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Perspective

Illustration of a Method to Incorporate Preference
Uncertainty in Benefit–Cost Analysis

Sunhee Baik ,∗ Alexander L. Davis, and M. Granger Morgan

Benefit–cost analysis is widely used to evaluate alternative courses of action that are de-
signed to achieve policy objectives. Although many analyses take uncertainty into account,
they typically only consider uncertainty about cost estimates and physical states of the world,
whereas uncertainty about individual preferences, thus the benefit of policy intervention, is
ignored. Here, we propose a strategy to integrate individual uncertainty about preferences
into benefit–cost analysis using societal preference intervals, which are ranges of values over
which it is unclear whether society as a whole should accept or reject an option. To illustrate
the method, we use preferences for implementing a smart grid technology to sustain criti-
cal electricity demand during a 24-hour regional power blackout on a hot summer weekend.
Preferences were elicited from a convenience sample of residents in Allegheny County, Penn-
sylvania. This illustrative example shows that uncertainty in individual preferences, when ag-
gregated to form societal preference intervals, can substantially change society’s decision. We
conclude with a discussion of where preference uncertainty comes from, how it might be re-
duced, and why incorporating unresolved preference uncertainty into benefit–cost analyses
can be important.

KEY WORDS: Benefit–cost analysis; preference uncertainty; societal decision making

1. INTRODUCTION

Benefit–cost analysis (BCA) is widely used in
policy analysis and government decision making
to examine whether a specific policy is justified, or
to compare several alternative policies with differ-
ent outcomes and time horizons. The most useful
analyses take uncertainty into account (Boardman,
Greenberg, Vining, & Weimer, 2017; Morgan,
2017; Morgan & Henrion, 1992), yet typically only
uncertainty about cost estimates and physical states
of the world is considered, neglecting uncertainty
about the value that the public places on policy
outcomes. When a decision is to be made by a
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single decisionmaker who is uncertain about an
appropriate value (e.g., the value of a statistical life),
the best practice is to use parametric analysis so as to
display the consequences of alternative value choices
(Morgan & Henrion, 1992). However, when the val-
ues involved are those of a population, no framework
exists to incorporate uncertainty in individual pref-
erences into the societal decision-making process.
In this article, we propose such an approach that
incorporates preference uncertainty using individual
preference intervals, along with different aggregation
rules, to express uncertainty in societal preferences.
Cost estimates are then compared with those societal
preference intervals to determine whether society
will surely accept (or reject) an option, or whether
an additional analytic-deliberative process should
be invoked to reach a collective societal decision
(Arvai, 2003; Cox, 2012; Dreyer & Renn, 2014;
National Research Council, 1996; Renn, 1999, 2004).

2359 0272-4332/19/0100-2359$22.00/1 C© 2019 Society for Risk Analysis

https://orcid.org/0000-0003-0946-2423
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frisa.13338&domain=pdf&date_stamp=2019-05-28


2360 Baik, Davis, and Morgan

2. INCORPORATING PREFERENCE
UNCERTAINTY INTO POLICY ANALYSIS

BCA typically uses engineering and economic
models to quantify the consequences of alternative
policy choices in monetary terms. To illustrate
uncertainty in societal preferences, we consider an
example that involves augmenting smart grid and
distributed generation technologies to allow a region
to operate as an isolated island to provide residential
electric customers with limited power when none is
available from the central grid (see Baik, Morgan,
& Davis, 2018 for details). In this and similar cases,
cost estimates are determined by factors such as the
prices of raw materials, manufacturing, labor, and
maintenance. Assuming that engineering analyses
can determine the required technology and units
with relative certainty, uncertainty in the cost esti-
mates comes from two sources: (1) uncertainty in
prices and (2) errors in estimating the cost function,
such as that knowledge about how technology
will evolve in the future is not precisely known
(Boardman, Greenberg, Vining, & Weimer, 2017).

Quantifying the benefits can be much trickier. In
this illustration, the majority of benefits only accrue
if a grid blackout occurs but customers continue to
receive (some) power. Thus, the expected value of
benefit is B = P(blackout) × value(blackout), where
P(blackout) is the probability of a blackout over a
given time frame and value(blackout) is the value
that community members place on their reliable
electric services during the blackout. Although much
effort is spent on estimating the probability of black-
outs (e.g., through simulations or by using bounding
analysis) (Morgan, 2001; Xu & Brown, 2008), the
value of the lost electricity is more difficult to esti-
mate. Typically, the value that residential electricity
customers place on electric services is assumed to be
a known quantity that can be elicited using surveys,
where customers are asked for their willingness to
pay (WTP) to avoid blackouts. Yet, it is not hard
to see that there exists uncertainty in these values
arising from several sources. Traditional issues in-
clude sampling error, where the true distribution of
WTP across individuals, or true population average
WTP, is unknown from any particular sample of
individuals, and statistical inference must be used
for the population value (Davis, 2018). There may
also be uncertainty arising from respondents not
understanding questions in survey instruments or,
despite efforts made in designing clear unambiguous
instruments, respondents may not be able to fully

envision the circumstances they would face during
a blackout (Baik, Davis, & Morgan, 2018; Baik,
Morgan, et al., 2018). Both add measurement error
on top of sampling error.

We have found that fundamental uncertainty in
the value of blackouts is present when members of
a community simply do not know exactly how much
they would value their electric services during a hy-
pothetical blackout (Baik, Davis, et al., 2018). Sup-
pose that there is a large regional blackout and you
cannot get power for 24 hours. We guess that for the
24 hours you would surely be willing to pay $1 to
have electricity to power your high-priority loads—
such as a few lights, your refrigerator, and air condi-
tioning during summer. You also would probably pay
$5 or even up to $20. But $40 might give you pause.
Is this too much? How much is usually spent on simi-
lar goods and services? Unless it is for a very unusual
situation (e.g., a planned wedding reception at your
home), it is almost certainly too much to pay $500 to
get the electricity back for 24 hours. Suppose $150 is
the largest amount you might consider, and you are
certain you would not pay more. Between these num-
bers, $40 you would surely pay and amounts above
$150 that you would surely not pay, is a range ($40–
$150) where you are unsure about paying. This is a
general pattern we have found in surveying members
of the lay public. People tend to have clear bounds to
their WTP but are unsure about what they would do
between those bounds.

To address such situations, we propose an ap-
proach to handle individual preference uncertainty
and capture that uncertainty in aggregated social
preferences. Suppose the population consists of N
individuals (in our case, residential electricity cus-
tomers) indexed i = 1, 2, . . . , N. Each individual has
a lower bound Li that is the maximum of what he
or she would surely trade in exchange for a good or
service (i.e., where the individual switches from “def-
initely buy” to “may consider buying”), and has an
upper bound Ui that is the minimum of what the in-
dividual would surely not trade in exchange for the
good or service (i.e., where the individual switches
from “may consider buying” to “definitely will not
buy”). Further, assume that Li and Ui are measured
on an interval scale for all individuals such that Li

and Ui are well defined up to affine transformations.
The range Li to Ui is the individual’s preference inter-
val, which can be interpreted as the range of values
for which the individual is unsure about whether he
or she is willing to pay any amount between Li and Ui
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(Bernheim & Rangel, 2007; Braun, Rehdanz, &
Schmidt, 2016; Dost & Wilken, 2012; Wang,
Venkatesh, & Chatterjee, 2007).

To construct a societal preference interval (L, U),
representing society’s uncertainty about the value of
avoiding a blackout (where in this case “society” is
everyone served by the feeder), we must aggregate
Li and Ui in some way. If Li and Ui are measured on
an interval scale and individuals are interpersonally
comparable so that changes in lower (upper) bounds
are equivalent from person to person, the measures
satisfy cardinal full comparability (Roberts, 2009).
Because we assume cardinal utilities with full inter-
personal comparability, individuals’ preferences can
be combined to make social decisions without con-
tradicting Arrow’s impossibility theorem, which ap-
plies only when individual preferences are ordinal
and noncomparable (Arrow, 1950; Sen, 1999).

The most common aggregation from individual
to societal preferences is the average or median
(Black, 1948), but the summation rule is by no means
the only valid mathematical or ethical rule. Instead,
cardinal full comparability also admits other aggrega-
tion rules. Two important ones that yield a transitive
social welfare function and provide interesting
bounds on what society might care about are the
minimum and maximum (Roberts, 2009; Sen, 1999).
There are arguments for and against each one. If, for
example, individuals’ lower bounds are strongly asso-
ciated with wealth, the individuals with greater lower
bounds may simply be more affluent. In this case, so-
ciety might care more about individuals with smaller
lower bounds (if no arrangements exist for cross-
subsidies), and the minimum aggregation function
should be used. If, on the other hand, individuals’
lower bounds are more strongly correlated with need
(e.g., the need for an electrically operated medical
respirator), society might care more about the indi-
viduals with larger lower bounds, and the maximum
aggregation rule would be more appropriate.

For these reasons, we suggest aggregating in-
dividuals’ preference intervals to construct societal
preference intervals. When community members’
WTP is highly correlated with their need, a de-
cisionmaker might make a decision based on the
maximum aggregation rule (favoring those who need
the most). Using the minimum aggregation rule,
we calculate society’s minimum preference interval
from the minimum lower bound (MinLB = min(Li))
to the minimum upper bound (MinUB = min(Ui);
the vertically striped area in Fig. 1). On the other
hand, when community members’ WTP is highly

correlated with their wealth, a decisionmaker might
make a decision based on the minimum aggregation
rule (favoring those who can pay the least). The same
process can be used to construct society’s maximum
preference interval from the maximum lower bound
(MaxLB = max(Li)) to the maximum upper bound
(MaxUB = max(Ui); the horizontally striped area in
Fig. 1). In between the two intervals, it is also possi-
ble to construct the interval of intermediate preference
from MinUB to MaxLB (the shaded area in Fig. 1).

Once the intervals are calculated, it is possible
to determine whether society as a whole would def-
initely reject an option, definitely accept an option,
or is unsure. As addressed in a large literature on
stochastic dominance (Henry, 1974; Pindyck, 1990;
Ramani & Richard, 1993), uncertainty about states
of the world does not matter if one alternative is bet-
ter than another in every state of the world, or al-
ways worse than another in every state of the world
(i.e., statewise dominant). Translating this insight to
our context, preference uncertainty will not matter
if paying the cost stochastically dominates rejecting
the alternative (the cost of an alternative is below the
minimum WTP for every member, thus in the “def-
initely accept” area in Fig. 1) or rejecting the alter-
native stochastically dominates paying the cost (the
cost of an alternative is above the maximum WTP
for every member, thus in the “definitely reject” area
in Fig. 1). Only two of the three possible outcomes
permit a definitive decision (accept or reject), while
society being unsure (the cost is in between MinLB
and MaxUB) means that some form of additional
deliberation is needed. In the unsure case, the out-
come of BCA might be determined by whether and
how strongly individuals’ preferences are correlated
with their wealth and need. Although we only con-
sider the most common case when individuals who
are the least interested and the most interested in a
project are fairly distinguishable and both have some
amount of preference of uncertainty, in general, the
number and type of preference intervals are deter-
mined by the distance between the two groups of in-
dividuals and how much preferences are spread out
within each group.

3. CASE STUDY: PROVIDING LIMITED
LOCAL ELECTRIC SERVICE IN THE
EVENT OF LARGE LONG-DURATION
OUTAGES IN THE BULK POWER SYSTEM

For our illustration using the value of lost
services provided by electricity during a large power
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0 ≤ C < MinLB
Cost of
reliability:

Society’s
decision: Definitely

accept
Definitely

reject

MinLB ≤ C ≤ MinUB

Society’s minimum
preference interval

Society’s maximum
preference interval

The interval of
intermediate preference

MinUB < C < MaxLB

Unsure

MaxLB ≤ C ≤ MaxUB MaxUB < C

Fig. 1. This diagram summarizes the three different regions of society’s decisions depending on society’s preference intervals. If the required
cost is lower than the minimum of society’s minimum preference interval or higher than the maximum of society’s maximum preference
interval (i.e., the required cost per outage per household located in the white regions), society can definitely accept or reject an option.
However, if the required cost is within the unsure region (i.e., the required cost is located in the shaded region), additional considerations,
such as whether and how strongly respondents’ preferences are correlated with their wealth and need, should be addressed before making
the decision.

outage of long duration, we draw on numerical
results from Baik, Davis, et al.’s (2018) face-to-face
interviews in which we elicited the value of lost
load for residential customers during a hypothetical
24-hour power outage on a hot summer weekend
in western Pennsylvania. Because of the several
assumptions we make to perform this illustration,
readers should place no credence in the specific
numerical results obtained. They should be viewed
as strictly illustrative of the method and should not
be used as a basis for any decision making about
improving power system resilience.

As seen in Fig. 2, Baik, Davis, et al. (2018)
used a multiple-bounded discrete choice preference
elicitation method, which allowed respondents to
express uncertainty in their preferences in the form
of an interval (the upper limit from the “yes” column
(Li) to the upper limit from the “not sure” column
(Ui)) (Cubitt, Navarro-Martinez, & Starmer, 2015;
Johnston et al., 2017). Respondents provided their
conditional WTP (assuming that the blackout al-
ready occurred and then were asked to value turning
their power back on) either to receive full or partial
(<20 A) backup service.

For illustration, we arbitrarily assume that the
preferences we elicited are not different across re-
gions, and construct societal preference intervals us-
ing the following approach:

� First, we extract each individual’s lower and up-
per bound (Li and Ui). Fig. 3(A) shows the dis-
tribution of Li and Ui.

� Next, we compute MinLB, MaxLB, MinLB, and
MaxUB.

� Then, we construct the society’s minimum
(from MinLB to MinUB) and maximum pref-
erence interval (from MaxLB to MaxUB).

� Finally, we calculate the interval of intermedi-
ate preference (from MinUB to MaxLB).

Following Baik, Morgan, et al. (2018), we assume
that in each of several parts of the United States,
there is a distribution feeder that serves 2,500 cus-
tomers and the incremental investment cost of modi-
fications needed to supply backup power is recovered
through service payments. To simplify the example,
we do not consider the length of disruptions or time
value of money. Because different regions face dif-
ferent types of risks, we count the number of major
electric emergency incidents and disturbances in
each state that: (1) occurred between 2000 and 2017,
(2) directly resulted in losses to customers (either de-
mand loss or number of customers affected is greater
than zero), and (3) required �24 hours to fully
restore the power (Department of Energy, Office of
Electricity Delivery and Energy Reliability, 2017).

Fig. 3(B) shows the cost required per respondent
per outage to implement the backup service on
the horizontal axis, plotted against the number of
outages on the vertical axis. Here, we assume that
individual preferences are the same in all regions
and select the following five cases (indicated by
points along the curve in Fig. 3(B)): (1) a state that
experienced the largest number of long outages (70
long outages during the past 17 years, square), (2)
Pennsylvania, for which the value was elicited (37
outages, dot), (3) four states that experienced the
average number of long outages (10 outages, trian-
gle), (4) three states that provide additional insights
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Fig. 2. Multiple-bounded discrete choice question that was used in Baik, Davis, et al. (2018), eliciting respondent’s willingness to pay
(WTP) for partial backup service during a 24-hour large regional blackout that had occurred on a hot summer weekend. In this example,
the respondent would surely pay at least $25 and might be willing to pay as much as $45 for the low-amperage backup service.

about the societal investment decision (five outages,
diamond), and (5) four states that experienced only
one long outage (star).

To determine which aggregation rule(s) should
be used, we check the correlations between in-
come levels and WTP. Because the respondents’
WTP was slightly correlated with their income lev-
els ( γIncome Li = 0.15, γIncome Ui = 0.14) and elec-
tricity need (without any limitation: γFull Amps Li =
0.19, γFull Amps Ui = 0.30, under 20 A constraint:
γLimitedAmps Li = 0.27, γLimitedAmps Ui = 0.29), all the
three preference intervals need to be considered to
make a societal decision. As shown in Fig. 3(B), the
required cost per outage per household always lies
within the interval of intermediate preference if a
region experiences more than one long outage (the
shaded area). In this case, the decisionmaker may
need additional information, such as the distribution
of individuals’ lower and upper bounds, to determine
the proportion of the population that supports the
policy (see Fig. 3(A) and Table I). However, because
the required cost per outage per household for re-
gions that experience only one long outage always
exceeds the upper bound of the interval of intermedi-
ate preference (i.e., MaxLB, which is $75), the deci-
sionmaker should definitely reject the investment in
this region.

A more traditional aggregation approach is to
use the median and average of lower and upper

bounds (Figs. 3(C) and (D)), treating everyone
equally. In this case, the results suggest that regions
suffering more than five long outages should make
the investment because the lower bound of the in-
terval lies above the cost curve (median: $30/outage-
household, average: $35/outage-household), but re-
gions suffering less than three long outages should
reject the investment because the upper bound
of the interval lies below the cost curve (me-
dian: $45/outage-household, average: $46/outage-
household). However, both strategies hide individ-
uals who are vulnerable to long-lasting outages and
need the backup services but cannot afford the ser-
vice payments.

Our illustration shows why incorporating prefer-
ence uncertainty can be important, especially when
individuals’ preferences are not sufficiently strong.
In some regions that suffer a large enough num-
ber of long outages and require relatively low ser-
vice payments (because the incremental investment
cost is evenly distributed across the outages), most
individuals are either definitely willing to pay more
than the required cost per outage per household or
are unsure. For example, if, as we assume in this il-
lustration, the preferences of residential customers
in the state with the largest number of large long-
duration outages are the same as those of respon-
dents in Baik, Davis, et al. (2018), 86% (using lower
bounds) to 89% (using upper bounds) of customers
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Fig. 3. (A) Cumulative distribution of the respondents who were surely (Li , red triangles) or might (Ui , blue dots) be willing to pay for
the low-amperage backup service against a 24-hour outage on a hot summer weekend (data compiled by Department of Energy, Office
of Electricity Delivery and Energy Reliability, 2017). (B) The required incremental cost per outage per household to implement the low-
amperage backup service (solid curve) compared to the interval of the society’s maximum preference interval (horizontally striped area),
minimum preference interval (vertically striped area in Fig. 1 and the vertical line at zero), and intermediate preference (shaded area). The
dots along the curve indicate the required incremental investment cost per outage per household for the five example states discussed in the
article. (C) The required incremental cost per outage per household to implement the low-amperage backup service (solid curve) compared
to the median of the respondents’ preferences (dark gray box). (D) The required incremental cost per outage per household to implement
the low-amperage backup service (solid curve) compared to the average of the respondents’ preferences (light gray box). Because of the
assumptions, we have had to make to perform this analysis, all results should be viewed as illustrative. No credence should be given to the
specific numerical results.

would support the investment, and preference uncer-
tainty does not make a significant difference in deci-
sion making (see Table I). However, in the case of
other regions that experience fewer long outages, the
required service payment increases, and the propor-
tion of individuals who support the backup service
using the two different bounds can change substan-
tially. For instance, in this example, the three states

expected to suffer five long outages would require
�$34/customer-outage. In this case, the individuals’
upper bounds suggest that more than 65% of individ-
uals would be supportive, whereas the lower bound
suggests that only 44% of the individuals would be
supportive (see Table I). A decision based on major-
ity preference would flip depending on both uncer-
tainty in preferences and the aggregation rules.
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Table I. The Required Payment per Outage per Household and Percentage of the Respondents Who Would Be Willing to Pay More than
the Required Incremental Investment Cost per Outage per Household Before and After Providing More Information and Exercises

After Providing
More Information

Before Providing
More Information

States/Number of Large
Long-Duration Outages
During the Lifetime of Technology

Required Payment
per Outage per

Household
Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

A state that experienced the largest
number of large long-duration outages
(70 outages)

$12 86% 89% 70% 79%

Pennsylvania (37 outages) $13 86% 89% 70% 79%
Average (10 outages) $22 68% 77% 44% 64%
Five outages $34 44% 66% 16% 51%
Minimum (one outage) $130 0% 0% 0% 0%

Note: For illustration, we arbitrary assume that the preferences elicited in Baik, Davis, et al. (2018) are not different across regions. Pref-
erence uncertainty arises from using individuals’ lower or upper bounds or providing more information and exercises do not substantially
influence decision making in high-risk regions, but low-risk regions’ decisions can be substantially influenced by both factors.

Fig. 4. Similar to Fig. 3(B) but including uncertainty that arises
from cost estimates. The error bars indicate the upper and lower
bound of the required cost per outage per household. Results are
illustrative. No credence should be given to the specific numerical
results.

Although we have focused on preference uncer-
tainty, the approach can also be used to incorpo-
rate cost uncertainty (Fig. 4) (Boardman, Greenberg,
Vining, & Weimer, 2017). In our case, the number
of customers served by a distribution feeder and the
incremental investment cost per distribution feeder
to enable islanding are the two largest sources of
cost uncertainty. We treat both factors parametri-
cally (1,500, 2,500, and 3,000 residential customers
per feeder) (Baik, Morgan, et al., 2018; Willis, 1997;
XCel Energy, 2014), and as low as $70,000 and as
high as $300,000 (Gellings, 2011; Junlakarn & Ilić,
2013). The horizontal error bars on each point in Fig.
4 indicate the maximum and minimum required costs
when the number of outages occurred is fixed. Soci-
ety should definitely reject the investment if a region

experiences less than one large long-duration outage
in 17 years because the lowest cost required per out-
age per household (slightly over $100) exceeds the
upper bound of the society’s maximum preference in-
terval ($100). Even if a region experiences more than
one long outage in 17 years, in this example, the re-
gion still could not definitely accept the project be-
cause the required cost is always higher than the so-
ciety’s minimum preference interval ($0, the vertical
line), and additional deliberation would be required.

4. DISCUSSIONS AND POLICY
IMPLICATIONS

BCA has been widely used to support choice
between policy options, but there has been no
systematic attempt to incorporate preference uncer-
tainty of the affected population. Although there
have been studies exploring individuals’ uncertainty
about their preferences, especially in stated pref-
erence data and in the use of different methods
rather than mean, traditional BCA approaches often
assume no uncertainty in preferences and use aver-
ages. Such approaches assume a level of precision in
the public’s preferences that often does not exist, can
hide the tails of the distribution, and neglect income
effects. The method that we propose aggregates
individuals’ uncertainty about their preferences,
applies the aggregation results in policy decision-
making problems in a novel way, and extends the
generality of BCA. This strategy can be used to
help decisionmakers understand when society can
make a definite decision. When it cannot, it can help
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identify what else needs to be considered, such as
exploring the role of preference uncertainty and
aggregation rules on individual preference intervals
in making a societal decision. Thus, the method we
propose could help society make more informed and
collective policy and investment decisions.

Although the approach generalizes BCA, it
remains unclear where preference uncertainty comes
from, and whether it is possible to help individuals
resolve that uncertainty. Key issues include the
hypothetical nature of contingent valuation studies
(Fischhoff & Furby, 1988), inherent biases and
measurement error in each elicitation technique
(Venkatachalam, 2004), and qualitative descrip-
tions that are translated differently than intended
(Broberg & Brännlund, 2008). Among the likely
causes of preference uncertainty, familiarity with
the alternatives is probably the most important for
long-duration blackouts. Preference uncertainty for
goods and services available in the market is usually
relatively small (Kealy & Turner, 1993), while people
find it difficult to express preferences over novel
alternatives (Fischhoff, 1991; Schulze, McClelland,
Waldman, & Lazo, 1996). Such unfamiliarity has
been proposed as a reason for violating expected
utility theory’s axioms, although empirical inves-
tigations have found little support for preference
uncertainty (in the form of intervals) as an expla-
nation for preference anomalies (Butler & Loomes,
2011; Cubitt et al., 2015).

The value that community members place on re-
liable electric services is an ideal case for illustrat-
ing the importance of preference uncertainty, where
consequences are significant but poorly understood.
Although most people are familiar with electric ser-
vices, many have not experienced long outages, nor
thought much (if at all) about losing the services that
are usually taken for granted (like heating and re-
frigeration) during those outages. Providing respon-
dents with detailed information about a prolonged
blackout and the electric services available during the
blackout decreased about 20% of the uncertainty in
their preferences and reduced the gap in the pro-
portion of individuals who support the investment
using two different bounds (as shown in Table I,
the investment decision can be flipped) (Baik, Davis,
et al., 2018), but uncertainty and inconsistencies per-
sisted throughout the study even with the additional
effort. The results suggest that while some uncer-
tainty in preferences can be resolved by helping re-
spondents think through the various aspects of the
hypothetical outage and articulate their values, for

many respondents there is an upper bound on the
precision with which they can express their prefer-
ences for novel services. This shows the importance
of incorporating the inherent uncertainty in respon-
dents’ preferences into analysis and understanding
how much such uncertainty influences the investment
decisions.

Although we limit our illustration to a hypothet-
ical 24-hour blackout of electric service, the frame-
work we propose could also be used to construct
societal preference intervals for longer and larger
outages under a variety of conditions. The conse-
quences of having almost no backup services for
longer periods (e.g., a week or more) are typically
very different than those of shorter periods, both
economically and socially, and individuals’ familiar-
ity with large outages of long duration decreases with
the duration and scale of outages (Baik, 2018). Indi-
viduals’ economic and social preferences for backup
services can be expected to be more uncertain under
such conditions, so the benefits from incorporating
uncertainty in the public’s judged preferences into
decision making would be increased considerably.
Thus, the framework we propose should be able to
help decisionmakers in making more informed and
socially responsible investment decisions in such
situations.

5. CONCLUSION

BCA and other forms of analysis are widely used
to compare policies that affect society. Although
most analyses consider the uncertainty in cost esti-
mates and states of the world, uncertainty in individ-
ual preferences is rarely taken into account. Further,
because typical BCA treats everyone in a population
the same, individuals who need the most assistance
and care, both in expressing their preferences and
weighing those preferences once expressed, are of-
ten neglected. The method we propose can help de-
cisionmakers figure out when society as a whole can
and cannot make a definite decision. If society can-
not make a definite decision and requires additional
deliberation, the method can help explore how much
preference uncertainty—the gap resulting from using
individuals’ lower and upper bounds—and aggrega-
tion rules on individual preference intervals could af-
fect the cost effectiveness of an investment project.
The method we propose could help society to make
more informed and collective policy and investment
decisions.
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