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ABSTRACT OF THE DISSERTATION

On Recursive and Hawkes Models for Forecasting

the Spread of Epidemic Diseases

by

Andrew Marcus Kaplan

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Frederic Schoenberg, Chair

The self-exciting Hawkes point process model (Hawkes, 1971) has been used to describe and

forecast communicable diseases. In this dissertation, there are two parts. First, we introduce

the non-parametric version of the recursive model (Schoenberg et al., 2019), an adaptation

of the Hawkes model which allows for variable productivity, or disease reproduction rate.

Here, we extend the data-driven non-parametric EM method of Marsan and Lengliné (2008)

in order to fit the recursive model without assuming a particular functional form for the

productivity. We then evaluate the ability of the non-parametric recursive model to fit and

forecast cases of mumps in Pennsylvania compared to that of other point process models

and a variation of the commonly used SIR (Susceptible, Infected, Recovered) compartmental

model. Second, we examine increasing surges of the COVID-19 pandemic using the HawkesN

model with an exponential kernel (Rizoiu et al., 2018), which assumes a finite susceptible

population, is considered stationary when the reproduction number κ is greater than one,

and has interpretable terms similar to that of the SIR model (Kresin et al., 2021). The

HawkesN model is fit using a least squares method introduced in Schoenberg (2021), which
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is an effective method when an epidemiologic dataset only provides a daily case count rather

than a specific time of infection. We first examine doubling time of COVID-19 in California

during three notable surges using the HawkesN model and compare its predictive ability to

that of an adaptation of the SIR compartmental model. Secondly, we compare HawkesN

to the same compartmental model in forecasting cases of SARS-COV-2 for all fifty states

nationwide. This larger study is to guide further work in improving the predictive ability of

HawkesN.
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CHAPTER 1

Introduction

1.1 Point Processes

Point process modeling is a well established technique used to model sequences of outbreaks

or event aftershocks which occur at random time intervals or locations (Schoenberg, 2017).

A point process is a collection of events that occur in a defined space such as earthquakes,

lightning strikes, wildfires, or disease outbreaks. A temporal point process can be described

as a counting method where for any time t in the timeframe [0, T ], N(t) represents the number

of points that occurred at or before t (Schoenberg, 2017). In other words, a temporal point

process model takes into account the number of events happening in a particular time frame

as well as any clustering of those times. This is contrary or in addition to a spatial point

process model which describes any possible clustering or inhibition of points spatially within

a defined region.

1.2 Self-Exciting Point Processes

The self-exciting Hawkes point process model (Hawkes, 1971) is commonly used to describe

temporal clustering phenomena. The self-exciting component refers to the fact that any

prior event can trigger future ones. The strictly temporal version of the Hawkes model for

the conditional intensity function λ is defined over the time frame [0, T ] as

λ(t) = µ+ κ

∫ t

0

g(t− t
′
)dNt

′
(1.1)

1



In other words, the conditional intensity, or the expected number of events at a given

time t, is only dependent on the background rate µ, the productivity κ, and the trigger-

ing function g. The triggering function g is a density function which estimates the amount

of self-excitation caused by previous events and the κ term is assumed constant in a simple

Hawkes model (Hawkes, 1971). It is used in a wide variety of applications ranging from

modeling earthquake patterns (Ogata, 1988), (Ogata, 1998), to crime sprees (Mohler et al.,

2011), (Park et al., 2021) and to the spread of invasive species (Balderama et al., 2012).

While the initial use of the Hawkes model has been to model earthquakes (Ogata, 1988), (Ogata,

1998), expanded versions of the Hawkes models have been applied to communicable disease

processes more recently. In epidemiologic settings, the rapid spread of a disease from one host

to another can be taken into account using the self-excitation property of the Hawkes model.

One of the first applications of the Hawkes model to disease processes is discussed in Meyer

et al. (2012) where meningococcal outbreaks in Germany have been successfully described

using a spatial-temporal model with an endemic and an epidemic component (Meyer et al.,

2017). The endemic portion represents the background rate and the epidemic part allows for

any prior infection to trigger future events; the self-exciting component. The triggering com-

ponent also depends on the intensity of a particular outbreak (Meyer et al., 2017). Another

successful application is demonstrated in Park et al. (2022) in which the spread of Ebola in

West Africa is predicted using a non-parametric representation of the Hawkes model. It is

mentioned in more detail later.

1.3 Purpose

Even though the simple Hawkes model has performed well in modeling several communica-

ble disease processes, its application is still relatively new and leaves substantial room for

improvement. For instance, the simple Hawkes model is not a stable (stationary) process

2



whenever there is an increase in cases, or κ > 1 (Park et al., 2022). With κ assumed constant,

further triggering implies that an infection will result in an expected κ+κ2+κ3+... = 1
1−κ

−1

new cases, meaning the process is only considered stationary if 0 < κ < 1. Also, the notion

that the productivity κ should be held constant, as assumed in the simple Hawkes model, is

questionable. It is mentioned in Schoenberg et al. (2019) that in purely temporal epidemio-

logical point process modeling, the expected number of transmissions for a subject infected

at time t should depend on the conditional intensity at time t. This is because when the

prevalence of the disease is low early on, the rate of transmission should be much higher than

it is for later recurrences when the virus has already been spread. The rationale for such

an argument is that human intervention, vaccines and prior exposure to the disease would

reduce morbidity (Schoenberg et al., 2019).

In this dissertation, two new adaptations of the Hawkes model, meant to address these

weaknesses, are explored in detail. The recursive model, introduced in Schoenberg et al.

(2019), allows for a non-constant productivity or κ. In Schoenberg et al. (2019), the recur-

sive model is introduced in a parametric form, but here, it is shown that it is possible to

create a non-parametric version of the recursive model that is more effective at fitting and

forecasting cases of mumps in Pennsylvania, originally published in Kaplan et al. (2021).

The first part of the dissertation introduces the non-parametric recursive model in detail.

The HawkesN model (Rizoiu et al., 2018), allows for a finite susceptible population, thus

allowing for stationarity when κ > 1 (Kresin et al., 2021). Also, it is shown that the pa-

rameters in the HawkesN model can be estimated using a least squares method introduced

in Schoenberg (2021), which permits an easier estimation when the exact time of day of an

infection is not provided, as conventional in most epidemiologic datasets. In the second part

of the dissertation, we take advantage of the newfound properties offered by the HawkesN

model and examine how the various HawkesN parameters affect doubling time during three

3



surges of the COVID-19 pandemic in California. The third part of this work is a larger anal-

ysis where case counts for all fifty states during three COVID-19 surges are fit and forecast

using both the HawkesN model as well as an adaptation of the commonly used Susceptible,

Infected, Recovered (SIR) compartmental model. The goal here is to determine specific in-

stances when HawkesN performs better than the compartmental model or vice-versa in order

to guide future work.

4



CHAPTER 2

Non-Parametric Recursive Model

2.1 Introduction

As described in Chapter 1, the simple Hawkes model makes the assumption that the number

of ”aftershocks” triggered by a current event, known as productivity, is constant (Schoenberg

et al., 2019). However, it is pointed out in Schoenberg et al. (2019) that a non-constant

productivity is warranted to take into account various patterns often seen in disease processes.

For instance, early in an outbreak, when the prevalence of the disease is low, the rate of

transmission may be much higher than at later times when the virus has already spread, due

to differences in awareness, human mitigation efforts, and prior exposure of the population

to the disease. In Schoenberg et al. (2019), the parametric version of the recursive model is

written as

λt = µ+

∫ t

0

H(λt′ )g(t− t
′
)dN

′

t (2.1)

As in the simple Hawkes model, the conditional intensity λ(t) is dependent on the back-

ground rate and the stepwise function g which takes into account the time lags between

events. However, the conditional intensity in the recursive model is also a function of H, an-

other stepwise function which depends on the rate (conditional intensity) of previous events.

In other words, H is the function which determines the productivity for a subject afflicted at

time t. Schoenberg et al. (2019) compares the fit of the recursive model to that of the simple

Hawkes model in describing known cases of Rocky Mountain Spotted Fever in California be-

tween 1960 and 2011. The log-likelihood for the recursive model was higher than that of the
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Hawkes model and the AIC criterion was lower by a statistically significant margin (Schoen-

berg et al., 2019). Despite the added complexity to the model, the recursive component is

shown beneficial in forecasting the disease over time.

While the findings from Schoenberg et al. (2019) are significant, both the Hawkes and re-

cursive models are estimated parametrically using maximum likelihood estimation, which

assumes a specific pattern for the g and h functions. Here, we develop a non-parametric

model which allows for more flexibility when fitting it to data, which in turn results in more

accurate forecasts. The idea expands upon the technique used in Kelly et al. (2019), Park

et al. (2022) where a non-parametric representation of the simple Hawkes model outper-

formed the traditional SEIR (Susceptible, Exposed, Infected, Recovered) model in predict-

ing the spread of Ebola in West Africa. The method used most recently in Park et al.

(2022) involves non-parametric optimization using an expectation maximization algorithm

originally developed by Marsan and Lengliné (2008) to analyze seismic data. Described in

more detail in the Background section, the E-M algorithm in Marsan and Lengliné (2008)

assumes a stepwise triggering function, thus allowing for estimation of the step heights as

though they are parameters. In addition, non-parametric Hawkes processes have been ex-

tended to applications in other areas such as renewal immigration (Wheatley et al., 2014),

online learning algorithms (Yang et al., 2017), finance (Kirchner and Bercher, 2018) and in

estimating civilian fatalities in the Iraq War (Lewis and Mohler, 2011).

The non-parametric recursive model is evaluated using epidemiological data by compar-

ing the accuracy of both the model fit and forecast to those of other point process models,

as well as more widely used compartmental models such as the SEIR (Susceptible, Exposed,

Infected, Recovered) compartmental model first introduced by Kermack and McKendrick

(1927) and specifically its extension, the SVEILR model introduced by Li et al. (2018).

The SVEILR model is a system of differential equations that can be adjusted to account
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for varying methods of transmission and rates of exposure, vaccination and recovery. Of

particular interest here is that the proposed non-parametric version of the recursive model

can outperform both the Hawkes and SVEILR models in its ability to fit epidemic data and

forecast future cases. We compare the models using 32 years of reported cases of mumps

in Pennsylvania, fitting using training data from January 1970 to September 1990 and then

assess their fit using data from October 1990 to December 2001. This chapter provides a

more detailed version of the Kaplan et al. (2021) manuscript, published in the Biometrical

Journal with a reproducibility badge as of August, 2021.

2.2 Background

Parametric Hawkes models are conventionally estimated by maximum likelihood estimation

(MLE) (e.g. (Ogata, 1988)), and the resulting estimates have desirable asymptotic proper-

ties such as consistency, asymptotic normality and efficiency (Ogata, 1978). However, in

practice often the likelihood function is quite flat around its maximum, and optimization

methods may fail to converge or depend greatly on the choice of starting values (Schoen-

berg, 2013). As an alternative, Veen and Schoenberg (2008) suggested a method based on the

expectation-maximization (EM) algorithm to approximate maximum likelihood estimation.

The key to such an approach is that the information containing which event triggers which

subsequent event is unknown and is therefore treated as probabilistic. The expectation step

(E-step) updates the probability matrix consisting of the overall branching structure based

on θ̂nEM . The maximization step (M-step) determines the updated parameter estimates, i.e.

θ̂n+1
EM based on the updated branching structure computed in the E-step. The EM algorithm

is run until convergence (Veen and Schoenberg, 2008). The probabilities of such triggerings,

for each pair of points, are updated iteratively as parameter estimates are also updated (Veen

and Schoenberg, 2008).
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In 2008, Marsan and Lengliné extended this EM-based method to include non-parametric

optimization when analyzing seismic activity. They assumed that the triggering function

was stepwise, which allowed for estimation of the step heights as though they were param-

eters in a parametric model. This was in essence estimating the step heights using the EM

algorithm, but also allowed for the added flexibility of a data-driven process.

Since the initial use of the EM algorithm proposed in Marsan and Lengliné (2008) was

intended for seismic applications, wi,j is defined to be the weighted influence that earth-

quake i had in triggering earthquake j. The entire matrix of weights is lower triangular in

nature where the entry for row i and column j is wi,j and the diagonal entries represent

the probability that earthquake i was a main event. Assuming this definition, the expec-

tation step of the EM algorithm involves computing the updated matrix of weights given

the spatial-temporal conditional intensity λ(x, t). It is designated in Marsan and Lengliné

(2008) as

wij = αjλ(|xj − xi|, t− ti,mi) (2.2)

where α is a normalizing coefficient such that
∑j−1

i=1 wi,j + w0,j = 1.

The weights are updated based on the conditional rate and density of earthquakes of a

specified magnitude at a given time and location. They are also normalized such that the

sum of the following two components add up to one; A) the weights (probabilities) of the

j−1 earthquakes influencing earthquake j and B) earthquake j being a main event (Marsan

and Lengliné, 2008).

In this setting, the expectation step of the EM algorithm involves computing an updated

matrix of triggering probabilities given the conditional intensity. In the maximization step,

estimates of λ are recalculated given the updated matrix of triggering probabilities (Marsan

and Lengliné, 2008). The EM algorithm is iterative and runs until convergence. The orig-
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inal application was in estimating seismic activity in the greater Los Angeles area during

the 1984-2002 period where the algorithm converged quickly and resulted in an accurate

model taking into account a previously studied pattern of cascading aftershocks (Marsan

and Lengliné, 2008).

While the initial use for the algorithm in Marsan and Lengliné (2008) was for earthquake

analysis, more recent studies have applied it when analyzing purely temporal epidemiologic

processes. For instance, Park et al. (2022) applied a purely temporal form of the EM al-

gorithm introduced in Marsan and Lengliné (2008) to fit a simpler non-parametric Hawkes

model describing the spread of Ebola during the 2014 epidemic in Africa. It was found that

the non-parametric fit of the Hawkes model delineated the spread of the virus as well or

better than the traditional SEIR models used for the Ebola outbreak (Park et al., 2022).

However, the non-parametric EM algorithm used in Park et al. (2022) was only used to fit

the traditional Hawkes model. A potential weakness in using the basic Hawkes model is that

any continuation of the disease relies on the assumption of constant productivity throughout

the course of the outbreak (Park et al., 2022). There may be a decrease in further disease

outbreaks since each occurrence of the disease only directly triggers a Poisson(κ) number of

new outbreaks where κ < 1 (Park et al., 2022). Thus, such a model might underestimate

the disease spread early on when the cumulative number of subjects infected is low and

overestimate it during the later stages of the epidemic when the disease has already affected

a population (Park et al., 2022). Hence, we build on this body of research by introduc-

ing a non-parametric form of the recursive model (Schoenberg et al., 2019) taking variable

productivity into account.
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2.3 Methods

2.3.1 Non-Parametric Estimation of the Recursive Model

In fitting the recursive model (2.1), both the triggering function g and the productivity

function H must be estimated. We propose an iterative EM-based procedure similar to that

in Marsan and Lengliné (2008), where the productivity function H is estimated based on

initial estimates of the background rate µ and the triggering function g. This estimated

productivity function is then used to update estimates of the background rate µ and the

triggering function g, and so on until a level of convergence is reached.

A few details should be given before describing the algorithm. We suppose purely tem-

poral point process data of the form τ1, τ2, ..., τn, where n is the number of events observed

in the time interval [0, T ]. P is defined as a matrix of estimated probabilities such that Pij

is the estimated probability that event i was directly triggered by event j. This probability

matrix is by definition lower-triangular since an event j can only trigger later events. Each

diagonal entry Pii represents the probability that infection i is a background event, not trig-

gered by any previous event. The sum of any row of P must therefore equal 1, since each

event must either be a background event or have been triggered by some prior event. As

in Marsan and Lengliné (2008), g is assumed to be a step function indicating the density

of triggered points with time lags in some prespecified bins, and similarly we estimate H as

a step function with predefined bins corresponding to intervals of the conditional rate, λ.

Each of the step heights for h is estimated by determining the productivity in each bin where

productivity is defined as the sum of the proportion of events that result directly from prior

events rather than entirely new main events. The strategy is to estimate the step heights

for g and H as though they were parameters as in Marsan and Lengliné (2008) to allow for

both the increased flexibility of non-parametric estimation as well as easier interpretation

and forecasting ability.
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The number of bins chosen for both g andH is user defined. There seems to be a bias/variance

tradeoff between having too many bins or too few, and a possible rule of thumb is to choose

the bins so that there are at least 100 time points per bin. In this application, with 13,627

points in our training dataset, we chose 100 bins for g and H. In addition, to ensure that

there are sufficient observations in each bin for g and H, all of the smallest interevent times

are grouped together into one bin for g and all of the highest productivities are similarly

grouped together into one bin for H. We assume here that the background rate µ is constant

and estimate this parameter µ as well.

After a quick initialization step (first E-step) where initial estimates of Pij and H are defined,

the following EM algorithm can be run until a level of convergence or number of iterations

is reached. Note that the initial value for H is the constant
∑

i

∑
j<i

P̂ij

n
, which is the sum

of the probabilities that each infection is triggered by some preceding point rather than a

new immigrant event, which is a sensible initial estimate for the productivity.

Maximization Step:

Part 1: Estimate ĝ. First determine the interevent times, τi − τj, for all positive inte-

gers j < i < n. For each bin Bl, an interval of the real line containing some of the interevent

times, set

ĝl =

∑
i

∑
j<i I(τi − τj ∈ Bl)(P̂ij)∑

i

∑
j<iwlP̂ij

(2.3)

where wl is the width of bin Bl. The bins Bl need not be of equal width. We suggest setting

the bins so that they span the entire range of interevent times. To be consistent with the

methodology used for the non-parametric version of the Hawkes model (Gordon, 2017), a

loglinear approach using base 10 is applied here.
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Part 2: Update µ̂.

µ̂ =
1

T

n∑
i

P̂ii. (2.4)

Part 3: Update λ̂(τi) using µ̂ and the most recently updated estimates of ĝ and Ĥ, let-

ting

λ̂(τi) = µ̂+
i∑

j=1

Ĥj ĝ(τi − τj). (2.5)

Part 4: Update estimates of the productivities Hi = H(λ(τi)). For each bin Ck, an in-

terval of the real line containing some of the values of λ̂(τj), set

Ĥk =

∑n−1
j=1

∑n
i=j+1 I(λ̂j ∈ Ck)(P̂ij)∑n
j=1 I(λ̂j ∈ Ck)

, (2.6)

provided
∑n

j=1 I(λ̂j ∈ Ck) > 0, and Ĥk = 0 otherwise. Thus the sum of the columns of P̂ij

where λ̂j ∈ Ck are averaged. Then, for any j such that λ̂(τj) ∈ Ck, set Ĥ(λ(τj)) = Ĥk.

Expectation Step:

Update P̂ using the values of ĝ, Ĥ and µ̂ obtained in the Maximization Step.

P̂ij =
ĝ(τi − τj)Ĥj

µ̂+
∑i−1

k=1 ĝ(τi − τk)Ĥk

. (2.7)

Running all the parts of the expectation and maximization steps results in one complete

iteration of the recursive Algorithm. While it may be customary to run until convergence,

due to small changes from iteration to iteration in the large matrix Pij of size n × n, the

algorithm often fails to converge completely. In such cases, we terminated the algorithm
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after 100 iterations.

2.3.2 Fitting and Forecasting Point Process Models

When fitting a point process model, the exact inter-event times between events are of im-

portnace in determining the triggering function. Since the dataset of interest consists of

weekly state totals, the onset time for each infection within a given week period is randomly

drawn from a uniform distribution covering the 7 day time interval as in (Park et al., 2022)

and (Schoenberg et al., 2019). In other words, the randomly assigned onset time within a

given week is considered to be the exact event time for the purposes of this analysis.

Once infection times are randomized, the interevent times are then used to estimate the

triggering functions to fit each model. In the case of the parametric versions of the point

process models, the values for the parameters in the triggering functions are estimated via

maximum likelihood estimation (Ogata, 1978). For the parametric Hawkes process,

λ(t) = µ+ κ
∑
i:τi<t

g(t− τi) (2.8)

two common forms for the triggering function g are the Pareto

g(u) = (p− 1)cp−1 1

(u+ c)p
(2.9)

and the exponential

g(u) = βe−βu. (2.10)

When fitting the parametric recursive model, the productivity κ varies by

κi =
c

(λi)p
(2.11)
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To fit the non-parametric Hawkes model, we used the version of the Marsan and Lengliné

(2008) EM algorithm implemented by Gordon (2017), which is available in the R package

nphawkes.

Once the point process models are fit to the data, the next step is to forecast future events

using the models obtained from the training dataset. In this analysis, we project the number

of cases one week into the future using a fitted model of choice as well as actual case counts

from weeks prior. Here, we forecast using a simulation method first introduced by Lewis

and Shelder (1979). The thinning method works by first generating a homogeneous Poisson

process of candidate points with rate b, a large number which should be greater than the

maximum conditional intensity observed in the training data. Then, after sorting all the

candidate points (τi, i ∈ 1, ...b) in chronological order, we keep each of these points inde-

pendently from all others with probability λ(τi)
b

. The conditional intensity for the forecast

period of interest would then be estimated using the sorted collection of points consisting of

all event times in the training data, kept points from any prior forecast wekks and accepted

candidate points from the current period using a fitted point process model of choice with the

parameters or bins kept static. This method works for all point process methods considered.

To assess and compare competing models, one may inspect the likelihood as well as the

root mean squared error (RMSE) over each week. The latter is particularly relevant when

making comparisons over a testing period for simulations of the models fit using separate

training data. Because of occasional outliers in the simulations, we compared the trimmed

mean of the simulated totals, with the top and bottom 10% of these values removed, to the

observed weekly totals in the testing data. Another statistic useful for goodness of fit as-

sessment is the scaled Stoyan-Grabarnik statistic (Stoyan and Grabarnik, 1991),
∑n

i=1
1

T λ̂(τi)
,

which should ideally be close to one if the estimates λ(τi) are close to the true conditonal

rate, since the expected value of the statistic is easily seen to equal one by the martingale
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formula (Baddeley et al., 2005).

Another diagnostic tool useful for comparing the fit of point process models is superthin-

ning (Clements et al., 2012). Superthinning is a method of combining thinning observed

points (Lewis and Shelder, 1979) in areas with high intensity and superposition of simulated

points (Brémaud, 1981) in sparse regions to perform a diagnostic check on the residuals.

According to Clements et al. (2012), superthinning results in a homogeneous residual point

process only if the conditional intensity of the fitted model estimates the actual values pre-

cisely. To avoid the possible pitfalls of thinning or superimposing, a combined method is

used for superthinning (Clements et al., 2012). Given a constant b selected by the user,

such as the mean of the estimated conditional intensities at the observed points (Gordon

et al., 2015), one thins the data keeping each observed point τi independently with probabil-

ity min{1, b

λ̂(τi)
} and then superposing simulated points according to a Poisson process with

rate max{0, b − λ̂(t)}. If the estimated conditional rate λ̂(t) is correct, then the resulting

residual process is a stationary Poisson process of rate b. The superthinned residuals may

thus be inspected for trend, clusters, gaps or other patterns as evidence of lack of fit of the

model.

2.4 The SVEILR Model

The method to fit and forecast the SEIR model differs substantially from that of the point

process model. While no special considerations have to be made for point process models

regarding a specific disease, details such as the rate of exposure, method of spread and hu-

man intervention must be taken into account in the design of a compartmental model. This

is because the model is designed as a closed system of differential equations where subjects

go from one state, i.e. susceptible, infected or recovered to another at a rate determined by

terms that have a simple interpretation (Kermack and McKendrick, 1927). A single vaccine
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model is warranted since the original mumps vaccine was introduced before this period in

1967 and the second dose was not mandated until 1989 (Centers for Disease Control and

Prevention, 2019).

We followed Li et al. (2018), who developed a one vaccine model for mumps in main-

land China, where the disease is still prevalent. Although there is sufficient availability

of the second MMR dose, China only provides one free dose of MMR and there is no push

from National Health and Family Planning Commission of the People’s Republic of China

(NHFPC) to require children to take a second dose (Li et al., 2018). The proposed ex-

panded SVEILR (Susceptible, Vaccinated, Exposed, Infected, Light Infection, Recovered)

model adds two necessary nodes to take into account the vaccinated state (V) as well as

a lightly infected state (L) since not all cases are symptomatic (Li et al., 2018), (Centers

for Disease Control and Prevention, 2019). However, with waning immunity, a subject can

either return to the susceptible state (S) or even be exposed (E) to the virus (Li et al., 2018).

In this analysis, the differential equation model used to model mumps in Pennsylvania during

the 1970-1990 time period is quite similar to the one applied in Li et al. (2018). As in (Li

et al., 2018), the values optimized by minimizing the sum of squares include the transmission

rate (β), waning immunity rate (λ), vaccine coverage of the susceptible/exposed (ϵ), propor-

tion of people seeking medical advice (γ) and initial proportions susceptible and vaccinated

(S(0), V (0)).

The system of differential equations developed by (Li et al., 2018) for this SVEILR model is
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as follows:
∂S

∂t
= µ− pµE − βS(I + L) + λV − (ϵ+ µ)S

∂V

∂t
= ϵS + ϵ1E − λV − κβV (I + L)− µV

∂E

∂t
= βS(I + L) + ρµE + κβV (I + L)− (α + ϵ1 + µ)E

∂I

∂t
= αγE − (δ1 + µ)I

∂L

∂t
= α(1− γ)E − (δ2 + µ)L

∂R

∂t
= δ1I + δ2L− µR

The set of differential equations establish the rate that the numbers in each state change

over time. In addition, each term in this model represents an effect which can be interpreted

independently. As described in Li et al. (2018),

β = transmission rate

λ = waning immunity rate

ϵ = vaccine coverage of the susceptible

ϵ1 = vaccine coverage of the exposed

κ = invalid vaccination rate

α = rate moving from exposed to severe or mild infectious

γ = proportion of the severe infections seeking medical advice

δ1 = rate moving from severe infectious to recovered

δ2 = rate moving from light infectious to recovered.

The model was then applied to monthly mumps data acquired from the CDC of China. Since

mumps spreads the most rapidly amongst children in school, Li et al. (2018) fit the SVEILR

model for half year periods since peak cases tend to occur after major holiday breaks. The
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SVEILR model is fit in Li et al. (2018) using data from February 2009 to September 2014 by

minimizing the sum of squares between the number of severe infections (state I) accounted

for by the model and the actual case count and then forecast from October 2014 to Septem-

ber 2015.

The only difference in our fitting of the model to mumps in Pennsylvania versus that of Li

et al. (2018) is that peaks in mumps cases occur in Pennsylvania annually corresponding

with the beginning of the academic year when schoolchildren return from break rather than

twice per year as reported in (Li et al., 2018). As a result, the SVEILR model is fit here

using weekly data for each year separately beginning from the first week in October and

ending in the last week in September.

Forecasting the SVEILR model was performed using standard exponential smoothing. Pa-

rameter estimates are obtained by taking a weighted average for all the years during the train-

ing period (Shmueli and Lichtendahl, 2016). To smooth, a reasonable value of the smoothing

parameter α is chosen and for each of the six parameters of interest (β, λ, γ, ϵ, S(0), V (0)),

the value of each parameter estimate is determined by (1−α
α

)(αpi−1)(α
2pi−2)...(α

kpi−k) where

pi is the parameter estimate from year i.

2.5 Data

Recorded cases of mumps statewide in Pennsylvania between January 1970 and December

2001 were obtained courtesy of Project Tycho (Van Panhuis et al., 2018). The dataset

consists of weekly statewide case totals during this time period. According to Centers for

Disease Control and Prevention (2019), mumps is a contageous viral disease, usually spread

through airborne transmission. Initial symptoms of mumps include fever, headache, fatigue

and loss of appetite and then subsequent swelling of the salivary glands (Centers for Disease
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Control and Prevention, 2019). While morbidity from mumps is low (2 out of 10,000 cases

in the United States in the pre-vaccine era), mumps has been known to cause orchitis (tes-

ticular inflammation), encephalitis and even permanent hearing loss in a small percentage

of cases (Centers for Disease Control and Prevention, 2019).

In 1967,the still currently used mumps vaccine was introduced in the United States. In

the U.S., the mumps vaccine is now available in combination with the measles and rubella

vaccines, known as MMR (Centers for Disease Control and Prevention, 2019). In 1977, one

dose of the MMR vaccine was recommended for all children 12 months and older. However,

in 1989, the vaccine policy was updated to include a second dose at 4-6 years of age after it

was discovered that waning immunity to mumps was a real possibility (Centers for Disease

Control and Prevention, 2019). As a result, the incidence of mumps in the U.S. has dropped

from 55.5 cases per 100,000 people to < 2 cases per 100,000 in 2017 (Elflein, 2019).

Despite the fact that the MMR vaccine has done wonders to slow down a once all too

common disease, it is important to continue studying the prevalence of mumps since oc-

casional outbreaks still occur. For example, in 1986 and 1987, there was a resurgence of

mumps, primarily among teenagers born prior to the 1977 MMR vaccine mandate (Centers

for Disease Control and Prevention, 2019). Additionally, although the MMR vaccine has

been available for decades, sporadic outbreaks of mumps still happen. In 2006, there was an

outbreak which affected many midwestern university students, most of whom lived in dormi-

tories (Centers for Disease Control and Prevention, 2019). Another occurred in 2009 when

3502 cases of mumps were reported in the Orthodox Jewish communities in New York City,

an area where 90% of the children at the time received one or more doses of MMR (Cen-

ters for Disease Control and Prevention, 2019). These mini-resurgences of mumps have led

researchers to question whether those vaccinated are still prone to losing immunity to the

disease over their lifetimes.
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The dataset of interest includes weekly Pennsylvania state totals for reported cases of mumps

over a 32 year period beginning in January 1970. Any weeks with no data over this time-

frame are treated as having no confirmed cases. Figure 2.1 illustrates the weekly incidence

of mumps statewide for the entire time period.

Figure 2.1: Weekly reported cases of mumps in Pennsylvania over time. To the left of

the dotted line is the training data which includes all case counts from January 1970 to

September 1990. To the right is the testing data which includes all weekly counts from

October 1990 to December 2001.

In order to evaluate the fitting and forecasting ability of each of the models, we use the

data recorded for the first 2
3
of the time frame of interest, which includes all weekly case

counts from January 1970 to September 1990, as the training portion. The testing portion is

the last third of the dataset, or weekly reported infections from October 1990 to December
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2001.

2.6 Results

2.6.1 Model Fitting

Table 2.1 lists the parameter estimates for the SVEILR model for each of the twenty years

fit individually during the course of the training period.

Academic Year β λ γ ϵ S(0) V(0) I/100000
Jan 1970 - Sep 1970 0.55211 0.01426 0.16893 0.00100 0.08833 0.61189 68
Oct 1970 - Sep 1971 0.34540 0.01142 0.19802 0.00100 0.07234 0.75687 51
Oct 1971 - Sep 1972 0.56523 0.00521 0.05487 0.00100 0.02342 0.82246 40
Oct 1972 - Sep 1973 0.48028 0.00615 0.08134 0.00100 0.02063 0.87002 49
Oct 1973 - Sep 1974 0.38864 0.00915 0.10813 0.00100 0.07885 0.75271 41
Oct 1974 - Sep 1975 0.32220 0.00858 0.04812 0.00100 0.04734 0.72389 36
Oct 1975 - Sep 1976 0.87266 0.00618 0.07130 0.00100 0.00391 0.54681 35
Oct 1976 - Sep 1977 0.58590 0.00502 0.01516 0.00100 0.06679 0.82386 12
Oct 1977 - Sep 1978 0.52773 0.00452 0.03159 0.00621 0.00001 0.78110 33
Oct 1978 - Sep 1979 0.33159 0.00704 0.02371 0.00100 0.07724 0.86552 16
Oct 1979 - Sep 1980 0.41620 0.01561 0.05648 0.00943 0.00001 0.93898 17
Oct 1980 - Sep 1981 0.42398 0.02703 0.05925 0.03364 0.00001 0.98814 63
Oct 1981 - Sep 1982 0.48071 0.02221 0.05562 0.04158 0.00001 0.95661 13
Oct 1982 - Sep 1983 0.38916 0.02290 0.01558 0.02730 0.00001 0.92277 5
Oct 1983 - Sep 1984 0.31616 0.00602 0.00599 0.00100 0.20079 0.74775 4
Oct 1984 - Sep 1985 0.38391 0.01970 0.05065 0.03394 0.08606 0.89321 8
Oct 1985 - Sep 1986 0.69370 0.06991 0.13761 0.11711 0.88178 0.11712 5
Oct 1986 - Sep 1987 0.25167 0.02881 0.02315 0.02672 0.00001 0.95429 4
Oct 1987 - Sep 1988 0.48329 0.00521 0.01040 0.00100 0.06763 0.83424 8
Oct 1988 - Sep 1989 0.12743 0.02214 0.09552 0.00790 0.15226 0.82994 8
Oct 1989 - Sep 1990 0.79982 0.00534 0.01344 0.00100 0.00001 0.58238 8

Table 2.1: Annual estimates of the transmission rate (β), waning immunity rate (λ), vac-

cine coverage of those who are susceptible or exposed (ϵ), proportion of people with severe

infections (γ), initial proportions susceptible and vaccinated (S(0), V (0)) and rate of severe

infection per 100,000 people at the end of each year ( I
100000

).
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The decrease over time in the annual estimated incidence of infection is obvious. This may

be due to corresponding increases in the vaccination rate which rose from 58.4% in 1970 to

a high of 67.6% in 1982 (Centers for Disease Control and Prevention, 2011). However, data

from 1986 to 1990 was not recorded and the survey methods to collect such data changed

after 1993 resulting in dramatically higher vaccination rates being reported (Centers for Dis-

ease Control and Prevention, 2011). Note that some of the reduction in reported cases is

also reflected by a drop in the estimates of the proportion of infections that are severe, γ.

This is especially apparent in the precipitous drop in γ̂ from 1970 to 1971.

In addition, Figure 2.2 shows the fit of the SVEILR model to the Pennsylvania mumps

training data on the left side of the dotted line.

Figure 2.2: Reported weekly total cases of Pennsylvania mumps (gray) with fitted SVEILR

model estimates for the training period (solid black) and SVEILR forecasts for the testing

period using exponential smoothing with α = 0.05 (dash line) or α = 0 (solid line).
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The SVEILR model appears to adequately account for both the seasonality of mumps in-

fections as well as the decreasing overall trend during the twenty year period. In addition,

the model is largely identifying the peak times correctly. The RMSE for the SVEILR model

over the training period is 15.58 cases per week.

For the simple Hawkes model given by (2.8) and with triggering function (2.9), the following

parameter estimates are obtained using MLE: µ̂ = 0.089, κ̂ = 0.951 points per observed

event, ĉ = 1.82 events per day, and p̂ = 2.50. For the recursive model with triggering func-

tion (2.10) and with recursive component (2.11), the estimates are µ̂ = 0.1279, ĉ = 0.8623

points per observed event, β̂ = 0.7027 events per day, and p̂ = −0.04486.

Fitted estimates of the triggering function, g, for the parametric and non-parametric Hawkes

and recursive models are shown in the top panel of Figure 2.3. The bottom panel shows the

corresponding estimated productivity functions, Ĥ(λ), for the four models.
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Figure 2.3: Estimated triggering density, g, for the parametric Hawkes, non-parametric

Hawkes, parametric recursive and non-parametric recursive models (top). Estimated pro-

ductivity function, Ĥ(λ), for the Hawkes, parametric recursive and non-parametric recursive

models (bottom).
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There appear to be rather substantial variations in productivity as the estimated condi-

tional rate varies.

Figure 2.4 shows the weekly numbers of observed cases on mumps in Pennsylvania along

with the fitted rates from the fitted parametric and non-parametric Hawkes and recursive

models. All four of the point process models appear to fit quite closely on the training data,

despite underestimating the largest peaks, especially in 1970-1972.

Figure 2.4: Estimated conditional rates and observed weekly number of cases of mumps

in Pennsylvania over the 1970-1990 training period. The fits for the parametric Hawkes

(top left), non-parametric Hawkes (top right), parametric recursive (bottom left) and non–

parametric recursive (bottom right) models are shown along with the observed number of

reported cases.

As shown in Table 2.2, the non-parametric version of the recursive model achieves the lowest
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RMSE of five models considered.

Model Training RMSE Stoyan-Grabarnik Forecasting RMSE Standard Error

SVEILR (α = 0.05) 15.580 — 4.136 0.095

SVEILR (α = 0) 15.580 — 3.059 0.087

Param. Hawkes 5.901 0.9992 2.380 0.090

N.P. Hawkes 5.058 0.9988 2.253 0.089

Param. Recursive 4.744 1.0035 2.502 0.089

N.P. Recursive 4.732 1.0002 1.866 0.077

Table 2.2: RMSE for each model using the training data and the testing data. The standard

error reported is for the forecasting RMSE.

All four of the point process models fit the training data substantially better than the

SVEILR model. The Stoyan-Grabarnik statistics, for the parametric Hawkes model, the

nonparametric Hawkes model, the parametric recursive model, and the nonparametric re-

cursive model, respectively, were 0.9992, 0.9988, 1.0035 and 1.0002, indicating no noticeable

lack of fit for any of the four point process models.

2.6.2 Residual Analysis

Figure 2.5 shows the superthinned residuals over time for the non-parametric recursive model.

The number of superthinned residuals from 1970 to 1975 is slightly lower than for subsequent

years, indicating overestimation of the rate during this early period. Figure 2.5 also shows

a histogram and lag plot of the standardized interevent times for the superthinned residuals

from the non-parametric recursive model.
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Figure 2.5: For the non-parametric recursive model: (a) Count of superthinned residuals

over time using b = 100, (b) histogram of standardized times between consecutive events,

ui = F−1(τi − τi−1), where F is the cumulative distribution function of the exponential

with rate b = 100, and (c) lag plot of standardized times between consecutive events, for

superthinned residuals.
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There is a noticeably higher frequency than expected of the longest interevent times for the

non-parametric recursive model. However, there is no noticeable clustering of the interevent

times.

2.6.3 Out-of-Sample Forecasting

Figure 2.2 shows forecasts using the SVEILR model with parameters exponentially smoothed

using α = 0.05 or with no smoothing (α = 0). The weekly reported case counts during the

testing period resemble the last few years in the training period more than the earlier years.

To note, the RMSE is lower using α = 0 than when using α = 0.05.

The parametric Hawkes, parametric recursive and non-parametric Hawkes models forecast

the number of cases accurately from 1990-1994, but substantially overestimate the cumu-

lative number of infections during later years. On the other hand, the forecast using the

non-parametric recursive model slightly underestimates the case counts during the first sev-

eral years of the testing data but is relatively accurate from 1996-2001. Overall, as shown in

Table 2.2, the non-parametric recursive model has the smallest RMSE of 1.866 cases/week,

followed by the non-parametric Hawkes model with an RMSE of 2.253 cases/week. The

SVEILR model, whether with α = 0 or α = 0.05, had substantially higher RMS errors.

The non-parametric recursive model has both the lowest RMSE within the training por-

tion of the dataset as well as improved accuracy in forecasting weekly cases of mumps in the

testing dataset. The next best in fitting was the parametric recursive and the runner up for

forecasting was the non-parametric Hawkes model. The RMS error for all four point process

models was smaller than that of the SVEILR model for both fitting and forecasting.
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2.7 Discussion

In this chapter, we have introduced a non-parametric version of the novel recursive point

process model first introduced in Schoenberg et al. (2019) for epidemiologic application. We

show that the nonparametric recursive model appears to outperform the alternative models

for forecasting weekly mumps cases in Pennsylvania and is also substantially less prone to

overfitting as evidenced by the improved performance during the testing period relative to

competing point process and SVEILR models.

An important item for further research would be to explore how all of these models might be

improved by estimating a nonstationary background rate, incorporating the decreasing trend

in cases as well as their seasonality, while simultaneously estimating the triggering portions

of the models as in Zhuang and Mateu (2019), for example. Additionally, future work should

focus on ideal selection of bin widths and bin numbers for fitting the nonparametric forms of

the recursive and Hawkes models, especially for the estimation of the productivity function,

H. Also of importance is the search for optimal ways to smooth the simple binned estimates

considered here, perhaps via kernel smoothing as in e.g. Mohler (2014). Furthermore, future

research should include adapting both the non-parametric as well as the parametric com-

parison models to take into account the more recent HawkesN model advance as in (Rizoiu

et al., 2018), (Kong et al., 2020) and (Kresin et al., 2021), which allows for a finite susceptible

population.

The methods explored here should be applied to other diseases as well, including emerg-

ing epidemics. It is unclear as to whether the techniques of fitting and forecasting would

remain the same if the incidence of a disease is static or even increases over time.

Another important potential use of the non-parametric recursive model is to forecast the

prevalence of various diseases based on the rate of vaccine coverage. This is particularly rel-
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evant in light of recent anti-vaccination trends in many developed nations, some of which may

be attributable to misguided fears about unknown side-effects from vaccines (Dubé et al.,

2015). According to (Dubé et al., 2015), 5% of parents in the United States refuse to have

their children vaccinated and up to one-third of children in the U.S. lack the recommended

protection from easily avoidable diseases.
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CHAPTER 3

Doubling Time Estimation Using the HawkesN Model

for SARS-COV-2 in California

3.1 Introduction

Epidemiologists frequently refer to the doubling time of an infectious disease as a way to

summarize how rapidly the disease is spreading in a particular location. Doubling time

is defined as the time needed for total infections to double (Centers for Disease Control

and Prevention, 2009), (Centers for Disease Control and Prevention, 2021a) and is easily

interpretable by both epidemiologists and the general public. It is also a useful statistic

relating how the number of cases is expected to change as a function of time during a surge

of cases. Despite this importance, some ambiguity exists in the definition of doubling time.

Furthermore, the relationship between doubling time and parameters in widely used com-

partmental and point process epidemic models is not fully understood. In Merler et al.

(2013), the relationship between doubling time and the reproduction number parameter in

the Susceptible-Infected-Recovered (SIR) model, R0, is explored. In this chapter, we extend

the results of Merler et al. (2013) by exploring the relationship between doubling time and

parameters in the HawkesN point process model (Rizoiu et al., 2018).

As described in Chapter 1, the simple Hawkes model is not a stable (stationary) process

whenever there is an increase in cases, or κ > 1 (Park et al., 2022). However, the HawkesN

adaptation (Rizoiu et al., 2018) solves the stability issue for expanding epidemics. The
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HawkesN model as shown in Rizoiu et al. (2018)

λ(t) = (1− Nt

N
)[µ+

∑
tj<t

ϕ(t− tj)] (3.1)

where ϕ(t− tj) is defined using the exponential kernel function

ϕ(t− tj) = κθe−θ(t−tj) (3.2)

assumes a finite susceptible population N and removes any subject who has been previously

infected prior to time t. This allows for the conditional intensity at time t to be proportional

to the size of the remaining susceptible group at time t, which allows for stability when

κ > 1 (Kresin et al., 2021).

Another unique property of HawkesN is that with an exponential kernel, the expected num-

ber of individuals infected in a finite population is close to the estimate from a stochastic

SIR model as it approaches stationarity, even for an increasing pandemic when κ > 1 (Kresin

et al., 2021). This allows for the ability to make direct comparisons between various features

in HawkesN and SIR compartmental models, such as κ and R0, which both represent the

expected number of infections triggered by a previous event (Kresin et al., 2021).

The motivation for this chapter is to expand upon the ideas presented in Rizoiu et al. (2018)

and Kresin et al. (2021) and use the HawkesN model to accurately predict the doubling time

for an increasing epidemic. Here, two different doubling time measures are used. Cumulative

doubling time is the amount of time for the total number of cases to double (Merler et al.,

2013) and daily rate doubling time is the number of days it takes for the daily reported

infections to double (Johns Hopkins University and Medicine, 2022). To address our goals,

we first run a simulation to determine the effects of the productivity term κ and the gen-

erational length coefficient β on both doubling time measures of interest. This allows us to
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gain a theoretical understanding as to how each component of HawkesN impacts doubling

time. Second, we compare the performance of HawkesN in forecasting doubling times for

SARS-COV-2 during three surges in California to that of the SQUIDER (Susceptible, Quar-

antine, Undetected Infected, Dead, Exposed, Recovered) model (Khan et al., 2020), a simple

modification of the basic SIR compartmental model adapted to the original surge of the

SARS-COV-2 virus. We evaluate the performance of both models using simulations and em-

pirical doubling times based on daily reported statewise totals for SARS-COV-2 infections in

California (California Department of Public Health, 2021b) during three time periods when

infections were increasing (February & March 2020, November 2020 and July 2021).

3.2 Methods

3.2.1 Simulation of Doubling Time

3.2.1.1 HawkesN Process Generator

In order to obtain estimates for doubling time, we have developed an algorithm to simulate

HawkesN processes given the background rate µ, productivity rate κ, generational length

β and susceptible population N . In Kresin et al. (2021), it has been shown that one can

simulate a disease process using a SEIR-Hawkes process, taking advantage of both the easy

interpretability of terms from the SIR compartmental family of models as well as the point

process properties of Hawkes. In Kresin et al. (2021), the conditional intensity of new

infections is given by

λE(t) = (1− NE
t

N
)
∑
t>tIj

R0γexp(−γ(t− tIj )) (3.3)
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and infection times are generated by

P (tIj > tEj + c) =

∫ ∞

c

µexp(−µ(s− tEj ))ds (3.4)

In (3.3), the conditional intensity is still a function of the susceptible population, productiv-

ity and triggering function as in (3.1), but the SIR parameters representing total infections

up to time t (NE(t)), transmission rate (R0) and infection rate (γ) take the place of the

usual HawkesN terms (Kresin et al., 2021). Also, in (3.4), a new infection tIj is generated

at some time interval c after the previous one dependent on an exponential kernel featuring

the rate of exposure µ (different from the HawkesN background rate in (3.1)). It is shown

in Kresin et al. (2021) that the SEIR-Hawkes process can be simulated using an iterative

process.

In this paper, we develop an algorithm to simulate HawkesN processes using a similar method

to the one used in Kresin et al. (2021). The goal is to simulate a HawkesN process until a

defined termination time Tend. This method simulates a branching process where the first

set of accepted points consist merely of background infections randomly scattered from time

0 to Tend with rate µ. Then candidate offspring are proposed for each background point and

are either accepted or rejected to imitate the triggering function g. The next generation

then includes the original background points and the most recent accepted offspring and the

process repeats until the branching process from time 0 to Tend has been exhausted.

Set R0 = κ and γ = β for interpretability. After the time of infection has been estab-

lished for each of the initial background events, each iteration of the branching process is

comprised of the following steps, closely resembling the algorithm presented in Kresin et al.

(2021):

Part 1: For each accepted point from the previous generation, a, the number of candidate
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offspring is determined by drawing a random number M ∼ Poisson(R0). Then for each of

M proposed future events, the time of exposure is offset from the ancestor’s by exp(µ). Last,

all of the accepted points and candidate points are sorted together in chronological order.

These will be known as simulated points, or s. The previously accepted points should also

be kept in chronological order independently.

Part 2: For each candidate point, c:

λc = 1− Na

N

Na∑
i=1

R0γexp(−γ(t(c)− t(ai))) (3.5)

and

νc =
Ns∑
i=1

R0γexp(−γ(t(c)− t(si))) (3.6)

where t(c) is the proposed time of infection for the candidate point, t(ai) is the event time

for accepted point i and t(si) is the infection time for simulated point i. Also, Na is the

number of accepted points with an infection time before that of the candidate point and Ns

is interpreted similarly, but including all simulated points.

Part 3: Accept or reject each candidate point using Lewis’ thinning method (Lewis and

Shelder, 1979). Accept the candidate point if

Dc ∼ Unif [0, 1] <
λc

νc
. (3.7)

Part 4: To take into account exposure time before infection, the time of infection for each

newly accepted point is offset by

t(a) = t(a) + exp(γ). (3.8)
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Running all parts of the algorithm results in one generation of the branching process for

HawkesN.

3.2.1.2 Doubling Time Using HawkesN Simulator

In order to examine the effects of generation length β and infection rate κ on doubling time,

500 simulations are run for each value of κ ∈ [1.1, 5] and several choices of β using the

HawkesN process generator. In this case, we are interested in the median cumulative and

daily rate doubling times from the 50th infection recorded, the cutoff used in analyses run

by Johns Hopkins University and Medicine (2022). Here, cumulative doubling time is defined

as the time it takes to record 50 additional infections. Daily rate doubling time is defined

as the number of days until twice as many daily infections happen as on the day when the

50th infection occurs.

3.2.2 Model Fitting

3.2.2.1 The HawkesN Model

In fitting any Hawkes model (1.1) the values for µ, κ and the triggering function g must

be estimated. This is conventionally done using maximum likelihood estimation and usu-

ally results in estimates with beneficial asymptotic properties including efficiency, consis-

tency and asymptotic normality (Ogata, 1978), (Ogata, 1988). However, when fitting the

Hawkes model to reported daily case counts without time of day precision, the least squares

technique has been known to work well (Schoenberg, 2021) since it takes advantage of the

relationship between Hawkes processes and autoregressive techniques derived in (Kirchner,

2016), (Kirchner, 2017). In Schoenberg (2021), simple Hawkes model parameters are fit to

daily case counts covering the first 576 days of the COVID-19 pandemic for all 50 states
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using least squares, minimizing

T∑
t=1

(N(t)− [µ+
16∑
i=1

κ(t− i)g(i)N(t− i)])2 (3.9)

where T is the total elapsed time of 576 days and N(t) is the number of observed infec-

tions on day t. In the non-parametric version, thirty-six 16-day periods are fit, resulting in

a value for κ each and the g is a stepwise triggering function with 16 steps (Schoenberg,

2021). The Hawkes model fitted using least squares method is shown to fit SARS-COV-2

data quite well in Schoenberg (2021). It also describes COVID-19 transmission in Indi-

ana using an additional step function (Mohler et al., 2021) and COVID-19 in the United

States using additional spatial parameters and mobility data (Chiang et al., 2020) effectively.

In this setting, a form of the non-parametric least squares technique for the HawkesN model

is also applied since the dataset of interest involves daily case counts. Since the population

of California is 40, 129, 160 as of the 2020 census (California Department of Public Health,

2021b) and total reported infections in any COVID surge is likely a small fraction of the

total susceptible population, the impact of N is miniscule and thus not added into the least

squares minimization. However, instead of obtaining a κ for each 16 day period, our least

squares algorithm outputs one value for κ minimizing

T∑
t=1

(R(t)− [µ+ κ

16∑
i=1

g(i)R(t− i)])2 (3.10)

where R(t) is the number of cases reported on day t. This modification allows for shorter

duration training datasets of 1 month or less which is needed when examining doubling time.

Also, once the triggering stepwise function g is obtained, a non-linear smoothing function is

applied resulting in a singular parameter β. This allows for an estimate of the background

rate µ, productivity rate κ and inverse of the generation length β which can be fed in to the

doubling time simulator.
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3.2.2.2 The SQUIDER Model

Since the epidemiologic application used here involves fitting and forecasting daily reported

SARS-COV-2 cases, it is only fair that the SIR model used as a comparison to HawkesN is

adapted to fit such data. While many compartmental models have been developed for de-

scribing the behavior of the COVID-19 pandemic, the SQUIDER model (Khan et al., 2020)

is a relatively simple adaptation to the basic SIR model that has been shown to work well

fitting and forecasting the initial SARS-COV-2 surge in the United States in February - May,

2020. Similar to the SIR model, SQUIDER is also designed as a closed system of differential

equations where individuals susceptible to the virus travel from one state to another at a

rate dictated by terms with relatively simple interpretations.

The expanded SQUIDER (Susceptible, Quarantine, Undetected Infected, Infected, Dead,

Exposed, Recovered) model has four additional nodes beyond what is present in the basic

SIR model in order to take into account specifics regarding the behavior of the COVID-19

pandemic (Khan et al., 2020). The quarantine state (Q) takes into account subjects who have

either been potentially exposed and quarantining at home for the required 10 days (CDC,

2021) or those who are staying at home voluntarily due to stay-at-home orders (Khan et al.,

2020). Another factor taken into account by the undetected infected (U) and the undetected

recovered / dead (E) states is that not all cases or even outcomes are detected due either to

a lack of testing or proper reporting (Bahning et al., 2020), (Khan et al., 2020). Lastly, the

(D) state represents the known proportion of individuals who pass away from complications

due to COVID-19 (Khan et al., 2020).

In this analysis, the differential equation model used to fit and forecast COVID-19 data

in California is similar to the original SQUIDER algorithm presented in Khan et al. (2020).

As in Khan et al. (2020), optimization involves minimizing the sum of squares between

expected and actual counts for both cumulative infections and cumulative deaths simulta-
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neously. The resulting fitted parameters include the rates of transmission (β), testing (δ),

recovery (α), known deaths (γ), waning immunity (ρ) and undetected outcomes (ϵ) as well as

the original proportion of undetected infecteds, U(0), and a which is the normalized number

of new infections in time (Khan et al., 2020). The a term allows for a curvilinear optimiza-

tion to occur since mixing susceptible and undetected infectious populations at a constant

rate does not always make sense in states or cities with small or isolated populations (Khan

et al., 2020).

An additional component to the SQUIDER model which is also included in the optimization

is the quarantine measure. In Khan et al. (2020), both the time of the initial quarantine as

well as the proportion of the population that follow through are included as free parameters.

To simplify the model, the proportion that either enters or leaves quarantine is measured

by single pulses. For this paper, only the share of the population which has entered or left

quarantine during two stay-at-home orders issued in California (Executive Department State

of California, 2020), (California Department of Public Health, 2021a) is taken into account.

In other words, q1 and q2 are the groups of Californians who entered and left quarantine

on March 19th, 2020 and May 18th, 2020 respectively whereas q3 and q4 represent the pop-

ulation that followed the second stay at home order beginning on November 19, 2020 and

ending on January 25, 2021.

The system of differential equations developed by Khan et al. (2020) is slightly modified

and is as follows:
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∂S

∂t
= −βSUa − qS + ρ(E +R)

∂U

∂t
= −βSUa − (q + ϵ+ δ)U

∂I

∂t
= δU − (γ + α)I

∂R

∂t
= αI − ρR

∂D

∂t
= γI

∂Q

∂t
= q(U + S)

∂E

∂t
= ϵU − ρE

where

q = q1 on Mar 19, 2020

q = q2 on May 18, 2020

q = q3 on Nov 19, 2020

q = q4 on Jan 25, 2021

q = 0 otherwise

To interpret the compartmental model, the proportion of individuals who are added to each

state (S,Q,U,I,D,E,R) is governed by the top set of differential equations. The proportion

of individuals in the Q (quarantine) state only changes on days when the four pulses q1,

q2, q3 and q4 occur. The model is applied to daily reported case counts for SARS-COV-2

in California and minimizes the sum of squares between the actual and estimated detected

cumulative detected infections (state I) as well as the predicted and true cumulative death

toll from the virus (state D) as in Khan et al. (2020).
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3.2.3 Model Evaluation

3.2.3.1 Fitting

In order to evaluate the fitting potential of both the HawkesN and SQUIDER comparison

models, the measure of interest is the RMSE between predicted and actual doubling time

during the training period. In this context, the reference date is defined as the first day

taken into consideration when fitting both models while the cutoff date is the last day of

the training period. When examining the fit for a given length training period > 5 days, we

predict the cumulative and daily rate doubling times using just the first 5 days of the fitted

model up to the day before the cutoff day. The resulting training RMSE is the square root

of the mean of the squared differences between the estimated doubling times and the actual

values.

For the HawkesN model, µ, κ and β are obtained using the modification of the least squares

method originally described in Schoenberg (2021). Then, using the HawkesN Process Gener-

ator, 100 HawkesN branching processes are simulated where N is the population of California.

The median of the 100 doubling times calculated for each fit is used as the estimate.

For the SQUIDER model, optimization is performed as described above. Then the esti-

mated daily infections are calculated by dividing the reported infected state (I) by 14 to

take into account the two weeks on average that an individual is usually in the infected

state (Lewis et al., 2021). Here, the predicted doubling times used in determining the train-

ing RMSE are calculated using these case count estimates. Since some doubling times used

to calculate the fitting RMSE extend into the forecasting period, the estimated doubling

time is determined by continuing the disease process beyond the end of the training period

while keeping fitted parameters β, δ, α, γ, ρ, ϵ, U(0), a and q constant.
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3.2.3.2 Forecasting

To examine the forecasting ability for both models, we use the RMSE between the actual

and model estimated doubling times for both cumulative and daily rate. For context, both

the HawkesN and SQUIDER models are fit from the reference date to the cutoff date. The

cumulative doubling time is defined as the number of days post training period it takes to

double the number of cumulative reported cases between the reference and cutoff days. Rate

doubling time is the number of days after the training period it takes to double the number

of daily cases detected on the cutoff date. For training periods of 10 to 31 days in length

using the same starting reference date, each forecasted rate and cumulative doubling time

is reported. The forecast RMSE, calculated individually for both doubling time metrics, is

the average of the differences between the model predicted and true doubling times for all

22 fitting period lengths.

To forecast using the HawkesN model, 100 simulations are generated from the HawkesN

Process Generator using fitted values of µ, κ and β as well as the population of California

for N . The median cumulative and rate doubling times computed from the 100 simulations

are used as the estimates when calculating the forecast RMSE for HawkesN.

For the SQUIDER model, after β, δ, α, γ, ρ, ϵ, U(0), a and q are fit, they are held con-

stant during the forecast period (Khan et al., 2020). The estimated daily and cumulative

infections and deaths are also estimated at the end of the fitting period on the cutoff day.

Then, the population proportions in each of the S,Q,U,I,D,E,R states are estimated each

day thereafter with the fitted parameters constant. Predicted doubling times are calculated

using the estimated cumulative and daily infection counts (state I) from the forecast period.
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3.3 California SARS-COV-2 Data

The SARS-COV-2 coronavirus, originally discovered in December, 2019 inWuhan, China (Cen-

ters for Disease Control and Prevention, 2021a), is the cause of the SARS-COV-2 disease

outbreak originally declared a worldwide pandemic by the World Health Organization on

March 11, 2020 (Cucinotta and Vanelli, 2020). Person to person transmission of the virus is

usually airborne, causing symptoms ranging from high fever to body aches, loss of taste and

smell and shortness of breath (Centers for Disease Control and Prevention, 2021a). While

the vast majority of symptomatic SARS-COV-2 infections are considered mild, anyone is at

risk of more severe symptoms requiring hospitalization, especially those who are immuno-

compromised or over age 65 (Centers for Disease Control and Prevention, 2021a). During

peak surges, hospitals fill up and deaths increase as the number of people who are seriously

or even critically ill rises rapidly (Centers for Disease Control and Prevention, 2021a). An

accurate description of the spread of the virus during these surges and a widely used metric

for this purpose is doubling time (Merler et al., 2013), (Kresin et al., 2021). Doubling time

is easy to interpret and has been used to examine growth rates of various epidemics when

control measures are either introduced or relaxed (Merler et al., 2013).

The California Department of Public Health (2021b) supplied official California statewide

totals of the daily reported cases and deaths from SARS-COV-2 between February, 2020 and

December, 2021. Daily reported cases are seen in Figure 3.1.
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Figure 3.1: Daily number of reported cases and estimated productivity, κ̂, for fitted HawkesN

model, for Spring 2020 time period (top), Autumn 2020 (middle), Summer 2021 (bottom).

For each day t, productivity is estimated using data from beginning of the plotted period up

to and including day t.
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We define each of three reference dates as the first day of the fitting period at the be-

ginning of a given SARS-COV-2 surge. Each surge is analyzed separately, with cumulative

cases and deaths set to zero within each surge.

The first time period of interest (beginning 2/16/20) is the initial Spring 2020 surge of SARS-

COV-2 (California Department of Public Health, 2021b) when the population of California

had not yet been exposed to the novel coronavirus as shown by a retrospective study of 1700

individuals with respiratory symptoms in December, 2019, none of whom had SARS-COV-

2 (Hogan et al., 2020). Although testing for the virus was still quite limited in California

during this time and there were severe testing problems (Patel, 2020), the reported Statewide

count is used for the purposes of this analysis as the best option available.

The second surge analyzed (beginning 10/25/20) is during Autumn 2020, when there was

another dramatic increase in hospitalizations and fatalities statewide (Centers for Disease

Control and Prevention, 2021c). While there had been some population exposure due to

the Spring 2020 surge and in Summer 2020, an insufficient proportion of the population

was sufficiently immune to provide general herd immunity (Centers for Disease Control and

Prevention, 2021c), (Fontanet and Cauchemez, 2020).

The third wave analyzed here (beginning 6/20/21) is during Summer 2021, when the more

infectious Delta variant of SARS-COV-2 became dominant in California (Centers for Disease

Control and Prevention, 2021b). By this time, vaccines effective against the Delta strain such

as BNT162b2 developed by Pfizer (Bian et al., 2021) had been approved for emergency use

by the U.S. Food and Drug Administration for those over the age of 12 (U.S. Food & Drug

Administration, 2021). However, only 68% of the eligible population in California was fully
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vaccinated by June 20, 2021 (California Department of Public Health, 2022) which did not

provide for sufficient immunity against Delta.

3.4 Results

Figure 3.2 shows the median cumulative doubling time and daily rate doubling time for

simulations of the HawkesN model governed by a range of κ and β values, each simulated

500 times, irrespective of the background rate µ.
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Figure 3.2: Doubling times over 500 simulations where β = 1
3
, 1
5
, 1
10
, 1
20
. Top: median cumu-

lative doubling time from the time when 50 total infections are observed. Bottom: Median

daily rate doubling time from the time when 50 total infections are observed.

Here, β is the parametric estimate of the triggering function g where 1
β
is the generational
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length, or time between initial contagion and any resulting future infections. Both the cu-

mulative doubling time and daily rate doubling time are defined as the time elapsed from the

50th recorded infection until the time of the corresponding doubling, as in the COVID-19

Dashboard provided by Johns Hopkins University and Medicine (2022). The median cumu-

lative doubling times decrease as κ increases for each value of β. As β decreases, cumulative

doubling times increase as expected, since β represents the inverse of generation length.

However, as κ increases from 1.1 to 5.0, the effect of β on doubling time appears to dampen,

for both the rate doubling times and cumulative doubling times.

Table 3.1 shows how the HawkesN parameter estimates, fit by least squares to the Cali-

fornia SARS-COV-2 data, vary as the observation period varies.
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Fitting Period (Days) Spring 2020 Autumn 2020 Summer 2021
— µ κ β µ κ β µ κ β
10 10.4 2.3 0.09 3167.0 2.1 0.05 91.1 1.7 0.10
11 10.9 3.7 0.08 3468.7 1.9 0.05 95.8 1.5 0.05
12 10.2 1.9 0.10 3567.3 2.2 0.06 89.2 1.6 0.07
13 9.1 2.8 0.06 3183.9 2.6 0.03 90.6 1.1 0.07
14 9.3 2.7 0.05 3564.2 1.4 0.07 86.6 1.1 0.08
15 6.0 3.2 0.08 2466.5 1.3 0.10 88.2 1.3 0.04
16 4.4 3.1 0.08 2159.2 1.4 0.09 100.1 1.5 0.06
17 12.1 3.1 0.07 2408.2 1.7 0.06 100.7 1.8 0.06
18 8.3 3.2 0.07 2360.0 1.6 0.06 92.5 2.4 0.04
19 11.9 3.1 0.06 2434.2 1.6 0.06 109.0 2.4 0.04
20 10.1 3.3 0.06 2420.3 1.6 0.06 102.7 2.1 0.05
21 8.7 3.5 0.06 2222.0 2.0 0.05 105.4 2.7 0.05
22 10.0 3.6 0.06 2413.5 1.6 0.06 110.0 2.3 0.03
23 12.0 4.1 0.06 2402.1 2.0 0.05 119.1 2.9 0.04
24 10.0 4.0 0.06 2409.0 2.0 0.05 100.2 2.4 0.04
25 2.0 3.3 0.07 2402.4 2.0 0.05 101.2 2.8 0.04
26 8.0 3.8 0.06 2329.7 2.1 0.04 104.0 2.7 0.03
27 2.0 3.3 0.07 2182.7 2.2 0.04 102.3 2.2 0.04
28 18.0 4.6 0.05 2189.0 2.0 0.04 88.0 2.8 0.03
29 18.0 4.6 0.05 1862.3 1.9 0.05 104.1 2.8 0.04
30 17.9 4.8 0.05 2081.3 2.2 0.04 103.0 2.8 0.04
31 20.0 4.8 0.04 2366.0 2.2 0.04 102.7 2.8 0.04

Table 3.1: Fitted values for HawkesN parameters µ, κ, β, estimated for various length

training periods starting on the reference date.

Within each of the three surges, the dataset’s origin date is the same, and the length of

the observation period is allowed to vary. The estimated background rate µ is highest for

the Autumn 2020 time period, whereas the estimates of κ are generally highest during the

initial Spring 2020 surge, when more of the population was susceptible and only minimal

mitigation efforts were in place, in agreement with the justification for the recursive model

in Schoenberg et al. (2019). Estimates of β are generally slightly higher during the initial
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Spring 2020 surge but vary only minimally throughout, compared to the other HawkesN

parameters due to a longer time period between exposure and symptomatic disease for the

original variant (Centers for Disease Control and Prevention, 2021a).

Table 3.2 provides estimates for selected parameters (β, δ, γ, α) for the SQUIDER model

fit to the same California SARS-COV-2 data.

Fit days Spring 2020 Autumn 2020 Summer 2021
— β δ γ α β δ γ α β δ γ α
10 0.696 0.473 6.639 0.337 0.999 0.128 7.077 0.092 0.885 0.828 6.142 0.298
11 0.703 0.526 5.587 0.275 0.792 0.457 6.889 0.001 0.841 0.502 6.149 0.303
12 0.689 0.491 4.870 0.339 0.681 0.471 6.647 0.110 0.696 0.522 6.107 0.244
13 0.705 0.501 4.165 0.321 0.919 0.830 6.447 0.073 0.825 0.759 6.046 0.097
14 0.691 0.492 3.623 0.315 0.707 0.570 6.266 0.048 0.529 0.275 5.974 0.215
15 0.682 0.480 3.134 0.114 0.865 0.840 6.155 0.136 0.726 0.607 5.890 0.210
16 0.699 0.490 2.642 0.283 0.998 0.903 6.567 0.727 0.819 0.104 5.802 0.001
17 0.732 0.509 2.696 0.299 0.804 0.531 5.914 0.961 0.937 0.318 5.698 0.129
18 0.705 0.490 2.922 0.297 0.891 0.579 5.799 0.054 0.915 0.793 5.575 0.132
19 0.678 0.474 2.908 0.261 0.689 0.608 5.705 0.091 0.911 0.667 5.443 0.247
20 0.712 0.489 3.083 0.282 0.726 0.504 5.629 0.043 0.731 0.683 5.311 0.161
21 0.695 0.484 3.040 0.272 0.672 0.631 5.565 0.024 0.952 0.695 5.194 0.233
22 0.719 0.496 2.903 0.297 0.687 0.679 5.517 0.070 0.270 0.134 5.089 0.019
23 0.717 0.495 3.081 0.284 0.836 0.792 5.496 0.001 0.729 0.675 4.974 0.141
24 0.721 0.486 3.076 0.344 0.999 0.947 5.345 0.141 0.727 0.698 4.839 0.092
25 0.755 0.509 3.017 0.302 0.999 0.899 5.688 0.094 0.778 0.746 4.700 0.045
26 0.704 0.467 2.805 0.294 0.802 0.671 5.735 0.192 0.856 0.318 4.567 0.002
27 0.686 0.467 2.656 0.269 0.984 0.990 5.256 0.045 0.685 0.506 4.509 0.291
28 0.720 0.470 2.460 0.457 0.770 0.432 5.592 0.001 0.533 0.480 4.325 0.091
29 0.721 0.480 2.379 0.353 0.802 0.421 5.339 0.001 0.999 0.955 4.120 0.511
30 0.771 0.528 2.464 0.363 0.590 0.484 5.324 0.001 0.744 0.663 4.101 0.218
31 0.694 0.468 2.637 0.272 0.944 0.585 5.168 0.001 0.522 0.385 3.996 0.044

Table 3.2: Fitted values for selected parameters of the SQUIDER model, α, β, δ and γ,

estimated for various length training periods starting on the reference date.
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The estimated contact rate β is relatively constant for most fit lengths in all three time

periods, ranging between 0.6 to 0.9. The estimated testing rate δ is generally higher during

the Autumn 2020 and Summer 2021 SARS-COV-2 surges than during Spring 2020. Also,

the estimates of the fatality rate γ are generally highest in the Autumn 2020 time period,

and correspondingly the estimated recovery rate α is lowest during Autumn 2020 as well.

In Figure 3.3, the simulated in-sample RMSEs for the HawkesN and SQUIDER models

are compared, using cumulative doubling time as a metric.
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Figure 3.3: Fitting stage RMSEs of cumulative doubling time estimates for the HawkesN and

SEIR models. Results for Spring 2020 time period (top), Autumn 2020 (middle), Summer

2021 (bottom).
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The two models perform quite similarly throughout during the three in-sample periods,

though for the Spring 2020 time period, the HawkesN model has a slightly higher training

RMSE than does SQUIDER for most of the fitting period. For the Autumn 2020 data, the

training RMSE is generally lower for HawkesN than for SQUIDER when the fitting period

is 25 days or longer. For Summer 2021, the training RMSE is typically slightly higher for

HawkesN than for SQUIDER. The higher in-sample RMSE for HawkesN for Spring 2020

and Summer 2021 is likely due to the fact that it is a simpler model with three parameters

fit rather than twelve as in the SQUIDER model.

Figure 3.4 again compares the training RMSEs for the HawkesN and SQUIDER models

during the same time periods, but uses daily rate doubling time as a metric.
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Figure 3.4: Fitting stage RMSEs of daily rate doubling time estimates for the HawkesN and

SEIR models. Results for Spring 2020 time period (top), Autumn 2020 (middle), Summer

2021 (bottom).
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Again the two models perform strikingly similarly. For Spring 2020 and Summer 2021,

the fitting RMSE is slightly higher for the HawkesN model than for the SQUIDER model

when the fitting duration is less than 26 days, while in Autumn 2020, the HawkesN model

generally has a lower fitting RMSE than the SQUIDER model.

The results for each of the models forecasting doubling times, evaluated with different data

from that used in the fitting of the models, are shown in Table 3.3 and in Figures 3.5 and 3.6

below. Table 3.3 reports the RMSE values when forecasting the cumulative doubling time

and the daily rate doubling time for each surge.

Metric Model Spring 2020 Autumn 2020 Summer 2021

Cumulative HawkesN 1.461 1.324 1.475

Cumulative SQUIDER 1.087 2.637 1.552

Daily Cases HawkesN 7.210 4.251 5.378

Daily Cases SQUIDER 7.477 20.621 5.685

Table 3.3: RMSE for forecasted cumulative and daily rate doubling times for each model.

The out of sample RMSE is considerably lower for the HawkesN model than for the SQUIDER

model overall, and especially for both the Autumn 2020 surge. During Autumn 2020, the

HawkesN model has 49.8% smaller errors in forecasting cumulative doubling times, and

79.4% smaller errors in forecasting daily rate doubling times, compared to the SQUIDER

model. For the initial Spring 2020 surge, however, the SQUIDER model has 26.9% smaller
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errors in forecasting cumulative doubling times than the HawkesN model, although even in

Spring 2020, the HawkesN model outperforms the SQUIDER model in forecasting daily rate

doubling times.

Illustrated in Figure 3.5 is the forecasting performance of each model using the cumula-

tive doubling time metric for each of the three time periods tested.
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Figure 3.5: Cumulative doubling time estimates for HawkesN (red), SEIR (blue) and the

actual cumulative doubling time (black) from the end of the fitting period. For HawkesN

(red), 100 simulations run with the thick line representing the median and the thin dash

lines representing the 90% bound based on the simulations. Results for Spring 2020 time

period (top), Autumn 2020 (middle), Summer 2021 (bottom).
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For the initial SARS-COV-2 surge in Spring 2020, both the SQUIDER model and the

HawkesN model appear to slightly overestimate the cumulative doubling time when the

fitting period is 19 to 24 days in length and considerably underestimate cumulative dou-

bling times when the fitting period is 28 days or longer. The middle 90 percent ranges of

HawkesN simulations contain the true cumulative doubling times in 10 out of 22 forecasts in

Spring 2020, and are within one day of doing so in 8 other instances. For the Autumn 2020

COVID surge, while the SQUIDER model substantially underpredicts the cumulative dou-

bling times particularly when the fitting period is 29-30 days, the HawkesN model appears

to forecast accurately. The middle 90% of forecasted cumulative doubling times containing

the observed cumulative doubling time in 18 of 22 forecasts. The HawkesN model forecasts

also have higher accuracy than the SQUIDER model during the Summer 2021 SARS-COV-2

increase, with the SQUIDER model underestimating the cumulative doubling time when the

fitting period is 25 days or longer. During Summer 2021, the middle 90% ranges of simulated

cumulative doubling times for the HawkesN model contain the observed cumulative doubling

times in 18 out of the 22 forecasts, and are within one day of doing so for all 22 forecasts in

both Autumn 2020 and Summer 2021.

As shown in Figure 3.6, both the HawkesN and SQUIDER models forecast daily rate dou-

bling times accurately in most cases.
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Figure 3.6: Daily rate doubling time estimates for HawkesN (red), SQUIDER (blue) and

the actual daily rate doubling time (black) from the end of the fitting period. For HawkesN

(red), 100 simulations run with the thick line representing the median and the thin dash

lines representing the 90% bound based on the simulations. Results for Spring 2020 time

period (top), Autumn 2020 (middle), Summer 2021 (bottom).
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However, the SQUIDER forecasts of daily rate doubling times appear to be far more volatile

and thus occasionally have much larger errors, particularly in Autumn 2020. Interestingly,

both models underpredicted the rate doubling time in late March and early April 2020, when

the rate of daily new recorded infections slowed, and neither model anticipated this trend.

During both the Autumn 2020 and Spring 2021 timeframes, the HawkesN forecasts of rate

doubling times had substantially smaller errors than the SQUIDER model. In total, the

middle 90% range of simulations of HawkesN contains the true rate doubling time in 39 out

of these 44 forecasts during these two time periods.

3.5 Conclusion

The HawkesN model appears to generally outperform the SQUIDER model in forecasting

cumulative doubling times and rate doubling times during surges of SARS-COV-2 in Califor-

nia. The RMS errors in the HawkesN model when forecasting daily rate doubling times for

all three SARS-COV-2 surges are lower than those of SQUIDER, as are those in forecasting

cumulative doubling times during two of the three time periods of interest. The HawkesN

model also appears to be substantially less prone to overfitting than the SQUIDER model

as shown by the relative improvement compared to SQUIDER when tested on data not used

in the fitting of the models.

An important item for future research involves exploring better ways to estimate the sus-

ceptible population when applying HawkesN to epidemic diseases such as SARS-COV-2 and

its variants. The analysis here essentially assumes everyone in California is susceptible, and

for N we use the State population according to the 2020 census (California Department of

Public Health, 2021b). However, as noted in Rizoiu et al. (2018), estimating the size of the
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susceptible population at any given point in time is not trivial and may perhaps be estimated

by simulating a portion of the branching process first. Another potentially fruitful line of

research may involve combining the HawkesN model and the recursive model, which could

perhaps allow for a finite population as well as varying productivity, both shown to improve

model performance individually when applied to forecasting epidemic diseases.

In addition, future research should explore whether the models assessed herein might be

improved by taking into account vaccine uptake and waning immunity to the SARS-COV-2

virus as well as the impact of new variants (Centers for Disease Control and Prevention,

2021a). For this application, we have examined doubling times during three distinct peri-

ods, each of length 1-2 months, of sustained increase during which the population’s immunity

was unlikely to change substantially. However, a longer term forecast might need to take

these extra factors into account. In the current formulation of the SQUIDER model, a

subject is removed from the susceptible population if infected. Perhaps future formulations

could remove individuals from the susceptible population when they take the recommended

doses of vaccines such as BNT162b2 which was 95% effective against the original strain of

SARS-COV-2 (Centers for Disease Control and Prevention, 2021a) and should be added back

in when immunity wanes (Hamady et al., 2022) or a new variant reduces the effectiveness

of such a vaccine (Centers for Disease Control and Prevention, 2021a). Estimating these

quantities might be extremely difficult, however, and the results here suggest that, for esti-

mating doubling times at least, the SQUIDER model may already be prone to overfitting,

thus yielding larger errors compared to the simpler HawkesN model with fewer estimated

parameters.
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CHAPTER 4

Evaluation of HawkesN Model Using Least Squares

Fitting Method in Estimating SARS-COV-2 in the

United States

4.1 Introduction

As discussed in Chapter 3, the HawkesN model (Rizoiu et al., 2018) with an exponential

kernel given by

λ(t) = (1− Nt

N
[µ+ κ

∑
tj<t

ϕ(t− tj)] (4.1)

with kernel

ϕ(u) = θe−θu (4.2)

is an adaptation of the Hawkes model which has been shown to take into account any non-

stationarity when κ > 1 by including an additional term that assumes a finite population of

susceptible individuals (Kresin et al., 2021). Traditionally, the parameters in the HawkesN

model are fit using maximum likelihood estimation (MLE), allowing them to have useful

properties such as asymptotic normality, efficiency and consistency (Ogata, 1978). However,

the MLE method requires for the time of day of a given infection to be known, which is not

usually recorded (Schoenberg, 2021). When only reported daily totals are known, a least

squares estimation procedure proposed in Schoenberg (2021) has been shown to be effective.

Applying the least squares method using HawkesN has been shown to successfully estimate
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SARS-COV-2 cases in Indiana (Mohler et al., 2021) and nationally (Chiang et al., 2020). It

has also been used to predict doubling time during three surges in California as in Chapter

3 and in Kaplan et al. (2022).

In this chapter, the effectiveness of HawkesN using least squares is further tested by expand-

ing the size and scope of our analysis to fit and forecast daily case counts of SARS-COV-2

for all fifty U.S. states during three notable surges in Summer 2020, Winter 2020-2021 and

Summer 2021. The predictive accuracy of HawkesN is compared to that of the SQUIDER

(Susceptible, Quarantine, Undetected Infected, Infected, Dead, Exposed, Recovered) com-

partmental model (Khan et al., 2020) in a similar fashion as in Chapter 3 examining doubling

times. A larger analysis as presented here allows us to evaluate the performance of the two

models in forecasting many different disease spreading behaviors. As such, the purpose is to

determine specific instances when HawkesN performs better than the compartmental model

or vice-versa in order to guide further work.

4.2 Methods

4.2.1 Model Fitting

Here, we fit the HawkesN and SQUIDER models to five two-week periods (5×14=70) of

reported case counts in each state beginning on 5/1/2020, 10/1/2020, and 6/1/2021. For

each model fit, we used the resulting parameter estimates to produce forecasts beyond the

end of the fitting period.

4.2.1.1 The HawkesN Model

In fitting any Hawkes model (1.1), the values for the background rate µ, productivity κ, and

the triggering function g must be estimated. This is usually done using maximum likelihood
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estimation (Ogata, 1978), (Ogata, 1988), but when daily case counts are provided without

time-of-day precision, the least squares technique introduced in Schoenberg (2021) works

better as the time of day does not have to be randomly generated. While the least squares

algorithm in Schoenberg (2021) and discussed in detail in Chapter 3 does well fitting case

counts during the first 576 days of the COVID-19 pandemic in 50 states, the technique is

slightly modified here to take into account the fact that the resulting parameters from this

method are applied to out-of-sample forecasts. Notably, the fitting period is substantially

shorter, including only five two-week periods for a total of 70 days. Also, the estimation of

the productivity is of upmost importance in this case, since only the last value of κ during

the fifth two week period is used in the ensuing forecast. The fitted values of the background

rate µ and the triggering function g are constant for all five intervals.

While this chapter mainly focuses on the ability of HawkesN to forecast using the resulting

parameter estimates from the least squares method, there is interest in evaluating the fit

of the least squares algorithm in some situations. This is done using the same simulation

method originally developed to fit HawkesN models in evaluating COVID-19 doubling time

discussed in Chapter 3. The algorithm involves simulating a SEIR-Hawkes process, which

takes advantage of the point process properties of the Hawkes family of models as well as the

easy interpretability of the terms from the SIR compartmental models (Kresin et al., 2021).

4.2.2 Model Forecasting

4.2.2.1 HawkesN Model

To predict using the HawkesN model, we develop an algorithm to forecast HawkesN pro-

cesses using fitted values of µ, κ and g obtained using least squares as well as the number of

susceptibles from each state. In the case of SARS-COV-2, the susceptible group consists of

the entire population due to the high infectiousness of the virus (Centers for Disease Control
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and Prevention, 2021a). Rather than extend the branching process from the end of the fitting

period, we predict the expected case counts using a simpler more direct method shown below.

First, we obtain the actual case counts astart from the last interval of the fitting period

with length T (two weeks in this application) and the fitted parameters from least squares.

Second, we use the following iterative method to provide an estimate of the case count for a

given day:

Step 1: Calculate the expected contribution β for the triggering component. In other words

for i ∈ 1, .., T , the contribution is βi = gi ∗aT−i+1. We denote a to be the estimated or actual

case counts from the last T days.

Step 2: Estimate the conditional intensity λ for the given day by λT+1 = µ + κ ∗
∑T

i=1 βi.

Note κ is the productivity from the last interval of the fitting period.

Step 3: Estimate the case count for the current day by aT+1 = Poisson(λT+1).

Step 4: Update a to be the vector a2, ..., aT+1. Note that the old a1 is removed from the a

vector.

Running one iteration results in the estimate for the number of infections on a single day.

To obtain a c-day forecast, simply iterate c times.

4.2.2.2 Model Evaluation

During the forecasting period, we use Root Mean Square Error (RMSE) to evaluate the ac-

curacy of HawkesN and SQUIDER in predicting daily reported case counts. For HawkesN,

the median estimated forecast from 100 simulations using the method above is applied when
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calculating the RMSE. For SQUIDER, there is only one forecast simulation run since each

of the fitted parameters is kept constant during the out-of-sample period.

With the purpose of seeing which model produces a better long-term forecast of daily case

counts, we let i, i ∈ [1, 40] be the forecast horizon (forecast length) and compare the pre-

diction errors given by the two models iterating through i. In order to minimize prediction

errors from any data irregularities (for example, missing values which are recorded as 0), we

introduce the concept of lag, represented by a new starting point for the forecast j, j ∈ [1, 30]

days after the end of the fitting period. For each forecast horizon, i, we create a forecast for

each value of j, thus resulting in a total of 30× 40 = 1200 total forecasts for each state and

surge.

The total number of days for analysis of each surge is 70 fitting days + 70 forecasting

days 1 = 140 total days.

4.3 Nationwide SARS-COV-2 Data By State

As described in chapter 3, the SARS-COV-2 coronavirus, originally discovered in December,

2019 in Wuhan, China (Centers for Disease Control and Prevention, 2021a) is the cause of

the COVID-19 pandemic declared by the World Health Organization on March 11, 2020 (Cu-

cinotta and Vanelli, 2020). In Chapter 3, doubling time is used as the metric of interest in

predicting virus spread during three surges in California. In this chapter, daily reported

case counts of SARS-COV-2 are predicted in all fifty states during three notable periods

when virus transmission has been at peak levels, provided by Centers for Disease Control

and Prevention (2022).

1max(i+ j) = 70
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In Kaplan et al. (2022), doubling time is used as the metric of interest in predicting virus

spread during three surges in California. Here, we evaluate forecasts of daily reported case

counts of SARS-COV-2, using data provided by Centers for Disease Control and Prevention

(2022), for each of the 50 states during three notable periods described below, when virus

transmissions were at peak levels. This results in 3 × 140 × 50 = 21000 observations of

daily case counts in total, as there are three SARS-COV-2 surge periods considered, each

consisting of 140 days, for each of the 50 states. These 21, 000 observed case counts are

compared to forecasts for each of the two models considered, HawkesN and SQUIDER, and

where each model is projected forward different numbers of days forward varying from 1

day to 40 days as described in the previous Section. Figure 4.1 shows the actual and fitted

case counts as well as one-day forecasts for Missouri, South Carolina, Wisconsin and Oregon

during all three surges.
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Figure 4.1: Fitted and actual reported case counts as well as one-day forecasts during three

surges for Missouri (top), South Carolina (second from top), Wisconsin (second from bottom)

and Oregon (bottom). Note that within each wave, to the left of the dotted line is the training

period and to the right is the forecast period.
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In this chapter, the first surge for all fifty states analyzed (beginning May 1, 2020) was

in summer, 2020. The training period includes the first 70-days, that is, five consecutive

two-week periods from May 1, 2020 to July 9, 2020 and the forecast period includes a second

70-days from July 10, 2020 to Sep 17, 2020. Although the virus initially began spreading

in the United States in February, 2020, testing for the virus was still quite limited through-

out the nation during the spring, so more reliable case counts began in earnest in summer,

2020 (Patel, 2020), (Centers for Disease Control and Prevention, 2021a). The summer 2020

surge in the United States was likely caused by the reopening of many businesses before

there was sufficient immunity in the general population (Centers for Disease Control and

Prevention, 2021a).

A second and larger surge of SARS-COV-2 (beginning Oct 1, 2020) occurred during au-

tumn 2020 and winter 2021 throughout the United States (Centers for Disease Control and

Prevention, 2021c). As mentioned in chapter 3, this resulted in a large increase in hospital-

izations as well as the highest death toll during the pandemic to date (Centers for Disease

Control and Prevention, 2021c). The fitting period includes the 70-days from Oct 1, 2020

to Dec 9, 2020 and the out-of-sample period is the next 70-days from Dec 10, 2020 to Feb

17, 2021. Even though vaccines effective against the initial strain of the virus had been

approved for emergency use in December, 2020 for those over the age of 18 (U.S. Food &

Drug Administration, 2021), virus transmission was already reaching a peak by that point

and an insufficient proportion of the population was exposed to the virus to provide herd

immunity (Centers for Disease Control and Prevention, 2021a), (Fontanet and Cauchemez,

2020).

A third notable surge (beginning June 1, 2021) occurred during summer 2021 when the
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new and more transmissible Delta variant spread nationwide (Centers for Disease Control

and Prevention, 2021b). The training period includes the five consecutive two-week periods

from Jun 1, 2021 to Aug 9, 2021 and the forecast timeframe includes a second 70-days from

Aug 10, 2021 to Oct 18, 2021. Despite the emergency use authorization of vaccines effective

against SARS-COV-2 such as Pfizer’s BNT162b2 and Moderna’s mRNA-1273 for those over

18 years of age (U.S. Food & Drug Administration, 2021), insufficient vaccine induced im-

munity as well as the increased efficiency of the new Delta variant resulted in further spread

of the SARS-COV-2 virus (Centers for Disease Control and Prevention, 2021b).

4.4 Results

4.4.1 Overall Model Comparison

Figure 4.2 shows the median absolute error between estimated and actual SARS-COV-2 case

counts for the 150 HawkesN and 150 SQUIDER out-of-sample predictions given a forecast

length of 1 through 40 days. Recall that for each HawkesN forecast, the median case count

estimate from 100 simulations is used for calculating the error.
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Figure 4.2: Median error between estimated and actual case counts for 150 HawkesN and

150 SQUIDER forecasts (50 states, 3 surges for each model). This is for forecasts of length

1 day up to 40 days inclusively.

As the length of the forecast increases, the absolute error for both HawkesN and SQUIDER

rises due to a lack of certainty as expected with a longer range prediction. The median error

is slightly lower for the HawkesN model as compared to the SQUIDER model for shorter

term forecasts up to 4 weeks (28 days) in length, but is much higher for longer-term projec-

tions past 28 days.

In Figure 4.3, the RMS errors for each of the 150 HawkesN and SQUIDER forecasts of

length 1 to 40 days are shown.

72



Figure 4.3: Root Mean Square Error (RMSE) between estimated and true case counts for

each individual forecast for the HawkesN (red) and SQUIDER (blue) models for forecasts of

length 1 day to 40 days.

As can be seen, the HawkesN forecasts for California during the autumn 2020 surge as

well as Texas during the summer 2021 wave and the SQUIDER forecasts for Colorado and

New York during the summer 2021 waves are flagged for having an abnormally high RMSE

value relative to other forecasts. These are examined in greater detail in Figures 4.6 and 4.7.

4.4.2 Forecast Trends

As seen in Figure 4.4, we examine the effect of any observed dropoff from the apex of a

given state’s surge and the 40 day forecast performance between the two models. The peak

week is calculated by finding the seven day period in the forecast period where the average
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observed case count is highest. The final week count is the mean number of cases recorded

during the last seven days of the forecast, or days 34 through 40.
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Figure 4.4: Scatterplot of observed decline in case count from the peak and the difference in

Root Mean Square Error (RMSE) between the HawkesN and SQUIDER models for 40-day

forecasts. This is for all 50 states during the summer 2020 surge (top), autumn 2020 surge

(middle) and summer 2021 surge (bottom). The dotted line in each plot is the line of best

fit.
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For all three time periods of interest, the pattern is largely the same. The larger the drop,

i.e. that the case count first increases rapidly followed by a peak and a sharp fall, the more

the SQUIDER model outperforms the HawkesN model. Conversely, when the case count

changes little, the HawkesN long term forecast performs better.

Another factor examined is whether forecasts are accurate for the HawkesN or SQUIDER

model given an increase or decrease in the true reported productivity over time during the

training period. Note that a change in the true reproduction rate implies a quadratic change

in reported case counts. Figure 4.5 examines the relationship between the change in cases

per day resulting from the quadratic coefficient over the course of the training period (x-axis)

and the difference in the 40-day forecast RMSE between HawkesN and SQUIDER (y-axis).
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Figure 4.5: Scatterplot of the quadratic coefficient for cases per day during the training

period (x-axis) and the difference in RMSE between the HawkesN and SQUIDER models

for 40-day forecasts (y-axis). The x-axis represents the rate of change in productivity during

the fitting period.

In the few cases where the productivity decreases over time, the two models largely per-

form similarly in forecasting. When productivity increases at a slower rate as seen in the

summer 2021 surges in New York and Colorado (Figure 4.7), the HawkesN forecast is more

likely to outperform the SQUIDER forecast than in scenarios where there is a faster rate of

change such as in the California and Texas examples (Figure 4.6).
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4.4.3 Specific Examples

In Figure 4.6, there are two cases where SQUIDER outperforms HawkesN. They are Cali-

fornia during the autumn 2020 surge and Texas during the summer 2021 wave, also flagged

in Figures 4.3 and 4.4.
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Figure 4.6: Fitting and forecasting for HawkesN (blue) and SQUIDER (red) for California

during the autumn 2020 surge (top) and for Texas during the summer 2021 Delta variant

wave (bottom). The dark blue and dark red lines represent 10 day forecasts, the medium

hues represent 20 day forecasts and the lighter hues represent 40 day forecasts. Note that

the Hawkes forecasts in blue contain the median and 95% bounds for 100 simulations run.
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In the instance of the California surge, the estimated productivity during the last two weeks

of the fitting period is similar between the HawkesN and SQUIDER models. However, while

SQUIDER is able to adjust for the eventual peak in cases, the HawkesN model assumes a

continued increase in the productivity rate during the forecast period leading to inaccurate

predictions. For the summer 2021 Texas wave, the HawkesN model does account for the in-

creasing productivity more successfully than the SQUIDER model during the last two weeks

of the training period. However, HawkesN assumes that the rate of increase continues into

the forecast period whereas SQUIDER does not, resulting in a more accurate forecast for

the SQUIDER model.

Figure 4.7 shows two examples where the forecast provided by HawkesN is more accurate

than that of the SQUIDER model, i.e. New York State during the summer 2021 wave and

Colorado during the same surge.
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Figure 4.7: Fitting and forecasting for HawkesN (blue) and SQUIDER (red) for New York

State during the summer 2021 surge (top) and for Colorado during the summer 2021 wave

(bottom). The dark blue and dark red lines represent 10 day forecasts, the medium hues

represent 20 day forecasts and the lighter hues represent 40 day forecasts. Note that the

Hawkes forecasts in blue contain the median and 95% bounds for 100 simulations run.

81



In the New York State example, while there is a slight increase in cases during the last

two weeks of the fitting period, it is not the rapid growth seen in the California and Texas

scenarios shown in Figure 4.6. The HawkesN model predicts a modest bump in productivity

during the forecast period whereas SEIR predicts a greater increase in cases when the true

case count stays relatively stable in the out-of-sample period. Since the increase predicted

by the SQUIDER model is larger, the forecast is less accurate than the one for HawkesN. In

the Colorado scenario, the HawkesN model correctly predicts a relatively stable case count

during the forecast period, whereas the SQUIDER model projects a sharp increase in cases.

4.5 Conclusion

We find mixed results when evaluating the forecasting errors of HawkesN and SQUIDER

models. The HawkesN model typically outperforms SQUIDER in shorter term forecasting

of less than 4 weeks, while SQUIDER is more accurate for longer term forecasts. In most

scenarios when reported case counts increase rapidly followed by a sharp decline during

the forecast period, the SQUIDER model outperforms the HawkesN model. On the other

hand, HawkesN forecasts are more accurate when such changes are more modest. When

case counts increase exponentially during the fitting period, HawkesN tends to overestimate

the continued rate of spread more often than SQUIDER, which leads to overestimated case

counts for some longer term forecasts.

An important item for further research involves improving the accuracy of the HawkesN

in estimating the productivity at any given point in time. Here, we fit 5 two-week intervals

with the value of κ obtained from the last interval held constant during the forecast period.

However, as shown in the recursive model introduced in Schoenberg et al. (2019), it is pos-

sible to account for varying productivity over time. Future research should focus on ways
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to combine the HawkesN (Rizoiu et al., 2018) and the recursive model (Schoenberg et al.,

2019) to take into account a finite susceptible population as well as variable rate of change,

both shown to individually improve model performance when used in epidemiological set-

tings. Additionally, in Kaplan et al. (2021), a non-parametric version of the recursive model

is introduced and successfully applied in forecasting cases of mumps, perhaps allowing for

easy application when using the least squares algorithm where g is assumed to be a stepwise

function.

In addition, it may be important to explore whether the HawkesN model could be improved

by taking into account the impact of new variants and vaccine uptake (Centers for Disease

Control and Prevention, 2021a). As shown in Rizoiu et al. (2018) and Centers for Disease

Control and Prevention (2021a), when the susceptible population decreases due to vaccine

induced or natural immunity, it becomes tougher for a given virus to spread at the same rate.

Furthermore, as mentioned in chapter 3, the more infectious a new variant is, the shorter the

doubling time . Also, a more infectious variant results in a steeper rise in cases followed by

a short peak and dramatic fall when fewer susceptible individuals are left remaining (Rizoiu

et al., 2018). An additional quadratic term controlling the change in productivity could per-

haps be added to the HawkesN model, to predict when a peak should be expected based on

the cumulative number of recorded cases as well as the estimated doubling time, so HawkesN

might better account for steep declines in recorded cases immediately following surges.
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CHAPTER 5

Closing Remarks

The motivation behind the research presented in this dissertation is to further improve upon

the point process methodology used to fit and forecast communicable disease processes.

While there are more widely used epidemiologic models such as the SIR (Susceptible, In-

fected, Recovered) compartmental set of equations (Kermack and McKendrick, 1927), the

Hawkes point process model (Hawkes, 1971) has a self-exciting triggering component, which

allows for any prior infection to trigger future cases, a key feature of such rapidly spread-

ing diseases. An advantage for the point process model is that it does not require specifics

of a given disease process to be known as is required for the compartmental model (see

SQUIDER (Khan et al., 2020) and SVEILR (Li et al., 2018)). Rather, the triggering func-

tion g is estimated by taking into account time intervals between previously recorded events.

As shown in Park et al. (2022), Meyer et al. (2012) and Meyer et al. (2017), even the ba-

sic Hawkes model outperforms compartmental models in forecasting communicable disease

spread which is a clear indication that the newer point process application in epidemiology

is worth pursuing further.

In chapter 2, a non-parametric version of the recursive adaptation of the Hawkes model (Schoen-

berg et al., 2019) is introduced and shown to outperform other point process and compart-

mental models in fitting and forecasting mumps in Pennsylvania. It is not only shown that

a key principle of varying productivity is useful in enhancing predictive capability, but also

that an expectation-maximization algorithm leading to a non-parametric fit can be used

in such an application. However, the algorithm is computationally intensive as the matrix
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required to generate triggering probabilities Pij is an n2 matrix. In the case of the mumps

application, it takes 3 hours to run 100 iterations of the non-parametric algorithm. Another

shortcoming is that small changes from iteration to iteration from such a large Pij matrix

often prevents complete convergence. However, the changes in practice are quite small and

do not impact the overall fit of the model in a substantial way. Also, since the reported

cases of mumps largely decreased over the years, there was no extra requirement for sta-

tionarity for κ > 1. Thus, the jury is still out as to whether the recursive model would

be stable for an increasing epidemic. Future work could involve making the non-parametric

algorithm more computationally friendly, given that the upper triangular part of the Pij

matrix where the probability of event i triggering event j given ti < tj is 0. Another goal

would be creating a stable version of the non-parametric recursive for an expanding epidemic.

The second part of the dissertation shows that there is promise in using point process models

when case counts are increasing. It also discusses a newer method of fitting these models,

allowing for a more precise estimate of fitted parameters. In chapter 3, it is shown that the

HawkesN model (Rizoiu et al., 2018), which takes a finite susceptible population into ac-

count, outperforms the compartmental model in predicting doubling time in California. The

HawkesN model in this scenario is fit using a least squares method, introduced in Schoenberg

(2021). It is a much more practical method of fitting epidemiologic data, which often con-

sists of daily reported infections rather than the time of day of an infection. In the analysis

described in chapter 2, conducted before the least squares method was introduced, the exact

time of infection is randomly chosen, whereas the exact time is not necessary when using

least squares.

However, the results are mixed when the HawkesN model fitted using the least squares

method is compared to the SQUIDER model forecasting case counts in the larger 50-state

analysis. Further investigation is needed to determine what value of the productivity κ
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should be used during the forecasting period. In chapter 4, the productivity value from the

last two weeks of the training period is kept constant and is used in forecasting. Perhaps,

a variable κ as proposed in the recursive model (Schoenberg et al., 2019) could be useful in

improving such forecasting.

This dissertation presents cumulative work on several advancements in the use of point

process models to fit and forecast communicable diseases. The overriding conclusion is that

there are several properties of the self-exciting Hawkes model that can be used to more ac-

curately describe and predict pathogen behavior over time. This exciting area in the field of

statistics shows great promise and merits continued investigation and research.
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