
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Bias Estimation of Spatiotemporal Traffic Sensor Data with Physics-informed Deep
Learning Techniques

Permalink
https://escholarship.org/uc/item/7q30n8gw

Author
Yang, Han

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7q30n8gw
https://escholarship.org
http://www.cdlib.org/

 i

Bias Estimation of Spatiotemporal Traffic Sensor Data with Physics-informed Deep Learning
Techniques

By

HAN YANG

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Civil Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Yueyue Fan, Chair

Michael H. Zhang

Miguel Jaller

Committee in Charge

2022

 ii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

ABSTRACT ... vi

ACKNOWLEDGEMENTS .. vii

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Traffic Detecting Sensors ... 1

1.3 Unhealthy Sensor Data Identification ... 3

Chapter 2 Literature reviews ... 6

2.1 Traffic Network Data .. 6

2.2 Network Data Errors Estimation ... 7

2.2.1 Sensor Data Errors ... 7

2.2.2 Malfunctioning Sensor Detection .. 8

2.2.3 Erroneous Sensor Data Imputation .. 10

2.3 Deep Learning Techniques ... 12

Chapter 3 Previous Work: Networked Sensor Data Error Estimation in Static Framework 16

Chapter 4 Networked Sensor Biases Correction in Dynamic Framework 22

4.1 Introduction ... 22

4.2 Methodology ... 22

4.2.1 Time Series Model Capturing Traffic Dynamics ... 22

4.3.2 Data Preparation ... 25

4.3.3 Physics-Informed Neural Network Models ... 30

4.3 Results and Discussions .. 41

4.3.1 Models Performance .. 41

4.3.2 Sensitivity analysis... 45

 iii

4.3.3 Discussions .. 54

Chapter 5 Single Loop Detector Measurements Bias Correction Using Deep Learning 56

5.1 Introduction ... 56

5.2 Methodology ... 57

5.2.1 Traffic Measurement for a Road Segment ... 57

5.2.2 ODE Approximation .. 61

5.2.3 Traffic Measurements Error Model ... 63

5.3.4 LSTM-based PIDL Model ... 74

5.3 Results and Discussion ... 80

5.3.1 Model Performance .. 80

5.3.2 Sensitivity Analysis ... 83

5.3.3 Discussions .. 89

Chapter 6 Conclusions .. 92

References ... 96

 iv

LIST OF FIGURES

Figure 4.1 Modified Nguyen-Dupuis network .. 26

Figure 4.2 The base of average hourly flow ratio in network ... 27

Figure 4.3 The distribution of hourly flow in network ... 27

Figure 4.4 Initial fully connected network .. 32

Figure 4.5 Finalized fully connected network model ... 35

Figure 4.6 Convolutional neural network model .. 36

Figure 4.7 LSTM cell .. 38

Figure 4.8 Structure of Bi-LSTM ... 39

Figure 4.9 LSTM model ... 39

Figure 4.10 𝑀𝐴𝐸 before and after model corrections .. 42

Figure 4.11 Performance of Different Models .. 43

Figure 4.12 Effect of bias scale on model performance ... 45

Figure 4.13 MAE corresponding to various levels of 𝜎! .. 47

Figure 4.14 Different levels of 𝑝" .. 48

Figure 4.15 Hourly flow patterns of a day .. 50

Figure 4.16 Effect of flow imbalance on model performance .. 51

Figure 4.17 Different test flow patterns .. 52

Figure 4.18 Effect of flow pattern changes on model performance ... 54

Figure 5.1 Representative vehicle signatures obtained from loops (US DOT, 2006) 57

Figure 5.2 Typical electric signal by inductive loop sensor ... 58

Figure 5.3 Traffic density-location graph and discretization .. 61

Figure 5.4 ODE model for a road segment ... 62

 v

Figure 5.5 Simplified Road Segment .. 62

Figure 5.6 Spatial and temporal discretization ... 68

Figure 5.7 An example for determining 𝑡#$ and 𝑡#% ... 71

Figure 5.8 LSTM model setup .. 74

Figure 5.9 Road Segment Sample ... 76

Figure 5.10 Hourly traffic flow pattern ... 77

Figure 5.11 Finalized LSTM model .. 80

Figure 5.12 Loss value during training ... 80

Figure 5.13 𝑀𝐴𝐸 for sensor readings before and after correction.. 81

Figure 5.14 𝑀𝐴𝐸 with all sensor readings unbiased .. 82

Figure 5.15 𝑀𝐴𝐸 with one healthy sensor .. 83

Figure 5.16 𝑀𝐴𝐸 of 𝑓&' for different 𝛽(&' .. 84

Figure 5.17 𝑀𝐴𝐸 of 𝑟&' for different 𝛽#&' .. 84

Figure 5.18 𝑀𝐴𝐸 of 𝑓&' and 𝑟&' for different 𝛽(&' and 𝛽#&' .. 85

Figure 5.19 𝑀𝐴𝐸 for different scale of 𝜎 ... 86

Figure 5.20 𝑀𝐴𝐸 for 𝜎)#!&' = 0.02 and different 𝜎)*+) ... 87

Figure 5.21 𝑀𝐴𝐸 for different traffic segment length .. 88

Figure 5.22 𝑀𝐴𝐸 for different training data sizes .. 89

 vi

ABSTRACT

Efficient operations of intelligent transportation systems rely on high-quality traffic

data. Infrastructure-based traffic sensors, though providing major data sources for ITS, are subject

to data quality issues. Existing studies have attended to identifying malfunctioning sensors or

recovering missing data. Nevertheless, critical gaps remain to be addressed. Firstly, most studies

only attempt to label sensors as either ‘good’ or ‘bad’. In this way, any useful information

contained in the partially ‘bad’ sensors is always discarded while the potentially erroneous

information given by the partially ‘good’ sensors is always preserved. Secondly, the traffic

dynamics attributes have not been effectively exploited when examining the sensor data, which is

a missed opportunity for utilizing valuable information. This dissertation will try to fill these

research gaps. In the dissertation, we first construct three networked sensor error correction models

using transportation domain knowledge and Physics-Informed Deep Learning (PIDL) techniques

based on fully-connected Neural Network, Convolutional Neural Network (CNN), and Long

Short-Term Memory (LSTM), to extract features from the spatiotemporal sensor data and quantify

the traffic flow measurement biases for all the sensors in the network. In addition, narrowing the

scope down to a traffic segment with only two sensors, we develop another measurement error

correction model using the Physics-Informed LSTM neural network combined with prior

knowledge of macroscope traffic models. With minimum data requirements, this LSTM-based

PIDL model is able to correct the measurement biases for traffic flux and occupancy

simultaneously for both sensors. Overall, experimental results demonstrate the merits of

combining machine learning techniques with domain knowledge of the physics of traffic flows in

the context of sensor health monitoring and error estimation. The sensitivity analyses demonstrate

the reliability and robustness of our results with respect to different testing scenarios.

 vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Professor Yueyue

Fan, for all her unrelenting guidance and both technical and mental support during my entire Ph.D.

studies. Writing this thesis was a long and uncertain journey that wouldn’t have been possible

without her. It is extremely fortunate for me to have a supervisor like her who cares so much about

the students.

I would also like to extend the thanks to my dissertation committee members, Professor Michael

Zhang and Professor Miguel Jaller, for serving as my committee and offering thoughtful comments

and suggestions. It is the knowledge obtained from their courses that builds the foundation of my

dissertation.

Special thanks are given to Dr. Yudi Yang, my fellow student and 15-year friend. I am always

benefiting from his wisdom, and the work with him also helped form the initial idea of this

dissertation.

Finally, I want to thank my family, for being a constant source of love, encouragement, and support.

 1

Chapter 1 Introduction

1.1 Background

An intelligent transportation system (ITS) is a highly integrated system, designed to automatically

collect networked data, analyze data and provide people with human-friendly information to

optimize traffic management. As transportation demand continues to increase while physical

roadway capacity is limited, smart transportation operations enabled by ITS become even more

critical. The performance of ITS depends heavily on the quality of the data used by the system

(Brumbaugh et al., 2018, Hawkins, 1980). For example, inconsistency and missing information

hinder the accurate interpretation of data, while the overabundant information impedes effective

downstream applications that utilize those data. In the age of Big Data, traffic network data are

generated in massive amounts and from vast sources. Appropriate data pre-treatment is critical for

effective and accurate downstream applications including monitoring, estimation, and decision.

However, fundamental research focusing on understanding the data itself is relatively thin

compared to the wide spectrum of applications that use the data as input. This research will focus

on the quality of networked data, aiming to develop systematic mathematical approaches for data

error estimation and proper data selection.

1.2 Traffic Detecting Sensors

Albeit the development of the Internet of Things (IoT) allows ITS to obtain traffic data via various

mobile traffic sensors, like smartphones and smart vehicles, the penetration rate of mobile data is

still low and the infrastructure-based traffic sensor systems are still by far the main input

component for ITS. Also, due to privacy or commercial confidential concern, most of the mobile

 2

data collected by commercial companies will not be accessible to the government or the public.

Therefore, infrastructure-based sensors are still the major data source for public traffic

management. There are mainly two types of infrastructure-based sensors, over-road sensors, such

as ultrasonic radar, infrared sensors, and video cameras, and in-road sensors, including magnetic

sensors and inductive loop sensors. Among these traffic sensors, inductive loop sensors are the

most frequently implemented. A loop sensor can directly measure traffic volume (number of

vehicles passing), occupancy (the proportion of time covered by a car) and indirectly infer traffic

speed, characterizing the most important properties of traffic flow. The measurement data from all

these sensors should be able to provide the traffic managers, the public, and the researchers with a

good understanding of the traffic system.

In this study, the traffic volume and occupancy data are of our main interest. However, these traffic

data are not always reliable. Empirical case studies have shown inconsistency and missing

information from a large portion of network data. For example, it was reported that about one-third

of the freeway sensors in California were not working correctly in PeMS data (Brumbaugh et al.,

2018). On the other hand, for effective traveler information applications and traffic management

applications, the traffic data errors should not be greater than 20% and 10%, respectively (Zhang

et al., 2011). Quality control for archived data management systems (ADMS) has also been

identified as a high-priority task recommended to the Federal Highway Administration (Shladover,

1993). Despite the importance of network data health monitoring, the research effort devoted to

this subject is rather thin compared to studies that rely on data as input.

 3

1.3 Unhealthy Sensor Data Identification

Among network data health monitoring literature, most studies focused on identifying ‘bad’

sensors so that data collected from those sensors can be filtered. However, an equally important

question, how to estimate sensor data error (i.e., to find out ‘how bad’ a sensor is), has not been

well addressed. In most practices, data imputation is applied to complete traffic data records after

malfunctioned sensors have been identified using the aforementioned quality control procedure

and the erroneous data are removed. To this end, there is a large body of literature using statistical

learning techniques, including K-cluster, PPCA (probabilistic principal component analysis), and

SVD (single value decomposition) (Chen et al., 2003, Weijermars & Van Berkum, 2006).

However, those approaches neither fully utilize domain knowledge for transportation networks nor

delve into statistical modeling of sensor errors. Simply relying on the data itself without

assimilating transportation expertise produces the poor result of imputation when certain sensors

are malfunctioning for an extended period of time.

In the recent paper coauthored by the author of this dissertation (Yang et al., 2019), a novel

statistical model incorporating traffic network structure and nodal flow balance law was developed.

In addition to identifying malfunctioning sensors, the model also shows the ability in quantifying

measurement bias and recovering traffic flow data. Despite dropping out the need for the flow

conservation for the entire network, that model still assumed nodal level flow balance, which does

not always hold at a heavily queued location. In addition, by ignoring the time attributes of the

observations, that model missed an opportunity to take advantage of the additional information

contained in the traffic flow dynamics. In this study, we will resolve this limitation by making use

of the temporal relations between the sensor data.

 4

Note that studying traffic flow dynamics often needs another important traffic flow attribute, traffic

density. Although a single loop detector system does not measure traffic density directly, traffic

occupancy, as one of the two direct measurements, is often used to derive the density. However,

the health of traffic occupancy is rarely discussed in the literature. Part of this study will fill this

gap by introducing the traffic flow ordinary differentiate equation (ODE) model which draws a

relation between the traffic flux (volume) and traffic density (occupancy) and using the model to

examine the health conditions of both sensor readings.

While incorporating the time attribute, we will need to look at multi-dimensional time-series data

containing complex non-linear feature information. Conventional analytical models are difficult,

if not impossible, to suit such a need. Therefore, in this study, we will take advantage of the

Physics-Informed Deep Learning (PIDL) techniques and combine neural networks with

transportation engineering domain knowledge, to extract high-level features from traffic data and

learn a non-parametric mapping to predict measurement biases in network sensors.

This work mainly consists of two parts:

First, we will look at the sensors in a network scope. We will develop physics-informed deep

learning models based on the fully connected neural network, convolutional neural network (CNN),

and long short-term memory (LSTM) to capture the spatial and temporal correlations in the traffic

volume data and to estimate the traffic volume measurement biases of the networked sensors.

In the second part, we narrow down the scope into a single traffic segment with two sensors and

will construct a traffic ODE model which draws an implicit relation between the traffic volume

and the traffic occupancy and their measurement biases. We then combine the traffic model with

 5

deep learning techniques and use the PIDL model to learn this implicit relation and simultaneously

identify both volume and occupancy measurement biases.

 6

Chapter 2 Literature reviews

2.1 Traffic Network Data

The ‘traffic data’ is the key to the modern traffic management system. Only correct, healthy, and

integrated input data can support the effectual decision output.

Highway traffic sensor systems are still the primary information source for traffic management.

Generally, there are two types of traffic sensors, over-road sensors like ultrasonic radar, infrared

sensors, and video cameras, and in-road sensors like magnetic and inductive loop sensors. Among

these traffic sensors, inductive loop sensors are the most frequently implemented. A loop sensor

can measure directly traffic volume (number of vehicles passing), occupancy (the proportion of

time it is covered by a car), and indirectly the traffic speed, characterizing the most important

properties of traffic flow.

In the U.S., several states' Department of Transportation (DoT) built their own traffic performance

monitoring system, like the Performance Measurement System (PeMS) of Caltrans. The operating

of these systems requires input data from traffic detecting sensors, such as inductive loop sensors,

magnetometers, and video cameras. Though studies have been conducted on replacing the

inductive loop with other techniques like infrared sensors, among all the traffic detecting sensors

in the current DoT traffic performance monitoring system, inductive loop sensors still play critical

roles (Chen, 2003) and account for 95% of the collected data (Bickel et al., 2007).

By characterizing traffic volume, occupancy, and speed, the inductive loop sensors support traffic

management in many aspects. Ramp metering, which controls the entrance gate of freeways,

 7

operates based on the mainline flow density. The incident detecting system must identify and

allocate incidents by extracting all the real-time traffic speed, volume, and occupancy data. Short-

term congestion prediction acts similar to incident detecting but also requires historical data.

Traffic models such as the car-following model and driver’s behavior model often have numerous

parameters, the calibrating and estimating of which also needs the network data from traffic

sensors (Bickel et al., 2007).

2.2 Network Data Errors Estimation

2.2.1 Sensor Data Errors

A significant challenge associated with sensor data is its quality assessment. According to

Margiotta (2002), for effective traveler information and traffic management applications, traffic

data errors should not be greater than 20% and 10%, respectively. However, inductive loop

detectors are found to be vulnerable. Several external impacts, including poor pavement condition,

improper installation, and heavy vehicles, may lead to degrading the measurement performance

(Klein et al., 2006). Empirical case studies have shown inconsistency and missing data from a

large portion of road sensors. For example, it was reported that about one-third of the freeway

sensors in California were not working correctly in PeMS data (Varaiya, 2001). Quality control

for archived data management systems (ADMS) has also been identified as a high-priority task

recommended to the Federal Highway Administration (Turner, 2007). Despite the importance of

sensor health monitoring, the research effort devoted to this subject is relatively thin.

 8

2.2.2 Malfunctioning Sensor Detection

Unhealthy sensors may lead to bad estimates of traffic volume and speed. Among sensor health

monitoring literature, most studies focused on identifying malfunctioned sensors whose data

should be discarded. A large group of previous quality control methods in this direction analyzed

data from individual sensors separately. By setting reasonable thresholds for observed values and

checking consistency among volumes, occupancy, and speeds, these studies could identify

malfunctioned sensors (Payne et al., 1976). When the monitored variables are not within the

acceptable ranges, for instance, too large traffic flow (e.g., greater than 3000 vehicles per hour per

lane) or speed (e.g., greater than 160 km per hour) measurement is considered to be unreasonable,

thus is dropped (Jagadeesh et al., 2014). Washington Algorithm (Jacobson et al., 1990) formulated

a region in the volume-occupancy plane and rejected all the measuring data points outside the

region. Rajagopal and Varaiya (Rajagopal & Varaiya, 2009) aggregated the ten diagnostic states

provided by PeMS.

The basic threshold criteria are not always effective in finding malfunctioning sensors. Weijermars

& Van Berkum (2006) found that the principle of flow conservation was a useful addition to the

threshold criteria. Chen et al. designed a statistical algorithm to identify sensor error from

California daily PeMS data and introduced the use of entropy scores to reflect the fluctuation of

observed values (Chen et al., 2003). Though still looking at individual nodes, Waller et al. (2008)

introduced an index of network consistency, which can be used to evaluate observed traffic flows.

This category represents the early endeavor in traffic data quality control and has evolved into a

much more complicated validity criteria combination through the years. It is still prevailing in

practice nowadays due to the convenient automation in a database environment. However,

 9

although these simple methods could identify some obvious outliers, they may be challenging to

find out small biases.

Instead of focusing on a single sensor’s observed values at the one-time interval, another group of

research efforts, emphasizes using the spatial and temporal correlation between nearby sensors and

adjacent time intervals to detect sensor failure (Turner, 2007). Rajagopal et al., (2008) designed

an algorithm with correlation statistics of neighboring sensors to detect multiple sensor failures in

a network. Using neighboring lane correlation and time series from a traffic path, Dailey proposed

a Kalman filter-based statistical algorithm to make an optimal volume and speed value prediction

for inductive loops (Dailey, 1993). Sensor error is detected if the actual observation evidently

deviates from the predicted value. In addition to those correlations, Nihan (1997) noticed that

upstream and downstream traffic counts should be consistent, and the difference between spatially

close detectors’ counts cannot exceed the storage rate if all detectors work perfectly. Following

the same vein, Vanajakshi & Rilett (2004) expressed this conservation principle using a partial

differential equation based on macroscopic traffic flow theory and derived a nonlinearly

constrained optimization problem to identify the malfunctioned sensors and estimate the

measurement error. The spatial correlation of the above approaches is limited to neighboring

sensors on a corridor. A more generic approach, simply based on the distance between sensors,

was proposed to detect sensor mislabeling errors. Still, this work has not really utilized the network

structure of a road traffic system (Kwon et al., 2004).

Recently, Sun et al. pointed out the limitation of those previous studies which did not consider

spatial correlations among network sensors, and proposed a new approach for identifying bad

sensors in a network setting. By enumerating all possible bases of a linear system consisting of the

 10

network flow balancing equations, these researchers were able to identify broken sensors as those

whose data are most frequently found inconsistent against data of the basis sets.

2.2.3 Erroneous Sensor Data Imputation

In most practices, data imputation is applied to complete traffic data records after malfunctioned

sensors have been identified using the aforementioned quality control procedure and the erroneous

data are removed. Li et al.(2014) divide these techniques into three types: interpolation, prediction,

and statistical learning methods.

The interpolation can be done from either the spatial dimension or the temporal dimension. For

spatial dimension, the missing or erroneous data can be filled using the average of the spatially

neighboring data (Chen et al., 2003), or the K-Nearest Neighbors method (Liu et al., 2008).

Similarly, temporal dimension interpolation uses the average of the temporally neighboring data.

However, these methods have a strong assumption that the neighboring data has to be very similar

in dimension, which cannot always hold. On the other hand, other than using similarity, these

models don’t consider the data correlation in either spatial or temporal dimensions and therefore,

waste much useful information in the data.

The traffic data has long been treated as time series data. Taking use of the correlation and variance

in the temporal dimension, one can predict the missing data using some time series models, such

as the autoregressive moving average (ARMA) model (Nihan & Holmesland, 1980) and

autoregressive integrated moving average (ARIMA) model (Williams et al., 1998). However, due

to the complexity of the traffic flow data and the various traffic conditions that may affect the

traffic, the conventional time series models don’t fully capture the traffic flow dynamics.

 11

Meanwhile, the models discard any data after the potentially erroneous observations which we

want to predict, therefore, losing the information within that disposed data.

As the aforementioned prediction and interpolation approaches do not fully utilize the stochastic

information of the networked traffic data, recent studies have attempted to use statistical learning

methods to address this problem. Statistical learning models have been developed decades ago,

but they are not prevailing until the most recent decade after the exponential growth in computing

power. Methods like Probabilistic Principal Component Analysis and Markov Chain Monte Carlo

multiple imputation method start to be used in the traffic data imputation (Choi et al., 2019, Farhan

& Fwa, 2013).

Nevertheless, all the studies above pay no attention to the erroneous data itself. This may generate

two significant problems: Firstly, if a bad sensor is identified, its data is just filtered and replaced

with the new data imputed from other ‘related’ sensors. By doing so, we are abandoning the piece

of information that may have the highest relationship with the truth. Secondly, if a slightly

malfunctioning sensor is not identified as bad because its data quality still lies under an acceptable

threshold, its data is simply kept and used to infer other sensors. Given this possibility, the entire

data imputation process becomes unreliable.

In reality, different levels of sensor problems exist, from the most severe and manifest, zero call

or constant call, to the modest but more undetectable ones, such as unbalanced sensitivity.

Obviously, the former does not provide any useful information at all and should be tossed anyway,

but the observation from the latter could still be potentially valuable in reconstructing traffic

operation data. In many cases, sensor data are systematically deviated from the actual traffic

volume due to causes such as counting neighboring lane traffic, missing motorcycles, and double

 12

counting long vehicles. Albeit the data collected under those conditions significantly differ from

what actually happened on the road, the systematic error part can be modeled mathematically and

inferred with other sensors’ counts in the traffic network, not limited to neighboring ones. With

this being considered, instead of asking whether a sensor is good or bad, it leads to an equally

important question, how to estimate sensor data error (i.e., ‘how bad’ a sensor is)?

To address these problems, Dr. Yang, Dr. Fan, and the author of this dissertation developed a

Generalized Method of Moments (GMM) based sensor error estimation model (Yang et al., 2019).

This model takes use of the network structure information and can quantify the sensor

measurement bias and recover real traffic flow data accordingly (the more detailed contribution of

this study will be discussed in Chapter 3). Nevertheless, this GMM model still has two limitations.

Firstly, it cannot take advantage of the information in the temporal dimension of the traffic

observation, because the model treats each observation as an independent sample. Secondly, in

the spatial dimension, the model still requires a strong flow conservation assumption, which,

however, does not always hold.

2.3 Deep Learning Techniques

With the development of ITS, there has been a data explosion in transportation engineering. Due

to the complexity of spatial-temporal dependencies in traffic networks, conventional statistical

learning techniques, like Bayesian networks, linear/logistic regression, and decision trees, lack the

power to fully capture the features in the data (Nguyen et al., 2018). Over the recent decades,

researchers have been using deep learning approaches to overcome this barrier. Deep learning is a

type of machine learning and artificial intelligence that uses artificial neural networks with

multiple layers to imitate the structure of the human brain. The word deep comes from the fact that

 13

these artificial neural network models usually have multiple hidden (deep) layers. It is these hidden

layers that increase the deep learning techniques’ ability to process more complex and higher

dimensional data.

Deep learning techniques have also demonstrated their powers in transportation engineering

research. In the traffic prediction field, Polson & Sokolov, (2017) develop a deep learning model

for short-term traffic flow prediction. After comparing the performance with a single-layer neural

network model, they find that there is 14% less MSE. Because the deep learning approach can

extract features from multi-dimensional data, they can have better predictions with the help of

broader information. Zhao et al., (2017) construct an LSTM mode to predict traffic flow, and the

LSTM model is found to outperform traditional time series models such as ARIMA, especially in

long-term prediction. Moreover, deep learning can also be used for traffic condition perdition. For

instance, Ranjan et al., (2020) build a hybrid CNN and LSTM model to perform city-wide

congestion prediction and prove that the model can effectively capture from the data the

relationship between both spatial and temporal dimensions. Cao et al., (2020) propose a CLM deep

learning model for traffic speed prediction and show that this model has a better prognosis than

SVR, MLP, and Lasso.

Researchers also attempt to use different types of deep learning methods to extract the features

embedded in the high-dimensional traffic flow data and infer the missing information. Zhuang et

al., (2019) treat the traffic volume data as spatial-temporal images and missing data as the blank

region in the image and propose a CNN-based model to reconstruct the spatial-temporal data

matrix. The model is able to impute missing data from missing ratios up to 50%. Cui et al., (2020)

construct a two-layer bi-directional LSTM network that can capture forward and backward

 14

temporal dependencies in spatiotemporal data to predict the network-wide traffic with missing

values. This model can perform excellent missing data imputation, especially when training data

contains multiple patterns of missing values.

Overall, the capability of capturing features from spatial-temporal dimensions makes deep learning

an excellent approach to analyzing traffic data, traffic prediction, and missing data imputation.

However, similar to the previous discussion, most studies assume that the data is either good or

bad, or missing. The ‘good’ data is used to infer the ‘bad’ or ‘missing’ data without being verified.

The ‘bad’ data is considered useless and discarded completely. Similar to the objective of the

previous paper (Yang et al., 2019), this study aims to numerically quantify the sensor reading

biases but using deep learning approaches rather than purely relying on analytical models.

Conventional deep learning approaches are purely data-driven, and the predictions made by these

complete data-driven models may be physically inconsistent or infeasible (Karniadakis et al.,

2021). The concept of physics-informed deep learning (PIDL) helps resolve this problem (Raissi

et al., 2017). It can be considered a combination of data-driven and model-driven neural network

models, so the neural network model has some prior knowledge of physical law (Figure 2.1).

Initially, it was designed for solving ordinary and partial differential equations (Lagaris et al., 1998)

and used mainly in physics. Still, the concept of physics information machine learning is quickly

transcending to many engineering disciplines, including transportation engineering. Huang &

Agarwal (2020) incorporate the macroscopic traffic conservation law with the physics-informed

neural network. With prior knowledge of the traffic model, the PIDL can perform reasonable traffic

state estimation with minimal traffic data. Mo et al., (2021) develop a family of neural network-

based car-following models informed by the Intelligent Driving Model, Optimal Velocity Model,

 15

and Full Velocity Difference Model and prove the better performance of neural networks informed

by physics over those without.

Figure 2.1 Physics-informed deep learning (Huang & Agarwal, 2020)

To extend the initial concept of PIDL, as shown in Figure 2.1, the physics informing can take place

in any part of the learning process, e.g., training data preparation (Han et al., 2022), neural network

structure design (Mo et al., 2021), and loss function design (Huang & Agarwal, 2020). With the

aid of transportation engineering knowledge, PIDL has demonstrated a more efficient and effective

learning process with less data demand. Therefore, in this research, we will take advantage of these

attributes of PIDL and construct sensor bias estimation models based on it.

 16

Chapter 3 Previous Work: Networked Sensor Data Error

Estimation in Static Framework

In the previous study (Yang et al, 2019), by integrating a sensor measurement error model and a

transportation network model, we propose a Generalized Method of Moments (GMM) based

estimation approach to determine the parameters of systematic and random errors of traffic sensors

in a road network. The roles and functionalities of the problem discussed in that paper are

illustrated in Figure 3.1 and highlighted in blue. Steps 1 and 2 are the detection of entirely and

partially malfunctioning sensors, respectively. Step 3 represents the standard denoising procedure.

Step 4 is to correct systematically erroneous data. Step 5 is to impute missing data.

Figure 3.1 Sensor Data Processing Chart

A single traffic loop detects sensor typically generates two traffic measurements: traffic volume

(flux) and occupancy. We group the traffic measurement errors into two categories:

Random error: This type of error is natural to any type of measurement. Even in a perfectly

functioning sensor, the recorded traffic counts or occupancy can be ostensibly different from the

true value due to inherently unpredictable fluctuation of the readings. With only the presence of

random error, the measurement error has a zero mean and small variance.

 17

Systematic error (bias): This type of error affects the observed data in a predictable direction.

Traffic sensors may be subject to several types of systematic errors, but in this study we integrate

all these types of errors into a single systematic error. We call a sensor malfunctioned if the

systematic error is present. The main focus of this study is to identify those sensors and correct

their observed data using systematic error estimates.

Traffic measurements given by the traffic sensors are often aggregated into certain time intervals

(e.g., 10s, 1min). Mathematically, we use 𝑍!) to denote the actual traffic volume or occupancy

occurring at the sensor 𝑎 during 𝑡)" time interval, 𝑉) to denote the traffic reading given by this

sensor. Then,

 𝑉!" = 𝑍!" +𝑊!"	 (3.1)

Where, 𝑊!) = 𝑉!) − 𝑍!) is the statistics of random measurement error.

𝐸(𝑊!)|𝑍!)), the expectation of the measurement error 𝑊), is the systematic measurement error we

defined, and it is a function depending on 𝑍,

 𝐸(𝑊!"|𝑍!") = 𝑓(𝑍!")	 (3.2)

For simplicity, in this study, we assume that 𝑓(𝑍!)) = 𝛽𝑍!) , namely a linear relationship between

the real traffic and the systematic error, and we call 𝛽 the measurement bias, which is not time

dependent. Now we can convert equation to,

 𝑉!" = 𝛽𝑍!" + 𝜀!" (3.3)

 18

Here 𝜀!) can be treated as the white noise for the measurement, with 𝐸(𝜀!) |𝑍!)) = 0 and constant

variance 𝜎!%.

In this paper, our objective was to estimate the sensor measurement biases in a static framework,

therefore, ignoring the temporal dimension, Equation (3.1) can be expressed as,

 𝑉! = 𝑍! +𝑊! (3.4)

Similarly, 𝑊! = 𝑉! − 𝑍! is the statistics of random measurement error.𝐸(𝑊!) = 𝜇!𝑍! is the

systematic measurement error. If we use 𝑈! = 𝑊! − 𝐸(𝑊!), then 𝐸(𝑈!) = 0. The main focus of

this paper is to estimate the systematic error by using the fact that traffic data are spatially

correlated.

Then the next step is to a construct a network abstracting model converting a general traffic

network into a directed graph, which follows the assumption of flow conservation, satisfying

 . 𝑍!
!∈𝒜!(&)

− . 𝑍!
!∈𝒜"(&)

= 0,			∀𝑖 ∈ ℐ (3.5)

Here ℐ is the sets of all intermediate nodes in this abstracted network. 𝒜,(𝑖) and 𝒜-(𝑖) are the

the incoming and outgoing links of the intermediate node 𝑖 . Using 𝑷	to denote the node-link

adjacency matrix, the matrix form can be expressed as,

 𝑷𝒁 = 0 (3.6)

Combining the flow conservation equation with measurement error model, we obtain,

 19

 .
𝑉!

1 + 𝜇!!∈𝒜!(&)

− .
𝑉!

1 + 𝜇!!∈𝒜"(&)

= .
𝑈!

1 + 𝜇!!∈𝒜!(&)

− .
𝑈!

1 + 𝜇!!∈𝒜"(&)

	 , ∀𝑖 ∈ ℐ (3.7)

Let 𝜷 = [𝛽!] = [1/(1 + 𝜇!), then the matrix form is

 𝑷(𝑽°𝜷) = 𝑷(𝑼°𝜷) (3.8)

Where ° stands for the Hadamard product.

Defining a zero-mean stochastic function of 𝜷, 𝑔(𝜷), and using Generalized Method of Moment,

we can estimate 𝜷 by minimizing the Euclidean distance of 𝑔(𝜷),

 𝐦𝐢𝐧
𝜷)𝟎

𝑔(𝜷)+𝑾𝑔(𝜷)+ (3.9)

Assuming that the entire measurement timeframe is 𝑇 and each measurement interval is 𝑡, we can

define a zero-mean stochastic function of 𝜷, e.g.,

 𝑔(𝜷) = 𝑷(
1
𝑇
.𝑽𝒕°𝜷
+

"

) (3.10)

By defining 𝑔(𝜷) using (3.7), we are aggregating all measurements of one sensor into just one

observation. This is a typical method of moment approach. However, doing so, we are losing a

large portion of information contained in each individual measurement. Therefore, generalized

method of moment gives more flexible way to aggregate the observations. Using GMM, we can

define 𝑔(𝜷) as

 20

 𝑔(𝜷) =

⎣
⎢
⎢
⎡
H𝑃J

1
|Ψ(1)|

. 𝑽𝒕°𝜷
"∈-(.)

LM

+

, … ,H𝑃J
1

|Ψ(K)|
. 𝑽𝒕°𝜷

"∈-(/)

LM

+

⎦
⎥
⎥
⎤
+

 (3.11)

Instead of aggregating all the observations into only one, GMM allows the data to be grouped into

flexible K groups. Here Ψ(k) is the 𝑘)"set observations, containing all the observations that are

grouped into this set. With all these setups, we can then solve the (3.6) minimization problem,

which gives us the estimation of 𝜷.

In this paper, we translate nodal flow balance law into structural equations, whose first moments

are employed to estimate the systematic error ratio of sensors. The proposed framework allows a

flexible data aggregation strategy, for which the traditional MOM and GLS are extreme cases.

With such strategy, it is possible, without knowing random error ratios, to improve parameter

identification by separating observations to more groups or to amend estimator consistency by

clustering observations to fewer groups. The method in that study is capable of evaluating the level

of data issue and correcting traffic flow data in addition to identifying malfunctioning sensors,

while most previous sensor health studies concern only the latter. Second, it utilizes network

structure of traffic monitoring system, while many previous studies that focus on spatial relation

gave attention only to those immediately neighboring sensors on a corridor. Compared to the works

in Sun et al. (2016) and Yin et al. (2017), which also exploits the network feature, our method

lessens their requirement of flow balance on the entire network, which may take several hours to

establish.

The estimation method in this paper is somewhat exemplary in the sense that it provides a

conservative statistical approach to a novel problem. It only considers the most well-examined

data type, traffic counts as well as probably most commonly accepted measurement error and

 21

network models. In practice, there are multiple types of sensor data available, such as flow and

density. Besides the static flow balance law based on network graph, other useful transportation

domain knowledge like temporal dependency of traffic volumes, speed-density relationship and

macroscopic traffic flow models can certainly provide additional information. This dissertation

will attempt to incorporating this information into the error identification model and estimating

the biases of sensor measurements by taking advantage of the fact that traffic data collected from

sensors at different locations over a network and at different time over a timeline is indeed

inherently correlated.

 22

Chapter 4 Networked Sensor Biases Correction in

Dynamic Framework

4.1 Introduction

In the previous work, the sensor error estimation model only looks at the spatial correlation

between the networked sensors while ignoring the temporal information in the data. In this study,

we will construct sensor bias correction models in a dynamic framework. Because the networked

traffic sensor data are correlated from both spatial and temporal dimensions, it may be difficult for

traditional statistical approaches to incorporate domain knowledge with the data and fully exploit

its complexity. Machine learning techniques, like Physics-Informed Deep Learning (PIDL),

however, well overcome this issue. Combining domain knowledge with deep learning techniques,

PIDL has demonstrated the capability to efficiently extract features from complex engineering data

and perform consistent predictions. In this study, we will construct three PIDL models (fully

connected neural network-based, CNN-based and LSTM-based) to estimate the network sensor

measurement bias, reconstruct erroneous traffic flow, and compare the difference in performance.

4.2 Methodology

4.2.1 Time Series Model Capturing Traffic Dynamics

Our abstracted traffic network consists of links, each of which has one sensor. Any network that

does not comply with this setting in its original form can be processed to match this requirement,

following the network abstraction algorithm ￼￼. 𝒢￼ denote the network, 	𝒢 = 	 {𝒩,𝒜}, where

𝒩	and 𝒜 are the set of nodes and links in the network. Let 𝑠 = 	 |𝒜| denote the number of links.

 23

For any node 𝑖, 𝒜(&)
, is the set of links that has traffic flow coming in and 𝒜(&)

- is the set of links

that has traffic flow going out. We use ℐ to denote the set of intermediate nodes and 𝑛 = 	 |ℐ|, the

number of intermediate nodes.

Several macroscopic traffic variables, including traffic volume, speed, and occupancy, are

naturally time series data. Time series analysis with historical traffic observations allows not only

a short-term traffic forecasting model to predict the future traffic state but also the traffic data

quality validation. Conventionally, the traffic data time series analyses tend to be model-driven,

with many strong assumptions (Zheng & Huang, 2020) and these models are usually struggling in

dealing with nonlinearity (Ma et al., 2017). Since the start of the big data era, data-driven models

have well addressed these issues, especially with machine learning techniques, which are excellent

at extracting complex and nonlinear attributes from data. On the other hand, the choice of models

and the structuring of the input data significantly affect the model performance. A solely data-

driven model without a good understanding of the data itself may not even converge. To this point,

the domain knowledge does present a high value in helping construct a physical-informed machine

learning model which some prior knowledge of the studying data.

Since we know that the traffic volume data are time series data, we will start looking at it using

the conventional time series analysis. Let 𝑍!) denote the true traffic volume for link 𝑎 at 𝑡)" time

interval. Following the autoregressive time series model (AR) of order 𝑝, we may write,

 𝑍!" = 𝜙!.𝑍!"0. + 𝜙!1𝑍!"01 +⋯+ 𝜙!
2𝑍!

"02 + 𝜖!" (4.1)

This is called an AR(𝑝) model, where 𝜖)	 is the zero mean random error. The AR model forecasts

the 𝑡)" traffic volume using a linear combination of 𝑡)" to (𝑡 − 𝑝))" traffic volume.

 24

Combine it with the error model 𝑉!) = 𝛽!𝑍!) + 𝜀!) ,

𝑍!" = 𝜙!.

𝑉!"0. − 𝜀!"0.

𝛽!
	+ 𝜙!1

𝑉!"01 − 𝜀!"01

𝛽!
+⋯+ 𝜙!

2 𝑉!
"02 − 𝜀!

"02

𝛽!
+ 𝜖!"

=
𝜙!.𝑍!"0. + 𝜙!1𝑍!"01 +⋯+ 𝜙!

2𝑍!
"02

𝛽!
+ 𝛾!"

(4.2)

where, 𝛾!) =
0!1!"-23!"#$,3!"#%,⋯,3!

"#&6

0!
 and 𝐸(𝛾!)) = 0.

According to Yang et al., (2019), if the flow conservation law holds at link 𝑎, then,

 S 𝑍𝑎𝑡
𝑎∈𝒜+(𝑖)

−S 𝑍𝑎𝑡 	
𝑎∈𝒜−(𝑖)

= 0, ∀𝑖 ∈ 𝐼 (4.3)

In a more general case however, due to the fluctuation of the traffic flux, the flow conservation

does not always hold. This means there exists another variable 𝜂!) , where

 S 𝑍𝑎𝑡
𝑎∈𝒜+(𝑖)

−S 𝑍𝑎𝑡 	
𝑎∈𝒜−(𝑖)

= 𝜂𝑎
𝑡 , ∀𝑖 ∈ 𝐼 (4.4)

Again, combine it with the error model, and we obtain,

S
𝜙!$𝑉!)-$ + 𝜙!%𝑉!)-% +⋯+ 𝜙!

7𝑉!
)-7

𝛽!
−

!∈𝒜'(&)
S

𝜙!$𝑉!)-$ + 𝜙!%𝑉!)-% +⋯+ 𝜙!
7𝑉!

)-7

𝛽!!∈𝒜#(&)

 = 𝜂!" −. 𝛾!"
!∈𝒜!(&)

+. 𝛾!"
!∈𝒜"(&)

 (4.5)

As discussed, in general, 𝜂!) does not equal zero. However, if we treat, for example, one-day

observation as a cycle, ∑ 𝜂!)) should equal zero. If we look at the time series for one day, we can

approximately treat 𝜂!) as some random variable with 𝐸[𝜂!)] = 0. Therefore, the right-hand side of

 25

the above equation has 𝐸X𝜂!) −∑ 𝛾!)!∈𝒜'(&) +∑ 𝛾!)!∈𝒜#(&) Y = 0 and apparently, we do not observe

this part.

In our study, the 𝑉 s are the observed traffic volume, the measurement biases (𝛽 s) are our

estimation target, while the coefficient 𝜙s are not our interests. For a network, we can introduce a

transforming function 𝔽,

 𝜷 = 𝔽(𝑽) (4.6)

where 𝜷 is a vector, consisting of all the biases of the sensors in the network (𝜷 =

X𝛽!$, 𝛽!% , … , 𝛽!(…Y
𝑻 𝑎$, 𝑎%… , 𝑎' … ∈ 𝐴). 𝑽 is a matrix, containing all the sensor readings for the

network of the entire day. Here, the function 𝔽 may contain several layers of transformations, such

as network structures that spatially map the observations to corresponding nodes, time series

predictions that connect the measurements in the temporal dimension, and biases estimations,

which input with a certain form of observations predict sensor measurement errors. Given the

similarity between the structures of these virtual layers and the neural networks, we consider the

deep learning models as an appropriate approach to perform the transformations for us and use the

knowledge of the time series model to aid the neural networks learning process.

4.3.2 Data Preparation

The open-source microsimulation software Simulation of Urban Mobility (SUMO) (Behrisch et

al., 2011) is a commonly used tool in the traffic research (Soares et al., 2013). A large number of

transportation research papers are using SUMO simulation data for building and testing machine

learning models (Kheterpal et al., 2018) (Chandramohan et al., 2019) (Koh et al., 2018). With

 26

TraCI (Traffic Control Interface) (Wegener et al., 2008), it can easily communicate with the

Python environment and take commands from there, giving us much flexibility.

In this study, we will use SUMO to build the traffic network and generate the training and test

cases.

Figure 4.1 Modified Nguyen-Dupuis network

With SUMO, we built a bidirectional modified Nguyen-Dupuis network which consists of 6

origin-destination (OD) pairs, 19 intermediate nodes, and 50 directed links. Since we consider 1-

day as a cycle, each simulation simulated the traffic flow for the 24-hour time. We generated

random OD pairs for a day and randomly split the OD demand into hourly volume following a

commonly used hourly flow pattern base (Figure 4.2) with some randomness (Figure 4.3). There

are two extra considerations for the preparation of the simulation:

1. The mapping from OD pairs to link trips is non-linear, due to the fact that when the OD

demand changes, certain OD pair volumes may change the path. With this consideration,

we want to design the OD demands so that they can depict relatively intact mapping

relations.

 27

2. The OD demand and hourly traffic volume are designed so that some links do observe

traffic congestions and shockwaves because the shockwave is one major cause of the

violation of flow conservation law at intermediate nodes (intersections), and we want to

test how the models handle the presence of flow imbalance.

Figure 4.2 The base of average hourly flow ratio in network

Figure 4.3 The distribution of hourly flow in network

Before starting to construct the neural network models, we first propose the ways to prepare

training data that contains the proper traffic domain knowledge: 1. Given that the spatial

relationship between the sensors in a network represents the network structure, to allow the model

better to understand the network structure, we want to include as many sensor data as possible

within the studying network. 2. Similarly, if we want the model to learn the temporal patterns of

the flow correctly and broadly, the training data should also be complete, covering most of the

 28

scenarios that could happen in the real world, e.g., covering both peak and off-peak hours, covering

both stable and fluctuated flow situations. 3. Since ultimately, the model also needs to know the

proper mapping from the measurements to the measurement biases, we need to manipulate the

initial observations by supplying it with some manually generated random biases and train the

model with the manipulated sensor observations and the ‘known’ biases. Since we are preparing

for the training cases and the training cases serve as the ground truth, these parts of data should be

unbiased sensor readings. These unbiased readings can be obtained, at the time or soon after the

sensors were freshly installed or physically calibrated.

In this study, we use SUMO to simulate and collect the base traffic counts (actual traffic counts),

on top of which, we will add the measurement errors (biases and white noise). Similar to the extra

considerations for the simulation preparation, when adding the sensor measurement biases, we also

want to ensure their representativeness so that the deep learning model can study a complete

mapping process.

Typically, the traffic flow data can be treated as periodic data with each cycle of 𝑡 = 24 hours.

Considering a network of 𝑠 sensors, each of which measures the traffic flow every 𝛿𝑡 time, a 24-

hour measurement of the traffic flow of the network generates a 𝑠 × 𝑛	(𝑛 = 𝑡/𝛿𝑡) matrix. Thus, a

sample of 𝑑 days can be expressed using a tensor of 𝑞 × 𝑠 × 𝑛.

To generate the training dataset from the simulated data, with the network of 𝑠 sensors, we repeat

the below steps for Y iterations:

 29

In total, we generate 100 years (Y) of 365 days (D) traffic flow data, among which 80 × 365

groups data are training set, and 280 × 365 groups are validation set. For each of the 50 sensors,

we have 144 observations (10 minutes aggregation each) for one day, and we generate one random

Algorithm 4.1:

Step 1: At 𝑦)" iteration, we first creating two 𝑠-dimensional vectors 𝜷𝒚 and 𝝈𝒚 representing

sensor measurement biases and random error variance. Each element of 𝜷𝒚 follows a uniform

distribution of range [0.5, 1.5] (e.g., for 𝑎)" sensor, 𝛽<,!~𝑈(0.5,1.5)), because we assume that

most sensor reading biases should fall in this range. Similarly, each element of 𝝈𝒚	follows a

uniform distribution of range	[0, 𝜎&]] (e.g., for 𝑎)" sensor, 𝜎<,!~𝑈(0, 𝜎!)).

Step 2: In reality, it is very likely that a portion of the sensors in the network are freshly installed

or calibrated so that readings form these sensors should not have biases. According to Yang et

al., (2019), this information may benefit the estimation of measurement biases for the rest

sensors. Therefore, we also have certain amount of healthy sensors with unbiased

measurements (𝛽 = 1) in our network. In our experiments with SUMO simulation data, we

introduce the healthy sensors by defining that each sensor in the network has a probability of	𝑝"

to be unbiased (𝛽 = 1).

Step 3: For each iteration, we will generate D samples, hence, for the 𝑦)" iteration, 𝑑)" sample,

and 𝑖)" sensor, its measurement bias 𝛽<,!,> follows normal distribution 𝑁(𝛽<,! , 0.2𝛽<,!) and

accordingly, the observations of this sensor is generated following normal distribution

𝑁(𝛽<,!,> 	𝑍! , 𝜎<,!𝛽<,!,>). Here, 𝑍! is the true traffic volume of sensor 𝑎 in simulation case, or

the unbiased traffic readings of sensor 𝑎 if real observations are used.

 30

bias for that day. Hence, for the training set, we obtain traffic flow data of dimension (29200, 144,

50) and corresponding sensor biases of dimension (29200,50). For the validation set we get (7300,

144, 50) traffic flow data and (7300,50) sensor biases. We set the default value of both 𝜎! and

𝑝?!@&A to be 0.2.

4.3.3 Physics-Informed Neural Network Models

Fully Connected Network

After preparing the training cases, we have the manipulated sensor measurements as the neural

network model input data and the real measurement biases as the expected model's output. We will

construct and compare three types of deep neural network models: fully connected neural network,

convolutional neural network, and Long Short-Term Memory network. Now we are starting with

the fully connected neural network.

The fully connected neural networks are one group of the simplest neural networks. As its name

reveals, every neuron in one layer is connected to all the other neurons of its neighbor layers.

Despite its simplicity, with proper design, fully connected neural networks can still capture

particular non-linearity and give good classification or prediction.

If we use 𝑥 to denote the neural network input (traffic sensor measurements), 	𝑦l and 𝑦 to denote

the network output (estimated sensor biases) and target output (true sensor biases), 𝐿 to denote the

number of layers, 𝑤@ and 𝑏@ to denote the weights and biases between layer 𝑙 − 1 and 𝑙 (𝑤&B@ and

𝑏&B@ the weight and bias between 𝑖)" node in layer 𝑙 − 1 and 𝑗)" node in layer 𝑙), and 𝑓@ the

activation function of layer 𝑙, then the overall mathematic expression can be written as,

 31

 𝑦l = 𝑓𝐿r𝒘𝐿−1𝑓𝐿−1r…𝑓1(𝒘1𝑥 + 𝒃1)s + 𝒃𝐿−1s (4.7)

Activation function: The output of a layer of neural network usually passes through the activation

function before being fed into the next layer, and the differentiable nonlinear activation function

is the key that enables neural networks to learn complex and nonlinear problems. Some commonly

used nonlinear activation functions include ReLU activation 𝑓(𝑥) = 𝑚𝑎𝑥	(0, 𝑥), Tanh activation

𝑓(𝑥) = 𝑡𝑎𝑛ℎ	(𝑥) and Sigmoid activation 𝑓(𝑥) = $
$,*#)

. The convolutional neural networks

usually use ReLU as the activation function, while recurrent neural networks like LSTM

commonly adopt Tanh activation.

Model optimization: The optimization of the neural network is based on computing the

gradients of the loss function with respect to the model parameters (𝜃 = [𝒘$, … ,𝒘C , 𝒃$, … , 𝒃C]):

 ∇9ℒ(𝜃) (4.8)

Using backpropagation, we can calculate each >ℒ
>E*+

, and >ℒ
>A*+

, , and accordingly update 𝑤&B@ and

𝑏&B@ 	using the gradient descent method:

 𝑤&B@ =	𝑤&B@ − 𝛼
𝑑𝐿
𝑑𝑤&B@

 (4.9)

 𝑏&B@ =	𝑏&B@ − 𝛼
𝑑𝐿
𝑑𝑏&B@

 (4.10)

where 𝛼 is the learning rate, one of the most important hyper-parameters for successful

convergence.

Learning rates: Generally, the learning rates determine the magnitude the neural network updates

the parameter. Ideally, learning rates should be tuned to allow neural networks both converge and

converge in a reasonable time. A fixed learning rate often cannot satisfy this demand as larger

learning rates may result in suboptimal, while lower rates usually lead to much longer convergence

 32

time. To resolve this issue, adaptive learning rates are commonly used. On the other hand, instead

of using a monotonically decreasing learning rate, we can make the learning rate oscillate by using

cyclical learning rates.

Adam: Adam optimizer inherits the strengths of two gradient descent methodologies,

momentum and root mean square propagation and is able to adjust the learning rate during

the learning process to reduce the oscillation of learning progress and meanwhile reduce

the chance falling onto local minina.

Cyclical learning rate: By defining an upper and lower bound, we allow the learning rate

to oscillate between them. In doing so, the periodically increasing learning rate helps untrap

the saddle point or local minima, and the oscillation also offers more flexible learning rate

options.

We now construct an initial fully connected neural network starting with three hidden layers.

 Figure 4.4 Initial fully connected network

Input layer: The input layer is crucial in passing prior knowledge to the neural network. We know

that the traffic flow pattern recurs every day, so based on Equation (4.6), we use one entire day’s

observation as a single sample for predicting sensor biases. Since sensor readings are aggregated

into 10 minutes, each sensor gives 144 observations daily. For the network of 50 sensors, a one-

day sample is expressed using a 50 by 144 matrix. Due to that the fully connected neural network

only takes the vector as input, we need to flatten the matrix to a 7200-dimensional vector.

Therefore, the input layer takes a 7200-dimensional vector as input.

 33

Dense layers: Each dense (fully connected) layer consists of 128 neurons.

Output: We expect the model to predict measurement biases for each sensor; hence for the

modified Nguyen-Dupuis network, the model should output a 50-dimensional vector.

Loss function: This is a supervised learning model. The loss function is used to evaluate the

distance between the estimated and the true (expected) sensor biases. The neural network training

process is to optimize the model by minimizing the loss function. Some commonly used loss

functions include mean square error (MSE), mean absolute error (MAE), and mean absolute

percentage error (MAPE). We have the manipulated sensor measurement biases serve as the true

𝛽s to compute the loss function. We are using MSE as the loss function for our neural network

models (fully connected, CNN and LSTM models), because from the statistical perspective,

𝑀𝑆𝐸(𝑦l) = 𝐵𝑖𝑎𝑠%(𝑦l) + 𝑉𝑎𝑟(𝑦l) evaluates and balances both the model biases and variance. For

each sample, the loss function is defined as the mean squared error of the predicted biases 𝛽| and

true biases 𝛽:

 𝐿𝑂𝑆𝑆 =
1
50Sr𝛽|! − 𝛽!s

%

!

 (4.11)

where	𝑛 is the number of observations.

Performance metric: To measure the model performance, we introduce a metric called Mean

Absolute Traffic Flux Error (MAE).

 𝑀𝐴𝐸 =
1
𝑛𝑠SS~

𝑓F!� 	− 𝑓&!

𝑓&!
~

+

!G$

'

&G$

× 100%	 (4.12)

 34

where 𝑓&! is the true traffic flux rate during 𝑖)" observation for the 𝑎)" sensor; 𝑓F!� is the

corresponding traffic flux reading corrected by the model. Assume that the model predicts the

measurement bias to be 𝛽|! for the 𝑎)" sensor. For the sensor’s 𝑖)" traffic flux observation 𝑣&!, the

corrected traffic flux rate 𝑓|&! can be computed using,

 𝑓a&! =
𝑣&!

𝛽a&!
 (4.13)

Note that, instead of measuring the model performance with sensor biases 𝜷, we are using the

traffic flux rates. This is because the numbers of sensor biases 𝜷 are not of great attraction in real-

world traffic management and the correctness of 𝜷 estimation is hard to interpret (e.g., a 20%

improvement in 𝜷 estimation does not show a clear practical meaning). While on the other hand,

the metric of traffic flux rate reading improvement is straightforward, and it originally served as

our ultimate goal for the study. During the model training processes, backpropagation computes

the weights of the neural networks with the gradient of the loss function but the performance metric.

Other hyper-parameters: The triangular learning rate scheduler allows the learning rate to jump

between the bounds cyclically. The number of epochs and batch size are set to be 50 and 64,

respectively. The ‘Adam’ optimizer is used as the optimization method. These parameters apply

to the convolutional neural network and LSTM neural network that will be discussed in the next

part as well.

Since the fully connected neural network has a relatively simple structure, the major

hyperparameters we need to tune include the number of layers, the number of neurons in each

layer, and the dropout probability between each layer. The number of layers and neurons in each

 35

layer are tuned simultaneously. With the initial number of layers set to be 3, we can see a slight

MAE improvement when we increase the layers to 4, while no further improvement is observed

with more layers. 256 neurons per layer are found to be adequate, and the model does not benefit

from more neurons. The dropout probability from 0 to 0.2 is tested and results show that no dropout

case performs the best. Therefore, the final fully connected neural network model is fixed as:

 Figure 4.5 Finalized fully connected network model

Convolutional Neural Network

Convolutional Neural Networks (CNN) are special kinds of deep learning models that are usually

used for computer vision tasks. Some of the advantages of using CNNs are as follows:

1) They are capable of extracting features straight from the raw data, whereas in traditional

statistical models, features are usually engineered manually.

2) CNNs enable weight sharing over different parts of the input that reduces the number of

parameters effectively, making it computationally feasible to train on a large set of data as

compared to traditional deep fully connected networks.

3) CNNs are immune to small transformations in the data such as scaling, translating, skewing

and distorting.

Given a network of 𝑠 sensors and each has 𝑛 observations for a day, the sensor measurement data

is a two-dimensional 𝑠 by 𝑛 matrix for this day. Conventional CNNs are usually two-dimensional

(2D-CNN) and are commonly used to extract features from three-dimensional data like images.

 36

Since, in this study, the traffic observation data are two-dimensional, we are going to use the one-

dimensional CNN (1D-CNN) which only performs 1D convolution and has a simpler

configuration.

For each day’s observation, we have the input date being a 𝑠 by 𝑛 matrix. Assume that we have a

total of L convolutional multiple input and output channels layers. Each layer has 𝑠 input/output

channels containing observations from one sensor. The convolutional layers apply convolution

filters to the data, and the data also passes through the activation function and pooling, before it is

handed over to the next layer. After all the convolutional layers, the 𝑠 channel data from the last

convolutional layer are flattened and concatenated into a vector which then goes into a fully

connected neural network layer. The output of this 1D-CNN model is set to be an 𝑠-dimensional

vector, each element of which represents the measurement bias of one sensor.

We built the convolutional neural network model, as shown in Figure 4.6.

Figure 4.6 Convolutional neural network model

Input: Unlike fully connected neural networks, the convolutional neural network can take matrix

as input. Therefore, we will feed the model with a 50 by 144 matrix representing a one-day

observation sample. Each row contains the 144 aggregated observations from each sensor, and

every element in this row is temporally correlated with the rest. Similarly, each column represents

the observations of 50 sensors at a same time interval and the observations are spatially correlated.

 37

Convolutional layers: Too few layers may result in underfitting while too many layers cause

overfitting and much higher computational complexity. Different numbers of convolutional layers

(1-4 layers) are tested, and layer of 2 is selected to achieve the best performance metric without

overfitting.

1D Conv Layer: Each 1D convolutional layer has 50 channels. In terms of the filter size, smaller

filters fail to capture broader relationships along the dimension, while larger filters lead to higher

computational time. We choose a filter size of 16 after comparing the performance of filter sizes

2, 4, 8, 16, and 32.

Max pooling layer: The pooling layer helps reduce the data dimension and avoid overfitting. Max

pooling only selects the maximum values from the convoluted data, thus extracting the most

important feature. Here both stride and filter width to be 2.

Dense layer: A fully connected layer of 128 neurons takes the flattened output from the CNN layer

and passes it to the output layer after a dropout layer. The dropout probability of 0.05 is found to

obtain the best model performance.

The output layer and loss function are defined the same as for the fully connected neural network.

Long Short-Term Memory

Long short-term memory (LSTM) is a special type of recurrent neural network (RNN). RNN is a

preferred neural network for sequential data, such as time series data, due to its capability of

extracting the contextual information between different time stamps. However, conventional RNN

may encounter vanishing or exploding gradient problems, which makes it unable to capture long-

 38

term dependencies. The LSTM, instead, well addresses this issue. On top of the conventional RNN

cell state, LSTM adds three types of gate layers (forget, input and output) to control the information

flow.

Figure 4.7 LSTM cell

The forget gate decides which information needs attention and which can be ignored. The

information from the current input 𝑋(𝑡) and hidden state ℎ(𝑡 − 1) are passed through the sigmoid

function. The input gate performs the following operations to update the cell status. The output

gate determines the value of the next hidden state. This state contains information on previous

inputs.

The regular LSTM takes input in one direction, either backward or forward. By combining two

independent LSTM together, we obtain the bidirectional LSTM (Bi-LSTM), which can take the

input from both directions. With this property, Bi-LSTM is able to preserve both the future and

the past information and increase the available information to the network.

 39

Figure 4.8 Structure of Bi-LSTM

Like CNN, the LSTM model also has several hyperparameters that need to be tuned, including

several nodes and hidden layers, dropout, weight initialization, learning rate, and the choice of the

activation function.

The Bi-LSTM model we finalized is shown in Figure 4.9. Its input layer also takes a 50 by 144

matrix as a sample of 24 hours. Two Bi-LSTM layers, each with 128 units each followed by a

dropout layer of 0.1 to prevent overfitting. The dense layer contains 256 neurons and passes the

output to an output layer of 50 units. The tanh function is selected as the activation function for

this model.

Figure 4.9 LSTM model

 40

Sensor Bias Estimation and Flow Correction Algorithm

Algorithm 4.2:

• Training data preparation:

Step 1: Repeat Algorithm 4.1 until we collect sufficient training samples. Note that, our models

need historical traffic measurement data serving as the ground truth. In practical, the true traffic

flow volume 𝑍! is not observable. Instead, we assume for the ground truth data, the observation

𝑉! ≈ 𝑍!. In this study however, since we don’t have the ground truth data available for the real-

world network, we are using SUMO network and the simulated traffic flow for the below

experiments. After Step 1, we will collect enough training data with manipulated biased sensor

readings and the corresponding true biases 𝛽.

• Model training:

Step 2: Train and cross-validate the deep learning models using the manipulated training

dataset. Use the corresponding true biases to compute the prediction loss.

Step 3: Tune the model parameters: number of nodes for each layer, number of layers, dropouts,

etc. for best cross-validating results.

• Bias estimation for unknown biased dataset:

Step 4: Collect the traffic sensor readings with unknown biases that we want to estimate and

format the data into one-day observations each serving as one sample.

Step 5: Use the PIDL models to estimate the biases for each sample and use the mean of each

estimation as the estimated measurement biases 𝛽| for the sensors.

Step 6: Compute the corrected traffic flow volume for 𝑛)" observation of 𝑎)" sensor by

𝑓�?##),!' = 𝑉!'/𝛽|!'.

 41

4.3 Results and Discussions

4.3.1 Models Performance

With random error ratio 𝜎! = 0.02, and the percentage of healthy sensors 𝑝" = 0.2, we first

compare the performance of the three neural network models. Being trained and validated with the

training data, the 𝑀𝐴𝐸 of models on the test data (8760 observations of the 50 sensors in the

network) were obtained, and the boxplot of 10 sensor results is shown in Figure 4.10.

(a) Before correction

(b) Corrected by true biases (c) Fully connected

 42

 (d) CNN (e) LSTM

Figure 4.10 𝑀𝐴𝐸 before and after model corrections

Figure 4.10(a) shows the MAE before model correction, which is calculated based on formulas

(4.12) and (4.13) with 𝛽| + ≡ 1. Figure 4.10(b) shows the MAE corrected by the true sensor biases,

namely replacing 𝛽| + in (4.13) with 𝛽+. Figure 4.10 (c), (d), and (e) are the results of the three

different neural network models. We can see that, after correction, the MAE drops from 15.8% to

7.6%, 5.1%, and 4.5%, respectively, for the fully-connected neural network, CNN and LSTM.

Both CNN and LSTM models perform well, given that the theoretically best MAE corrected by

the actual sensor biases is 3.8%. LSTM’s results appear to have a relatively smaller variance than

CNN.

Overall, the above results show the capability of neural networks in dealing with time series traffic

data. The simplest fully connected neural network is able to learn some patterns of sensor

observations and reduce their MAE. The more complex neural network models like CNN and

LSTM appear to capture more features embedded in the data and further improve the measurement

quality.

 43

Position of links

To illustrate the estimation performance for each individual sensor, we use the colored ‘maps’ of

the network to present the MAEs for each sensor. Since each link has only one sensor, the color of

each link represents its MAE level.

 (a) Fully connected

(b) CNN (c) LSTM

Figure 4.11 Performance of Different Models

We can see that from these graphs, overall, LSTM performs best, followed by CNN, then the fully-

connected neural network. The fully connected neural network gives MAEs over 6% for more than

half of the sensors, while LSTM is able to keep the majority of MAEs close to 4%. But on the other

hand, we don’t observe a significant pattern that the position of a link in the traffic network affects

 44

the estimation accuracy of its sensor bias, namely, the degrees of the nodes to which the links

connect do not appear to impact the model performance.

Scale of measurement biases

Intuitively, we can imagine that in a traffic network where not all sensors are fully calibrated,

different sensors may have different measurement biases. It is worthwhile to see how the models

react to varying scales of measurement biases. For instance, is the model performance decreasing

with the increase of measurement biases? Is the variance still acceptable for the more significant

biases? To perform this test, we repeat the above initial case 20 times (so that we randomly

generate different biases 𝛽 for each sensor) and aggregate the MAEs into five groups based on the

scale of their corresponding sensor biases. Because the above results show that the MAE is

insensitive to the locations of the links, the MAEs of all 50 sensors are all assigned to the groups

solely based on 𝛽.

Figure 4.12 shows how MAEs of different models change concerning the scales of measurement

biases. The five groups of data correspond to 𝛽 of [0.5, 0.7), [0.7, 0.9), [0.9, 1.1], (1.1, 1.3] and

(1.3.1.5]. Note that the farther away from 1 of 𝛽, the larger the sensor bias is. We can see from

Figure 4.12(a) that the fully connected neural network model performs intuitively. Both the

average MAE and its variance increase with the sensor bias level. The estimation results become

less reliable when 𝛽 is too far away from 1. For CNN and LSTM, the MAEs are better controlled.

Larger 𝛽 does have a slight impact on CNN by causing the variance to increase moderately. But

on the other hand, CNN is less sensitive to smaller 𝛽. In terms of LSTM, it shows the robust

performance for any 𝛽 within the test range.

 45

(a) Fully connected

(b) CNN (c) LSTM

Figure 4.12 Effect of bias scale on model performance

4.3.2 Sensitivity analysis

In the above part, we have introduced the randomness to both traffic flow and observations to

expose the models to broader possible patterns. But the parameters of the randomness remain

unchanged. For instance, we keep random error ratio 𝜎! = 0.02, and the probability of healthy

sensors 𝑝" = 0.2. The base pattern used to generate traffic flow also remains the same. In this

section, however, we are going to change these parameters further to test the model's robustness

under various circumstances.

 46

Random error variance 𝝈𝒂𝟐

Recall that 𝜎!% is the variance of the white noise during the measurement for sensor 𝑎, which is not

time-dependent and also independent of measurement bias 𝛽!. In all above tests, we have fixed

𝜎!% = 0.04, while in this part, we are going to check the models against different 𝜎!% numbers (0,

0.02, 0.04, 0.06, and 0.08). For each 𝜎!%, we run the training-testing process 10 times and plot the

MAEs of all the observations for all the sensors in Figure 4.13. The blue lines in the graphs are the

theoretically lower bound of MAEs given the true 𝛽!values. Clearly, the blue line rises with the

increase of 𝜎!%, because according to Equation (4.14) derived from (4.12) and (4.13), we can see

that the best possible MAE increases with the variance of random error εJK.

 Lower	bound	𝑀𝐴𝐸 =	
1
𝑛𝑠..l

	(𝛽&
!𝑣&! + εis)/	𝛽&

! − 𝑓𝑖
𝑎

𝑓𝑖
𝑎 l

𝑠

𝑎=1

𝑛

𝑖=1
=
1
𝑛𝑠..l

εis/	𝛽&
!

𝑓𝑖
𝑎 l

𝑠

𝑎=1

𝑛

𝑖=1
 (4.14)

As can be seen from Figure 4.13, the fully connected neural network is relatively insensitive to 𝜎!%.

However, this does not indicate that this model handles the larger 𝜎!% well. On the contrary, the

fully connected neural network performs poorly even with small or zero 𝜎!%. The MAEs of CNN

and LSTM model results do increase with larger 𝜎!%. But we notice that the gaps between their

mean MAEs and the blue lines are narrowing, and the MAE variances are not increasing much.

With 𝜎!% = 0.08, the mean MAEs of CNN and LSTM models are 7.5% and 6.2%, respectively,

which are both quite acceptable.

 47

(a) Fully connected

(b) CNN (c) LSTM

Figure 4.13 MAE corresponding to various levels of 𝜎!

The percentage of healthy sensors 𝒑𝒉

Initially, we assume that 20% of the sensors in this modified Nguyen-Dupuis network are healthy

(𝛽 = 1), namely, 𝑝" = 0.2. Now we are going to see how models perform with different numbers

of 𝑝". We repeat the experiment 10 times for each of 𝑝" = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 and show

the results in Figure 4.14.

The blue lines in Figure 4.14 represent the average MAE of observed traffic flow before model

correction, so it decreases when more healthy sensors are present in the network. Similar to the

 48

previous section, the fully connected neural network is not sensitive to 𝑝" but gives worse flow

corrections than CNN and LSTM, given any number of healthy sensors. Although when there are

fewer healthy sensors, the model corrected MAE is better than the uncorrected ones, when more

healthy sensors are present, the corrected MAE does not improve. When most of the sensors in the

network have no measurement biases, the corrected MAE is even worse than the uncorrected ones.

On the contrary, CNN and LSTM have good performance. Though their MAEs increase slightly

when fewer healthy sensors are present, given no healthy sensor in the network, their MAEs are

still well controlled, with LSTM performing slightly better.

(a) Fully connected

(b) CNN (c) LSTM

Figure 4.14 Different levels of 𝑝"

 49

Effect of flow imbalance

In the author’s previous work, as discussed in Chapter 3, the sensor error estimation GMM model

is built upon the flow conservation law, which however, can be violated when traffic conditions

like shockwaves or queues are present. Since SUMO is a dynamic traffic simulation model, we

can easily obtain the traffic volume at each sensor at any time within the simulation time range

and compute the level of flow imbalance. Because the traffic observations in this experiment are

aggregated at the 10-min level, the flow imbalance rate is also calculated for each 10-min

observation. For any node 𝑎 in the network, the flow imbalance rate for any 𝑡)" 10-min

observation data is calculated following:

 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒	𝑟𝑎𝑡𝑖𝑜! = (|𝒜+(𝑖)| + |𝒜−(𝑖)|) ×
∑ 𝑍𝑎𝑡𝑎∈𝒜+(𝑖) − ∑ 𝑍𝑎𝑡 	𝑎∈𝒜−(𝑖)

∑ 𝑍𝑎𝑡𝑎∈𝒜+(𝑖) + ∑ 𝑍𝑎𝑡 	𝑎∈𝒜−(𝑖)
× 100% (4.15)

Since the traffic shockwave can be caused by the unstable traffic flow, we can manually increase

the chance of flow imbalance by increasing the traffic flow fluctuation throughout the day. Initially,

for all previous tests, we use SUMO simulation data with the hourly flow pattern, as shown in

Figure 4.15(a). After we increase the variance of the flow pattern randomness as shown in Figure

4.15(b), we are more likely to obtain more significant flow fluctuations, e.g., the cases in Figure

4.15(c) and Figure 4.15(d).

 50

 (a) Initial flow pattern base (b) flow pattern base with larger variance

(c) A sample of randomized flow pattern (d) A sample of randomized flow pattern

Figure 4.15 Hourly flow patterns of a day

With this change, after randomly repeating the simulation 50 times, we are able to observe a

broader range of flow imbalance rates (from 0% to 70%+). Training and testing the data using our

models, we obtain one MAE and one flow imbalance rate for each 10-min observation data of one

node. Grouping MAEs based on different levels of flow imbalance rate (0%-10%, 10%-20%, 20%-

30%, 30%-40%, 40%-50%, 50%-60%, 60%-70%, and 70%-80%), we obtain the boxplots below.

 51

 (a) Fully connected

(b) CNN (c) LSTM

Figure 4.16 Effect of flow imbalance on model performance

Figure 4.16 shows that all three models show relatively consistent performance when there is no

significant flow imbalance (<=50%). CNN’s performance worsens when a greater imbalance ratio

presents while LSTM appears to well handle most imbalanced flow cases in this experiment. From

this test, we may infer that the fully connected neural network model and CNN model still

generalize certain levels of flow conservation law during training and use this law to predict new

data. Therefore, when the training data frequently breaks the conservation rule, the model may

struggle to fully capture the complete pattern. On the other hand, LSTM is almost not affected by

the flow imbalance. The reason could be that, since LSTM is excellent at extracting features from

 52

the temporal dimension, some additional information in this dimension well compensates for the

missing flow conservation law.

Change in traffic flow pattern

In the previous section, we increase the variance of randomness when using the flow pattern base

to generate simulation data. However, the ‘shape’ of the pattern base does not change. In reality,

we know that in some short-term cases, for instance, when there is severe weather or road work,

the pattern base may vary significantly. Thus, it is also necessary to examine the robustness of the

models with respect to flow pattern changes.

In this test, the models are still trained using the initial flow pattern base. But the test data are

generated separately from different flow patterns to imitate the road condition change. Three

different flow patterns (Figure 4.17) are used for this experiment. The model performance is shown

in Figure 4.18.

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Figure 4.17 Different test flow patterns

From Figure 4.18, we can find that the fully connected neural network is not able to provide

reasonable prediction to the testing data, when there are significant traffic flow pattern changes.

In terms of CNN and LSTM, their performance depends on the percentage of healthy sensors.

 53

With few or no healthy sensors available, they are also struggling to give a good prediction for the

test data generated from new flow patterns. Nevertheless, if there are sufficient (e.g., 𝑝" > 40%)

healthy sensors in the network, the additional information provided by these sensor observations

significantly improves the models’ estimation accuracy. In most all the tests above, the LSTM

model slightly outperforms CNN, while in this experiment, CNN corrects the traffic flow more

accurately than LSTM, when the portion of healthy sensors is higher. One hypothesis of this

difference could be that, as previously discussed, the CNN model relies more on flow conservation

law than LSTM. So when there are more correct measurements, CNN can gain help from the flow

conservation law to better predict the unfamiliar data. In reality, for instance, in PeMS traffic

network, more than half of the sensors are considered to be in good working condition, namely

𝑝" ≥ 50%. Under this situation, the traffic flow correction ability of both CNN and LSTM models

for short-term traffic pattern change is approved.

(i) Pattern 1 (ii) Pattern 2 (iii) Pattern 3

(a) Fully connected

(i) Pattern 1 (ii) Pattern 2 (iii) Pattern 3

(b) CNN

 54

(i) Pattern 1 (ii) Pattern 2 (iii) Pattern 3

(c) LSTM

Figure 4.18 Effect of flow pattern changes on model performance

4.3.3 Discussions

In this study, we developed three Physics-Informed Deep Learning models, based on the fully

connected neural network, CNN, and LSTM, to estimate the measurement biases for traffic

network sensors and recover the erroneous traffic volume readings. The domain knowledge about

the sensor observation data is passed to the models via the design of training data and input layer

structure. During SUMO simulation, the Origin-Destination demand pairs are prepared so that the

simulated traffic flow data can comprehensively represent the non-linear traffic assignments. The

dimension and the structure of the input data also reflect the spatial-temporal relationship

embedded in the sensor observations.

After training with the same training data, the three models show different MAE correction

abilities. In general, the fully connected neural network performs the worst. With the simpler

model structure, the fully connected neural network model is not capable of fully utilizing the

spatiotemporal information embedded in the training data, even with the help of the PIDL design.

Under the initial setting, the model can improve the MAE from 17% to under 10%, but the

performance is not robust and consistent, and the generalization ability is also weak. With the

 55

improvement in the overall sensor conditions in the network (e.g., more minor white noises, more

healthy sensors), the MAEs still do not decrease. On the contrary, the PIDL models based on CNN

and LSTM estimate the sensor biases much better, with LSTM-based slightly outperforming CNN-

based. The nature of the structures of CNN and LSTM models allows the models to better exploit

the correlations in both spatial and temporal dimensions. With the same initial setting, these two

models are able to reduce the MAEs to under 5%. Their estimation performance is also very

consistent, and relatively insensitive to factors including the sensor (link) positions in the network,

the scale of sensor measurement biases, and the variance of white noise. They are also benefitting

from the healthy sensors present in the network.

With the help of more correct observations from the healthy sensors, the models can significantly

reduce both the estimation errors and the error variance. On the other hand, we observe that the

models’ performance does not heavily rely on the flow conservation law. Especially for the LSTM-

based PIDL model, the presence of heave flow imbalance does not obviously impact its flow

correction accuracy. This indicates that a more complicated spatial-temporal correlation other than

the flow-conservation law is observed and learned by the PIDL model. Lastly, the CNN-based and

LSTM-based PIDL models demonstrated the ability to estimate the measurement biases under

short-term traffic condition changes. When the traffic flow pattern changes, the models can gain

help from healthy sensor readings. Albeit the estimation correctness decreases, the significant

improvements in MAEs compared to the untreated data still help traffic management better

understand the truth.

 56

Chapter 5 Single Loop Detector Measurements Bias

Correction Using Deep Learning

5.1 Introduction

In Chapter 4, we studied sensor biases in traffic flow measurement. In transportation engineering,

macroscopic traffic models often involve not only traffic flow but also density. The traffic flow

rate can be derived from the traffic count given by the single loop detector system. Though a single

loop detector does not measure traffic density directly, its traffic occupancy reading is often used

to infer the traffic density. Research has been focusing on the study of traffic volume measurement,

but the health of traffic occupancy data is rarely discussed. This part of the dissertation will try to

fill this gap by examining traffic volume and traffic occupancy measurements of the loop detector

sensor. To align our study object with the macroscopic traffic models, we narrow our scope from

the entire network down to a traffic segment.

Introducing the traffic flow ordinary differentiate equation (ODE) model which draws a relation

between the traffic flux (volume) and traffic density (occupancy), we are utilizing the time

attributes of the traffic observations so that taking advantage of the additional information that

may be contained in the traffic flow dynamics. Incorporating the time attribute, we will be looking

at multi-dimensional time-series data containing complex non-linear feature information.

Conventional analytical models, if not impossible, would be very difficult to deal with this

situation. Therefore in this study, we will take advantage of the neural network models informed

by physics to extract high-level features from traffic data and learn a non-parametric mapping to

predict measurement biases in the sensor readings.

 57

5.2 Methodology

5.2.1 Traffic Measurement for a Road Segment

A typical inductive loop traffic detector is usually installed on the road pavement. It generates an

electronic signal when a vehicle passes over it. Figure 5.1 shows some examples of the electronic

signal of certain types of vehicles.

Figure 5.1 Representative vehicle signatures obtained from loops (US DOT, 2006)

After processing the raw electronic signals for inductive loop sensors, traffic managements are

able to estimate the macroscopic variables of the measured traffic flow, such as traffic flow, density,

and speed.

Traffic volume (flux) measurement:

Suppose that when a small vehicle passes over a certain sensor, the sensor outputs a signal as

shown in Figure 5.2a. For each sensor, we need first to define two thresholds: call and release (US

DOT, 2006). The call threshold means that only after the signal passes this threshold, do we start

to recognize this signal as a vehicle count. The vehicle presence signal is terminated after the signal

drops below the release threshold. The two thresholds can be and are often time different, with the

release lower than the call. Doing so can effectively reduce measurement errors for larger vehicles

 58

like trucks. Suppose that Figure 5.2b represents a typical truck signal which usually consists of

two peaks. In this case, if the release equals the call, the signal would trigger the call-release twice,

and the sensor ends up double counting this truck. But separating the two thresholds can alleviate

this issue.

(a) electric signal for a car (b) electric signal for a truck

Figure 5.2 Typical electric signal by inductive loop sensor

Both thresholds for each individual sensor need to be calibrated to ensure the sensor gives the most

accurate measurements. However, several factors may still lead to the measurement deviation from

the actual traffic volume. For example:

 Tailgating: the tailgating may result in a very similar output signal to that of the truck. As

a consequence, the sensor may undercount the traffic flux.

 Sensor aging: A sensor may become less sensitive and output a weaker signal when it

ages. When the signal valley of the trucks starts dropping below the release threshold, the sensor

may over-count the traffic volume.

 59

Other possible causes of sensor measurement errors include change of vehicle patterns, weather,

etc. Overall, the sensor working condition is subject to several uncertainties, and as discussed in

the previous chapters, the accuracy of the sensor readings is not always guaranteed.

Traffic density measurement:

Inductive loop sensors directly measure the traffic occupancy, from which the traffic density is

estimated. Traffic occupancy is defined as the percentage of time the sensor is occupied by a

vehicle. Similar to the measurement for traffic flux, we can set a call and a release threshold for

the sensor signal. Any signal that is within a call-release time window is considered to be

“occupied”, so the traffic occupancy is the “occupied” time divided by the entire measurement

time (US DOT, 2006). Both traffic flux and occupancy are directly deduced from the electronic

sensor signal. But due to different measuring processes (presence mode for traffic occupancy,

pulse mode for traffic flux) and different threshold setups, the two measurements are not entirely

dependent; each can supplement additional information.

Once the traffic occupancy (denoted as 𝑟) is determined, the traffic density (𝑘) can be derived

based on:

 	𝑘 =
𝑟
𝑙;r

 (5.1)

Where 𝑙U� is the estimated average length of the measured vehicles.

 60

Fundamental diagram

As a macroscopic traffic model, the fundamental diagrams studied the relation between the three

aggregated traffic flow characters, density (𝑘), flux (𝑓), and average speed (𝑣). More specifically,

the fundamental diagrams depict the three pair-wise relationships speed-density, flow-density, and

speed-flux. Here, the flux is the number of vehicles passing a specific point within a certain time

frame. The density is the number of vehicles showing at a certain length of a road segment at a

certain moment. The speed is the space mean speed (𝑣+), the average speed of vehicles showing at

the road segment at the certain moment.

Even if there appear to be three pair-wise relationships, because of the fundamental relation

between flux, density, and mean speed,

 𝑓 = 𝑘	 × 𝑣< (5.2)

The three pairs are not independent and any two of them can be deduced if the other one is defined.

(Greenshields et al., 1935) initially defined the speed-density relation as,

 𝑣< = 𝑣= t1 −
𝑘
𝑘>
u (5.3)

Where 𝑣(is the free flow speed and 𝑘B is the congested traffic density. Since then, there have been

several studies looking into its improvement, and several variant models have been proposed, for

instance, the earlier (Greenberg, 1959) model and (Underwood, 1961) model, and more recent

(MacNicholas, 2008) model.

 61

Since first proposed in 1935, the fundamental diagram greatly influenced the following traffic flow

theory research work and still plays a vital role in current transportation engineering.

5.2.2 ODE Approximation

Suppose Figure 5.3a represents the traffic density-location graph for a piece of traffic road at

certain time. According to the Godunov type numerical scheme (Lebacque, 1996), the road can be

spatially discretized into smaller, finite segments (Figure 5.3b).

(a) Traffic density-location graph

(b) Discretization of density-location graph

Figure 5.3 Traffic density-location graph and discretization

For each local segment, 𝑘(𝑥, 𝑡) is simplified using the average density 𝑘(𝑡), which does not

involve the space domain. Therefore, the LWR can be approximated using the Ordinary

 62

Differential Equation (ODE). For a local segment, as shown in Figure 5.3, based on the local

conservation law (Agarwal et al., 2016), we can derive the ODE model as,

 𝑘̇(𝑡) ≡
𝑑	𝑘(𝑡)	
𝑑𝑡

=
𝑓&?(𝑡) − 𝑓@A"(𝑡)

𝑙
 (5.4)

Where 𝑘(𝑡) is the average traffic density for this 𝑙 length segment at time 𝑡. 𝑓&'(𝑡) and 𝑓VW)(𝑡)

are the simultaneous incoming and outgoing traffic flux. From this equation, we can clearly see

that, if 𝑘̇(𝑡) is nonzero, 𝑓&'(𝑡) ≠ 𝑓VW)(𝑡).

Figure 5.4 ODE model for a road segment

Figure 5.5 is a simplification of a segment of continuous traffic road with neither entrance or exit.

The traffic road can have multiple lanes, but the multiple sensors across a road section are

aggregated into a single one. Therefore, eventually the 𝑙 length road segment only has two

aggregated sensors: one upstream and one downstream.

Figure 5.5 Simplified Road Segment

 63

Let’s assume that at time 𝑡, the traffic flux at sensor 1 is 𝑓&'(𝑡) and the traffic flux at sensor 2 is

𝑓VW)(𝑡), and the average traffic density over the segment between sensor 1 and sensor 2 is 𝑘(𝑡).

Then after combining the ODE traffic model (5.4) with the density-occupancy relation (5.1) we

obtain:

 𝑟̇(𝑡) ≡
𝑑	𝑙;r𝑘(𝑡)	
𝑑𝑡

=
𝑙;r(𝑡)
𝑙

z𝑓&?(𝑡) − 𝑓@A"(𝑡){ (5.5)

It is found that the average vehicle lengths vary a lot for different times and different locations (Jia

et al., 2001). However, in this study, we will assume 𝑙UF'����(𝑡) = 𝑙UVW)�����(𝑡). Because: 1. The average

vehicle length is not our study object and when we choose the input data for our model, we can

only use the measurement samples with relatively constant average vehicle length; 2. In our study

scope, since we are looking at two adjacent sensors that are often installed closely, we can assume

that the difference between the average vehicle lengths at both sensor locations during the same

time is negligible. Therefore, Equation (5.5) discloses the relationship between the traffic flux and

occupancy and offers us the opportunities to cross-check their validity and improve the overall

characterization of the traffic flow.

5.2.3 Traffic Measurements Error Model

We assume the measurement of traffic flux has systematic error following the equation in

Chapter 2, namely,

 𝑓B?| = 𝜇=&?𝑓&? + 𝜀=&? (5.6)

 𝑓@A"}= 𝜇=@A"𝑓@A" + 𝜀=@A" (5.7)

Similarly, for traffic occupancy measurements, we have,

 64

 𝑟B?| = 𝜇C&?𝑟&? + 𝜀C&? (5.8)

 𝑟@A"}= 𝜇C@A"𝑟@A" + 𝜀C@A" (5.9)

But notice that 𝑟(𝑡) in (5.11) is the link-level occupancy measurement, which is different from

the point measurement 𝑟&' and 𝑟VW). Combining (5.5), (5.6) and (5.7), and let 𝛽(=
$
X-

, we

obtain,

 𝑟̇~ =
𝑙;r
𝑙
�𝛽=&?𝑓B?| − 𝛽=@A"𝑓@A"}�+

𝑙;r
𝑙
(𝛽=&?𝜀&? − 𝛽=@A"𝜀@A") (5.10)

Here, because we don’t know yet the relationship between the link-level occupancy measurement

and 𝑟F'� , 𝑟VW)� , we still use 𝑟̇� on the LHS of the equation temporarily.

The expectation of the right half of the RHS is zero, namely,

 𝐸 �
𝑙;r
𝑙
�𝛽=&?𝜀&? − 𝛽=@A"𝜀@A"�� = 0 (5.11)

This model (5.10) resembles an ordinary least square (OLS) model which potentially offers the

chance to estimate 𝛽(&' and 𝛽(VW) (𝜇(&' and 𝜇(VW)) when we have enough observations of 𝑟̇�, 𝑓F'� and

𝑓VW)�. But there are two obvious obstacles that make the estimation non-trivial: 1. We are still

missing the link-level traffic occupancy measurement and the traffic occupancy measurement itself

is not unbiased. 2. The traffic flow is not continuous flow so instantaneous measurements (e.g.,

measurements of each 5s or 10s) may not comply with this macro-level equation. We’ll start

looking at the latter one.

 65

Discontinuity of traffic flow: Different from the fluid flow, the traffic flow is discontinuous. The

LHS of equation (5.5) looks at how traffic density varies over time. Overall, a reasonable

estimation 𝑟̇(𝑡) ≈ #(),∆))-#())
∆)

 needs the ∆𝑡 to be small. However, when ∆𝑡 is small, the traffic

flux measurement for that small interval is too discrete to providing any useful information to this

model. For instance, let us assume that ∆𝑡 = 1𝑠 and if during a measuring interval a vehicle passes

over the sensor, the “accurate” flux for this second would be 3600 vehicle per hour. On the other

hand, if there is no vehicle appearing in that second, the flow rate would just be 0 vehicle per hour.

Neither these two numbers along provides any valid information. This is due to the fact that, the

term of traffic flux and the differential equation models are applicable to macroscopic level traffic

flow and may not hold under the microscopic condition.

Missing observation of link-level traffic occupancy: As pointed out previously, the traffic

occupancy appears at equation (5.5) is the link-level occupancy for the road segment, while in

reality, we only have point occupancy measurements at its two edges. In general, 𝑟(𝑡) ≠ 𝑟&'(𝑡) ≠

𝑟VW)(𝑡). Even if we can find some situations with relatively constant traffic flux when 𝑟(𝑡) ≈

𝑟&'(𝑡) ≈ 𝑟VW)(𝑡), due to the existence of measurement biases (𝜇#&' and 𝜇#VW)), we still cannot

assume 𝑟̃(𝑡) = 𝑟F'�(𝑡) = 𝑟VW)� (𝑡).

The traffic flux is an aggregated attribute of the macroscopic level traffic flow while the traffic

volume does apply to both macro- and microscopic levels. Assume that both 𝑟̇(𝑡) and 𝑓(𝑡) are

integrable in a time window [𝑡$, 𝑡%]. We can take the integral on both sides of equation (5.5),

from time 𝑡$ to 𝑡%, namely,

 66

 � 𝑟̇(𝑡)𝑑𝑡

"%

"&

= �
𝑙;r(𝑡)
𝑙

z𝑓&?(𝑡) − 𝑓@A"(𝑡){ 𝑑𝑡

"%

"&

 (5.12)

Here, the average vehicle length 𝑙U�(𝑡) is also time dependent. However, since we are choosing 𝑡%

close to 𝑡$ and we can always choose a proper [𝑡$, 𝑡%] interval with relatively constant 𝑙U�(𝑡), we

assume that we can drop the time dependence of 𝑙U�(𝑡). Now, we can convert (5.12) into,

 � 𝑟̇(𝑡)𝑑𝑡

"%

"&

=
𝑙;r
𝑙
� z𝑓&?(𝑡) − 𝑓@A"(𝑡){ 𝑑𝑡

"%

"&

 (5.13)

Which further implies:

𝑙
𝑙;r
�𝑟(𝑡1) − 𝑟(𝑡.)� = z𝑄B?| (𝑡1) − 𝑄&?(𝑡.){ − �𝑄@A"(𝑡1) − 𝑄@A"(𝑡.)� (5.14)

Here 𝑄(𝑡) means the accumulative traffic volume from time 0 to 𝑡. This equation has a clear

physical meaning. We can notice that its RHS means the overall difference between the incoming

and outgoing traffic volume for this road segment during [𝑡$, 𝑡%]. The LHS means the difference

in numbers of vehicles within the 𝑙 length road at time 𝑡% and 𝑡$. Intuitively, they should be equal.

Similarly, we can convert (5.10) to,

𝑙
𝑙;r
�𝑟(𝑡1) − 𝑟(𝑡.)� = 𝛽=&? z𝑄B?| (𝑡1) − 𝑄B?| (𝑡.){ − 𝛽=@A" z𝑄@A"}(𝑡1) − 𝑄@A"}(𝑡.){ + 𝜁 (5.15)

Where 𝜁 = @.Z

@
r𝛽(&'𝜀&' − 𝛽(VW)𝜀VW)s(𝑡% − 𝑡$), because neither 𝛽 nor 𝜀 is time dependent. Hence, 𝜁

can still be treated as a random measurement error with 𝐸(𝜁) = 0. With this conversion, we no

 67

longer need to estimate the changing rate of the traffic occupancy 𝑟̇(𝑡) and no longer need to use

the microscopic level traffic flux measurement.

Now the remaining part is to get an estimation of the link-level traffic occupancy using the two

end-point measurements. We will explore their relationship with the help of the Lighthill-

Whitham-Richards (LWR) model and the finite difference method idea.

Lighthill-Whitham-Richards (LWR) model

The macroscopic LWR model (Lighthill & Whitham, 1955) is a Partial Differential Equation (PDE)

model commonly used to describe traffic flow. This model considers the traffic flow as a type of

fluid flow so that it can model the traffic flow using the fluid dynamics method with the partial

differential equation. With the assumption that vehicle conservation follows the dynamic

continuity equation, the LWR model describes the one-dimensional traffic flow at location 𝑥 and

time 𝑡 as:

 𝜕𝑘(𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑓(𝑥, 𝑡)
𝜕𝑥

= 0 (5.16)

Where 𝑘(𝑡, 𝑥) is the traffic density and 𝑓(𝑡, 𝑥) is the traffic flux at location 𝑥 and time 𝑡 .

Combining the LWR model with the static hydrodynamic relation 𝑓 = 𝑘𝑣 = 𝑓(𝑘), we obtain

 𝜕𝑘(𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑓(𝑘(𝑥, 𝑡))

𝜕𝑥
= 0 (5.17)

The LWR model describes the traffic flow in the space-time domain and the solution to this model

is time consuming even with appropriate schemes (Herty et al., 2007). Hence, based on different

objectives, the LWR model can be approximated using different approaches.

 68

Numerical approximation of LWR model

There are several schemes we can use to approximate the LWR model, for example, the finite

difference method. Its basic idea is to use the finite difference to approximate the derivative, for

instance, using the right-hand side of the below equation to estimate the left-hand side.

 𝑘̇(𝑡) ≡ 𝑓D(𝑡) ≈
𝑓(𝑡 + ∆𝑡) − 𝑓(𝑡)

∆𝑡
 (5.18)

For the LWR model, we will first discretize it in both space and time domain. For instance, for a

𝐿	length road from time 0 to 𝑇, we can discretize it into grids each with ∆𝑥 in length and ∆𝑡 in

time (Figure 5.6).

Figure 5.6 Spatial and temporal discretization

Then we can estimate [\
[)

 and [\
[]

 by,

 𝜕𝑘(𝑥, 𝑡)
𝜕𝑡

≈
𝑘(𝑥, 𝑡 + ∆𝑡) − 𝑘(𝑥, 𝑡)

∆𝑡
 (5.19)

 69

 𝜕𝑘(𝑥, 𝑡)
𝜕𝑥 ≈

𝑘(𝑥, 𝑡) − 𝑘(𝑥 − ∆𝑥, 𝑡)
∆𝑥 (5.20)

To estimate the link-level occupancy for the 𝑙 length segment at time 𝑡$ and 𝑡%, we are going to

first define our study scope: [0, 𝑙] in space dimension, [𝑡$^ , 𝑡%] in temporal dimension. Here, we

want to select a 𝑡$^ ≤ 𝑡$and more commonly 𝑡$^ < 𝑡$. The reason will be discussed later. Now we

discretize the space dimension into 𝐿 equal segments and the temporal dimension into 𝑇 grids,

therefore ∆𝑡 =)%-)$/

_
 and ∆𝑙 = @

C
. We use 𝑘(𝑖, 𝑗), 𝑟(𝑖, 𝑗), and 𝑣(𝑖, 𝑗) to denote the traffic density,

traffic occupancy and average traffic speed for the 𝑖)" traffic segment at 𝑗)" time grid. Here 0 ≤

𝑖 ≤ 𝐿 and 0 ≤ 𝑗 ≤ 𝑇.

Combining the occupancy-density relation (5.1) and the LWR model (5.16), we can get a variant

LWR model:

 𝜕𝑟
𝜕𝑡
+ 𝑣

𝜕𝑟
𝜕𝑥

+ 𝑟
𝜕𝑣
𝜕𝑥

= 0 (5.21)

Here 𝑣 = 𝑣`!](1 −
#

#0!)
). 𝑣`!] means the free flow speed and 𝑟 !] represents the maximum

occupancy. We don’t need to know their values in our final approach so we assume they are known

at this moment. Now we can approximate [#
[)

, [#
[]

, and [U
[]

 by

𝜕𝑟(𝑖, 𝑗)
𝜕𝑡

≈
𝑟(𝑖, 𝑗 + 1) − 𝑟(𝑖, 𝑗)

∆𝑡

𝜕𝑟(𝑖, 𝑗)
𝜕𝑙

≈
𝑟(𝑖, 𝑗) − 𝑜(𝑖 − 1, 𝑗)

∆𝑙

(5.22)

 70

𝜕𝑣(𝑖, 𝑗)
𝜕𝑙

≈
𝑣(𝑖, 𝑗) − 𝑣(𝑖 − 1, 𝑗)

∆𝑙

Plugging equations (5.22) back to (5.21), we obtain (5.23) which shows how we can approximate

the occupancy for each grid in the spatial discretization.

𝑟(𝑖, 𝑗 + 1) = 𝑟(𝑖, 𝑗) −
𝑑𝑡
𝑑𝑙
z𝑣(𝑖, 𝑗)�𝑟(𝑖, 𝑗) − 𝑟(𝑖 − 1, 𝑗)�	 + 𝑟(𝑖, 𝑗)�𝑣(𝑖, 𝑗) − 𝑣(𝑖 − 1, 𝑗)�{ (5.23)

The finite difference method is applicable when there is light traffic with no congestion or light

congestion. When the heavy traffic congestion presents, we can use other approaches such as

Godunov scheme to approximate the LWR model.

With discretization of the traffic segment, the numerical approximation methods allow us to

estimate the traffic occupancy at any location 𝑗∆𝑙 at any time 𝑡$ + 𝑖∆𝑡. Accordingly, the link-level

occupancy at time 𝑡$ and 𝑡% can be further estimated by

 𝑟(𝑡 = 𝑡.) ≈
∑ 𝑟(0, 𝑗)>

𝐿
 (5.24)

 𝑟(𝑡 = 𝑡1) ≈
∑ 𝑟(𝑇, 𝑗)>

𝐿
 (5.25)

These equations disclose that, if we have the boundary conditions (two endpoints traffic occupancy)

of the traffic segment, we should be able to approximate the link-level traffic occupancy, namely,

there should exist a mapping function that can map the two point-measurements to the link

measurement:

 𝑟(𝑡) = 𝔽(𝒓&?, 𝒓@A") and 𝑟̇ = 𝔽′(𝒓&?, 𝒓@A") (5.26)

 71

Note that, in this equation, 𝒓a𝒏� and 𝒓𝒐𝒖𝒕� are the vector form of 𝑟F'� and 𝑟VW)� . Obviously, we cannot

estimate the link level occupancy 𝑟(𝑡) at time 𝑡 solely using the two-point occupancy

measurements 𝑟F'(𝑡)� and 𝑟VW)� (𝑡). According to the LWR model, to estimate 𝑟(𝑡), we will need

multiple measurements of 𝑟F'� and 𝑟VW)� along the temporal dimension (e.g., 𝒓a𝒏� =

X	𝑟F'�(𝑡#$), … , 𝑟F'�(𝑡#%)Y
_ and 𝒓𝒐𝒖𝒕� = X	𝑟VW)� (𝑡#$), … , 𝑟VW)� (𝑡#%)Y

_
, where 𝑡#$ < 𝑡 < 𝑡#%). In this

study, we will not directly use the finite element method, but it provides us not only the idea that

we can use the point occupancy observation to approximate the link-level observation, but also the

choice of the range of 𝑡#$ and 𝑡#%. Using Figure 5.7 below as an example, if we want to estimate

the link-level occupancy at time 𝑡 with all the black vehicles presenting on this link, assume that

there is no shockwave, we want to choose 𝑡#$ and 𝑡#% that at least cover the time window from the

entry of the first black vehicle and the leave of the last one, namely, 𝑡#$ < 𝑡 − 𝑙/𝑣 and 𝑡#% < 𝑡 +

𝑙/𝑣. Since we may know the average speed 𝑣, we can use the free flow speed 𝑣`!]	 instead.

Figure 5.7 An example for determining 𝑡#$ and 𝑡#%

 72

Combining (5.26) with the measurement error model, we get,

 𝑟̇~ = 𝔽′(𝛽C&?𝒓E𝒏| + 𝛽C&?𝜺𝒓𝒊𝒏, 𝛽C@A"𝒓𝒐𝒖𝒕| + 𝛽C@A"𝜺𝒓𝒐𝒖𝒕) (5.27)

Here, we use 𝑟̇ = 𝔽′(𝒓a𝒏� , 𝒓𝒐𝒖𝒕�) instead of directly mapping from 𝒓a𝒏�̇ and 𝒓𝒐𝒖𝒕�̇ to 𝑟̇ (e.g. use 𝑟̇ =

𝔽(𝒓a𝒏�̇ , 𝒓𝒐𝒖𝒕�̇)) is due to the consideration that the scales of 𝜀#&' or 𝜀#VW) should be much smaller than

𝑟F'� or 𝑟VW)� , but not necessarily 𝑟F'̇� and 𝑟VW)�̇ .

Combining (5.5) with (5.27), and letting 𝛽# =
$
X1

, we obtain,

𝑙
𝑙;r
𝔽(𝛽C&?𝒓E𝒏| + 𝛽C&?𝜺𝒓𝒊𝒏, 𝛽C@A"𝒓𝒐𝒖𝒕| + 𝛽C@A"𝜺𝒓𝒐𝒖𝒕)

= 𝛽=&? z𝑄B?| (𝑡1) − 𝑄B?| (𝑡.){ − 𝛽=@A" z𝑄@A"}(𝑡1) − 𝑄@A"}(𝑡.){ + 𝜁

(5.28)

This equation describes the relation between the measurements of incoming and outgoing traffic

flux at the two endpoints of the link, the measurements of corresponding point occupancy and their

measurement errors and biases. Clearly, we don’t have an explicit expression for the mapping

function 𝔽. We may use similar finite element approximating methods as discussed in previous

section to approximate 𝔽 or 𝔽′, however, since both 𝛽𝑠 and 𝜀𝑠 are yet to be determined variables

and the approximating expression of 𝔽′ using 𝛽𝑠 and 𝜀𝑠 will surely contain their very high order

forms, this makes it difficult or even impossible to solve for their estimates.

Fortunately, the deep learning methods offer us a chance to estimate the measurement biases 𝛽𝑠,

without knowing the expression of 𝔽′. Because we assume these random measurement errors have

relatively small scales (𝜀#&' ≪ 𝑟F'� and 𝜀#VW) ≪ 𝑟VW)�) and 𝐸X𝜀#&'Y = 𝐸[𝜀#VW)] = 0, we simplify (5.28)

to,

 73

𝑙
𝑙;r
𝔽′(𝛽C&?𝒓E𝒏| ,𝛽C@A"𝒓𝒐𝒖𝒕|) = 𝛽=&? z𝑄B?| (𝑡1) − 𝑄B?| (𝑡.){ − 𝛽=@A" z𝑄@A"}(𝑡1) − 𝑄@A"}(𝑡.){ (5.29)

Letting 𝔾(𝛽(&', 𝛽(VW) , 𝑄F'� (𝑡%) − 𝑄F'� (𝑡$), 𝑄VW)�(𝑡%) − 𝑄VW)�(𝑡$)) = 𝛽(&' �𝑄F'� (𝑡%) − 𝑄F'� (𝑡$) −

𝛽(VW) �𝑄VW)�(𝑡%) − 𝑄VW)�(𝑡$) , we obtain,

𝑙
𝑙;r
𝔽D�𝛽C&?𝒓E𝒏| ,𝛽C@A"𝒓𝒐𝒖𝒕| � = 𝔾(𝛽=&?, 𝛽=@A" , 𝑄B?| (𝑡1) − 𝑄B?| (𝑡.), 𝑄@A"}(𝑡1) − 𝑄@A"}(𝑡.)) (5.30)

Since 𝑟F'� , 𝑟VW)� , 𝑄F'� and 𝑄VW)� are observable, 𝛽(&', 𝛽(VW) , 𝛽#&' and 𝛽#VW) are yet to be determined,

and we do not need to know the explicit expression of 𝔽 and 𝔾, by introducing another mapping

function ℍ, we can further convert (5.30) to (5.31) below.

 �𝛽=B?� ,𝛽=@A"�,𝛽CB?� ,𝛽C@A"��
+
= 	ℍz𝒓E𝒏| ,𝒓𝒐𝒖𝒕| ,𝑄B?| (𝑡1) − 𝑄B?| (𝑡.), 𝑄@A"}(𝑡1) − 𝑄@A"}(𝑡.){ (5.31)

Here, the mapping function ℍ represents a series of transformations, which may be hard if not

impossible to express explicitly. The transformations themselves also depend on several important

attributes of the physical conditions, such as the shape of the road segment’s fundamental diagram

and the average vehicle length, which are all unknown. Conventional methods may be difficult

dealing with this situation, but the machine learning techniques offer us a chance to solve this

problem. Therefore, the remaining task is to construct a neural network model to estimate ℍ so

that if we have the observation 𝒓a𝒏� , 𝒓𝒐𝒖𝒕� ,𝑄F'� and 𝑄VW)� we can plug them into (5.31) and obtain

𝛽#F'� and 𝛽#VW)�. But before we move on, we will need to make an assumption: The attributes of

mapping function ℍ is similar for the time we want to estimate the occupancy measurement biases

and the time the historical unbiased observations were collected. For instance, if we want to

 74

estimate the measurement biases for some weekday sensor readings, we need to have some

unbiased measurements of past weekdays.

5.3.4 LSTM-based PIDL Model

Now we are going to construct a physics-informed neural network model to learn the mapping

behavior of function ℍ. The long short-term memory (LSTM) model is used due to its ability in

capturing temporal correlations in the input data. Below graph shows the scheme of this neural

network model.

Figure 5.8 LSTM model setup

Input layer: In the training stage, the input layer takes ¢𝛽#∗&'𝒓F'� ,𝛽#∗VW)𝒓VW)� ,𝛽(∗&' �𝑸F'� (𝑡%) −

𝑸F'� (𝑡$) , 𝛽(∗VW) �𝑸F'� (𝑡%) − 𝑸F'� (𝑡$) ¤ as input. Here 𝒓F'� , 𝒓VW)� ,𝑸F'� and 𝑸VW)� are the historical

unbiased sensor readings. 𝛽#∗&' , 𝛽#∗VW) , 𝛽(∗&' and 𝛽(∗VW) are the randomly generated measurement

biases (e.g., 𝛽#∗&' = 1.1 and 𝛽(∗VW) = 0.9). We randomly pick multiple batches of 𝒓F'� , 𝒓VW)� ,𝑸F'� and

𝑸VW)� . For each batch, we generate multiple 𝛽#∗&', 𝛽#∗VW), 𝛽(∗&' and 𝛽(∗VW). As a results, we will obtain

multiple batches of ¢𝛽#∗&'𝒓F'� ,𝛽#∗VW)𝒓VW)� ,𝛽(∗&' �𝑸F'� (𝑡%) − 𝑸F'� (𝑡$) , 𝛽(∗VW) �𝑸F'� (𝑡%) − 𝑸F'� (𝑡$) ¤. The

length for any of 𝒓F'�, 𝒓VW)� ,𝑸F'� and 𝑸VW)� (the choice of measurement time period [𝑡$, 𝑡%]) should

ensure that the input data contains sufficient information to infer ℍ at time 𝑡. If we don’t know the

initial and ultimate condition of the entire link, we want to have at least 𝑡$ ≤ 𝑡 − 𝑙/	𝑣̅	 and 𝑡% ≥

 75

	𝑡 + 𝑙/	𝑣̅	. Since we have plenty of observations to choose from, we can increase the number of

observations for each time 𝑡.

LSTM layers: Each layer contains multiple nodes. Each layer is followed by a dropout to prevent

overfitting.

Dense layer and output layer: The dense layer takes the output from LSTM layer and output a two-

element vector X𝛽(∗F'� ,𝛽(∗VW)§,𝛽#∗F'� ,𝛽#∗VW)§Y
_
.

Loss function: For the input batch ¢𝛽#∗&'𝒓F'�,𝛽#∗VW)𝒓VW)� ,𝛽(∗&' �𝑸F'� (𝑡%) − 𝑸F'� (𝑡$) , 𝛽(∗VW) �𝑸F'� (𝑡%) −

𝑸F'� (𝑡$) ¤, its corresponding loss function is:

 𝐿𝑂𝑆𝑆 = �𝛽=∗B?� − 𝛽=∗&?�
1
+ �𝛽=∗@A"�−𝛽=∗@A"�

1
+ �𝛽C∗B?� − 𝛽C∗&?�

1
+ �𝛽C∗@A"�−𝛽C∗@A"�

1
 (5.32)

For training purpose, for the two sensors we are studying, we need to have some (historical)

unbiased observations of 𝒓a𝒏�, 𝒓𝒐𝒖𝒕� ,𝑄F'� and 𝑄VW)� for both of them, namely, we need to have some

observations where 𝛽(&' = 𝛽(VW) = 𝛽#&' = 𝛽#VW) = 1 . These data may come from the sensor

readings obtained right after the sensors are freshly installed or calibrated. We then follow the

Algorithm 5.1 below to prepare for the training data. During the training process, we hope that the

neural network model could learn the behavior of the unknow function ℍ, so that once trained, it

could take the occupancy measurements with unknown biases as input and gives the estimated

biases as output, given ℍ unchanged.

 76

Simulation Data Generation

We are going to use the simulation data generated from SUMO to test and verify our models. A

road segment with length 𝑙 (e.g. 𝑙 = 400𝑚) is created in SUMO (Figure 5.9). Two inductive loop

sensors are placed at the two endpoints of this road segment.

Figure 5.9 Road Segment Sample

For each test, we carry out multiple independent simulations, each simulating a 24-hour time

period. The length and the speed limit of this link is set to be 400m and 15m per second respectively.

The average vehicle length is set to be 5m. The total traffic volume for each of the 24-hour time

period follows a uniform distribution between [10000, 30000], with the hourly traffic flow

following the below pattern, added with some randomness as well.

 77

Figure 5.10 Hourly traffic flow pattern

Traffic flow and occupancy are collected from the two inductive loop sensors at a 5-second

aggregation level. Therefore, after running the simulation 40 for times, we obtain

40*24*720=4024720 observations for each sensor reading.

We first divide the 40-day raw sensor readings into two groups: one with 35-day readings for

model training and cross-validating; one with 5-day readings for model test.

For the 35-day readings, we prepared the training data following the Step 1 to 4 of Algorithm 1,

then used the data to train the neural network model with 5-fold cross-validation. In step 3 of

algorithm 1, if we choose 𝑛 = 40, given one day observations, there are 17280	 − 40 = 17240

overlapped training samples or 17280	/40 = 431 independent training samples. We follow the

bootstrap resample method to randomly choose 500 samples from each day to construct the

training data. Note that, since in this study we are using simulated sensor readings, the raw data

do not contain the random error term (𝜀(or 𝜀#). We need to manually “add” this white noise to the

readings on top of the sensor biases. We are generating the unbiased historical sensor readings

following 𝑟̃~𝑁(𝑟, 𝜎𝑟) and 𝑓�~𝑁(𝑓, 𝜎𝑓) for occupancy and flux, respectively. 𝜎𝑟 and 𝜎𝑓 are the

standard deviations for the corresponding normal distribution and the initial value of 𝜎 it set to be

0.02. Similarly, the biased sensor readings are generated following 𝑟̃~𝛽#∗	𝑁(𝑟, 𝜎𝑟) and

𝑓�~𝛽(∗	𝑁(𝑓, 𝜎𝑓).

 78

Performance Metrics

Because our ultimate goal is to calibrate the sensor using the estimated biases and correct the

readings, we are going to use the mean absolute error (MAE) below as the performance metric of

the estimations.

For traffic flux correction:

 𝑀𝐴𝐸 =
1
𝑛
.l

𝑓B� 	− 𝑓&
𝑓&

l
?

&L.

× 100% (5.33)

where 𝑓& is the 𝑖)" true traffic flux; 𝑓F© is the 𝑖)" traffic flux reading before or after correction.

For traffic occupancy estimation:	

 𝑀𝐴𝐸 =
1
𝑛
.�

𝑟B� 	− 𝑟&
𝑟&

�
?

&L.

× 100% (5.34)

where 𝑟& is the 𝑖)" true traffic occupancy; 𝑟Fª is the 𝑖)" traffic flux occupancy before or after

correction.

 79

Algorithm 5.1:

• Training data preparation:

Step 1: Repeat step 2 to 4 until obtaining sufficient amount of training data:

Step 2: Generate manipulated sensor biases 𝛽#∗&', 𝛽#∗VW), 𝛽(∗&' and 𝛽(∗VW) 	 ∈ [0.5,1.5]. Repeat step

3 to 4 until obtaining sufficient amount of data for each [𝛽#∗&', 𝛽#∗VW) , 𝛽(∗&', 𝛽(∗VW)].

Step 3: Randomly choose 𝑛 consecutive observations X𝒓F'� , 𝒓VW)� ,𝑸F'� ,𝑸VW)�Y from the unbiased

observation pool. The choice of 𝑛 should follow the instructions discussed above.

Step 4: Append the manipulated observation ¢𝛽#∗&'𝒓F'�,𝛽#∗VW)𝒓VW)� ,𝛽(∗&' �𝑸F'� (𝑡%) −

𝑸F'� (𝑡$) , 𝛽(∗VW) �𝑸F'� (𝑡%) − 𝑸F'� (𝑡$) ¤ to the input dataset. Add the corresponding [𝛽#∗&',

𝛽#∗VW) , 𝛽(∗&', 𝛽(∗VW)] to the output true output dataset.

• Model training:

Step 5: Train and cross-validate the LSTM model using the input dataset. Use the true output

dataset to compute the loss function.

Step 6: Tune the LSTM model parameters: number of nodes for each layer, number of layers,

dropouts, etc. for best cross-validating results.

• Error estimation for unknown bias dataset:

Step 7: Repeat step 8 until obtaining sufficient amount of input data

Step 8: Randomly choose 𝑛 consecutive observations X𝒓F'� , 𝒓VW)� ,𝑸F'� (𝑡%) − 𝑸F'� (𝑡$), 𝑸F'� (𝑡%) −

𝑸F'� (𝑡$)Y from the unknown bias observation pool.

Step 9: Feed the trained LSTM model with the new inputs and obtain the model outputs

X𝛽(F'� ,𝛽(VW)§,𝛽#F'� ,𝛽#VW)§Y
_

Step 10: Use the mean of all 𝛽(F'� ,𝛽(VW)§,𝛽#F'� and 𝛽#VW)§ as the estimated occupancy measurement

biases for the sensors.

Step 11: Correct traffic occupancy reading by 𝑓F'� ?##) = 𝑓F'�/𝛽(F'� , 𝑓VW)�
?##) = 𝑓VW)�/𝛽(VW)§,

𝑟F'� ?##) = 𝑟F'�/𝛽#F'� , and 𝑟VW)� ?##) = 𝑟VW)� /𝛽#VW)§

 80

5.3 Results and Discussion

5.3.1 Model Performance

We constructed several neural network models following Figure 5.8. After tuning the model

parameters, we finalized the last neural network with three LSTM layers and one dense layer and

set the number of nodes in each LSTM layer to be 32 and dropout to be 0.2.

Figure 5.11 Finalized LSTM model

Using the last model, we repeated the training process 15 times. The training process is relatively

stable, with only one training out of the 15 being significantly worse than the rest. We plot the loss

function value for the first six trainings in Figure 5.12. We can see from this graph that, overall,

the losses decrease rapidly during the first several epochs and then slowly reach equilibrium.

Figure 5.12 Loss value during training

 81

Since we are using simulated observation data to verify our model, the testing data were generated

using the rest 5-day sensor reading, following the same steps 2 to 4. In this case, we have the

ground truth, and the true measurement biases for each observation, which we can use to test the

model estimation performance.

Firstly, we tested how the model performs when all the four sensor readings have unknown biased,

namely, unknown 𝛽(&', 𝛽(VW) , 𝛽#&' and 𝛽#VW). We ran the training-testing processes 20 times and plot

the results in Figure 5.12. Figure 5.12a shows the 𝑀𝐴𝐸% for sensor readings before correction.

Since all the sensor biases were generated from 0.5 to 1.5, the average cap M cap A. cap E % for

all the uncorrected measurements is around 40%. Figure 5.13a shows the 𝑀𝐴𝐸% of the readings

calibrated by our model. The blue line is the 𝑀𝐴𝐸% calibrated using the actual biases and

represents the theoretical optimum. We can see from the graphs that our model significantly

improves the 𝑀𝐴𝐸 for all four measurements. After correction, the 𝑀𝐴𝐸𝑠 drop to around 2%,

slightly higher than the theoretical optimum.

(a) before correction (b) after correction

Figure 5.13 𝑀𝐴𝐸 for sensor readings before and after correction

 82

In reality, it may be more common that not all but some of the four sensor readings (traffic flux

and occupancy readings for both upstream and downstream sensors) are biased. Therefore, we will

now discuss the model performance for different scenarios separately. Figure 5.14 shows the

model estimation results when both sensors are in healthy condition (𝛽(&' = 𝛽(VW) = 𝛽#&' = 𝛽#VW) =

1, but unknown to the model). For 𝑓&' and 𝑟VW), the model almost reaches the theoretical optimum.

For 𝑓VW) and 𝑟&', the model gives 𝑀𝐴𝐸 around 2%, which is still acceptable and not much higher

than the blue line.

Figure 5.14 𝑀𝐴𝐸 with all sensor readings unbiased

Then we test the scenarios when we have one of the two sensors in good working condition. Below

are two graphs comparing when we have healthy downstream sensor 𝛽(VW) = 𝛽#VW) = 1 	(Figure

5.15a) and healthy upstream sensor 𝛽(&' = 𝛽#&' = 1	(Figure 5.15b).

 83

(a) 𝛽(VW) = 𝛽#VW) = 1 (b) 𝛽(&' = 𝛽#&' = 1

Figure 5.15 𝑀𝐴𝐸 with one healthy sensor

5.3.2 Sensitivity Analysis

Scale of measurement biases

In this part, we are going to test how the scale of measurement biases (𝛽) affects the model

performance. Since from the previous section, we’ve seen no significant performance difference

in estimating upstream and downstream sensors, so we pick upstream sensor measurements as the

study objects. In this experiment, the studied measurement biases were generated following

uniform distributions of ranges [0.5, 0.7], [0.7, 0.9], [0.9, 1.1], [1.1, 1.3] and [1.3,1.5]. 𝑀𝐴𝐸 were

computed for each group.

Figure 5.16 shows the results of the 𝑀𝐴𝐸 for 𝑓&' when 𝛽(VW) = 𝛽#&' = 𝛽#VW) = 1, and only 𝛽(&' is

randomly generated. Similarly, Figure 5.17 shows the results of the 𝑀𝐴𝐸 for 𝑟&' when 𝛽(&' =

𝛽(VW) = 𝛽#VW) = 1, and only 𝛽#&' is randomly generated.

 84

Figure 5.16 𝑀𝐴𝐸 of 𝑓&' for different 𝛽(&'

Figure 5.17 𝑀𝐴𝐸 of 𝑟&' for different 𝛽#&'

In reality, it may be more common if a sensor malfunctions, both its traffic flux and occupancy

readings are biased. Figure 5.18 shows the 𝑀𝐴𝐸 for 𝑓&' and 𝑟&' when we assume both traffic flux

and occupancy readings of upstream sensors are biased (unknown 𝛽(&' and 𝛽#&'). In contrast, the

downstream sensor is in healthy condition (𝛽(VW) = 𝛽#VW) = 1). We can see the pattern that 𝑀𝐴𝐸

decreases with the increase of the measurement biases. Due to the fixed scale of white noises,

smaller systematic measurement biases result in a larger fraction of uncorrectable white noises,

which consequently, leads to higher MAE after flow volume correction.

 85

Figure 5.18 𝑀𝐴𝐸 of 𝑓&' and 𝑟&' for different 𝛽(&' and 𝛽#&'

Scale of white noise (random error) variance

As discussed previously, the simulating traffic flux and sensor readings were generated following

𝑟̃~𝑁(𝛽#𝑟, 𝜎𝑟) and 𝑓�~𝑁(𝛽(𝑓, 𝜎𝑓), respectively. Initially, we set 𝜎 = 0.02 for both training data

and testing data. Now we will test for two more cases when 𝜎 = 0.04 and 0.06 (Figure 5.19) and

keep 𝜎 still same for both training and testing data. Here, the blue line in each graph still represents

the theoretical optimum, calibrated with true sensor biases. Comparing with the original case 𝜎 =

0.02, we can see that the model corrected 𝑀𝐴𝐸𝑠 increase with the increase of the random error

variance, as well as the theoretical optimums, so the overall corrected 𝑀𝐴𝐸𝑠 still lie around the

blue line. On the other hand, we do see the upper tails of the boxplots grow a lot with larger 𝜎,

which means that with larger random error variance, our model may occasionally give relatively

‘bad’ estimations; however, since the majority of the estimations are in a reasonable range(<0.06

for 𝜎 = 0.04, (<0.08 for 𝜎 = 0.06), we can avoid the ‘bad’ estimations by repeating the training-

estimating processes multiple times and get the overall mean values as the ultimate results.

 86

 (a) 𝜎 = 0.04 (b) 𝜎 = 0.06

Figure 5.19 𝑀𝐴𝐸 for different scale of 𝜎

Change in variance of white noise (random error)

The former experiments generate training and testing data with the same 𝜎. However, when we

want to apply the model in the real world, since the training data (the unbiased historical

observations) and testing data (the observations with biases unknown and yet to be determined)

may come from two timestamps far away from each, the variance of random measurement error

may also change. Now in this part, we are going to test how this change in the random error

variance impacts the model estimation results. The training data were still prepared with 𝜎)#!&' =

0.02.	We generated extra testing cases for 𝜎)*+) = 0.00, 0.04, 0.06, and 0.08 . The results are

shown in Figure 5.20. Similarly, the blue line in each graph represents the theoretical optimum.

The results resemble the last part. The corrected 𝑀𝐴𝐸𝑠 do increase with larger 𝜎, and they still do

not deviate much from the theoretical optimum in general. To avoid extremely bad estimations,

we can use the same method mentioned in the last part.

 87

(a) 𝜎)*+) = 0.00 (b) 𝜎)*+) = 0.04

(c) 𝜎)*+) = 0.06 (d) 𝜎)*+) = 0.08

Figure 5.20 𝑀𝐴𝐸 for 𝜎)#!&' = 0.02 and different 𝜎)*+)

Traffic segment length

In this part we are going to compare the model performance for different traffic segment lengths,

as in reality, the length of our studying road may vary. We choose the segment lengths from 200m

to 1000m and repeat for each length the simulating-training-testing process. The corresponding

𝑀𝐴𝐸s are shown below Figure 5.21, from which we cannot find a significant relationship between

the segment length and the corrected 𝑀𝐴𝐸. In most of the tests, the model is able to keep the

 88

estimation errors below 0.03 and the model shows its robustness against different road segment

lengths.

Figure 5.21 𝑀𝐴𝐸 for different traffic segment length

Sample size

In general, machine learning techniques are data-driven, requiring large sample sizes to train the

models, so in this section, we test how our model handles different training data sizes. Since we

initially obtained 40-day sensor reading data from SUMO simulations and randomly picked 35-

day data as the training set, we want to see how the model reacts if we reduce the training data

size. We did three more experiments, each with training data of 25-day, 15-day, and 5-day, and

plot the results in Figure 5.22. The figure illustrates that, the model trained with 35-day and 25-

day data have quite similar performance. As the training sample size further decreases to 15-day

and 5-day, the model does perform slightly worse. However, even with only 5-days of training

data, the 𝑀𝐴𝐸 s are well controlled (under 0.04). This property may greatly improve the

applicability of the mode.

 89

Figure 5.22 𝑀𝐴𝐸 for different training data sizes

5.3.3 Discussions

In this study, a sensor error correction model was developed for the traffic flux measurement and

the traffic occupancy measurement. Since the traffic flux and occupancy are the two direct and

non-identical measurements from the single-loop detector system, we may take advantage of the

additional information one measurement contains to calibrate the potential errors in the other.

Based on the traffic flow ordinary differential equation (ODE) model, which describes the

dynamics of the traffic flow, we were able to discover for a road segment the relationship between

its two end-point traffic flux and the link level traffic occupancy. We further gained insights from

the traffic LWR model and its numerical approximation method on the relation between the link

level and its end-points traffic occupancy. Combining all these ideas, we constructed a mapping

function that connects the four sensor observations (upstream and downstream traffic flux and

occupancy) to their unknown biases and a Physics-Informed LSTM neural network model, which

we hoped could learn this connection. With the historical data serving as ground truth, we trained

the neural network model with the training set manipulated from the historical data. After proper

 90

training, the neural network model showed the ability to capture the attributes of the mapping

function and could provide a good estimation of sensor biases and accordingly calibrate the sensor

observations. The sensitivity analysis also proves the reliability and robustness of the sensor error

correction model.

The main contribution of this study is the development of a sensor reading error correction model

using the dynamical property of the traffic flow. Most other research that studies traffic flux

measurement errors merely uses the traffic flux data. But taking use of the traffic dynamics, the

traffic ODE model in this study could make a connection of the traffic flux to the traffic occupancy,

another raw measurement from a same sensor. Conventional studies identifying the flux

measurement errors usually require the assists of data from the multiple sensors within the traffic

network and may require the presence of healthy sensors. Using the insight that the traffic flux and

occupancy are dynamically related; our model can narrow down the study scope into a traffic

segment with only two sensors and have no assumption of a healthy sensor presenting at the time

of estimating.

On the other hand, this works well combined the traffic flow domain knowledge with the advantage

of the machine learning techniques. It would be very difficult if not impossible, to analytically

disclose the connection between the traffic flux measurements, two end-point traffic occupancy

measurements, and the measurement biases, since this connection may consist of several layers of

non-linear transformations which may contain several unknown traffic or network parameters (e.g.,

fundamental diagram, average vehicle length). But constructed on top of the traffic ODE model,

the Physics-Informed LSTM neural network in this study well matches our demand. After proper

training, the model shows its ability to capture the dynamics of the traffic flow and the multiple

 91

transformations, therefore, it can successfully discover the mapping from the sensor measurements

to their biases.

 92

Chapter 6 Conclusions

This dissertation focused on estimating and correcting the measurement biases for the inductive

loop sensor system. The critical role the inductive loop sensors play in public traffic management

and the need for their reliability justify the importance and urgency of studying their health

condition. Instead of solely identifying the malfunctioning sensors, this study attempted to quantify

the measurement bias for each sensor by taking advantage of the spatial-temporal relationship of

the sensor data and the power of Physics-Informed Deep Learning (PIDL) techniques.

To exploit the spatial-temporal relationship between traffic flows in a network level, we developed

three PIDL models based on the fully connected neural network, CNN and LSTM to estimate the

measurement biases for traffic network sensors and recover the erroneous traffic volume readings.

The domain knowledge about the sensor observation data is reflected in the machine learning

models via input layer structure design besides the training data itself. We found that with the

simpler model structure, the fully connected neural network model cannot fully utilize the spatial-

temporal information embedded in the training data, even with the help of the PIDL design. On

the contrary, the PIDL models based on CNN and LSTM estimate the sensor biases much better,

with LSTM-based model slightly outperforming CNN-based one. Their estimation performance is

also very consistent and relatively insensitive to factors including the sensor (link) positions in the

network, the scale of sensor measurement biases, and the variance of white noise. With the help

of more correct observations from the healthy (recently calibrated) sensors, the models can

significantly reduce both the estimation errors and the error variance and produce promising results

even under changes of traffic flow pattern beyond the range used for training.

 93

To exploit the physical relationship between different traffic state parameters, we constructed a

sensor error correction model for the traffic flux measurement and the traffic occupancy

measurement. Based on the traffic flow ordinary differential equation (ODE) model, which

describes the traffic flow dynamics, we were able to discover for a road segment the relationship

between its two end-point traffic flux and the link level traffic occupancy. We further gained

insights from the partial differential equation based LWR model and its numerical approximation

method for the relation between the link level and its end-points traffic occupancy. Combining all

these ideas, we constructed a mapping function that connects the four sensor observations

(upstream and downstream traffic flux and occupancy) to their unknown biases and trained a

Physics-Informed LSTM neural network model. The prior knowledge of traffic flow models is

passed onto the LSTM model via the choice of the input variables and their structure and the

preparation process of training data. With this setup, the neural network model showed the ability

to capture the attributes of the mapping function, give a reasonable estimation of sensor biases,

and accordingly calibrate the sensor observations. The sensitivity analysis also proves the

reliability and robustness of the sensor error correction model.

Statistical models use statistics to extract information from data and deduce the relationship

between variables. Conventional statistical models usually have a high level of interpretability,

giving additional prediction information like covariance, significance, P-values, confidence

interval, etc. For instance, in the study described in Chapter 3, with the sensor error estimation

model constructed using the generalized method of moments, the authors were able to statistically

prove the significance of a sensor bias via a hypothesis test. Having experience in both statistical

modeling and machine learning modeling, I do see situations where machine learning is more

applicable. When high dimensionality and high complexity are present in the data, and the data

 94

comes in vast volume, the conventional statistical models may be insufficient to capture its full

features. On the contrary, machine learning can rely on data itself to train and test the models and

benefit from the complexity of the data. When we have little domain knowledge about the data,

machine learning models can solely use the data to tell stories. However, since data science is a

multi-disciplinary field with knowledge from computer science, statistics, and domain-specific

expertise, machine learning techniques should also take advantage of the domain knowledge.

Beginning with the pure analysis of raw data, machine learning technologies had recognized the

significance of domain knowledge in the accurate prediction of complex systems. In fact, the

domain knowledge can be passed onto machine learning modeling in almost every step, including

data collection, processing, training data preparation, and model designing. The physics-informed

deep learning models constructed in this dissertation adopted this idea, by providing prior

knowledge in the transportation engineering domain to the deep learning models. On the other

hand, incorporating domain knowledge in machine learning testing and validating is also essential,

since testing is a knowledge-building process for machine learning models. Domain expertise can

guide the preparation of testing data and ensure the coverage of the testing cases, and accordingly,

improve the models and confirm the models’ applicability.

Looking at the readily usable infrastructure-based traffic sensor data and improving its accuracy,

this study has the potential to contribute to more effective traffic management promptly. In the

short term, the penetration of mobile data is still low, so this part of the data may not be statistically

representative to provide aggregated data needed for system-level analyses or draw definitive

conclusions about the current transportation system. On the other hand, the increase in the mobile

data penetration will not diminish the value of this study, instead, mobile data could complement

infrastructure-based on sensor to provide more information and physical relation that could benefit

 95

the machine learning model. For example, the mobile data can provide traffic model parameters

such as average vehicle length, average speed, and free flow speed at locations where there is no

infrastructure-based sensor or the sensors are malfunctioning. Mobile sensors also generate vehicle

trajectory data which could provide more spatial-temporal relations than conventional fixed-

location sensors. Therefore, there are great opportunities to study the incorporation of mobile data

into infrastructure-based traffic data, which will be left for future work.

 96

References

Agarwal, S., Kachroo, P., & Contreras, S. (2016). A Dynamic Network Modeling-Based

Approach for Traffic Observability Problem. IEEE Transactions on Intelligent

Transportation Systems, 17(4), 1168–1178. https://doi.org/10.1109/TITS.2015.2499538

Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). SUMO – Simulation of Urban

MObility: An Overview. In S. & U. of O. Aida Omerovic, R. I.-R. T. P. Diglio A.

Simoni, & R. I.-R. T. P. Georgiy Bobashev (Eds.), Proceedings of SIMUL 2011, The

Third International Conference on Advances in System Simulation. ThinkMind.

http://www.thinkmind.org/index.php?view=instance&instance=SIMUL+2011

Bickel, P. J., Chen, C., Kwon, J., Rice, J., Zwet, E. van, & Varaiya, P. (2007). Measuring Traffic.

Statistical Science, 22(4), 581–597. https://doi.org/10.1214/07-STS238

Brumbaugh, S., Firestine, T., Notis, K., Randrianarivelo, S., & United States. Department of

Transportation. Bureau of Transportation Statistics. (2018). Transportation Economic

Trends 2018 (Transportation Economic Trends (TET)). https://doi.org/10.21949/1502599

Cao, M., Li, V. O. K., & Chan, V. W. S. (2020). A CNN-LSTM Model for Traffic Speed

Prediction. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5.

https://doi.org/10.1109/VTC2020-Spring48590.2020.9129440

Chandramohan, A., Poel, M., Meijerink, B., & Heijenk, G. (2019). Machine Learning for

Cooperative Driving in a Multi-Lane Highway Environment. 2019 Wireless Days (WD),

1–4. https://doi.org/10.1109/WD.2019.8734192

Chen, C. (2003). Freeway Performance Measurement System (PeMS). PATH Research Report,

Article UCB-ITS-PRR-2003-22. https://trid.trb.org/view/662789

 97

Chen, C., Kwon, J., Rice, J., Skabardonis, A., & Varaiya, P. (2003). Detecting Errors and

Imputing Missing Data for Single-Loop Surveillance Systems. Transportation Research

Record, 1855(1), 160–167. https://doi.org/10.3141/1855-20

Choi, Y.-Y., Shon, H., Byon, Y.-J., Kim, D.-K., & Kang, S. (2019). Enhanced Application of

Principal Component Analysis in Machine Learning for Imputation of Missing Traffic

Data. Applied Sciences, 9(10), 2149. https://doi.org/10.3390/app9102149

Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2020). Stacked bidirectional and unidirectional LSTM

recurrent neural network for forecasting network-wide traffic state with missing values.

Transportation Research Part C: Emerging Technologies, 118, 102674.

https://doi.org/10.1016/j.trc.2020.102674

Dailey, D. J. (1993). IMPROVED ERROR DETECTION FOR INDUCTIVE LOOP SENSORS

(WA-RD 300.1). Article WA-RD 300.1. https://trid.trb.org/view/489576

Farhan, J., & Fwa, T. F. (2013). Airport Pavement Missing Data Management and Imputation

with Stochastic Multiple Imputation Model. Transportation Research Record, 2336(1),

43–54. https://doi.org/10.3141/2336-06

Greenberg, H. (1959). An Analysis of Traffic Flow. Operations Research, 7(1), 79–85.

https://doi.org/10.1287/opre.7.1.79

Greenshields, B., Bibbins, J., Channing, W., & Miller, H. (1935). A study of traffic capacity.

1935.

Han, Y., Wang, M., Li, L., Roncoli, C., Gao, J., & Liu, P. (2022). A physics-informed

reinforcement learning-based strategy for local and coordinated ramp metering.

Transportation Research Part C: Emerging Technologies, 137, 103584.

https://doi.org/10.1016/j.trc.2022.103584

 98

Hawkins, D. M. (1980). Identification of Outliers. Springer Netherlands.

https://doi.org/10.1007/978-94-015-3994-4

Herty, M., Klar, A., & Singh, A. K. (2007). An ODE traffic network model. Journal of

Computational and Applied Mathematics, 203(2), 419–436.

https://doi.org/10.1016/j.cam.2006.04.007

Huang, A. J., & Agarwal, S. (2020). Physics Informed Deep Learning for Traffic State

Estimation. 2020 IEEE 23rd International Conference on Intelligent Transportation

Systems (ITSC), 1–6. https://doi.org/10.1109/ITSC45102.2020.9294236

Jacobson, L. N., Nihan, N. L., & Bender, J. D. (1990). DETECTING ERRONEOUS LOOP

DETECTOR DATA IN A FREEWAY TRAFFIC MANAGEMENT SYSTEM.

Transportation Research Record, 1287. https://trid.trb.org/view/352876

Jagadeesh, G. R., Dhinesh, G. R., & Srikanthan, T. (2014). Method for accuracy assessment of

aggregated freeway traffic data. IET Intelligent Transport Systems, 8(4), 407–414.

https://doi.org/10.1049/iet-its.2013.0094

Jia, Z., Chen, C., Coifman, B., & Varaiya, P. (2001). The PeMS algorithms for accurate, real-

time estimates of g-factors and speeds from single-loop detectors. 536–541.

https://doi.org/10.1109/ITSC.2001.948715

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021).

Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440.

https://doi.org/10.1038/s42254-021-00314-5

Kheterpal, N., Parvate, K., Wu, C., Kreidieh, A., Vinitsky, E., & Bayen, A. (2018). Flow: Deep

Reinforcement Learning for Control in SUMO. 134–115. https://doi.org/10.29007/dkzb

 99

Klein, L. A., Mills, M. K., Gibson, D., & Lawrence A. Klein. (2006). Traffic detector handbook:

Third edition. Volume II (FHWA-HRT-06-139). https://rosap.ntl.bts.gov/view/dot/936

Koh, S. S., Zhou, B., Yang, P., Yang, Z., Fang, H., & Feng, J. (2018). Reinforcement Learning

for Vehicle Route Optimization in SUMO. 2018 IEEE 20th International Conference on

High Performance Computing and Communications; IEEE 16th International

Conference on Smart City; IEEE 4th International Conference on Data Science and

Systems (HPCC/SmartCity/DSS), 1468–1473.

https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00242

Kwon, J., Chen, C., & Varaiya, P. (2004). Statistical Methods for Detecting Spatial

Configuration Errors in Traffic Surveillance Sensors. Transportation Research Record,

1870(1), 124–132. https://doi.org/10.3141/1870-16

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary

and partial differential equations. IEEE Transactions on Neural Networks, 9(5), 987–

1000. https://doi.org/10.1109/72.712178

Lebacque, J. P. (1996). THE GODUNOV SCHEME AND WHAT IT MEANS FOR FIRST

ORDER TRAFFIC FLOW MODELS. https://trid.trb.org/view/481282

Li, Y., Li, Z., & Li, L. (2014). Missing traffic data: Comparison of imputation methods. IET

Intelligent Transport Systems, 8(1), 51–57. https://doi.org/10.1049/iet-its.2013.0052

Lighthill, M. J., & Whitham, G. B. (1955). On Kinematic Waves. II. A Theory of Traffic Flow

on Long Crowded Roads. Proceedings of the Royal Society of London. Series A,

Mathematical and Physical Sciences, 229(1178), 317–345.

 100

Liu, Z., Sharma, S., & Datla, S. (2008). Imputation of Missing Traffic Data during Holiday

Periods. Transportation Planning and Technology, 31(5), 525–544.

https://doi.org/10.1080/03081060802364505

Lu, X.-Y., Varaiya, P., Horowitz, R., Guo, Z., & Palen, J. (2012). Estimating Traffic Speed with

Single Inductive Loop Event Data. Transportation Research Record, 2308(1), 157–166.

https://doi.org/10.3141/2308-17

Ma, M., Liang, S., Guo, H., & Yang, J. (2017). Short-term traffic flow prediction using a self-

adaptive two-dimensional forecasting method. Advances in Mechanical Engineering,

9(8), 1687814017719002. https://doi.org/10.1177/1687814017719002

MacNicholas, M. J. (2008). A Simple and Pragmatic Representation of Traffic Flow.

https://trid.trb.org/view/868786

Margiotta, R. (2002). STATE OF THE PRACTICE FOR TRAFFIC DATA QUALITY (EDL

#13768). Article EDL #13768. https://trid.trb.org/view/731770

Mo, Z., Shi, R., & Di, X. (2021). A physics-informed deep learning paradigm for car-following

models. Transportation Research Part C: Emerging Technologies, 130, 103240.

https://doi.org/10.1016/j.trc.2021.103240

Nguyen, H., Kieu, L.-M., Wen, T., & Cai, C. (2018). Deep learning methods in transportation

domain: A review. IET Intelligent Transport Systems, 12(9), 998–1004.

https://doi.org/10.1049/iet-its.2018.0064

Nihan, N. L. (1997). Aid to Determining Freeway Metering Rates and Detecting Loop Errors.

Journal of Transportation Engineering, 123(6), 454–458.

https://doi.org/10.1061/(ASCE)0733-947X(1997)123:6(454)

 101

Nihan, N. L., & Holmesland, K. O. (1980). Use of the box and Jenkins time series technique in

traffic forecasting. Transportation, 9(2), 125–143. https://doi.org/10.1007/BF00167127

Payne, H. J., Helfenbein, E. D., Knobel, H. C., & Technology Service Corporation. (1976).

Development and testing of incident detection algorithms. Vol. 2, research methodology

and detailed results. (FHWA-RD-76-20). https://rosap.ntl.bts.gov/view/dot/744

Polson, N. G., & Sokolov, V. O. (2017). Deep learning for short-term traffic flow prediction.

Transportation Research Part C: Emerging Technologies, 79, 1–17.

https://doi.org/10.1016/j.trc.2017.02.024

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part

I): Data-driven Solutions of Nonlinear Partial Differential Equations

(arXiv:1711.10561). arXiv. https://doi.org/10.48550/arXiv.1711.10561

Rajagopal, R., Nguyen, X., Ergen, S. C., & Varaiya, P. (2008). Distributed Online Simultaneous

Fault Detection for Multiple Sensors. 2008 International Conference on Information

Processing in Sensor Networks (Ipsn 2008), 133–144.

https://doi.org/10.1109/IPSN.2008.41

Rajagopal, R., & Varaiya, P. (2009). Evaluating the Health of California’s Loop Sensor

Network. 18.

Ranjan, N., Bhandari, S., Zhao, H. P., Kim, H., & Khan, P. (2020). City-Wide Traffic

Congestion Prediction Based on CNN, LSTM and Transpose CNN. IEEE Access, 8,

81606–81620. https://doi.org/10.1109/ACCESS.2020.2991462

Shladover, S. E. (1993). Potential contributions of intelligent vehicle/ highway systems (IVHS)

to reducing transportation’s greenhouse gas production. Transportation Research Part A:

Policy and Practice, 27(3), 207–216. https://doi.org/10.1016/0965-8564(93)90060-X

 102

Soares, G., Macedo, J., Kokkinogenis, Z., & Rossetti, R. J. F. (2013). An Integrated Framework

for Multi-Agent Traffic Simulation using SUMO and JADE. 8.

Turner, S. (2007). Quality Control Procedures for Archived Operations Traffic Data. 44.

Underwood, R. T. (1961). SPEED, VOLUME, AND DENSITY RELATIONSHIPS.

https://trid.trb.org/view/115231

US DOT. (2006, October). Traffic Detector Handbook: Third Edition—Volume I - FHWA-HRT-

06-108. https://www.fhwa.dot.gov/publications/research/operations/its/06108/03.cfm

Vanajakshi, L., & Rilett, L. R. (2004). Loop Detector Data Diagnostics Based on Conservation-

of-Vehicles Principle. Transportation Research Record, 1870(1), 162–169.

https://doi.org/10.3141/1870-21

Varaiya, P. (2001). Freeway performance measurement system. PeMS v3, Phase 1: Final Report,

California PATH Research Report. UCBITS-PWP-200117.

Waller, S. T., Kockelman, K. M., Sun, D., Boyles, S., Lin, D.-Y., Ng, M., Seraj, S., Tassabehji,

M., Valsaraj, V., & Wang, X. (2008). Archiving, Sharing, and Quantifying Reliability of

Traffic Data (FHWA/TX-09/0-5686-1). Article FHWA/TX-09/0-5686-1.

https://trid.trb.org/view/891045

Wegener, A., Piórkowski, M., Raya, M., Hellbrück, H., Fischer, S., & Hubaux, J.-P. (2008).

TraCI: An interface for coupling road traffic and network simulators. Proceedings of the

11th Communications and Networking Simulation Symposium, 155–163.

https://doi.org/10.1145/1400713.1400740

Weijermars, W. A. M., & Van Berkum, E. C. (2006). Detection of Invalid Loop Detector Data in

Urban Areas. Transportation Research Record, 1945(1), 82–88.

https://doi.org/10.1177/0361198106194500111

 103

Williams, B. M., Durvasula, P. K., & Brown, D. E. (1998). Urban Freeway Traffic Flow

Prediction: Application of Seasonal Autoregressive Integrated Moving Average and

Exponential Smoothing Models. Transportation Research Record, 1644(1), 132–141.

https://doi.org/10.3141/1644-14

Yang, Y., Yang, H., & Fan, Y. (2019). Networked sensor data error estimation. Transportation

Research Part B: Methodological, 122, 20–39. https://doi.org/10.1016/j.trb.2019.01.013

Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., & Chen, C. (2011). Data-Driven

Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent

Transportation Systems, 12(4), 1624–1639. https://doi.org/10.1109/TITS.2011.2158001

Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). LSTM network: A deep learning

approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2), 68–75.

https://doi.org/10.1049/iet-its.2016.0208

Zheng, J., & Huang, M. (2020). Traffic Flow Forecast Through Time Series Analysis Based on

Deep Learning. IEEE Access, 8, 82562–82570.

https://doi.org/10.1109/ACCESS.2020.2990738

Zhuang, Y., Ke, R., & Wang, Y. (2019). Innovative method for traffic data imputation based on

convolutional neural network. IET Intelligent Transport Systems, 13(4), 605–613.

https://doi.org/10.1049/iet-its.2018.5114

