). In 
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Figure 5. Distribution of the average degree centrality among all subsamples for the top clusters in the pol and full subsets. (A) Degree centrality for 
top five countries (country trait) for full subsets; (B) degree centrality for top nine countries (country trait) for pol subsets; (C) degree centrality for all 
PGRHA for full subsets; (D) degree centrality for all PGRHA trait for pol subsets. Including country and PGRHA as subsampling traits yields the most 
consistent results for both traits’ transmission networks. The distribution of degree centrality among the nodes of the networks evaluated shows that 
the datasets subsampled by PGRHA and country or solely by country result in patterns similar to those for the original pol and full datasets. The top 
countries in terms of degree centrality are mostly conserved across the full datasets, with wider variance observed in the pol datasets likely due to the 
larger number of locations for the country trait in these datasets.

this scenario, subsampling solely by PGRHA would have a stronger 
effect on the tree topology, possibly due to the different behavior 
of the PGRHA within each country. In addition to that, subsam-
pling by PGRHA produces a distinct outcome from subsampling 
by country or by both country and PGRHA, most likely owing to 
the large presence of missing data labeled as NR.

Consequently, the limited information for PGRHA in both full 
and pol datasets produces inconsistent transmission networks. 
Overall, these results indicate that the full subsampled datasets 
produce transmission networks that have higher correlations to 
the original dataset for both country and PGRHA and yield more 
comprehensive evolutionary histories. This result demonstrates 
once more how multigene datasets provide higher accuracy in 
phylogenetic analysis despite lower dataset sizes (Rokas and Car-
roll 2005).

Geographically, the top countries for the spread of HIV-1 Sub-
type C, as measured by degree centrality of the nodes within 
the transmission network on both full and pol datasets, are in 
line with the previous studies (Gartner et al. 2020). The most 
prominent PGRHA in both original full and pol networks is SH, 
as seen by the larger sampling of heterosexual individuals in 
these datasets (Figs. 1 and 2), which likely represents the cur-
rent state of the HIV-1 Subtype C epidemic at global scale (Brown 
and Peerapatanapokin 2019). In pol, we also observed MB as a 
major PGRHA acting as a transmission source. NR seems to be 
largely connected to SH in both datasets, indicating that the vast 
majority of non-reported PGRHA may belong to SH (Supplemen-
tary Figs. S5 and S6). The behavior of PGRHA is expected to be 
dependent on regional norms (Rhodes and Simic 2005; Ordonez 
and Marconi 2012; Wyatt et al. 2012); thus, the lack of coverage 
of locations in polP may be the reason why these results diverge 

considerably from those of other datasets. Additionally, the coun-
tries excluded from polP might be those that have a stronger signal 
for the dynamics observed in other datasets, namely transmission 
events from NR to SH and from NR to MB. Therefore, as expected, 
including both country and PGRHA as subsampling traits yields 
results for both country and PGRHA transmission networks more 
consistent with the patterns observed for the original pol dataset.

Our attempts to mitigate bias by employing multiple subsam-
pling strategies are not without limitations. For instance, since 
they rely on the metadata available for the genetic data, we might 
not address biases created by unknown factors. In this HIV-1 Sub-
type C study, most of the metadata regarding PGRHA is NR, and 
NR accounted for 68.6 per cent and 90.4 per cent of sequences in 
the full and pol datasets, respectively. Besides, some of the meta-
data may be mislabeled, such as reports of SM due to HIV/acquired 
immunodeficiency syndrome-related stigmatization and discrim-
ination, as reported in the previous studies (Zai et al. 2020). We 
hypothesize that the metadata associated with risk groups might 
be artificially biased toward ‘NR’. Therefore, this may have affected 
the accuracy of the phylodynamic reconstructions and ances-
tral trait reconstruction. We recommend that the researchers 
complete this metadata field as much as possible when submit-
ting sequence information. Both sequence data and associated 
metadata are critical to gain more detailed insights into the evo-
lutionary and spatio-temporal patterns of HIV-1 Subtype C and 
other pathogens. Therefore, more reporting and sharing of data 
in an open and real-time fashion is needed for an effective public 
health response.

Comparing the original and subsampled datasets to epidemio-
logical data could be a solution to the present issue in sampling. 
However, this type of data also often suffers from biases, includ-
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ing those created by under-sampling in low- and middle-income 
countries or are not documented particularly for the early dynam-
ics of the epidemics (Dudas et al. 2021; Zeller et al. 2021). We made 
an effort to obtain retrospective epidemiological data document-
ing the number of patients infected with HIV-1 Subtype C, but 
the epidemiological data does not report nor is sorted by subtype, 
which further complicated this endeavor. Additionally, HIV/AIDS 
being a disease associated with severe stigma could lead to case 
reports that do not accurately represent the overall circulation 
patterns (Chen et al. 2017; Zai et al. 2020).

When comparing SAMPI with other subsampling methods, 
we acknowledge that most subsampling tools aim to produce 
datasets that have fewer biases of their traits. Therefore, we 
anticipate that different subsampling tools would not signifi-
cantly affect the results of our study. Furthermore, popular phy-
lodynamic reconstruction methods rely on discrete trait anal-
ysis that are quite sensitive to sampling biases in a similar 
fashion, where oversampled traits would likely be inferred as 
sources and undersampled traits would be inferred as sinks in 
the transmission network. Thus, there is a need to employ care-
ful subsampling strategies before venturing in these types of 
phylodynamic reconstructions. Alternatively, structured coales-
cent models allow reconstruction of transmission dynamics that 
is almost insensitive to sampling bias. However, these meth-
ods are excessively computationally expensive and therefore are 
limited to research questions that require smaller dataset sizes
De Maio et al. (2015).

Even though we here offer a detailed approach to reduce inher-
ent biases and further optimize ancestral trait reconstruction by 
subsampling large datasets, there are other procedures to account 
for issues with sampling, including careful research and surveil-
lance design, simulations, and weighted methods based on met-
rics such as prevalence (He et al. 2012; Leon, Jauffret-Roustide 
and Le Strat, 2015; Clark et al. 2018; Gunduz and Aydin 2021; 
McArdle et al. 2021; Yang 2022). New methodological develop-
ments enable phylogeographic inferences that are not affected 
by sampling bias (De Maio et al. 2015) but currently do not 
scale well with the increasing number of sequences and loca-
tions, hence make analysis of large data sets computationally
challenging.

The analysis pipeline proposed is fast and publicly available 
at GitHub. SAMPI (J. L. Cherry, unpublished; https://github.com/
jlcherry/SAMPI) is a pathogen-agnostic subsampling tool that can 
be freely used to study other infectious diseases in a computa-
tionally efficient manner (Nasir et al. 2022; Trovão et al. 2022; 
Trovao et al. 2023). Furthermore, this study sheds light on how to 
analyze and subsample large public datasets and further inves-
tigate the impact of subsampling, which can also highlight the 
importance of specific traits that are highly correlated with trans-
mission networks. The potential challenges and limitations are 
mainly associated with the quality of the dataset in terms of avail-
able metadata, the extent of the biases, as well as the sequencing 
quality.

Conclusion
In summary, we address the challenges of working with large 
datasets and sampling bias using a subsampling approach based 
on date, country, and PGRHA. We evaluate how this approach 
can mitigate sampling bias while maintaining the properties of 
the original datasets and computationally optimize data analyses 
based on the available metadata. We also highlight the impor-
tance of rigorously recording metadata in addition to the genetic 

sequences. This study systematically evaluates strategies to opti-
mize ancestral trait reconstruction in HIV-1 Subtype C and will be 
helpful for future phylodynamic analysis of this virus, as well as 
serve as a reference to the study of other pathogens.

Supplementary data
Supplementary data is available at Virus Evolution online.

Data availability
The datasets used in this study, which are sourced from public 
databases as detailed in the Methods section of the article, will 
be made available upon reasonable request to the corresponding 
author.
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