
UCLA
Posters

Title
Em View: The Em* Visualizer

Permalink
https://escholarship.org/uc/item/7q60k5d3

Authors
Lewis Girod
Alberto Cerpa
Henri Dubois-Ferriere

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7q60k5d3
https://escholarship.org
http://www.cdlib.org/

Problem Description:Problem Description: An Extensible Visualization System for An Extensible Visualization System for EmStarEmStar

Proposed Solution:Proposed Solution: EmProxyEmProxy Status Protocol + Status Protocol + EmViewEmView Modular Visualization EngineModular Visualization Engine

EmViewEmView: The : The EmEm* * VisualizerVisualizer
Lewis Girod, Alberto Cerpa, Henri Dubois-Ferriere

CENS Systems Lab – http://lecs.cs.ucla.edu

Introduction:Introduction: Visualization for Development of Distributed Embedded SystemsVisualization for Development of Distributed Embedded Systems
Visualization Critical for Distributed Systems
• Concurrent Processes

In a distributed system, algorithms run concurrently on many independent
nodes, and interact through communication channels

• Real Time Dynamics
Debugging the interaction of distributed participants in an algorithm requires
attention to real-time dynamics that reveal conditions that result in instability

• Real Time Condition and Exception Reporting
Capturing the behavior of a large distributed system requires visualization of
infrequent exceptions and condition state from a large collection of nodes

Embedded vs. Distributed Visualization
• Embedded Visualization

– Embedded visualization uses the same communication channels used by
the application to report debugging information from a deployed system

– Requires more development time to optimize the messaging, and often
can’t provide reliable information on real-time dynamics

• Distributed Visualization
– Distributed visualization uses a separate debugging backchannel to

gather data from a system in the lab, or an instrumented deployment.
– Message reporting optimized for low development effort

How To Use EmView Three Examples of EmView Modules:

UCLA UCLA –– UCR UCR –– Caltech Caltech –– USC USC –– CSU CSU –– JPL JPL –– UC MercedUC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

• Extensible, Modular Support for Many Applications
– Minimize development cost of adding visualization support for new

algorithms, applications, and system components
– Enable easy integration of visualization displays for different algorithms,

applications, and components; avoid mutual exclusion
• Support for Many EmStar Modalities

– EmStar can run the same code on a simulator, clustered simulator, ceiling
emulator, portable array, or on actual distributed nodes.

– One visualization system must transparently handle all cases

Requirements for EmStar Visualization What EmView Doesn’t Do
• Not an Embedded Visualization Solution

– EmView solves the “distributed” case, assuming a high-bandwidth debug
backchannel.

– Can leverage gateways that relay embedded debug info to backchannel.
• Doesn’t (Yet) Support Packet-level Protocol Visualization

– EmView is trying to display real-time state gathered from all nodes, for
example live neighbor state, routing state, timesync relations, etc.

– Packet-level protocol visualization would be useful, but hard to see how
to visualize it between more than a few nodes (e.g. event diagram)

• Instrument your Component or Algorithm
First, identify the state variables and conditions in the component that you want
to visualize. Then expose those variables using “status devices”, or use
status_reflector. This state will then be visible to EmProxy.

• Add a Module to EmView to Request Component Data
Create a new module that will visualize the state of your component. This
module will define an EmProxy request specifying your new status devices, and
a handler to process that data.

• Parse Component Data and Submit it to the Engine
The handler function will then parse the data as it arrives. (Usually it is easiest
to use binary structs in order to minimize the complexity of parsing). After
parsing, any relevant data is submitted to the EmView core to be rendered.
Note that the module code does not actually render data, rather just submits it to
the core in an abstract form, such as a string or numeric value, or a link from
one node to another.

• Run and Configure EmView
In EmView, the request and rendering of visualization data is controlled at
runtime. Currently, modules can be activated and deactivated individually; each
module has a “default” rendering policy that is activated by turning on the
module, overriding any conflicting policies. Although the EmView core
supports more or less arbitrary linkage of data elements to components of the
visualization, currently there is no GUI interface that allows complete
flexibility.

Core

Module
Request strings

aggregated
Broadcast request
to EmProxy(s)

Module

Module

Asynch Response
from proxies

Demux on
data ID

Data sources
updatedRender

Modules parse
responses…

…push abstract
data to core for

rendering

1
2

3

4

5

6

DataFlow in EmView

APP

Status
interfaces

EmProxy
EmProxy

EmView

App-specific
EmView Modules

Using EmView

“Node”
component

“Box”
component

Node ID (21)

EMVIEW_NODE_COMPONENT/
emview_node_flag_name(EMVIEW_COLOR_BLUE)

EMVIEW_NODE_COMPONENT/
EMVIEW_NODE_BELOW

<box>/EMVIEW_BOX_ABOVE

<box>/EMVIEW_BOX_FLAG[123]

<box>/EMVIEW_BOX_COLOR

<box>/EMVIEW_BOX_INSIDE

EmView Node Components
Data passed to the EmView core can be assigned at runtime to be

rendered in specific “slots” in a node icon. Some of these slots are
shown in the diagram below ▼

◄ Red boxes represent integration of visualization into an application
Shows the sequence of interaction of a module with the EmView core ►

A B

C
• Visualization of neighbor discovery and

linkstats state. Green links are good,
symmetric links. Dotted red links are
bad, asymmetric links.

• Visualization of Voronoi Diffusion
Sinks. Sinks are colored solid, and the
sink trees are color coded according to
sink.

• Visualization of multi-hop propagation
of “global time” from the node with the
red flag.

Note: A and B are visualizing an emulation
running on the ceiling array, while C is
running entirely in simulation.

	EmView: The Em* Visualizer

