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Advanced	Energy	Management	Strategy	Development	
for	Plug-in	Hybrid	Electric	Vehicles	
	
EXECUTIVE	SUMMARY	
	
Reducing	 transportation-related	 energy	 consumption	 and	 greenhouse	 gas	 (GHG)	 emissions	
have	been	a	common	goal	of	public	agencies	and	research	institutes	for	years.	In	2013,	the	total	
energy	 consumed	 by	 the	 transportation	 sector	 in	 the	 United	 States	 was	 as	 high	 as	 24.90	
Quadrillion	BTU.	U.S.	 Environmental	 Protection	Agency	 (EPA)	 reported	 that	nearly	27	%	GHG	
emissions	 resulted	 from	 fossil	 fuel	 combustion	 for	 transportation	 activities	 in	 2013.	 From	 a	
vehicle	perspective,	innovative	powertrain	technologies,	such	as	hybrid	electric	vehicles	(HEVs),	
are	 very	promising	 in	 improving	 fossil	 fuel	 efficiency	 and	 reducing	exhaust	 emissions.	 Plug-in	
hybrid	electric	vehicles	(PHEVs)	attracted	most	of	the	attention	due	to	their	ability	to	also	use	
energy	 off	 of	 the	 electricity	 grid,	 through	 charging	 their	 batteries,	 thereby	 achieving	 even	
higher	overall	energy	efficiency.	
	
At	the	heart	of	the	PHEV	technologies,	the	energy	management	system	whose	functionality	is	
to	control	the	power	streams	from	both	the	internal	combustion	engine	(ICE)	and	the	battery	
pack	 based	 on	 vehicle	 and	 engine	 operating	 conditions,	 has	 been	 studied	 extensively.	 In	 the	
past	decade,	a	large	variety	of	EMS	implementations	have	been	developed	for	HEVs	and	PHEVs,	
whose	 control	 strategies	 may	 be	 well	 categorized	 into	 two	 major	 classes:	 a)	 rule-based	
strategies	which	rely	on	a	set	of	simple	rules	without	a	priori	knowledge	of	driving	conditions.	
Such	 strategies	 make	 control	 decisions	 based	 on	 instant	 conditions	 only	 and	 are	 easily	
implemented,	 but	 their	 solutions	 are	 often	 far	 from	 being	 optimal	 due	 to	 the	 lack	 of	
consideration	 of	 variations	 in	 trip	 characteristics	 and	 prevailing	 traffic	 conditions;	 and	 b)	
optimization-based	 strategies	 which	 are	 aimed	 at	 optimizing	 some	 predefined	 cost	 function	
according	to	the	driving	conditions	and	vehicle’s	dynamics.	The	selected	cost	function	is	usually	
related	 to	 the	 fuel	 consumption	 or	 tailpipe	 emissions.	 Based	 on	 how	 the	 optimization	 is	
implemented,	 such	strategies	can	be	 further	divided	 into	 two	groups:	1)	off-line	optimization	
which	requires	a	full	knowledge	of	the	entire	trip	to	achieve	the	global	optimal	solution;	and	2)	
short-term	 prediction-based	 optimization	 which	 takes	 into	 account	 the	 predicted	 driving	
conditions	in	the	near	future	and	achieves	local	optimal	solutions	segment	by	segment	within	
an	entire	trip.	However,	major	drawbacks	of	these	strategies	include:	1)	heavy	dependence	on	
the	a	priori	 knowledge	of	 future	driving	 conditions;	and	2)	high	computational	 costs	 that	are	
difficult	to	implement	in	real-time.	
	
To	 address	 the	 aforementioned	 issues,	 we	 propose	 two	 strategies	 of	 on-line	 energy	
management	for	PHEVs:	

• Evolutionary	 Algorithm	 based	 Self-Adaptive	 EMS	 which	 utilizes	 the	 rolling	 horizon	
technique	 to	 update	 the	 prediction	 of	 propulsion	 load	 as	 well	 as	 the	 power-split	
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control.	 There	 are	 two	 major	 advantages	 over	 the	 existing	 strategies:	 a)	
computationally	 competitive.	 There	 is	 no	 need	 to	 initiate	 a	 complete	 process	 for	
optimization	while	 the	algorithm	keeps	evolving	and	converging	 to	obtain	an	optimal	
solution;	b)	no	a	priori	knowledge	about	the	trip	duration	required.	

• Reinforcement	Learning	based	EMS	which	is	capable	of	simultaneously	controlling	and	
learning	 the	 optimal	 power	 split	 operations	 in	 real-time.	 There	 are	 three	 major	
features:	 1)	 the	 proposed	 model	 can	 be	 implemented	 in	 real-time	 without	 any	
prediction	efforts,	since	the	control	decisions	are	made	only	upon	the	current	system	
state.	The	control	decisions	also	considered	for	the	entire	trip	information	by	learning	
the	 optimal	 or	 near-optimal	 control	 decisions	 from	 historical	 driving	 behavior.	
Therefore,	 it	 achieves	 a	 good	 balance	 between	 real-time	 performance	 and	 energy	
saving	optimality;	2)	the	proposed	model	 is	a	data-driven	model	which	does	not	need	
any	PHEV	model	information	once	it	is	well	trained	since	all	the	decision	variables	can	
be	observed	and	are	not	calculated	using	any	vehicle	powertrain	models	(these	details	
are	 described	 in	 the	 following	 sections);	 and	 3)	 compared	 to	 existing	 RL-based	 EMS	
implementations,	 the	 proposed	 strategy	 considers	 charging	 opportunities	 along	 the	
way	(a	key	distinguishing	feature	of	PHEVs	as	compared	with	HEVs).	

	
The	 validation	 over	 real-world	 data	 has	 indicated	 that	 the	 proposed	 EMS	 strategies	 are	 very	
promising	 in	 terms	 of	 achieving	 a	 good	 balance	 between	 real-time	 performance	 and	 fuel	
savings	when	compared	with	some	existing	strategies,	such	as	binary	mode	EMS	and	Dynamic	
Programming	based	EMS.	In	addition,	there	is	no	requirement	for	the	(predicted)	 information	
on	the	entire	route.	



	

	 1	

1. Introduction		
Air	pollution	and	climate	change	impacts	associated	with	the	use	of	fossil	fuels	have	motivated	
the	 electrification	 of	 transportation	 systems.	 In	 the	 realm	 of	 powertrain	 electrification,	
groundbreaking	 changes	 have	 been	 witnessed	 in	 the	 past	 decade	 in	 terms	 of	 research	 and	
development	of	hybrid	electric	vehicles	(HEVs)	and	electric	vehicles	(EVs)	[1].	As	a	combination	
of	HEVs	and	EVs,	plug-in	hybrid	electric	vehicles	(PHEVs)	can	be	plugged	into	the	electrical	grid	
to	charge	their	batteries,	thus	increasing	the	use	of	electricity	and	achieving	even	higher	overall	
fuel	 efficiency,	while	 retaining	 the	 internal	 combustion	engine	 that	 can	be	 called	upon	when	
needed	[2].	
	
In	 comparison	 to	 conventional	 HEVs,	 the	 energy	 management	 systems	 (EMS)	 in	 PHEVs	 are	
significantly	 more	 complex	 due	 to	 their	 extended	 electric-only	 propulsion	 (or	 extended	 all-
electric	 range	 capability)	 and	 battery	 chargeability	 via	 external	 electric	 power	 sources.	
Numerous	efforts	have	been	made	 in	developing	a	variety	of	EMS	for	PHEVs	 [3,	4].	From	the	
control	perspective,	existing	EMS	can	be	roughly	classified	as	rule-based	[5]	and	optimization-
based	[6].	This	is	discussed	in	more	detail	in	Section	II.	
	
In	spite	of	all	these	efforts,	most	of	the	existing	PHEVs’	EMS	have	one	or	more	of	the	following	
limitations:		
	

• Lack	of	adaptability	to	real-time	information,	such	as	traffic	and	road	grade.	This	applies	
to	 rule-based	 EMS	 (either	 deterministic	 or	 using	 fuzzy	 logic)	 whose	 parameters	 or	
criteria	have	been	pre-tuned	to	favor	certain	conditions	(e.g.,	specific	driving	cycles	and	
route	 elevation	 profiles)	 [3].	 In	 addition,	 most	 EMS	 that	 are	 based	 on	 global	
optimization	 off-line	 assume	 that	 the	 future	 driving	 condition	 is	 known	 [2].	 Thus	 far,	
only	a	few	studies	have	focused	on	the	development	of	on-line	EMS	for	PHEVs	[7].	

• Dependence	 on	 accurate	 (or	 predicted)	 trip	 information	 that	 is	 usually	 unknown	 a	
priori.	Many	of	 the	existing	EMS	require	at	a	minimum	the	trip	duration	as	known	or	
predicted	 information	 prior	 to	 the	 trip	 [22].	 Furthermore,	 it	 is	 reported	 that	 the	
performance	of	EMS	is	 largely	dependent	on	the	time	span	of	the	trip	[22].	There	are	
very	few	studies	analyzing	the	impacts	of	trip	duration	on	the	performance	of	EMS	for	
PHEVs.		

• Emphasis	on	a	single	trip	level	optimization	without	considering	opportunistic	charging	
between	 trips.	 The	most	 critical	 feature	 that	 differentiates	 PHEVs	 from	 conventional	
HEVs	is	that	PHEVs’	batteries	can	be	charged	by	plugging	into	an	electrical	outlet.	Most	
of	the	existing	EMS	are	designed	to	work	on	a	trip-by-trip	basis.	However,	 taking	 into	
account	 inter-trip	 charging	 information	can	 significantly	 improve	 the	 fuel	economy	of	
PHEVs	[2].	
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2. Background	and	related	work	
2.1. PHEV	Modeling		
Typically,	 there	are	 three	major	 types	of	PHEV	powertrain	architectures:	a)	series,	b)	parallel,	
and	c)	power-split	(series-parallel).	This	study	is	focused	on	the	power-split	architecture	where	
the	internal	combustion	engine	(ICE)	and	electric	motors	can,	either	alone	or	together,	power	
the	vehicle	while	 the	battery	pack	may	be	charged	 simultaneously	 through	 the	 ICE.	Different	
approaches	 with	 various	 levels	 of	 complexity	 have	 been	 proposed	 for	 modeling	 PHEV	
powertrains	[23].	However,	a	complex	PHEV	model	with	a	 large	number	of	states	may	not	be	
suitable	 for	 the	 optimization	 of	 PHEV	 energy	 control.	 A	 simplified	 but	 sufficiently	 detailed	
power-split	powertrain	model	has	been	developed	in	MATLAB	and	used	in	this	study.	For	more	
details,	please	refer	to	[2].	
	

2.2. Operation	Mode	and	SOC	Profile	
During	 the	operation	of	 a	PHEV,	 the	SOC	may	vary	with	 time,	depending	on	how	 the	energy	
sources	work	 together	 to	provide	 the	propulsion	power	 at	 each	 instant.	 The	 SOC	profile	 can	
serve	as	an	 indicator	of	 the	PHEV’	operating	modes,	 i.e.,	 charge	sustaining	 (CS),	pure	electric	
vehicle	(EV),	and	charge	depleting	(CD)	modes	[3],	as	shown	in	Fig.	1.		
	
The	CS	mode	occurs	when	the	SOC	is	maintained	at	a	certain	level	(usually	the	lower	bound	of	
SOC)	by	jointly	using	power	from	both	the	battery	pack	and	the	ICE.	The	pure	EV	mode	is	when	
the	vehicle	is	powered	by	electricity	only.	The	CD	mode	represents	the	state	when	the	vehicle	is	
operated	using	power	primarily	from	the	battery	pack	with	supplemental	power	from	the	ICE	as	
necessary.	 In	 the	 CD	mode,	 the	 ICE	 is	 turned	 on	 if	 the	 electric	motor	 is	 not	 able	 to	 provide	
enough	propulsion	power	or	 the	battery	pack	 is	 being	 charged	 (even	when	 the	 SOC	 is	much	
higher	than	the	lower	bound)	in	order	to	achieve	better	fuel	economy.		
	

	
Fig.1.	Basic	operation	modes	for	PHEV.	
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2.3. EMS	for	PHEVs	
The	 goal	 of	 the	 EMS	 in	 a	 PHEV	 is	 to	 satisfy	 the	 propulsion	 power	 requirements	 while	
maintaining	 the	 vehicle’s	 performance	 in	 an	 optimal	 way.	 A	 variety	 of	 strategies	 have	 been	
proposed	and	evaluated	in	many	previous	studies	[4].	A	detailed	literature	review	on	EMS	for	
PHEVs	is	provided	in	this	section.	Broadly	speaking,	the	existing	EMS	for	PHEVs	can	be	divided	
into	two	major	categories:		

• Rule-based	 EMS	 are	 fundamental	 control	 schemes	 operating	 on	 a	 set	 of	 predefined	
rules	without	prior	knowledge	of	the	trip.	The	control	decisions	are	made	according	to	
the	 current	 vehicle	 states	 and	 power	 demand	 only.	 Such	 strategies	 are	 easily	
implemented	 but	 the	 resultant	 operations	may	 be	 far	 from	being	 optimal	 due	 to	 not	
considering	future	traffic	conditions.			

• Optimization-based	EMS	aim	at	optimizing	a	predefined	cost	function	according	to	the	
driving	 conditions	 and	 behaviors.	 The	 cost	 function	 may	 include	 a	 variety	 of	 vehicle	
performance	metrics,	such	as	fuel	consumption	and	tailpipe	emissions.		

For	Rule-based	EMS,	deterministic	and	fuzzy	control	strategies	(e.g.,	binary	control)	have	been	
well	investigated.			For	Optimization-based	EMS,	the	strategies	can	be	further	divided	into	three	
subgroups	based	on	how	the	optimizations	are	implemented:	1)	off-line	strategy	which	requires	
a	 full	 knowledge	 of	 the	 entire	 trip	 beforehand	 to	 achieve	 the	 global	 optimal	 solution;	 2)	
prediction-based	 strategy	 or	 so	 called	 real-time	 control	 strategy	 which	 takes	 into	 account	
predicted	 future	 driving	 conditions	 (in	 a	 rolling	 horizon	 manner)	 and	 achieves	 local	 optimal	
solutions	 segment-by-segment.	 This	 group	of	 strategies	 are	quite	 promising	due	 to	 the	 rapid	
advancement	and	massive	deployment	of	sensing	and	communication	technologies	(e.g.,	GPS)	
in	 transportation	 systems	 that	 facilitate	 the	 traffic	 state	 prediction;	 and	 3)	 learning-based	
strategy	 which	 is	 recently	 emerging	 owing	 to	 the	 research	 progress	 in	 machine	 learning	
techniques.	 In	 such	a	data-driven	 strategy,	 a	dynamic	model	 is	 no	 longer	 required.	Based	on	
massive	 historical	 and	 real-time	 information,	 trip	 characteristics	 can	 be	 learned	 and	 the	
corresponding	optimal	control	decisions	can	be	made	through	advanced	data	mining	schemes.	
This	strategy	fits	very	well	for	commute	trips.	Figure	2	presents	a	classification	tree	of	EMS	for	
PHEVs	and	the	typical	strategies	in	each	category,	based	on	most	existing	studies.	

	
In	addition	to	the	classification	above,	Table	I	highlights	several	important	features	which	help	
differentiate	the	aforementioned	strategies.	Example	references	are	also	included	in	Table	I.	
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TABLE	I.	CLASSIFICATION	OF	CURRENT	LITERATURE	
	 Rule-	

based	
Off-line	

optimization	
Prediction	based		 Learning	

based	
Optimality	 local	 global	 local	 local	
Real	time	 Yes	 No	 Yes	 Yes	
SOC	control	 No	 Yes	 Yes	 No	
Need	trip	
duration	

No	 Yes	 Yes	 Yes	

Example	
references	

	

[7],	 [8],	 [9],	
[10]	

[2],	[11],	[12],	[13]	
[18],	[19],	[21]	

[14],	 [15],	 [17],	
[22],	 [31],	 [32],	
[33]	

[14],	[15],	
[16],	[20],	
[23],	[34]	

	

	
Fig.2.	Basic	classification	of	EMS	for	PHEV.	

	
	

2.4. PHEVs’	SOC	Control	
For	 a	power-split	 PHEV,	 the	optimal	 energy	 control	 is,	 in	principle,	 equivalent	 to	 the	optimal	
SOC	 control.	 Most	 of	 the	 existing	 EMS	 for	 PHEVs	 implicitly	 integrate	 SOC	 into	 the	 dynamic	
model	 and	 regard	 it	 as	 a	 key	 control	 variable	 [20],	 while	 only	 a	 few	 studies	 have	 explicitly	
described	 their	 SOC	 control	 strategies.	 A	 SOC	 reference	 control	 strategy	 is	 proposed	 in	 [17]	
where	 a	 supervisory	 SOC	 planning	 method	 is	 designed	 to	 pre-calculate	 an	 optimal	 SOC	
reference	curve.	The	proposed	EMS	then	tries	to	follow	this	curve	during	the	trip	to	achieve	the	
best	 fuel	 economy.	 Another	 SOC	 control	 strategy	 is	 proposed	 in	 [22]	 where	 a	 probabilistic	
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distribution	of	trip	duration	is	considered.	More	recently,	machine	learning-based	SOC	control	
strategies	 (e.g.,	 [23])	 have	 emerged,	 where	 the	 optimal	 SOC	 curves	 are	 pre-calculated	 using	
historical	 data	 and	 stored	 in	 the	 form	 of	 look-up	 tables	 for	 real-time	 implementation.	 A	
common	drawback	for	all	these	strategies	is	that	accurate	trip	duration	information	is	required	
in	an	either	deterministic	or	probabilistic	way.	In	reality,	however,	such	information	is	hard	to	
be	known	ahead	of	time	or	may	vary	significantly	due	to	the	uncertainties	in	traffic	conditions.	
To	 ensure	 the	 practicality	 of	 our	 proposed	 EMS	 for	 PHEVs,	 we	 employ	 a	 self-adaptive	 SOC	
control	strategy	in	this	study	which	does	not	require	any	information	about	the	trip	duration	(or	
length).		

3. Problem	Formulation	
	

3.1. Proposed	On-line	EMS	Framework	for	PHEVs	
In	 this	 paper,	 we	 propose	 an	 on-line	 EMS	 framework	 for	 PHEVs,	 using	 the	 receding	 horizon	
control	structure	(see	Fig.	3).	The	proposed	EMS	framework	consists	of	information	acquisition	
(from	 external	 sources),	 prediction,	 optimization,	 and	 power	 split	 control.	With	 the	 receding	
horizon	control,	the	entire	trip	is	divided	into	segments	or	time	horizons.	As	shown	in	Fig.	4,	the	
prediction	 horizon	 (N	 sampling	 time	 steps)	 needs	 to	 be	 longer	 than	 the	 control	 horizon	 (M	
sampling	time	steps).	Both	horizons	keep	moving	forward	(in	a	rolling	horizon	style)	while	the	
system	 is	 operating.	 More	 specifically,	 the	 prediction	 model	 is	 used	 to	 predict	 the	 power	
demand	at	each	sampling	step	(i.e.,	each	second)	in	the	prediction	horizon.	Then,	the	optimal	
ICE	power	supply	for	each	second	during	the	prediction	horizon	is	calculated	with	this	predicted	
information.	
	
In	 each	 control	 horizon,	 the	 pre-calculated	 optimal	 control	 decisions	 are	 inputted	 into	 the	
powertrain	 control	 system	 (e.g.,	 electronic	 control	 unit	 (ECU))	 at	 the	 required	 sampling	
frequency.		In	this	study,	we	focus	on	the	on-line	energy	optimization,	assuming	that	the	short-
term	prediction	model	is	available	(which	is	one	of	our	future	research	topics).		
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Fig.	3.	Flow	chart	of	the	proposed	on-line	EMS.	

	

	
Fig.	4.	Time	horizons	of	prediction	and	control.	
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3.2. Optimal	Power-Split	Control	Formulation	
Mathematically,	the	optimal	(in	terms	of	fuel	economy)	energy	management	for	PHEVs	can	be	
formulated	as	a	nonlinear	constrained	optimization	problem.	The	objective	 is	to	minimize	the	
total	fuel	consumption	by	ICE	along	the	entire	trip.	
		

min h ω!, q!, t dt
!
!
subject to:

SOC = f SOC,ω!"#, q!"#,𝜔!"!, 𝑞!"!
𝜔! , 𝑞! = 𝑔 𝜔!"!, 𝑞!"!,𝜔!"!, 𝑞!"!

𝑆𝑂𝐶!"# ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶!"#
𝜔!"# ≤ 𝜔! ≤ 𝜔!"#
𝑞!"# ≤ 𝑞! ≤ 𝑞!"#

 

																 	 									(1)	

where	𝑇 	is	 the	 trip	 duration;	𝜔! , 𝑞! 	are	 the	 engine’s	 angular	 velocity	 and	 engine’s	 torque,	
respectively;	 ℎ 𝜔! ,𝑇𝑞! 	is	 ICE	 fuel	 consumption	 model;	 𝜔!"!, 𝑞!"! 	are	 the	 first	
motor/generator’s	 angular	 velocity	 and	 torque,	 respectively;	𝜔!"!, 𝑞!"! 	are	 the	 second	
motor/generator’s	angular	velocity	and	torque,	respectively;	𝑓 𝑆𝑂𝐶,𝜔!"!, 𝑞!"!,𝜔!"!, 𝑞!"! is	
the	 battery	 power	 consumption	 model;	 For	 more	 details	 about	 the	 model	 derivations	 and	
equations,	please	refer	to	[2].	
	
Such	formulation	is	quite	suitable	for	traditional	mathematical	optimization	methods	[11]	with	
high	computational	complexity.	In	order	to	facilitate	on-line	optimization,	we	herein	discretize	
the	engine	power	and	reformulate	the	optimization	problem	represented	by	(1)	as	follows:	

𝑚𝑖𝑛 𝑥 𝑘, 𝑖 𝑃!
!"# 𝜂!

!"#!
!!!

!
!!! 	 	 	 	 (2)	

subject	to:	
𝑓 𝑃! − 𝑥 𝑘, 𝑖 𝑃!

!"#!
!!!

!
!!! ≤ 𝐶     ∀𝑗 = 1,… ,𝑇		 (3)	

𝑥 𝑘, 𝑖!
!!! = 1           ∀𝑘									 	 	 	 (4)	

										𝑥 𝑘, 𝑖 = 0, 1              ∀𝑘, 𝑖	 					 	 	 	 (5)	

where	𝑁	is	the	number	of	discretized	power	 level	for	the	engine;	k	 is	the	time	step	 index;	 i	 is	
the	engine	power	level	index;	𝐶	is	the	gap	of	the	battery	pack’s	SOC	between	the	initial	and	the	
minimum;	𝑃!

!"#	is	 the	 i-th	 discretized	 level	 for	 the	 engine	 power	 and	𝜂!
!"#	is	 the	 associated	

engine	efficiency;	and	𝑃!	is	the	driving	power	demand	at	time	step	𝑘.	
		
Furthermore,	if	the	change	in	SOC	(	𝛥𝑆𝑂𝐶	)	for	each	possible	engine	power	level	at	each	time	
step	is	pre-calculated	given	the	(predicted)	power	demand,	then	constraint	(3)	can	be	replaced	
by	

𝑆𝑂𝐶!"! − 𝑆𝑂𝐶!"# ≤ 𝑥 𝑘, 𝑖 ∆𝑆𝑂𝐶 𝑘, 𝑖
!

!!!
≤ 𝑆𝑂𝐶!"! − 𝑆𝑂𝐶!"#    	

                                       ∀𝑗 = 1,… ,𝑇	 	 	 (6)	



	

	 8	

where	𝑆𝑂𝐶!"! 	is	the	initial	SOC;	and	𝑆𝑂𝐶!"#	and	𝑆𝑂𝐶!"#	are	the	minimum	and	maximum	SOC,	
respectively.	Therefore,	the	problem	is	turned	into	a	combinatory	optimization	problem	whose	
objective	 is	 to	 select	 the	 optimal	 ICE	 power	 level	 for	 each	 time	 step	 given	 the	 predicted	
information	in	order	to	achieve	the	highest	fuel	efficiency	for	the	entire	trip.	Fig.5	gives	three	
example	ICE	power	output	solutions.	The	solution	represented	by	the	blue	line	has	a	lower	total	
ICE	 power	 consumption	 (i.e.,	 40	 units)	 than	 the	 red	 line	 (i.e.,	 90	 units),	while	 the	 green	 line	
represents	an	infeasible	solution	due	to	the	SOC	constraint.	
		

	
Fig.	5.		Example	solutions	of	power-split	control.	

	
	

4. Evolutionary	Algorithm	(EA)	Based	Self-Adaptive	On-line	
Optimization	

The	 motivations	 for	 applying	 EA	 are:	 1)	 compared	 to	 the	 traditional	 derivative	 or	 gradient-
based	 optimization	 methods,	 EAs	 are	 easier	 to	 implement	 and	 require	 less	 complex	
mathematical	models;	2)	EAs	are	very	good	at	solving	non-convex	optimization	problems	where	
there	are	multiple	local	optima;	and	3)	it	is	very	flexible	to	address	multi-objective	optimization	
problems	using	EAs.	
	
Theoretically,	 in	 the	 proposed	 framework,	 any	 EAs	 can	 be	 used	 to	 solve	 the	 optimization	
problem	for	each	prediction	horizon	described	in	Fig.	4.	A	typical	EA	is	a	population-based	and	
iterative	 algorithm	 which	 starts	 searching	 for	 the	 optimal	 solution	 with	 a	 random	 initial	
population.	 Then,	 the	 initial	population	undergoes	an	 iterative	process	 that	 includes	multiple	
operations,	such	as	fitness	evaluation,	selection,	and	reproduction	until	certain	stopping	criteria	
are	satisfied.	The	flow	chart	of	an	EA	is	provided	in	Fig.	6.	
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Fig.	6.			Estimation	and	sampling	process	of	EA.	

	
Among	many	EAs,	the	estimation	distribution	algorithm	(EDA)	is	very	powerful	in	solving	high-
dimensional	 optimization	 problems	 and	 has	 been	 successfully	 applied	 to	 many	 different	
engineering	domains	[24].	In	this	study,	we	choose	EDA	as	the	major	EA	kernel	in	the	proposed	
framework	due	 to	 the	high-dimensionality	nature	of	 the	PHEV	energy	management	problem.	
This	selection	is	justified	by	experimental	results	in	the	following	sections.	
	
In	 the	 problem	 representation	 of	 EDA,	 each	 individual	 (encoded	 as	 a	 row	 vector)	 of	 the	
population	defined	in	the	algorithm	is	a	candidate	solution.	For	the	PHEV	energy	management	
problem,	the	size	of	the	individual	(vector)	is	the	number	of	time	steps	within	the	trip	segment.	
The	value	of	the	i-th	element	of	the	vector	is	the	ICE	power	level	chosen	for	that	time	step.	In	
the	example	individual	in	Table	II,	the	ICE	power	level	is	3	(or	3	kW)	for	the	1st	time	step,	0	kW	
(i.e.,	 only	 battery	pack	 supplies	 power)	 for	 the	2nd	 time	 step,	 1	 for	 the	3rd	 time	 step,	 and	 so	
forth.	
	
It	 is	 very	 flexible	 to	 define	 a	 fitness	 function	 for	 EAs.	 Since	 the	 objective	 is	 to	minimize	 fuel	
consumption,	 the	 fitness	 function	 herein	 can	 be	 defined	 as	 the	 summation	 of	 total	 ICE	 fuel	
consumption	for	the	trip	segment	defined	by	Eq.	(5)	and	a	penalty	term		

																						f(s)	=	𝐶!"#$  +	P																																	 	 	 				(7)	

where	s	is	a	candidate	solution;	𝐶!"#$ 	is	fuel	consumption;	and	P	is	imposed	penalty	that	is	the	
largest	possible	amount	of	energy	 that	 can	be	 consumed	 in	 this	 trip	 segment.	 The	penalty	 is	
introduced	to	guarantee	 the	 feasibility	of	 solution,	 satisfying	Constraint	 (3)	which	means	 that	
the	SOC	should	always	fall	within	the	required	range	at	each	time	step.	Then,	all	the	individuals	
in	the	population	are	evaluated	by	the	fitness	function	and	ranked	by	their	fitness	values	in	an	
ascending	order	since	this	is	a	minimization	problem.	A	good	evaluation	and	ranking	process	is	
crucial	in	guiding	the	evolution	towards	good	solutions	until	the	global	optima	(or	near	optima)	
is	located.	
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TABLE	II.	REPRESENTATION	OF	ONE	EXAMPLE	INDIVIDUAL	
Time	 1s	 2s	 3s	 4s	 ………………	 n-

3	
n-
2	

n-
1	

n	

Individual	 3	 0	 1	 4	 ………………	 1	 2	 0	 5	
	
Furthermore,	 EDA	 assumes	 that	 the	 value	 of	 each	 element	 in	 a	 good	 individual	 of	 the	
population	follows	a	univariate	Gaussian	distribution.	This	assumption	has	been	proven	to	be	
effective	in	many	engineering	applications	[25],	although	there	could	be	other	options	[26].	For	
each	generation,	 the	 top	 individuals	 (candidate	 solutions)	with	 least	 fuel	 consumption	values	
are	selected	as	 the	parents	 for	producing	the	next	generation	by	an	estimation	and	sampling	
process	[30].	
	
The	flow	chart	of	the	proposed	EDA-based	on-line	EMS	is	presented	in	Fig.	7.	𝑡!	is	the	current	
time;	N	is	the	length	of	the	prediction	time	horizon	and	M	is	length	of	the	control	time	horizon.	
The	block	highlighted	by	 the	 red	dashed	box	 is	 the	core	component	of	 the	 system	and	more	
details	about	this	block	is	given	in	section	IV.	
	

4.1. Optimality	and	Complexity	
Evolutionary	algorithms	are	stochastic	search	algorithms	which	do	not	guarantee	to	find	the	
global	optima.	Hence,	in	the	proposed	on-line	EMS,	the	optimal	power	control	for	each	trip	
segment	is	not	guaranteed	to	be	found.	Moreover,	EAs	are	also	population-based	iterative	
algorithms	which	are	usually	criticized	due	to	their	heavy	computational	loads	[27],	especially	
for	real-time	applications.	Theoretically,	time	complexity	of	EAs	is	worse	than	𝛳(𝑚! ∗ 𝑙𝑜𝑔 (𝑚))	
where	𝑚	is	the	size	of	the	problem	[28].	However,	we	apply	the	receding	horizon	control	
technique	in	this	study,	where	the	entire	trip	is	divided	into	small	segments.	Therefore,	the	
computational	load	can	be	significantly	reduced	since	the	EA-based	optimization	is	applied	only	
for	each	small	segment	rather	than	the	entire	trip.	In	this	sense,	the	proposed	framework	can	
be	implemented	in	“real-time”,	as	long	as	the	optimization	for	the	next	prediction	horizon	can	
be	completed	in	the	current	control	horizon	(see	Fig.	4).	As	previously	discussed,	the	rule-based	
EMS	can	run	in	real-time	but	the	results	may	be	far	from	being	optimal	while	most	of	the	
optimization-based	EMS	have	to	operate	off-line.	Therefore,	the	proposed	on-line	EMS	would	
be	a	well-balanced	solution	between	the	real-time	performance	and	optimality.	
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Fig.	7.			EDA-based	on-line	energy	management	system.		

	
	

4.2. SOC	control	strategies	
An	appropriate	SOC	control	strategy	is	critical	in	achieving	the	optimal	fuel	economy	for	PHEVs	
[29].	In	the	previously	presented	problem	formulation,	the	major	constraint	for	SOC	is	defined	
by	Eq.(6),	which	means	 that	at	any	 time	step	the	SOC	should	be	within	 the	predefined	range	
(e.g.,	between	0.2	and	0.8)	to	avoid	damage	to	the	battery	pack.	However,	this	constraint	only	
may	 not	 be	 enough	 to	 accelerate	 the	 search	 for	 the	 optimal	 solution.	 Hence,	 additional	
constraint(s)	on	battery	use	(e.g.,	reference	bound	of	SOC)	should	be	introduced	to	improve	the	
on-line	 EMS.	 To	 investigate	 the	 effectiveness	 of	 different	 SOC	 control	 strategies	 within	 the	
proposed	 framework,	 two	 types	 of	 SOC	 control	 strategies,	 i.e.,	 reference	 control	 and	 self-
adaptive	control,	are	designed	and	evaluated	in	this	study.	
	

4.2.1. SOC	Reference	Control	(Known	Trip	Duration)	
When	the	trip	duration	is	known,	a	SOC	curve	can	be	pre-calculated	and	used	as	a	reference	to	
control	 the	 use	 of	 battery	 power	 along	 the	 trip	 to	 achieve	 optimal	 fuel	 consumption.	 We	
propose	 three	 heuristic	 SOC	 references	 (i.e.,	 lower	 bounds)	 in	 this	 study	 (see	 Fig.	 8	 for	
example):	1)	concave	downward;	2)	straight	line;	and	3)	concave	upward.	These	SOC	minimum	
bounds	are	generated	based	on	the	given	trip	duration	information	by	the	following	equations,	
respectively:	
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• Concave	downward	control:	(lower	bound	1)	

𝑆𝑂𝐶!!"# =
(!"#!"!#!!"#!"#)

!!(!∗!)
∗ 𝑁 + 𝑆𝑂𝐶!"!#	 	 	 	 (8) 

• Straight	line	control	:(	lower	bound	2)	

	𝑆𝑂𝐶!!"# =
!(!"#!

!"#!!"#!"#)
!

∙ ((𝑖 − 1) ∙𝑀 + 𝑁)+ 𝑆𝑂𝐶!"!#		 (9)					
• Concave	upward	control	:(	lower	bound	3)		

𝑆𝑂𝐶!!"# =
!(!"#!!!

!"#!!"#!"#)
!!(!∗!)

∗ 𝑁 + 𝑆𝑂𝐶!!!!"# 	 	 	 	 (10)	

where	 i	 is	 the	 segment	 index;	𝑆𝑂𝐶!!"!is	 the	minimum	 SOC	 at	 the	 end	 of	 i-th	 segment;	 and	
𝑆𝑂𝐶!!!!"# 	is	 the	 SOC	 at	 the	 end	 of	 last	 control	 horizon.	 It	 is	 self-evident	 that	 the	 concave	
downward	bound	(i.e.,	lower	bound	1)	is	much	more	restrictive	than	a	concave	upward	bound	
(i.e.,	lower	bound	3)	in	terms	of	battery	energy	use	at	the	beginning	of	the	trip.		
	
A	 major	 drawback	 for	 these	 reference	 control	 strategies	 is	 that	 they	 assume	 that	 the	 trip	
duration	(i.e.,	T)	 is	given,	or	at	 least	can	be	well	estimated	beforehand.	As	mentioned	earlier,	
this	 assumption	 may	 not	 hold	 true	 for	 many	 real-world	 applications.	 Therefore,	 a	 new	 SOC	
control	strategy	without	relying	on	the	knowledge	of	trip	duration	would	be	more	attractive.	

	
Fig.8.	SOC	reference	control	bound	examples.	

	

4.2.2. SOC	Self-Adaptive	Control	(Unknown	Trip	Duration)	
In	this	study,	we	also	propose	a	novel	self-adaptive	SOC	control	strategy	for	real-time	optimal	
charge-depleting	 control,	 where	 trip	 duration	 information	 is	 not	 required.	 Unlike	 those	 SOC	
reference	control	strategies	which	control	 the	use	of	battery	by	explicit	 reference	curves,	 the	
self-adaptive	control	strategy	controls	the	battery	power	utilization	implicitly	by	adopting	a	new	
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fitness	function	in	place	of	the	one	in	Eq.	(7):	

						f(s)	=	𝑅!"#$  +	𝑅!"# 	+		𝑃!																																			 	 	(11)	

where	𝑅!"#$ 	and		𝑅!"# 	are	the	ranks	(in	an	ascending	order)	of	 	 ICE	fuel	consumption	and	SOC	
decrease,	respectively,	of		an	individual	candidate	solution	s	in	the	current	population;	and		𝑃!is	
the	 added	penalty	when	 the	 individual	 s	 violates	 the	 constraints	 given	 in	 Eq.(6).	 The	penalty	
value	is	selected	to	be	greater	than	the	population	size	in	order	to	guarantee	that	an	infeasible	
solution	 always	 has	 a	 lower	 rank	 (i.e.,	 larger	 fitness	 value)	 than	 a	 feasible	 solution	 in	 the	
ascending	order	by	fitness	value.	Compared	to	the	fitness	function	adopted	for	SOC	reference	
control	 (see	 Eq.	 (7)),	 this	 new	 fitness	 function	 tries	 to	 achieve	 a	 good	 balance	 between	 two	
conflicting	 objectives:	 least	 fuel	 consumption	 and	 least	 SOC	 decrease.	 For	 a	 better	
understanding	 of	 the	 differences	 between	 these	 two	 fitness	 functions,	 Table	 III	 provides	 an	
example	of	fitness	evaluation	of	the	same	population.	In	this	case,	the	population	size	is	100.	As	
we	can	see	in	the	table,	Individual	2	which	has	a	better	balance	between	fuel	consumption	and	
SOC	decrease	is	more	favorable	than	Individual	3	in	the	ranking	by	Eq.	(11)	than	that	by	Eq.(7).	

TABLE	III		EXAMPEL	FITNESS	EVALUATION	BY	DIFFERENT	FITNESS	FUNCTIONS	
Indiv.	
Index	

Fuel	
Con.	

SOC		
decrease	

𝑹𝒇𝒖𝒆𝒍	 𝑹𝒔𝒐𝒄	 Rank	by	
Eq.(7)		

Rank	by	
Eq.(11)		

			1	 0.001	 0.005(P)	 		5	 					35								 				98	 				140	
			2	 0.010	 0.002	 		25	 					14	 					33	 				39	
			3	 0.007	 0.003	 		19	 					23	 						24	 				42	
			4	 0.002	 0.004(P)	 		7	 					32	 					99	 				139	
			….	 ……	 ……..	 …….	 		……	 ……..	 …….	
	

4.2.3. EDA-Based	On-line	EMS	Algorithm	with	SOC	Control	
Details	of	the	proposed	EDA-based	on-line	EMS	algorithm	with	SOC	control	are	summarized	in	
the	Algorithm	1	below.	This	algorithm	is	implemented	on	each	prediction	horizon	(N	time	steps)	
within	the	framework	presented	in	Fig.	8	(see	the	box	with	red	dashed	line).	
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Algorithm	1			EDA-based	on-line	EMS	with	SOC	control	
1:	Initialize	a	random	output	solution		𝐼!"#$(N	time	steps)	
2:	𝑃!"##$%& <=	Generate	initial		population	randomly	
3:	While	iteration_number	≤		Max_iterations,	do	
4:						For	each	individual	s	in	𝑃!"##$%&	
5:												Calculate	fuel	consume	𝐶!"#$ 	using	eq.	(1).	
6:												Calculate	SOC	decrease	using	eq.	(5)	
7:												Obtain	the	rank	index	of	s:	𝑅!"#$ 	
8:												Obtain	the	rank	index	of	s: 𝑅!"# 	
9:															If		SOC	reference	control	is	adopted	
10																						Calculate	the	lower	bound	using	eqs.(8)(9)(10)	
11:																							If		individual	s	violates	eq.(6)		
12:																										P=𝑃!;//largest	fuel	consumption	in	N	steps																																															
13:																			Else		
14:																									P=0;		
15:																			End	If	
16:																					Calculate	the	fitness	value	for	s	using	eq.(7)	
17:														Else	If		SOC	self-adaptive	control	is	adopted	
18:																										If		individual	s	violates	eq.(6)		
19:																											𝑃!=S																																				
20:																					Else		
21:																									𝑃!=0;																																				
22:																					End	If	
23:																								Calculate	the	fitness	value	for	s	using	eq.(11)	
24:															End	If	
25:					End	For	
26:					Rank	𝑃!"##$%&	in	ascending	order	based	on	fitness	
27:					𝑃!"#  <=	Select		top	α%	individuals	from	𝑃!"##$%&	
28:					E					<=	Estimate	a	new	distribution	from	𝑃!"#		
29:					𝑃!"#	<=	Sample	N	individuals	from	built	model	E	
30:					Evaluate	each	individual	in	𝑃!"#	using	line	5	to	14	
31:					Mix	𝑃!"##$%&	and	𝑃!"#	to	form	2N	individuals	
32:					Rank	2N	individuals	in	ascending	order	by	fitness	
33:					𝑃!"##$%&<=	Select	top	N	individuals	
34:					Update	𝐼!"#$	if	a	better	one	is	identified.	
35:					Iteration_number	++	
36:	End	While	
37:	Output		𝐼!"#$	
	
In	 the	 following	 section,	 we	 compare	 the	 performance	 of	 the	 proposed	 self-adaptive	 SOC	
control	with	other	SOC	control	strategies.	For	convenience,	we	list	the	abbreviations	of	all	the	
involved	strategies	in	Table	IV.	
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TABLE	IV		ABBREVIATIONS	OF	DIFFERENT	SOC	CONTROL	STRATEGIES	COMPARED	IN	THIS	STUDY	
SOC	control	strategies	 Abbreviations	
Binary	control	 B-I	
Basic	SOC	control	 B-A	
Concave	downward	 C-D	
Straight	line	 S-L	
Concave	upward	 C-U	
Self-adaptive	SOC	control	 S-A	
 
	

4.3. Case	Study	

4.3.1. Synthesized	Trip	Information	
To	 validate	 the	 proposed	 EMS	 for	 PHEVs,	 we	 use	 real-world	 data	 collected	 on	 January	 17th,	
2012,	 along	 I-210	between	 I-605	 and	Day	Creek	Blvd	 in	 San	Bernardino,	 California,	 as	 a	 case	
study	 (see	 Fig.	 9).	 Please	 refer	 to	 [2]	 for	 more	 detailed	 description	 of	 data	 collection	 and	
specifications	of	the	power-split	PHEV	model	if	interested.		
	
Based	 on	 the	 collected	 traffic	 data	 along	 with	 road	 grade	 information,	 second-by-second	
vehicle	 velocity	 trajectory	 and	 power	 demand	 have	 been	 synthesized	 as	 described	 in	 [2].	 As	
pointed	 out	 earlier,	 it	 is	 impractical	 to	 have	 a	 priori	 knowledge	 of	 the	 exact	 vehicle	 velocity	
trajectory.	 In	 this	 study,	 we	 focus	 on	 the	 development	 of	 the	 optimal	 power-split	 control,	
assuming	perfect	prediction	of	vehicle	velocity	trajectory.	Research	on	improving	the	prediction	
of	vehicle	velocity	trajectory	in	real	time	is	part	of	our	future	work.	

	

 
Fig.	9.	Example	trip	along	I-210	in	Southern	California	used	for	evaluation.	
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4.3.2. Off-line	Optimization	for	Validation	
To	justify	the	selection	of	EDA	as	the	kernel	of	the	proposed	framework,	we	first	test	EDA	on	
the	full-trip	off-line	optimization.	The	results	are	compared	with	those	obtained	from	two	other	
popular	evolutionary	algorithms:	genetic	algorithm	(GA)	and	particle	swarm	optimization	(PSO).	
The	 fitness	 (i.e.,	 total	 ICE	 energy	 consumption)	 of	 EDA-based	 off-line	 optimization	 obtains	
better	fuel	economy	(0.346	gallons)	than	the	other	two	(0.364	gallons	for	GA	and	0.377	for	PSO,	
respectively),	at	the	same	computational	expense	(i.e.,	same	population	size	and	same	number	
of	iterations)	[30].	In	addition,	the	result	from	EDA	is	much	closer	to	the	global	optimum	(0.345	
gallons	in	this	case)	with	the	difference	being	less	than	1%.	

	

4.3.3. Real-time	Performance	Analysis	and	Parameter	Tuning	
As	aforementioned,	a	necessary	condition	for	on-line	 implementation	of	the	proposed	EMS	is	
that	 the	 optimization	 for	 the	 next	 prediction	 horizon	 has	 to	 be	 finished	 within	 the	 current	
control	horizon	(see	Fig.4).	In	our	study,	for	example,	the	optimization	for	a	prediction	horizon	
of	50	seconds	can	be	completed	within	1.1	seconds	 (with	 Intel	Core	 i7	3.4GHz,	RAM	4G,	and	
64bit-Matlab	2012).	 In	addition,	one	of	our	previous	work	[30]	has	shown	that	the	 lengths	of	
prediction	horizon	and	control	horizon	may	significantly	affect	the	algorithm	performance.	The	
best	combination	of	these	two	parameters	is	found	to	be	N=250	and	M=10	in	this	case.		
	
Unlike	the	conventional	MPC	whose	optimization	has	to	be	implemented	along	each	prediction	
horizon,	 our	 proposed	 EA	 based	 online	 EMS	 (see	 Fig.7)	 can	 take	 advantage	 of	 the	 optimal	
results	 from	 previous	 prediction	 horizons,	 which	 avoids	 a	 new	 optimization	 starting	 from	
scratch	and	therefore	saves	a	lot	of	computational	overhead.	As	can	be	seen	in	Fig.	10,	part	of	
the	optimal	decisions	from	previous	prediction	optimization	horizon	is	adopted	as	the	seed	for	
initial	 population	 of	 current	 prediction	 horizon	 optimization.	 For	 example,	 when	 the	 control	
horizon	 is	 3s	 and	 prediction/optimization	 horizon	 is	 N,	 only	 3	 control	 decisions	 need	 to	 be	
randomly	 initialized	and	optimized	 in	 the	 second	prediction/optimization	horizon.	This	allows	
the	 optimization	 or	 search	 to	 be	 much	more	 efficient,	 compared	 to	 the	 same	 process	 over	
entire	prediction	horizon.	To	further	validate	this	computational	performance,	we	designed	an	
EA	 based	 MPC	 (EAMPC)	 which	 activates	 a	 complete	 new	 optimization	 for	 each	
prediction/optimization	horizon	and	compared	 it	with	our	proposed	model.	The	computation	
time	track	in	Fig.11	shows	that	for	a	50-seconds	prediction	horizon,	the	conventional	MPC	takes	
around	1.1	seconds	 for	each	optimization	horizon	but	our	proposed	model	can	take	only	 less	
than	0.1s	to	finish	the	optimization	from	the	second	prediction	horizon.		
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Fig.10.	Population	initialization	from	the	second	prediction	horizon	(i.e.,	t≥ 2).	

	

	
	Fig.11.	Comparison	on	computation	time.	

	

4.3.4. On-line	optimization	performance	comparison	
To	fully	evaluate	the	performance	of	the	proposed	on-line	EMS	strategies,	we	compare	them	to	
the	 conventional	 binary	 control	 (implementable	 in	 real-time)	 strategy	 as	 well	 as	 the	 off-line	
global	optimal	 control	 strategy	 (with	 the	use	of	dynamic	programming	 [9]).	 The	 comparisons	
are	carried	out	on	both	the	single	trip	scenario	and	multiple	trips	scenario.	
	
When	tested	on	a	single	(westbound)	trip,	the	fuel	consumption	and	SOC	profiles	by	different	
strategies	 are	 illustrated	 in	 Fig.	 12.	 It	 is	 shown	 that	 the	proposed	S-A	algorithm	achieves	 the	
lowest	fuel	consumption	(0.3515	gallons)	which	is	only	1.56%	worse	than	that	of	global	optima	
obtained	by	 the	off-line	optimization	 (0.3460	 gallons).	 These	 results	 can	be	 explained	by	 the	
shape	of	the	resultant	SOC	profiles.	For	instance,	SOC	decreases	very	quickly	in	the	B-I	strategy,	
and	 reaches	 the	 lower	 bound	 (i.e.,	 0.2)	 at	 around	 1,200	 seconds	 because	 the	 use	 of	 battery	
power	 is	 always	 prioritized	 whenever	 available.	 Therefore,	 ICE	 has	 to	 supply	 most	 of	 the	
demanded	 power	 after	 1,200	 seconds.	 This	 is	 very	 similar	 to	 the	 cases	 of	 the	 B-A	 and	 C-U	
strategies	where	the	battery	power	is	also	consumed	aggressively	at	the	beginning	of	the	trip	
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with	very	loose	constraints.	On	the	other	hand,	the	S-L	and	C-D	strategies	perform	better	since	
their	battery	power	 is	used	more	cautiously	along	the	trip.	These	findings	are	consistent	with	
the	conclusions	of	many	other	studies	[22,	29]	in	that	a	smoother	distribution	of	battery	power	
usage	along	the	trip	would	result	in	higher	fuel	efficiency.	
		

	
Fig.12.SOC	trajectories	resulted	from	different	control	strategies.		

	
In	order	to	know	the	statistical	significance	of	the	different	EMS	strategies,	we	test	them	on	30	
randomly	selected	trip	profile	data	extracted	from	the	same	road	segment	on	12	different	days.	
The	results	are	also	compared	to	the	binary	control	and	dynamic	programming	(D-P)	strategies.	
For	 the	purpose	of	 comparison,	we	 set	 the	 fuel	 consumption	obtained	by	 the	binary	 control	
strategy	as	the	baseline	and	calculate	the	percentage	of	fuel	savings	achieved	by	the	other	EMS	
strategies.	 As	we	 can	 see	 in	 Fig.	 13,	 the	 D-P	 strategy	 achieves	 the	 best	 fuel	 savings	with	 an	
average	of	19.4%	and	the	 least	variance	simply	because	 it	 is	an	off-line	optimization	strategy.	
The	proposed	S-A	strategy	achieves	an	average	of	10.7%	 fuel	 savings	which	 is	higher	 than	all	
other	 on-line	 strategies	 and	 consistent	 with	 the	 result	 of	 the	 single	 trip	 test.	 An	 interesting	
observation	is	that	the	S-L	strategy	has	better	average	fuel	savings	(i.e.,	9.3%)	than	the	C-D	and	
C-U	 strategies	 which	 is	 not	 consistent	 with	 the	 test	 result	 of	 the	 single	 trip	 test.	 A	 possible	
reason	 is	 that	 the	C-D	strategy	performs	better	on	some	trips	 in	which	 the	power	demand	 is	
higher	in	later	stages	of	the	trip	but	the	C-U	strategy	performs	better	on	the	trips	in	which	the	
power	demand	is	higher	in	earlier	stages.	On	the	other	hand,	the	S-L	strategy	balances	the	SOC	
control	 between	 these	 two	 types	 of	 trip	 pattern,	 and	 therefore	 has	 better	 average	
performance.	
	
For	further	validation,	the	proposed	S-A	strategy	with	the	best	performance	is	compared	with	
other	 existing	 PHEV	 EMS	 strategies	 that	 employ	 short-term	 prediction.	 Although	 these	
strategies	 were	 proposed	 to	 handle	 powertrain	 models	 with	 different	 fidelity	 as	 well	 as	
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different	data	set	for	validation,	they	all	used	the	binary	control	strategy	as	a	benchmark	(the	
same	 as	 in	 this	 work).	 This	 provides	 us	 a	 chance	 to	 compare	 all	 models	 in	 a	 relatively	 fair	
manner.	The	comparison	results	are	listed	in	table	V,	which	proves	that	our	model	achieves	the	
largest	improvement	of	fuel	efficiency	(with	regard	to	the	binary	control	strategy)	but	requires	
less	trip	information.	
	

	
Fig.13.	Box-plot	of	fuel	savings	on	30	trips.	

	
TABLE	V				COMPARISONS	WITH	EXISTING	MODELS	

EMS	model	 Year	 ST𝑃!	 Trip	distance		 FE	𝐼!	 Consider		
Charging?	

This	work	
EAMPC	

2016	
2016	

Yes	
Yes	

Unknown	
Unknown	

10.7%	
7.9%	

Yes	
Yes	

MPC[31	]	 2014	 Yes	 Known	 8.5%	 No	
MPC[17	]	 2015	 Yes	 Known	 6.7%	 No	
A-ECMS[31]	
A-ECMS[14]																						
DP[32]	
SD𝑃!	[33]																

2014	
2015	
2015	
2011	

Yes	
Yes	
YesYes	

Known	Known	
Known	
Known	

10.2%	
7.6%	
5.8%	
7.7%	

No	
No	
No	
No	

1Short-term	 prediction;	 	 	 	 2Fuel	 economy	 improvement	 comparing	 to	 binary	 control;	 	 	 	 3	
Stochastic	Dynamic	Programming.	
	

4.3.5. Analysis	of	Trip	Duration	
In	 this	 section,	 we	 analyze	 and	 compare	 the	 effectiveness	 of	 the	 proposed	 on-line	 EMS	 for	
longer	trips.	These	longer	trips	are	constructed	by	concatenating	multiple	trip	profiles	and	the	
results	 are	 shown	 in	Fig.	14.	As	 can	be	observed,	 the	B-I	 strategy	has	 the	best	 fuel	economy	
when	the	trip	duration	is	shorter	than	1,500	seconds.	For	these	short	trips,	the	PHEV	can	mostly	
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rely	on	battery	energy.	However,	as	the	trip	duration	becomes	longer,	especially	when	longer	
than	2,500	seconds,	the	S-A	strategy	outperforms	all	the	others.	
		
To	 further	 explain	 this	 finding,	 the	 resultant	 fuel	 consumption	 and	 the	 corresponding	 SOC	
profiles	for	the	longest	trip	(5,000	seconds)	are	provided	in	Fig.	15.	According	to	the	figure,	the	
S-A	 strategy	has	 the	 lowest	 fuel	 consumption	 and	 its	 SOC	profile	 is	 a	 combination	of	 the	CD	
mode	 (defined	 in	 Fig.	 1)	 before	 2,000	 seconds	 and	 the	 CS	 mode	 after	 2,000	 seconds.	 This	
contradicts	with	most	of	the	existing	studies,	which	report	that	an	optimal	fuel	economy	for	the	
trip	can	be	achieved	by	operating	solely	in	the	CD	mode	[22].	Here,	we	present	evidence	that	it	
is	not	always	 the	case,	and	 that	 the	CD+CS	operation	can	 result	 in	optimal	 fuel	efficiency	 for	
long	trips.	Furthermore,	this	finding	also	implies	the	potential	for	the	proposed	S-A	strategy	to	
adapt	to	different	trip	durations.		
		

	
Fig.14.	Fuel	savings	for	trips	with	different	duration,	compared	to	B-I.	
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Fig.15.	Resultant	SOC	curve	when	trip	duration	is	5,000	seconds.	

		

4.3.6. Performance	with	Charging	Opportunity	
Considering	 the	 plug-in	 capability	 of	 PHEVs,	 we	 evaluate	 the	 performance	 of	 the	 proposed	
strategies	at	the	tour	level.	More	specifically,	we	consider	the	commute	trips	of	the	case	study	
as	a	tour	and	assume	that	there	is	a	charging	opportunity	(to	a	full	charge)	between	the	end	of	
the	westbound	 trip	and	 the	beginning	of	 the	eastbound	 trip.	We	 then	compare	 the	different	
SOC	control	strategies	under	the	following	two	scenarios:		

1) Scenario	I:	The	proposed	EMS	with	a	priori	knowledge	of	the	charging	opportunity;	
2) Scenario	 II:	The	proposed	EMS	without	a	priori	knowledge	of	 the	charging	opportunity.	 In	

this	 case,	a	 conservative	 strategy	 is	 applied	by	assuming	 that	 there	 is	no	charging	 station	
available	in	between	the	trips.	

The	results	are	illustrated	in	Fig.16.	They	show	that	the	knowledge	of	the	charging	opportunity	
information	 has	 great	 influence	 on	 the	 resultant	 SOC	 profiles	 for	 the	 deterministic	 SOC	
reference	control	strategies	but	no	influence	on	the	SOC	self-adaptive	control	strategy.	Table	VI	
presents	 the	 increased	 fuel	 consumption	 due	 to	 the	 lack	 of	 knowledge	 of	 the	 charging	
opportunity	prior	 to	the	tour.	As	shown	 in	the	table,	 the	C-D,	S-L,	and	C-U	strategies	all	have	
13%	or	more	increase	in	fuel	consumption	if	the	charging	opportunity	information	is	unknown,	
while	the	B-I	and	S-A	strategies	are	not	affected	because	the	trip	duration	is	not	considered	in	
their	decision-making	process.	These	findings	further	emphasize	the	advantage	of	the	proposed	
SOC	 self-adaptive	 control	 strategy	 in	 terms	 of	 robustness	 to	 the	 level	 of	 knowledge	 about	
charging	availability.	
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a.	C-D	

	
b.	S-A	

	
c.	C-U	
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d.	S-L	

	
							Fig.16.	SOC	track	with	known	or	unknown	charging	opportunity.	

	

TABLE	VI				INCREASED	FUEL	CONSUMPTION	
Control	
strategy	

Known	
	(gal)	

Unknow
n	
	(gal)	

Increased	fuel	
consumption	

B-I	 0.9748	 0.9748	 00.0%	
B-A	 0.7109	 0.7543	 06.1%	
C-D	 0.6729	 0.8439	 25.1%	
S-L	 0.6809	 0.7853	 15.0%	
C-U	 0.7066	 0.8034	 13.0%	
S-A	 0.6681	 0.6681	 00.0%	

	
	

5. Reinforcement	Learning-Based	Real-Time	EMS	

5.1. Introduction	
As	mentioned	 in	 previous	 section,	 the	 energy	management	 system	 (EMS)	 is	 at	 the	 heart	 of	
PHEV	fuel	economy,	whose	functionality	is	to	control	the	power	streams	from	both	the	internal	
combustion	 engine	 (ICE)	 and	 the	 battery	 pack,	 based	 on	 vehicle	 and	 engine	 operating	
conditions.	 In	 the	past	decade,	a	 large	variety	of	EMS	 implementations	have	been	developed	
for	PHEVs,	whose	control	strategies	may	be	well	categorized	into	two	major	classes	as	shown	in	
Figure	 17:	 a)	 rule-based	 strategies	 which	 rely	 on	 a	 set	 of	 simple	 rules	 without	 a	 priori	
knowledge	 of	 driving	 conditions.	 Such	 strategies	 make	 control	 decisions	 based	 on	 instant	
conditions	only	and	are	easily	implemented,	but	their	solutions	are	often	far	from	being	optimal	
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due	 to	 the	 lack	 of	 consideration	 of	 variations	 in	 trip	 characteristics	 and	 prevailing	 traffic	
conditions;	 and	 b)	 optimization-based	 strategies	 which	 are	 aimed	 at	 optimizing	 some	
predefined	 cost	 function	 according	 to	 the	 driving	 conditions	 and	 vehicle’s	 dynamics.	 	 The	
selected	cost	function	is	usually	related	to	the	fuel	consumption	or	tailpipe	emissions.	Based	on	
how	the	optimization	is	implemented,	such	strategies	can	be	further	divided	into	two	groups:	1)	
off-line	 optimization	which	 requires	 a	 full	 knowledge	 of	 the	 entire	 trip	 to	 achieve	 the	 global	
optimal	solution;	and	2)	short-term	prediction-based	optimization	which	takes	into	account	the	
predicted	driving	conditions	in	the	near	future	and	achieves	local	optimal	solutions	segment	by	
segment	within	an	entire	trip.	However,	major	drawbacks	of	these	strategies	include:	1)	heavy	
dependence	on	the	a	priori	knowledge	of	future	driving	conditions;	and	2)	high	computational	
costs	that	are	difficult	to	implement	in	real-time.	
 

 
Fig.	17.	Taxonomy	of	current	EMS.	

 
As	discussed	above,	there	 is	a	trade-off	between	the	real-time	performance	and	optimality	 in	
the	 energy	 management	 for	 PHEVs.	 More	 specifically,	 rule-based	 methods	 can	 be	 easily	
implemented	in	real	time	but	are	far	from	being	optimal	while	optimization-based	methods	are	
able	to	achieve	optimal	solutions	but	are	difficult	to	implement	in	real	time.	To	achieve	a	good	
balance	in	between,	reinforcement	learning	(RL)	has	recently	attracted	researchers’	attention.	
Liu	et	al.	proposed	the	first	and	only	existing	RL-based	EMS	for	PHEVs	which	outperforms	the	
rule-based	controller	with	respect	to	the	defined	reward	function	but	is	worse	in	terms	of	fuel	
consumption	without	considering	charging	opportunity	in	the	model.	
	
In	this	study,	a	novel	model-free	RL-based	real-time	EMS	of	PHEVs	is	proposed	and	evaluated,	
which	is	capable	of	simultaneously	controlling	and	learning	the	optimal	power	split	operations	
in	 real-time.	 The	 proposed	 model	 is	 theoretically	 derived	 from	 dynamic	 programming	 (DP)	
formulations	and	compared	to	DP	in	the	computational	complexity	perspective.	There	are	three	
major	 features	 which	 distinguish	 it	 from	 existing	 methods:	 1)	 the	 proposed	 model	 can	 be	
implemented	in	real-time	without	any	prediction	efforts,	since	the	control	decisions	are	made	
only	 upon	 the	 current	 system	 state.	 The	 control	 decisions	 also	 considered	 for	 the	 entire	 trip	
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information	 by	 learning	 the	 optimal	 or	 near-optimal	 control	 decisions	 from	 historical	 driving	
behavior.	 Therefore,	 it	 achieves	 a	 good	 balance	 between	 real-time	 performance	 and	 energy	
saving	optimality;	2)	the	proposed	model	is	a	data-driven	model	which	does	not	need	any	PHEV	
model	 information	once	 it	 is	well	 trained	since	all	 the	decision	variables	can	be	observed	and	
are	 not	 calculated	 using	 any	 vehicle	 powertrain	 models	 (these	 details	 are	 described	 in	 the	
following	sections);	and	3)	compared	to	existing	RL-based	EMS	implementations,	the	proposed	
strategy	considers	charging	opportunities	along	the	way	(a	key	distinguishing	feature	of	PHEVs	
as	compared	with	HEVs).	This	proposed	method	represents	a	new	class	of	models	that	could	be	
a	good	supplement	to	the	current	methodology	taxonomy	as	shown	in	Figure	17.			
	

5.2. Related	concepts	

5.2.1. Dynamic	Programming		
	
The	above	optimization	problem	can	be	solved	by	dynamic	programming	(DP),	since	it	satisfies	
the	Bellman's	Principle	of	Optimality.	Let	s	ϵ	S	be	the	state	vector	of	the	system,	and	a	ϵ	A	the	
decision	variable.	The	optimization	problem	can	be	converted	into	the	following	single	equation	
given	the	initial	state	𝑠!	and	the	decisions	𝑎!	for	each	time	step	t.		

𝑚𝑖𝑛
!!!"

𝐸 𝛽!𝑔 𝑠! , 𝑠!!! |𝑠! = 𝑠
!!!

!!!

                                                           (12)	

where	β	is	a	discount	factor	and	β	ϵ	(0,1).	And	it	can	be	solved	by	recursively	calculating:	
	

𝐽 𝑠! = 𝑚𝑖𝑛
!!!"

𝐸 𝑔 𝑠! , 𝑠!!! + 𝛽𝐽 𝑠!!! |𝑠! = 𝑠
!!!

!!!

, 𝑓𝑜𝑟 𝑡 = 𝑇 − 1,𝑇 − 2,… ,0.     (13)	

Where	 T	 is	 the	 time	 duration;	 g(.)	 is	 a	 one-step	 cost	 function;	 J(s)	 is	 the	 true	 value	 function	
associated	with	state	s	.	 	Eq.	(13)	is	also	often	noted	as	the	Bellman’s	equation.	In	the	case	of	
PHEV	energy	management,	𝑠!	can	be	defined	 as	 a	 combination	of	 vehicle	 states,	 such	 as	 the	
current	SOC	level	and	the	remaining	time	to	the	destination,	which	is	discussed	in	the	following	
sections.	𝑎!	can	be	defined	as	the	ICE	power	supply	at	each	time	step.		
	
It	is	well	known	that	the	high	computational	cost	of	Eq.	(13)	is	always	the	barrier	that	impedes	
its	 real-world	 application,	 although	 it	 is	 a	 very	 simple	 and	 descriptive	 definition.	 It	 could	 be	
computationally	 intractable	even	 for	a	 small-scale	problem	 (in	 terms	of	 state	 space	and	 time	
span).	The	major	reason	is	that	the	algorithm	has	to	loop	over	the	entire	state	space	to	evaluate	
the	 optimal	 decision	 for	 every	 single	 step.	 Another	 obvious	 drawback	 in	 the	 real-world	
application	of	DP	 is	 that	 it	 requires	 the	availability	of	 the	 full	 information	of	 the	optimization	
problem.	In	our	case,	it	means	the	power	demand	along	the	entire	trip	should	be	known	prior	
to	the	trip,	which	is	always	impossible	in	practice.	
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5.2.2. Approximate	Dynamic	Programming	and	Reinforcement	Learning	
	
To	 address	 the	 above	 issues,	 approximate	 dynamic	 programming	 (ADP)	 has	 been	 proposed	
(23).	 The	 major	 contribution	 of	 ADP	 is	 that	 it	 significantly	 reduces	 the	 state	 space	 by	
introducing	 an	 approximate	 value	 function	 𝐽(𝑠! ,𝑝!) 	where	 𝑝! 	is	 a	 parameter	 vector.	 By	
replacing	this	approximate	value	function,	Eq.	(13)	can	be	reformulated	as:	

𝐽 𝑠! = 𝑚𝑖𝑛
!!!"

𝐸 𝑔 𝑠! , 𝑠!!! + 𝛽𝐽 𝑠!!!,𝑝! 
!!!

!!!

, 𝑓𝑜𝑟 𝑡 = 0,1,… ,𝑇 − 1     (14)	

Now	the	optimal	decision	can	be	calculated	at	each	time	step	t	by		

𝑎! = 𝑎𝑟𝑔𝑚𝑖𝑛
!!!"

𝐸 𝑔 𝑠! , 𝑠!!! + 𝛽𝐽 𝑠!!!,𝑝! 
!!!

!!!

,                                              (15)	

The	calculation	of	Eq.	 (15)	now	only	relies	on	the	current	system	state	𝑠!,	which	substantially	
reduces	the	computational	requirement	of	Eq.	(13)	to	polynomial	time	in	terms	of	the	number	
of	the	state	variables,	rather	than	being	exponential	to	the	size	of	state	space.	In	addition,	the	
value	 iteration	 that	 solves	 the	 DP	 problem	 becomes	 forward	 into	 time,	 rather	 than	 being	
backward	in	Eq.	(13).	In	the	case	of	PHEV	energy	management,	this	is	actually	a	bonus	since	the	
predicted	 state	 (e.g.	 power	 demand)	 at	 the	 end	 of	 the	 time	 horizon	 is	 much	 less	 reliable	
compared	to	that	at	the	beginning	of	the	time	horizon.		
	
In	 principle,	 the	 value	 approximate	 function	 can	 be	 learned	 by	 tuning	 and	 updating	 the	
parameter	 vector	 𝑝! 	upon	 the	 addition	 of	 each	 observation	 on	 state	 transitions.	 The	
Reinforcement	 Learning	 (RL)	 is	 an	 effective	 tool	 for	 this	 purpose.	 The	 specific	 learning	
technique	 employed	 in	 this	 study	 is	 temporal-difference	 learning	 (TD-Learning),	 which	 is	
originally	proposed	by	Sutton	to	approximate	the	long-term	future	cost	as	a	function	of	current	
states.	The	details	about	 the	 implementation	of	 the	algorithm	are	presented	 in	 the	 following	
sections.	
	

5.3. Reinforcement	Learning	Based	EMS	
	
In	 this	 study,	 a	 TD-learning	 strategy	 is	 adopted	 for	 the	 reinforcement	 learning	 problem.	 An	
action-value	 function:	 Q(s,	 a)	 is	 defined	 as	 the	 expected	 total	 reward	 for	 the	 future	 receipt	
starting	from	that	state.	This	function	is	to	estimate	“how	good”	it	is	to	perform	a	given	action	
in	a	given	state	 in	 terms	of	 the	expected	return.	More	specifically,	we	define	𝑄! 𝑠,𝑎   as	 the	
value	of	 taking	action	a	 in	 state	 s	under	a	control	policy	π	 (i.e.	a	map	 that	maps	 the	optimal	
action	to	a	system	state),	which	is	also	the	expected	return	starting	from	s,	taking	the	action	a,	
and	thereafter	following	policy	π:	

𝑄! 𝑠,𝑎 =𝐸! 𝛾! ∗ 𝑟 𝑠!!! ,𝑎!!!!
!!! 𝑠! = 𝑠,𝑎! = 𝑎}                                      (16)	

where	𝑠!	is	the	state	at	time	step	t;	γ	is	a	discount	factor	in	(0,	1)	to	guarantee	the	convergence;		
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𝑟 𝑠!!! ,𝑎!!! 	is	 the	 immediate	 reward	based	on	the	state	s	and	action	a	at	a	given	time	step	
(t+k).	The	ultimate	goal	of	reinforcement	learning	is	to	identify	the	optimal	control	policy	that	
maximizes	the	above	action-value	function	for	all	the	state-action	pairs.	
Comparing	to	the	formulations	defined	by	Eq	(13)	and	(14),	the	policy	π	is	the	ultimate	decision	
for	each	time	step	along	the	entire	time	horizon.	The	reward	function	𝑟 𝑠!!! ,𝑎!!!  	here	is	g(.)	
in	eq	(13).	The	action-value	function	(i.e.,	Q(s,a))	is	actually	an	instantiation	of		the	approximate	
value	function	𝐽 𝑠! .	So,	it	is	not	difficult	to	understand	that	the	DP	formulas	are	the	basis	for	a	
reinforcement	learning	problem.		
	
Conceptually,	 a	 RL	 system	 consists	 of	 two	 basic	 components:	 a	 learning	 agent	 and	 an	
environment.	The	learning	agent	interacts	continuously	with	the	environment	in	the	following	
manner:	 at	 each	 time	 step,	 the	 learning	 agent	 receives	 an	 observation	 on	 the	 environment	
state.	 The	 learning	 agent	 then	 chooses	 an	 action	 which	 is	 subsequently	 input	 to	 the	
environment.	The	environment	then	moves	to	a	new	state	due	to	the	action,	and	the	reward	
associated	with	the	transition	is	calculated	and	fed	back	to	the	learning	agent.	Along	with	each	
state	transition,	the	agent	receives	an	immediate	reward	and	these	rewards	are	used	to	form	a	
control	policy	that	maps	the	current	state	to	the	best	control	action	upon	that	state.	At	each	
time	 step,	 the	 agent	makes	 the	 decision	 based	 on	 its	 control	 policy.	 Ultimately,	 the	 optimal	
policy	can	guide	the	learning	agent	to	take	the	best	series	of	actions	in	order	to	maximize	the	
cumulated	reward	over	time	that	can	be	learned	after	sufficient	training.	A	graphical	illustration	
of	the	learning	system	is	given	in	Figure	18.	The	definition	of	the	environmental	states,	actions	
and	reward	are	provided	as	following:	

	
Fig.	18.	Graphical	illustration	of	reinforcement	learning	system.	
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5.3.1. Action	&	Environmental	States	

In	this	study,	we	define	the	discretized	ICE	power	supply	level	(i.e. 𝑃!
!"#)	as	the	only	action	the	

learning	 agent	 can	 take.	 The	 environment	 states	 include	 any	 other	 system	 parameters	 that	
could	 influence	 the	decision	of	engine	power	 supply.	Herein	we	define	a	5-dimensional	 state	
space	for	the	environment,	including	the	vehicle	velocity	(𝑣!"!),	road	grade	(𝑔!"#$),	percentage	
of	remaining	time	to	destination	(𝑡!"#"),	the	battery	pack’s	state-of-charge	(𝑏!"#),	the	available	
charging	gain	(𝑐!)	of	the	selected	charging	station:	

S= 𝑠 = 𝑣!"! , 𝑔!"#$ , 𝑡!"#" , 𝑏!"#  , 𝑐! !|𝑣!"!𝜖𝑉!"! , 𝑔!!!"𝜖𝐺!"#$ , 𝑡!"#"𝜖𝑇!"#" , 𝑏!"#𝜖 𝐵!"# , 𝑐!𝜖𝐶! 	

where	𝑉!"!	is	 the	 set	 of	 discretized	 vehicle	 speed	 level;	𝐺!"#$ 	is	 the	 set	 of	 discretized	 road	
grade	 levels;	𝑃!"#	is	 the	discretized	 level	of	power	 collected	 from	 regenerative	braking	 (note:	
this	 power	 is	 negative	 compared	 to	 power	 demand).	 The	 minimum	 and	 maximum	 value	 of	
vehicle	 velocity,	 road	 grade,	 and	 regenerative	 braking	 power	 can	 be	 estimated	 from	 the	
historical	data	of	commuting	trips	which	will	be	elaborated	in	the	following	section.	𝐵!"# 	is	the	
set	 of	 battery	 state-of-charge	 (SOC)	 levels	 between	 the	 lower	 bound	 (e.g.,	 20%)	 and	 upper	
bound	(e.g.,	80%);	𝑇!"#"	is	the	percentage	(10%	~	90%)	of	remaining	time	out	of	the	entire	trip	
duration,	which	 is	 calculated	based	on	 the	 remaining	distance	 to	destination.	𝐶!	is	 the	 set	of	
discretized	charging	gain	(e.g.,	30%,	60%)	of	the	selected	charger.	This	charging	gain	represents	
the	availability	of	the	charger	which	may	be	a	function	of	the	charging	time	and	charging	rate	
and	is	assumed	to	be	known	beforehand.	It	is	noteworthy	that	all	the	states	can	be	measured	
and	 updated	 in	 real-time	 as	 the	 vehicle	 is	 running.	 Figure	 19	 shows	 all	 the	 real-time	
environmental	states.	

	
Fig.	19.	Illustration	of	environment	states	along	a	trip.	

5.3.2. Reward	Initialization	(with	optimal	results	from	simulation)	
The	definition	of	reward	is	dependent	upon	the	control	objective	which	is	to	minimize	the	fuel	
cost	while	 satisfying	 the	power	demand	 requirement.	Hence,	we	define	 the	 reciprocal	of	 the	
resultant	ICE	power	consumption	at	each	time	step	as	the	immediate	reward.	A	penalty	term	is	
also	 included	 to	 penalize	 the	 situation	 where	 the	 SOC	 is	 beyond	 the	 predefined	 SOC	
boundaries.	Immediate	reward	is	calculated	by	the	following	equations:	
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𝑟!!,! =

!
!!"#

                    𝑖𝑓 𝑃!"# ≠ 0 𝑎𝑛𝑑 0.2 ≤ 𝑆𝑂𝐶 ≤ 0.8
!

!!"#!!
      𝑖𝑓 𝑃!"# ≠ 0 𝑎𝑛𝑑(𝑆𝑂𝐶 ≤ 0.2 𝑜𝑟 𝑆O𝐶 ≥ 0.8)

!
!"!!!"#

                 𝑖𝑓 𝑃!"# = 0 𝑎𝑛𝑑 0.2 ≤ 𝑆𝑂𝐶 ≤ 0.8
!
!∗!

                                   𝑖𝑓 𝑃!"# = 0 𝑎𝑛𝑑(𝑆𝑂𝐶 ≤ 0.2 𝑜𝑟 𝑆𝑂𝐶 ≥ 0.8)

						 	 (17)	

where	𝑟!!,! 	is	the	immediate	reward	when	state	changes	from	s	to	𝑠 ,	by	taking	action	a;		𝑃!"# 	is	
the	ICE	power	supply;	𝑃	is	the	penalty	value	and	is	set	as	the	maximum	power	supply	from	ICE	
in	 this	 study;	𝑀𝑖𝑛_𝑃!"# 	is	 the	 minimum	 nonzero	 value	 of	 ICE	 power	 supply.	 This	 definition	
guarantees	that	the	minimum	ICE	power	supply	(action)	which	satisfies	the	power	demand	as	
well	as	SOC	constraints	can	have	the	largest	numerical	reward.	A	good	initialization	of	reward	is	
also	critical	 for	 the	quick	convergence	of	 the	proposed	algorithm.	 In	 this	case,	 the	optimal	or	
near	 optimal	 results	 of	 typical	 trips	 obtained	 from	 simulation	 are	 used	 as	 the	 initial	 seeds.	
These	 optimal	 or	 near	 optimal	 results	 are	 deemed	 as	 the	 control	 decisions	 made	 by	 “good	
drivers”	 from	 historical	 driving.	 In	 order	 to	 obtain	 a	 large	 number	 of	 such	 good	 results	 for	
algorithm	 training,	 an	 evolutionary	 algorithm	 (EA)	 is	 adopted	 for	 the	 off-line	 full-trip	
optimization	since	EA	can	provide	multiple	solutions	for	one	single	run.	These	solutions	are	of	
different	quality	which	may	well	represent	different	level	of	driving	proficiency	in	the	real	world	
situation.		

5.3.3. Q-value	Update	and	Action	Selection	
In	the	algorithm,	a	Q	value,	denoted	by	Q(s,	a),	is	associated	with	each	possible	state-action	pair	
(s,	a).	Hence	there	is	a	Q	table	which	is	kept	updating	during	the	learning	process	and	can	be	
interpreted	as	the	optimal	control	policy	that	the	learning	agent	is	trying	to	learn.	At	each	time	
step,	 the	 action	 is	 selected	upon	 this	 table	 after	 it	 is	 updated.	 The	details	 of	 the	 algorithmic	
process	are	given	in	the	following	pseudo	code:	
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Algorithm			RL	based	PHEV	EMS	algorithm		
Inputs:	Initialization	6-D	Q(s,	a)	table;	Discount	factor	γ=0.5;	
Learning	rate	α=0.5;	Exploration	probability	ε	ϵ(0,1);	Vehicle	
power	demand	profile	𝑃! 	(N	time	steps)	
Outputs:	Q(s,	a)	array;	Control	decisions	𝑃! 	(T	time	steps)	
1:	Initialize	Q(s,	a)	arbitrarily		
2:	for	each	time	step	t=1:T	
3:						Observe	current	s!	(v!"#, g!"#$, t!"#", b!"# ,C!)	
4:						Choose	action	a!	for	the	current	state	s!:	
5:																temp=random(0,1);	
6:																	if		temp	<=	ε	
7:																						a!=	arg max!!!{ Q(s!, a)}	
8:																	else	
9:																							a!=	randomly	choose	an	action;	
10:															end		
11:					Take	action	a!,	observe	next	state	s!!!	(P!!!, SOC!!!)	
12:					if	SOC!!!<0.2	
13:												Switch	into	Charging-Sustaining		mode;	
14:												Give	big	penalty	to		r!	according	to	Eq.	(10)	
15:						else	
16:												Calculate	reward	r!	according	to	Eq.	(10)	
17:						end	
18:						Update	Q(s!, a!)	with		following	value:	
19:	 	 	 	 	 	 Q( s!, a! )+α {r! + γ ∗max!!!!  Q s!!!, a!!! −
Q s!, a! }												
20:	end		

	

5.4. Validation	and	testing		
The	 proposed	model	 is	 then	 evaluated	 with	 real-world	 data	 in	 two	 different	 scenarios:	 one	
without	charging	opportunities	and	the	other	with	charging	opportunities.	
	

5.4.1. Data	Description	
To	 obtain	 a	 series	 of	 real	 trip	 data	 (second-by-second	 velocity	 trajectories),	 we	 apply	 the	
trajectory	synthesis	 technique	proposed	 in	our	previous	work	 to	 the	 inductive	 loops	detector	
(ILD)	data	archived	in	the	California	Freeway	Performance	Measurement	System	(PeMS).	
	
The	 trajectory	 synthesis	 is	 a	 two-step	 process:	 1)	 estimating	 average	 velocity	 by	 applying	 2-
dimensional	 interpolation	 method	 to	 real	 world	 traffic	 data	 (e.g.,	 volumes	 and	 occupancy)	
collected	 from	 ILDs;	 and	 2)	 generating	 random	 velocity	 disturbance	 based	 on	 representative	
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driving	cycles	from	the	MOVES	(MOtor	Vehicle	Emission	Simulator)	database.	Real	traffic	data	
were	 collected	at	 the	 I-210	 freeway	 segment	between	 I-605	and	Day	Creek	Blvd	 in	 Southern	
California,	starting	at	8:00	a.m.	 in	the	morning	(westbound)	and	returning	at	4:00	p.m.	 in	the	
afternoon	every	weekday	during	the	period	between	January	9th,	2012	and	January	17th,	2012.	
Twelve	 trips	 (including	 eastbound	 and	 westbound)	 are	 generated	 in	 total.	 The	 road	 grade	
information	 is	 also	 synchronized	with	 the	 trip	 data	 to	 estimate	 the	 second-by-second	 power	
demands.	For	more	detailed	information	on	the	trajectory	synthesis	and	power	demand	profile	
generation,	please	refer	to	(21).	
	

5.4.2. Model	without	charging	opportunity	(trip	level)	
To	validate	the	proposed	strategy,	the	model	without	considering	charging	opportunity	is	first	
trained	and	tested	with	trips	where	there	 is	no	charging	opportunity	within	the	trip.	Data	 for	
multiple	westbound	trips	described	 in	(21)	are	used	for	training.	Although	 it	has	been	proven	
that	 Q-learning	 is	 guaranteed	 to	 converge	 mathematically,	 an	 experimental	 analysis	 of	
convergence	is	conducted	in	this	study.	In	the	experiment,	the	trip	data	for	the	first	six	days	are	
concatenated	one	by	one	to	 form	a	single	 training	cycle.	The	proposed	model	 is	 trained	with	
repeated	training	cycles.	At	the	end	of	each	training	cycle,	the	trained	model	is	tested	with	the	
7th	day	trip	and	the	 fuel	consumption	 is	 recorded	 in	 the	 following	Figure	20.	 In	addition,	 the	
training	with	or	without	good	initialization	using	simulated	optimal	or	near	optimal	solution	are	
also	compared.		As	we	can	see	in	the	figure,	there	is	a	clear	convergence	in	fuel	consumption	
for	both	cases.	However,	the	initialization	with	simulated	optimal	or	near	optimal	solutions	help	
achieve	a	faster	convergence.	

	
								Fig.20.	Convergence	Analysis	(ε	=0.7;	γ=0.5;	α=0.5).		

	

As	previously	described,	 the	selected	state	space	 is	5-dimensional	and	the	action	space	has	1	
dimension.	Therefore	the	Q(s,	a)	table	is	6-dimensional.	Figure	21	shows	the	4-D	slice	diagram	
of	the	learned	Q(s,	a)	table	in	which	different	color	grids	represent	different	numerical	reward	
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values	 (e.g.,	 blue	 color	 means	 lower	 values)	 and	 3	 slices	 on	 the	 (ICE	 power	 supply,	 power	
demand)	space	are	given	at	three	different	SOC	levels:	1,	6	and	12	(i.e.,	20%,	50%,	and	80%).	
Please	 note	 that	 the	 road	 grade	 and	 vehicle	 speed	 are	 implicitly	 aggregated	 into	 power	
demand.	The	dimension	of	remaining	time	is	not	indicated	in	the	figure.	As	can	be	observed	in	
each	slice,	when	 the	power	demand	 is	not	 so	high	 (e.g.,	below	 level	5),	action	 level	1	or	2	 is	
usually	 the	 most	 appropriate	 because	 the	 least	 ICE	 power	 is	 consumed.	 When	 the	 power	
demand	becomes	higher,	the	range	of	the	feasible	action	levels	gets	wider	also.	In	such	cases,	
lower	 levels	 of	 ICE	 power	 supply	may	 not	 be	 enough	 to	 satisfy	 the	 power	 demand	 and	 the	
resultant	SOC	level	could	be	lower	than	0.2,	resulting	in	a	penalty	defined	in	Eq.	(17).	It	is	also	
noted	that	when	SOC	 level	 is	high,	 it	 is	 less	 likely	the	higher	 ICE	power	supply	 level	would	be	
chosen	 to	 satisfy	 the	 same	 power	 demand.	 This	 is	 because	when	 the	 vehicle	 battery	 SOC	 is	
high,	the	ICE	power	is	not	likely	to	be	used	aggressively.			

	
Fig.	21.	4-D	slice	diagram	of	the	learned	Q	table.	

	
As	 discussed	 in	 the	previous	 sections,	 an	 exploration-exploitation	 strategy	 is	 adopted	 for	 the	
action	selection	process	to	avoid	premature	convergence.	The	action	with	the	biggest	Q	value	
has	 a	 probability	 of	 1-ε	 to	 be	 selected.	 Hence	 the	 value	 of	 ε	 may	 significantly	 affect	 the	
performance	of	 the	proposed	method.	To	evaluate	such	 impacts,	a	sensitively	analysis	of	ε	 is	
carried	out	and	illustrated	in	Figure	8.	It	can	be	observed	that	both	the	fuel	consumption	and	
the	resultant	SOC	curves	are	very	close	to	those	of	the	binary	mode	control	if	the	value	of	ε	is	
small.	A	possible	explanation	 is	 that	a	small	ε	value	 indicates	a	 large	probability	 to	select	 the	
most	 aggressive	 action	 with	 the	 biggest	 Q	 value	 (or	 the	 lowest	 levels	 of	 ICE	 power	 supply).	
Therefore,	 the	 battery	 power	 is	 consumed	 drastically	 as	 it	 is	 with	 the	 binary	mode	 control.		
However,	 if	 the	 value	 of	 ε	 is	 too	 large	 (e.g.,	 >0.8),	 the	 battery	 power	 is	 utilized	 too	
conservatively	where	the	final	SOC	is	far	away	from	the	lower	bound,	resulting	in	much	greater	
fuel	consumption.	It	is	found	that	the	best	value	of	ε	in	this	study	is	around	0.7,	which	ensures	
the	SOC	curve	is	quite	close	to	the	global	optimal	solution	obtained	by	the	off-line	DP	strategy.	
With	this	best	ε	value,	the	fuel	consumption	is	0.3559	gallon,	which	is	11.9%	less	than	that	of	
the	binary	mode	control	and	only	2.86%	more	than	that	of	DP	strategy	as	shown	 in	Figure	8.	
This	also	implies	that	an	adaptive	strategy	for	determining	exploration	rate	along	the	trip	could	
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be	a	useful.	 	Figure	9(a)	shows	a	linearly	decreasing	control	of	ε	along	the	trip.	 	A	smaller	ε	 is	
preferred	at	 the	 later	 stage	of	 the	 trip	because	 SOC	 is	 low	and	 the	battery	power	 should	be	
consumed	more	 conservatively.	With	 this	 adaptive	 strategy	 for	 ε,	 the	 proposed	mode	 could	
also	achieve	a	good	solution	with	0.3570	gallon	of	fuel	consumption,	which	is	11.7%	less	than	
binary	control	shown	in	Figure	22.		

	
Fig.	22.	Fuel	consumption	in	gallon	(bracketed	values)	and	SOC	curves	by	different	exploration	

probabilities.	

	
Fig.	 23.	 (a)	 Linear	 adaptive	 control	 of	 ε;	 (b)	 Linear	 adaptive	 control	 of	 ε	 with	 charging	
opportunity.	
	

5.4.3. Model	with	charging	opportunity	(tour	level)	
The	most	distinctive	characteristics	of	PHEVs	from	HEVs	is	that	PHEV	can	be	externally	charged	
whenever	a	charging	opportunity	is	available.	To	further	evaluate	the	impacts	due	to	charging	
availability,	 we	 include	 this	 information	 in	 the	 proposed	 model	 as	 a	 decision	 variable.	 For	
simplicity,	the	charging	opportunity	is	quantified	by	the	gain	in	the	battery’s	SOC,	which	may	be	
a	function	of	available	charging	time	and	charging	rate.	Data	for	a	typical	tour	is	constructed	by	
combining	a	round	trip	between	the	origin	and	destination.	 	We	assume	there	 is	a	charger	 in	



	

	 34	

the	working	place	 (west-most	point	 in	 the	map)	and	the	available	charging	gain	has	only	 two	
levels:	30%	and	60%.		In	this	case,	a	corresponding	adaptive	strategy	of	ε	is	also	used	as	shown	
in	Figure	23(b).	The	rationale	behind	this	adaptive	strategy	is	that	battery	power	should	be	used	
less	conservatively	(i.e.,	higher	ε	value)	after	charging,	and/or	when	C!	is	higher.	
	

	
Fig.	24.	Optimal	results	when	available	charging	gain	is	0.3	(C!=0.3)	

	

		 	
Fig.	25.	Optimal	results	when	available	charging	gain	is	0.6	(C!=0.6)	
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The	 obtained	 optimal	 results	 are	 shown	 in	 Figure	 24	 and	 Figure	 25.	 As	 we	 can	 see	 in	 both	
figures,	the	resultant	SOC	curves	are	much	closer	to	the	global	optimal	solutions	obtained	by	DP	
than	binary	control.	To	obtain	a	statistical	significance	of	the	performance,	the	proposed	model	
is	tested	with	30	different	trips	by	randomly	combining	two	trips	and	assume	a	charging	station	
in	between	with	a	random	C!	(randomly	choose	from	30%	and	60%).	By	taking	binary	control	as	
baseline,	the	reduced	fuel	consumption	is	given	in	the	following	Figure	26.	As	we	can	see	in	the	
figure,	 RL	 model	 achieves	 an	 average	 of	 7.9%	 fuel	 savings.	 It	 seems	 that	 having	 more	
information	 results	 in	 lower	 fuel	 savings	 which	 is	 counterintuitive.	 The	 reason	 is	 that	 the	
inclusion	of	additional	 information	or	 state	variable	 to	 the	model	exponentially	 increases	 the	
search	 space	 of	 the	 problem,	 which	 thereby	 increases	 the	 difficulty	 of	 learning	 the	 optimal	
solution.	 And	 also	more	 uncertainty	 is	 introduced	 to	 the	 learning	 process	 due	 to	 the	 errors	
within	 the	added	 information,	which	degrades	 the	quality	of	 the	best	solution	the	model	can	
achieve.		

	
Fig.	26.	Fuel	consumption	reduction	compared	to	binary	control.	

 

6. Conclusions		
In	this	study,	we	develop	two	different	on-line	energy	management	systems	for	plug-in	hybrid	
electric	vehicles,	 i.e.,	Evolutionary	Algorithm	(EA)	based	EMS	and	Reinforcement	Learning	(RL)	
based	EMS.	

For	 the	 EA	 based	 EMS,	 the	 proposed	 framework	 applies	 the	 self-adaptive	 strategy	 to	 the	
control	 of	 the	 vehicle’s	 state-of-charge	 (SOC)	 in	 a	 rolling	 horizon	manner	 for	 the	 purpose	 of	
real-time	 implementation.	 The	 control	 of	 the	 vehicle’s	 SOC	 is	 formulated	 as	 a	 combinatory	
optimization	 problem	 that	 can	 be	 efficiently	 solved	 by	 the	 estimation	 distribution	 algorithm	
(EDA).	The	proposed	energy	management	system	is	comprehensively	evaluated	using	a	number	
of	 trip	profiles	extracted	 from	 real-world	 traffic	data.	 The	 results	 show	 that	 the	 self-adaptive	
control	strategy	used	in	the	proposed	system	statistically	outperforms	the	conventional	binary	
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control	strategy	with	an	average	of	10.7%	fuel	savings.	The	sensitivity	analysis	reveals	that	the	
optimal	 prediction	 horizon	 window	 of	 the	 proposed	 energy	 management	 system	 is	 250	
seconds,	which	 requires	 5.8	 seconds	 of	 computation	 time	 in	 our	 study	 case.	 This	 amount	 of	
time	is	much	less	than	the	optimal	control	horizon	window	of	10	seconds,	which	confirms	the	
feasibility	of	real-time	 implementation.	Another	 important	advantage	of	 the	proposed	energy	
management	 system	 is	 that,	 unlike	 other	 existing	 systems,	 it	 does	 not	 require	 a	 priori	
knowledge	about	the	trip	duration.	This	allows	the	proposed	system	to	be	robust	against	real-
world	 uncertainties,	 such	 as	 unexpected	 traffic	 congestion	 that	 increases	 the	 trip	 duration	
significantly,	and	changes	in	inter-trip	charging	availability	

For	RL	based	EMS,	 it	 is	capable	of	 simultaneously	controlling	and	 learning	 the	optimal	power	
split	operation.	The	proposed	EMS	model	is	tested	with	trip	data	(i.e.,	multiple	speed	profiles)	
synthesized	 from	 real-world	 traffic	 measurements.	 Numerical	 analyses	 show	 that	 a	 near-
optimal	 solution	 can	 be	 obtained	 in	 real	 time	when	 the	model	 is	well	 trained	with	 historical	
driving	cycles.	For	the	study	cases,	the	proposed	EMS	model	can	achieve	better	fuel	economy	
than	 the	 binary	 mode	 strategy	 by	 about	 12%	 and	 8%	 at	 the	 trip	 level	 and	 tour	 level	 (with	
charging	opportunity),	respectively.	The	possible	topics	for	future	work	are:	1)	propose	a	self-
adaptive	tuning	strategy	for	exploration-exploitation	(ε);	2)	test	the	proposed	model	with	more	
real-world	 trip	 data	which	 could	 include	 other	 environmental	 states,	 such	 as	 the	 position	 of	
charging	 stations;	 and	 3)	 conduct	 a	 robustness	 analysis	 to	 evaluate	 the	 performance	 of	 the	
proposed	EMS	model	when	there	is	error	present	in	the	measurement	of	environment	states.	
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