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Abstract 

This study investigates how people assign blame to 
autonomous vehicles (AVs) when involved in an accident. Our 
experiment (N = 2647) revealed that people placed more blame 
on AVs than on human drivers when accident details were 
unspecified. To examine whether people assess major classes 
of blame-relevant information differently for AVs and humans, 
we developed a causal model and introduced a novel concept 
of prevention effort, which emerged as a crucial factor for 
blame judgement alongside intentionality. Finally, we 
addressed the “many hands” problem by exploring how people 
assign blame to entities associated with AVs and human 
drivers, such as the car company or an accident victim. Our 
findings showed that people assigned high blame to these 
entities in scenarios involving AVs, but not with human 
drivers. This necessitates adapting a model of blame for AVs 
to include other agents and thus allow for blame allocation 
“outside” of autonomous vehicles. 

Keywords: blame attribution; autonomous vehicles; causal 
models 

Introduction 

In May 2023, an artificial intelligence (AI) generated a fake 

image of an explosion near the Pentagon and caused a market 

flash crash. This capacity of AI to cause harm is not a recent 

revelation. Autonomous military drones that can select 

targets on their own and engage in lethal action without 

human control have been deployed in warfare for some time 

now (Konert & Balcerzak, 2021). Autonomous vehicles 

(AVs), too, have been involved in road accidents, leading to 

property damage, bodily injury, and even fatalities (Favarò et 

al., 2017). In a 2023 Alan Turing Institute poll, nearly three 

quarters of British citizens voiced their concerns over AI 

being used in driverless vehicles and autonomous weaponry1. 
To effectively establish formal-legal guidelines for 

assigning responsibility and liability in cases where AI causes 

harm, it is crucial to understand how people informally assign 

blame in such scenarios. Blame judgements rely on social-

cognitive processes, such as intentionality judgements, 

mental states inferences, and causal reasoning (Alicke, 2000; 

Cushman, 2008; Lagnado & Channon, 2008; Malle, 

                                                           
1 turing.ac.uk/news/publications/how-do-people-feel-about-ai 

Guglielmo, & Monroe, 2014). Although at least some AI 

systems make autonomous decisions and bring about the 

same causal effects as humans do, ascribing mental states to 

AI is challenging (Scheutz & Malle, 2021; Wallach, Franklin, 

& Allen, 2010). An even deeper problem is whether people 

think of artificial intelligence systems as moral agents at all 

and as proper targets of blame (Banks, 2019). 
In complex real-world situations, assigning blame is 

particularly challenging as multiple agents may contribute to 

the outcome – the problem of Many Hands (Van de Poel & 

Nihlén Fahlquist, 2012). Autonomous agents further 

complicate this, because their contributions are intertwined 

with those of its developers, users, and the potential victims 

of its behaviour (Nyholm, 2018). This intricacy can cause 

responsibility gaps, where the uncertainty over who is to 

blame can leave nobody taking the blame (Danaher, 2016; De 

Jong, 2020). In fact, human agents may escape accountability 

by insisting that they delegated responsibility onto the 

autonomous system (Danaher, 2019; Parlangeli et al., 2023). 
This paper concentrates on autonomous vehicles. We 

compare the blameworthiness of AVs to that of a human 

driver in the same context, and explore the role of other 

agents involved. The central focus revolves around the 

concept of blame, which we operationalise as a continuous 

judgement and examine through a causal model. 

Theoretical Framework 

The path model of blame by Malle et al. (2014) posits several 

classes of information that determine how much blame an 

agent deserves, and we use this model as a starting point to 

develop our research question. Are these classes of 

information evaluated differently depending on whether the 

agent is an autonomous vehicle or a human? Intentionality is 

pivotal. Actions deemed intentional are typically assigned 

more blame than those considered unintentional (Lagnado & 

Channon, 2008), and intentionality judgements guide 

additional information processing—whether to look more for 

mental states or for causal-counterfactual information 

(Cushman, 2008; Monroe & Malle, 2017).  
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Desires constitute one important mental state that people 

consider when blaming intentional actions (Cushman, 2008). 

If an agent’s desire specifically motivates a harmful action, 

blame will be considerable. Still, the presence of other desires 

can mitigate blame, such as wanting to save someone’s life 

by yanking them back onto the sidewalk from an approaching 

speeding car. Desires of autonomous agents can be thought 

of as goals – the outcomes they aim to achieve in the 

environment (Ashton, 2022a; 2022b). But inferring artificial 

agents’ specific goals can be difficult (Castelvecchi, 2016). 
In situations where an agent unintentionally caused harm, 

people process other classes of information. They consider 

whether (a) the agent had an obligation to prevent the 

outcome, (b) the agent foresaw it, and (c) could have 

prevented it (Malle et al., 2014). Agents are assigned more 

blame for outcomes they should have prevented, foresaw, and 

could have prevented (Gerstenberg et al., 2011; Lagnado & 

Channon, 2008; Monroe & Malle, 2019; Weiner, 1995).  
Drawing from the foundational work of Malle et al. (2014), 

but aiming to simultaneously manipulate all information 

processing elements, we devised a slightly simplified model 

that does not include agent’s reasons for acting, nor agent’s 

obligation to prevent the event. More precisely, we modified 

the causal model previously proposed by Franklin et al. 

(2022). Within our model (see Figure 1), we introduce the 

notion of prevention effort, causally connected to both 

foreseeability and capability. The model suggests that if 

people receive information about prevention efforts, they can 

immediately infer that the person has foreseeability and 

capability. By including prevention efforts in our model, we 

seek to examine to what extent this class of blame-relevant 

information can mitigate blame. Early research has indicated 

that people may be blamed more when they don’t try to 

prevent bad outcomes (Knobe, 2003; Alicke et al., 2008).  
The primary research questions are therefore: (1) Who is 

blamed more: AVs or human drivers? (2) Do people assess 

major classes of blame-relevant information differently for 

AVs and human drivers? (3) Is the novel element of 

prevention effort an influential class of information in 

people’s blame judgements, both for human and AVs? (4) Do 

people judge other agents – beyond the AV or human driver 

– differently as a function of their causal connection to the 

AV or human driver (thus addressing the many hands issue)? 

 

 
 

Figure 1: A proposed causal model of blame 

Empirical research indicates that most people genuinely, 

not just metaphorically, assign blame to AI (Malle, Thapa, 

Scheutz, 2019; Stuart & Kneer, 2021) and that their blame 

judgements are influenced by their perception of the 

“cognitive” capacities of AI (Kneer & Stuart, 2021). 
Empirical evidence on whether people assign different 

amounts of blame to AVs or humans is inconclusive. One 

study showed that people tend to blame AVs less than human 

drivers in accidents, such as pedestrian injuries caused by 

collisions between human-driven and autonomous vehicles 

(Li et al., 2016). By contrast, another study demonstrated that 

people tended to blame AVs more than human drivers, 

particularly when the severity of the outcome was more 

significant (Hong, Wang, & Lanz, 2020). 
Zhang, Wallbridge, Jones, & Morgan (2021) studied six 

scenarios involving three types of outcomes (minor 

accidents, major accidents, or near-misses) caused by either 

human drivers or AVs. In five out of six scenarios that 

included an actual accident, AVs received more blame than 

humans. The sole scenario where human drivers were 

assigned more blame was a case where pedestrians crossing 

in front of a stopped bus were hit by a car passing the bus. 

The authors argued that this scenario presented more 

contextual cues and was more foreseeable and thus 

preventable. According to the authors, only a human driver 

could have understood the causal relationship between a 

stopped bus and the likelihood of nearby pedestrians. This 

argument suggests that the specific role of foreseeability and 

prevention efforts may differ in people’s blame judgements 

of AVs as opposed to human drivers. 
In the following experiment, we compare how people 

blame humans and AVs for their behaviours resulting in the 

same outcomes and examine in detail how they assess major 

classes of blame-relevant information. To explore the many 

hands problem in the case of AVs, we also probe alternative 

targets of blame, such as the company or programmer of an 

autonomous vehicle. 

Method 

Participants 

We recruited 2647 international English-speaking 

participants (50% female, 37% students) through Prolific and 

compensated them £11 per hour. A total of 325 participants 

started the survey but did not finish it and were excluded from 

analyses, along with two participants who completed the 

survey hastily, evidently without reading the questions. The 

average age was 32 years (SD = 11), range 18-90. Most 

participants were from the United Kingdom (26%), South 

Africa (16%), Portugal (11%) and Poland (11%). 

Design 

The experimental design featured one between-subject factor 

of agent (a human taxi driver or an autonomous vehicle) and 

five between-subjects factors, two levels each, that 

represented the constructs from the causal blame model. 

These factors were (1) intentionality of bringing about the 
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outcome (an accident), (2) desire to bring it about, (3) 

foreseeability of the outcome, (4) capability to prevent it, and 

(5) actual effort to prevent it. These five factors were 

manipulated to provide either positive evidence (e.g., the 

agent intentionally hit the other car) or negative evidence 

(e.g., the agent did not intentionally hit the other car). All 

participants saw information about all five factors, but which 

level they saw was randomly assigned. Thus, the overall 

design had 64 (26) cells. To account for the complexity of the 

design, we used a rule of thumb of an average of 40 

participants per scenario to arrive at the sample of 2647. 

Materials and measures 

Participants read about a scenario that described the events 

leading up to a car crash. The scenario was, at least initially, 

purposefully inconclusive in order to make participants 

curious and desire more information. The events unfolded at 

a busy intersection, where a human-driven (but 

passengerless) taxi or a self-driving car collided with a 

second car, driven by the “victim”, who was the only 

individual harmed by the crash. The extent of the injury was 

unspecified. 
The main dependent variable was a blame judgement, 

measured on a scale from 0 (not at all) to 100 (completely), 

in response to the question, “How much do you blame the 

[taxi driver] / [self-driving car] for hitting the other car and 

injuring the person?” Participants engaged in two main 

rounds of blame assessment. In the first, they evaluated the 

focal agent, knowing only about the initial scenario 

description; and in the second round, they evaluated the agent 

after considering all information from the other five 

manipulated factors. Thereafter, participants also assigned 

blame to other agents (on a 0-100 scale). For the human taxi 

driver, these agents were the taxi company, the driver’s 

instructor, and the victim; for the AV, the agents were the taxi 

company, the car’s manufacturer, its programmer, and the 

victim of the accident. 
We also assessed a number of other, exploratory variables, 

all on 0-100 rating scales. To account for how an agent's 

autonomy influences blame judgements, we asked 

participants: “To what extent did the agent behave 

autonomously?” We probed the objective foreseeability 

(Lagnado & Channon, 2008) of the crash, asking: “How 

likely was it that the agent would cause the crash?” Since our 

scenario implies causality without explicitly stating it, we 

further assessed participants’ confidence in whether the agent 

or the other car caused the crash: (1) “How confident are you 

that the agent caused the crash?” and (2) “How confident are 

you that the other car caused the crash?” Finally, in the 

autonomous vehicle condition, we inquired into participants’ 

anthropomorphism, asking “To what extent is the self-driving 

car human-like?” 

Procedure 

Participants were asked to assume the role of an investigator 

who had to decide how blameworthy the focal agent in the 

scenario (human driver or AV) was. After reading the initial 

scenario, participants made their first blame judgement, then 

received five different pieces of evidence as a text, one at a 

time (and each presenting one of the five experimental factors 

described above), and provided their final blame judgement 

with all information in mind. (We also assessed blame for 

each of the five pieces of evidence along the way, but because 

of space constraints we do not report these results.) 

Participants finally assigned blame to other agents, and 

responded to additional questions. 

Results 

We first tested whether people assigned blame differently to 

autonomous vehicles compared to human drivers. We then 

examined how blame-relevant information was used and 

tested the newly introduced prevention effort factor across 

agents. Finally, we inspected the role of other agents and 

analysed exploratory variables. T data is available at the 

Open Science Framework (OSF): osf.io/ts64j. 

AV-Human Comparisons 

After reading the initial scenario description, people blamed 

AVs more (M = 64.0, 95% CI [62.6, 65.4]) than human 

drivers (M = 59.8, 95% CI [58.4, 61.2]), F(1, 2645) = 17.07, p < 

.001, d = .16 (see Figure 2, left panel). After consolidating all 

additional information they learned about the case, 

participants’ final blame was higher (M = 72.9, SD = 29.1) 

than their initial one (M = 61.9, SD = 26.1), F(1, 2646) = 334.56, 

p < .001, d = .40, but they no longer assigned different 

degrees of blame to the AV and human agent, F(1, 2645) < 1, p 

= .475), as presented in Figure 2, right panel. 

 

 
 

Figure 2: Distribution of initial (left) and final (right) 

blame by agent type 

 

Next we examined which combinations of evidence 

predicted final blame judgements by running two separate 

analyses of covariance (ANCOVA). We first tested the 

intentional path (desire—yes/no  intentionality—yes/no), 

crossed with the agent factor (human/AV), with initial blame 

judgements serving as a covariate. Human agents received a 

slightly higher blame compared to AVs (Mdiff = 2.6) when the 

initial blame was included as the covariate, F(1, 2638) = 6.31, p 

= .012, ηp
2 = .002. Presence of intentionality increased blame 
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by 8.9 points over absence of intentionality (F(1, 2638) = 75.56, 

p < .001, ηp
2 = .028), and presence of desire increased blame 

by 5.5 points (F(1, 2638) = 28.87, p < .001, ηp
2 = .011). In 

addition, a small interaction between intentionality and desire 

emerged (F(1, 2638) = 10.13, p = .001, ηp
2 = .004), indicating 

that joint absence of the two factors or joint presence had 

slightly less impact on blame than presence of one in the 

absence of the other (see Figure 3, left panel). An interaction 

between intentionality and agent type (F(1, 2638) = 8.94, p = 

.003, ηp
2 = .001) indicated that intentionality had a slightly 

stronger impact on blaming the human (Mdiff = -11.94) than 

on blaming the AV (Mdiff = -5.83). (See Figure 3, right panel). 

 

 

 
 

Figure 3: Final blame by intentionality and desire (left), and 

by intentionality and agent type (right) 

 

Along the unintentional path, we conducted another 

ANCOVA, with capability, foreseeability, prevention effort 

(each with levels yes vs. no), and agent type, all as between-

subjects factors, and initial blame as a covariate. Importantly, 

the analyses for the first time put the blame-guiding factor of 

prevention effort to the test. The human driver again received 

slightly more blame than the AV (Mdiff = 2.6), F(1, 2630) = 6.50, 

p = .011, ηp
2 = .002. We found an expected mitigation of 

blame when the crash was not foreseeable (F(1, 2630) = 53.88, 

p < .001, ηp
2 = .020), or when the agent made efforts to 

prevent it (F(1, 2630) = 89.70, p < .001, ηp
2 = .033). Against 

expectation, agents with low capability were blamed 4.6 

points more than those with high capability (F(1, 2630) = 30.19, 

p < .001, ηp
2 = .011). Two interactions emerged as well (see 

Figure 4). An interaction between foreseeability and 

prevention effort (F(1, 2630) = 9.74, p = .002, ηp
2 = .004) 

indicated that the mitigating effect of prevention effort was 

stronger when the crash was not foreseeable than when it was 

foreseeable (akin to a little extra mitigation when the efforts 

were not expected). Finally, an interaction between capability 

and prevention effort (F(1, 2630) = 8.18, p = .004, ηp
2 = .003) 

indicated that the mitigating effect of prevention effort was 

stronger when the agent was capable of preventing the crash 

than when the agent was not capable. 

 

 
 

Figure 4: Final blame by prevention effort and foreseeability 

(left), and by prevention effort and capability (right) 

Exploring the most impactful combinations of 

evidence 

To generate future research hypotheses we inspected each of 

the combinations of 25 information conditions crossed with 

agent type and identified the highest and lowest blame 

judgements. (While Table 1 exclusively presents the highest 

and lowest mean final blame across all 64 groups, the full 

table is available at: osf.io/ts64j). The combination of factors 

that yielded the highest blame (M = 91.5, SD = 16.4) featured 

a human driver who had a desire to cause the crash, did it 

intentionally, had the capability to prevent it but did not exert 

effort to prevent the crash (surprisingly, the crash was 

described to be unforeseeable, but participants seemed to 

have dismissed this claim). The scenario with the second-

highest blame rating (M = 88.4, SD = 13.6) involved a human 

driver who had a desire to cause the crash, in the end did not 

do it intentionally. The crash was foreseeable and the agent 

was capable of preventing it, yet did not make effort to do so. 

 

Table 1: Selection of highest and lowest mean final blame 

 

 Group† M Min Max SD N 

1 h11010 91.5 37 100 16.4 52 

2 h01110 88.4 60 100 13.6 36 

3 h11100 86.8 0 100 31.8 34 

4 h11000 84.9 0 100 21.8 45 

5 a01100 84.2 11 100 23.1 42 

… … … … … … … 

60 h00001 57.2 0 100 23.0 46 

61 a00011 51.6 4 100 30.6 45 

62 h00111 50.9 0 100 29.2 41 

63 h01011 48.4 0 100 35.7 44 

64 h00011 42.8 0 100 33.2 40 
† In the Group column, the first symbol indicates the agent type (h = 

human, a = AV), followed by the factor levels (0 = no, 1 = yes) of 

intentionality, desire, foreseeability, capability, and prevention effort. 
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The scenario with the lowest blame rating (M = 42.8, SD = 

33.2) involved a human driver who had no desire to cause a 

crash (which was unforeseeable), nor did they do it 

intentionally; further, they had the capability to prevent the 

crash and even tried to do so. The scenario with the second-

lowest blame (M = 48.4, SD = 35.7) differed only in that the 

human driver had a desire to cause the crash, which was not 

enough for people to find the human agent especially 

blameworthy. 
Among the first 14 groups with the highest blame ratings, 

a common thread emerged: Each scenario featured the agent 

failing to make an effort to prevent the crash. Conversely, 

instances of the lowest blame, for the most part, encompassed 

scenarios where the crash occurred unintentionally and yet 

the agent tried to prevent it. This indicates the crucial roles 

that both intentionality and the newly identified factor of 

preventive efforts play in shaping blame judgements. 

Blaming Other Agents 

To explore the extent of blame ascribed to other agents, we 

first conducted two one-way ANOVAs in which agent type 

(AV, human) was the independent variable. The first assessed 

blame for the associated company as the dependent variable, 

the second assessed blame for the accident victim.  

There was a significant difference in blame judgements 

towards the company associated with the car, F(1, 2645) = 

735.38, p < .001, d = 1.05. The company responsible for the 

AV received significantly higher blame (M = 68.4, 95% CI 

[66.7, 70.1]) than the company affiliated with the human taxi 

driver (M = 34.8, 95% CI [33.1, 36.5]). 

Despite the fact that the victim was, on average, blamed 

less than the company, participants still found the victim to 

be more blameworthy in the scenario involving the AV 

compared to that with a human driver (F(1, 2645) = 30.74, p < 

.001, d = .22). The victim who crashed with an AV received 

significantly more blame (M = 26.3, 95% CI [24.9, 27.6]) 

than the victim involved in a collision with a taxi driver (M = 

20.9, 95% CI [19.5, 22.2]). 

 

 

 
 

 

Figure 5: Company (left) and Victim (right) blame by agent 
 

In a separate analysis, we explored the level of blame for 

the driving instructor in scenarios involving a human agent, 

comparing this with the level of blame for the programmer 

and manufacturer of an autonomous vehicle. Participants 

ascribed relatively low blame to the driving instructor, with a 

mean score of 21.1 (95% CI [19.5, 22.6]). By contrast, blame 

for the manufacturer of the autonomous vehicle was 

considerably higher, with a mean score of 65.7 (95% CI 

[64.0, 67.4]). Even more pronounced was the level of blame 

for the programmer of the AV, who received a mean blame 

rating of 70.9 (95% CI [69.4, 72.5]). 

Confidence in Causal Contributions 

Our analysis revealed that participants were slightly more 

confident that the human taxi driver caused the crash (M = 

68.4) than that the AV caused the crash (M = 66.0), F(1, 2645) 

= 4.19, p = .041, d = .08. Conversely, participants were less 

confident that the other car (the victim) caused the crash 

when the primary agent was a human driver (M = 29.7) than 

when the primary agent was an AV (M = 36.3), F(1, 2645) = 

33.99, p < .001, d = .23. 

Control factors 

Additional analyses suggested that observed differences in 

blame judgements cannot be ascribed to the autonomy of the 

agent, the objective foreseeability of the event, or 

anthropomorphic perceptions of the autonomous vehicle. We 

conducted three ANCOVAs with agent as one factor and 

autonomy/ objective foreseeability/ anthropomorphism as the 

second factor, with initial blame judgements serving as a 

covariate. In all three cases, we found no interaction with the 

agent. Ratings of autonomy for the human driver (M = 64.5) 

and the AV (M = 65.1) were indistinguishable. This suggests 

that participants viewed the decision-making capabilities of 

the human driver and the autonomous vehicle as similar, 

regardless of the inherently different nature of their 

operational mechanisms. Similarly, the rated objective 

foreseeability of the crash was similar for the human driver 

(M = 54.1) and the AV (M = 53.0), suggesting that 

participants did not perceive one type of agent as more 

predictably involved in incidents than the other. Moreover, 

participants rated the AV as relatively low in human likeness 

(M = 23.4, SD = 25.7). This finding suggests that the 

attribution of human-like characteristics to the AV was not a 

significant factor in the allocation of blame to the AV. 

Discussion 

Our results showed that early, inconclusive descriptions of 

events leading to a car crash elicited higher blame for 

autonomous vehicles than for human drivers. This result is in 

line with findings by Hong, Wang, and Lanz (2020) and 

Zhang et al. (2021), but it diverges from Li et al.’s (2016) 

result, where AVs received less blame than humans in 

scenarios involving pedestrian injury. In Hong et al.’s (2020) 

and Li et al.’s (2016) scenarios, there was a clear explanation 

available for what happened and who was at fault, unlike in 

our experiment where, at first, it was not clear what exactly 
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happened and who was to blame. The discrepancy in results 

cannot be explained by differences in the level of detail in 

which the scenarios were described since our results do not 

differ from those of Hong et al. (2020). 
It is important to note that we did not take into account the 

impact of outcome severity, which may serve as a mediating 

factor, as demonstrated in the previously mentioned studies. 

In our scenario, the outcome of the crash included a damaged 

car and an injured person. If the outcome severity was much 

lower (e.g., brushing a side of the other car without injuring 

the passenger in the other car), the human driver may receive 

more blame than the AV, as demonstrated by Zhang et al. 

(2021). 
Despite the initially higher blame for the AV than for the 

human driver (when little was known about the scenario), 

final blame judgements did not differ substantially for AVs 

and humans. Along both intentional and unintentional paths 

of information processing, we did find slight differences in 

how much the agents increased from initial to final blame. 

Blame for the human driver increased slightly more (2.6 

points) than blame for the AV increased, but the effect size 

was negligible in both cases. 
When we examined the impact of various information 

factors on final blame, the patterns of impact were almost 

always the same for AV and human driver, except that 

evidence of intentionality influenced blame judgements more 

for human agents than for AVs. However, the effect size in 

this case, too, was negligible.  
The proposed causal model served as a robust foundation 

for examining blame judgements across agents. Most well-

known factors such as intentionality, desire, and 

foreseeability provided expected results—significantly 

higher blame if an agent had intentionality, had desire, and 

the event was foreseeable. The inclusion of the novel 

prevention effort factor proved to be particularly insightful: 

Our findings indicate that agents who demonstrated an effort 

to prevent the crash were blamed significantly less. This 

highlights the substantial impact of perceived preventative 

actions on blame judgements, suggesting that the assessment 

of an agent’s attempt to avert an accident is a critical 

component in the evaluative process of assigning blame. 
Our results included an unexpected finding regarding the 

impact of an agent’s capability to prevent the negative 

outcome. Specifically, participants assigned more blame to 

agents introduced as less capable—even though previous 

theory and evidence suggested that agents exhibiting less 

capability cannot be expected to prevent the outcome and 

therefore are blamed less. This discrepant finding may stem 

from the way we operationalised capability. In Malle et al.’s 

(2014) framework, capability is defined as the cognitive or 

physical capacity to prevent a negative outcome. By contrast, 

in our study, we presented participants with information 

regarding how good an agent was at driving. This phrasing 

focuses on general driving skill, an ability, rather than on the 

capacity to prevent a particular crash. Therefore, participants 

tended to assign more blame to agents whose driving ability 

was described as low. This reinterpretation of the discrepancy 

is also compatible with our finding that agents who tried to 

prevent the crash were blamed less when they were “capable” 

than when they were not, perhaps because participants 

considered the agent’s efforts to be more controlled and 

effective. 
The analysis of specific combinations of information about 

the agent’s desire, intentionality, and so forth, showed that 

agents who either want to and intentionally cause a crash or 

foresee it to happen and fail to prevent it, are blamed most 

strongly. By contrast, blame is low when agents 

unintentionally cause a crash even if they tried to avoid it. 

This highlights the important role of both intentionality and 

prevention effort as key factors in a causal chain of blame 

attribution. 
It is important to note that the notion of blaming may have 

had distinct interpretations for humans and AVs. By 

manipulating different factors and the involvement of other 

agents, our goal was, in part, to better understand how people 

interpret and use blame in relation to human and autonomous 

agents. A dedicated study explicitly aimed at determining 

whether AVs are subjected solely to metaphorical blame 

could offer a clearer answer on this (e.g., by probing 

participants’ reasoning). Although the proposed model of 

blame judgements may be adequate for human agents, it may 

not be sufficient to account for the complex task of assigning 

blame to autonomous vehicles. That is because people 

consider additional agents beside the AV when making sense 

of the AV’s behaviours and outcomes. More precisely, other 

agents causally entangled with the AV’s actions received 

significantly higher blame than corresponding agents 

entangled with a human driver—especially the company that 

owns the car and, disconcertingly, the human crash victim. 

The tendency to assign more blame to the victim in 

autonomous vehicle accidents arguably results from a 

tendency to look for sources of blame beyond the vehicle 

itself, and may be influenced by the belief in the superior 

capabilities of autonomous vehicles compared to human 

drivers. Hence, future research should consider controlling or 

measuring this variable. Additionally, the programmer and 

the manufacturer of an autonomous vehicle also received 

high blame. Thus, any future model that aims to predict 

people’s blame judgements to autonomous vehicles must 

take into account the contributions of various agents beside 

the AV. Such an approach would better reflect the dynamics 

at play in situations where AVs are involved, and provide an 

opportunity to better tackle the problems of many hands and 

the responsibility gap. Ultimately, this should help us 

establish better legal guidelines for assigning blame and 

liability in cases where autonomous vehicles cause harm. 
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