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Stochastic bridges of linear systems
Yongxin Chen and Tryphon Georgiou

Abstract

We study a generalization of the Brownian bridge as a stochastic process that models the position and velocity
of inertial particles between the two end-points of a time interval. The particles experience random acceleration
and are assumed to have known states at the boundary. Thus, the movement of the particles can be modeled as an
Ornstein-Uhlenbeck process conditioned on position and velocity measurements at the two end-points. It is shown
that optimal stochastic control provides a stochastic differential equation (SDE) that generates such a bridge as a
degenerate diffusion process. Generalizations to higher order linear diffusions are considered.

I. INTRODUCTION

The theoretical foundations on how molecular dynamics affect large scale properties of ensembles were
layed down more than a hundred years ago. A most prominent place among mathematical models has
been occupied by the Brownian motion which provides a basis for studying diffusion and noise [1],
[2], [3], [4]. The Brownian motion is captured by the mathematical model of a Wiener process, herein
denoted by w(t). It represents the random motion of particles suspended in a fluid where their inertia
is negligible compared to viscous forces. Taking into account inertial effects under a “delta-correlated”
stationary Gaussian force field η(t) (that is, white noise, loosely thought of as dw/dt [1, p. 46])

m
d2x(t)

dt2
= −λdx(t)

dt
+ η(t)

represents the Langevin dynamics ; x represents position, m mass, t time, and λ viscous friction parameter.
The corresponding SDE [

dx(t)
dv(t)

]
=

[
0 1
0 −λ/m

] [
x(t)
v(t)

]
dt+

[
0

1/m

]
dw(t),

where w is a Wiener process and v the velocity, is a degenerate diffusion in that the stochastic term does
not affect all degrees of freedom.

Sample paths of diffusion processes between end-point conditions is fundamental and have been
considered since the early days of probability theory. A standard textbook example for a stochastic process
“pinned” at the end-points of an interval, e.g., x(0) = x(1) = 0, is the so-called Brownian bridge [5, p.
35], which has a well-known representation via the SDE (see [3, p. 132])

dx(t) = − 1

1− t
x(t)dt+ dw(t).

Herein, motivated by transport of particles, we study bridges of general diffusion processes. In particular,
we are interested in an SDE representation for an Ornstein-Uhlenbeck bridge where both position and
velocity are pinned at the two ends of an interval. Such a “pinned” process is very natural when considering
trasport of inertial particles in regimes where viscous forces are negligible (e.g., in rarefied gas dynamics).
We are also motivated by the relevance of such degenerate diffusion processes in interpolation of density
functions (e.g., probability distributions of many particle systems, power spectral distributions etc., cf. [6],
[7], [8])

Important connections between bridges of non-degenerate diffusion processes, large deviations in sample-
path spaces, and optimal control have been studied [9], [10], [11]. Interestingly, it appears that similar
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connections may be present for certain degenerate diffusion processes as well (cf. [10]). In fact, herein,
we explain that for the Ornstein-Uhlenbeck bridge as well as for bridges of general linear time-varying
dynamical systems, an SDE representation is always available. The SDE is constructed by solving the
stochastic optimal control problem to ensure end-point conditions (see also, [12]). To this end, we first
explain the Brownian bridge in a way that will be echoed in the construction of an SDE for the Ornstein-
Uhlenbeck bridge, followed by the construction of an SDE for bridges of general linear time-varying
systems.

II. BROWNIAN BRIDGE

The standard Brownian bridge is typically defined as a stochastic process ξ on [0, 1] with ξ(0) = ξ(1) =
0, continuous sample paths, and values that are jointly normally distributed with E{ξ(t)ξ(s)} = t(1− s)
for 0 ≤ t ≤ s ≤ 1. Alternatively, it is often defined as a stochastic process with the same statistics as
w(t)− tw(1) and continuous sample paths. Below we explain how to compute the statistics starting from
the assumption that the process is pinned at 1.

A. Statistics of the Brownian bridge
The Brownian bridge can be viewed as a standard Wiener process w on [0, 1] conditioned on w(1) = 0.

For t ≤ s, as before, we have that the covariance of values of the Wiener process is

E{

w(t)
w(s)
w(1)

 [w(t), w(s), w(1)
]
} =

t t t
t s s
t s 1

 .
Therefore, the distribution of [w(t), w(s)]′ conditioned on w(1) = 0 is normal with zero mean and
covariance [

t(1− t) t(1− s)
t(1− s) s(1− s)

]
.

This covariance and joint normality of the values provide the law for the Brownian bridge which agrees
with those of the aforementioned definitions.

B. Optimal control and SDE representation
Now consider the linear-quadratic optimal control problem to minimize

J(t) =

∫ 1

t

u(τ)2dτ, (1)

subject to dξ(t)/dt = u(t) and ξ(1) = 0. For the more familiar form of a cost functional with a terminal
cost,

JF (t) = Fξ(1)2 +

∫ 1

t

u(τ)2dτ

with dξ(t)/dt = u(t) and F > 0, the minimal values is p(t)ξ(t)2 with optimizing choice for the control
being

uopt(t) = −p(t)ξ(t)

and p(t) satisfying the Riccati equation ṗ(t) = p2(t) with boundary condition p(1) = F . Hence, we obtain
the minimal value (1− t)ξ2(t) of (1) as the limiting case when F →∞, with the optimal choice for the
control input

uopt(t) = − 1

1− t
ξ(t). (2)
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The corresponding “controlled” SDE

dξ = uopt(t)dt+ dw(t)

= − 1

1− t
ξ(t)dt+ dw(t), (3)

with ξ(0) = 0, generates a Brownian bridge as can be easily verified [3, p. 132]. Indeed, the state transition
of the deterministic time-varying system

dξ

dt
= − 1

1− t
ξ(t) + r(t),

which for this first order system coincides with the response at s to an impulse at t, is

Φ(s, t) =
1− s
1− t

.

It follows that the solution to (3) has a representation as a stochastic integral

ξ(t) =

∫ t

0

1− t
1− τ

dw(τ).

and therefore, assuming t ≤ s,

E{ξ(t)ξ(s)} =

∫ t

0

(1− t)(1− s)
(1− τ)2

dτ

= t(1− s).

This proves that indeed, (3) is a Brownian bridge.

III. ORNSTEIN-UHLENBECK BRIDGE

We now follow exactly the same steps in order to define a bridge for the Ornstein-Uhlenbeck dynamics.
Without loss of generality we assume that there are no viscous forces and the mass normalized to one.
Thus, we begin with the SDE

dξ(t) =

[
0 1
0 0

]
ξ(t)dt+

[
0
1

]
dw(t) (4a)

where
ξ(t) =

[
x(t)
v(t)

]
is the vectorial process composed of the position and velocity components. We now condition these to
satisfy an initial and a final condition,

ξ(0) = 0 and ξ(1) = 0, (4b)

respectively.
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A. Statistics of the Ornstein-Uhlenbeck bridge
To determine the statistics dictated by (4) we condition the “velocity” v(t), which in this case is a

Wiener process, since dv(t) = dw(t), to satisfy

v(0) = 0 (5a)
v(1) = 0 (5b)

x(1) =

∫ 1

0

v(τ) = 0, (5c)

while it is given that x(0) = 0. To this end, we first consider the covariance of the vector[
v(t) v(s) v(1) x(1)

]′
,

readily seen to be 
t t t t− t2

2

t s s s− s2

2
t s 1 1

2

t− t2

2
s− s2

2
1
2

1
3

 .
Therefore, the covariance of

[
v(t) v(s)

]′ when conditioned on
[
v(1) x(1)

]′ being the zero vector, can
be evaluated as the Schur complementt t

t s

−
t t− t2

2

s s− s2

2

1 1
2

1
2

1
3

−1  t s

t− t2

2
s− s2

2

 .
This is [

−t(3t3 − 6t2 + 4t− 1) −t(s− 1)(3st− 3s+ 1)
−t(s− 1)(3st− 3s+ 1) −s(3s3 − 6s2 + 4s− 1)

]
.

B. Optimal control and SDE representation
Just like in the case of the Brownian bridge, we now consider the linear-quadratic optimal control

problem to minimize

ξ(1)′Fξ(1) +

∫ 1

0

u(τ)′u(τ)dτ

subject to

dξ(t) =

[
0 1
0 0

]
ξ(t)dt+

[
0
1

]
u(t)dt.

By solving the corresponding Riccati equation and taking the limit as F → ∞, we obtain the optimal
control

u(t) = −
[

6
(1−t)2

4
1−t

]
ξ(t)

for the problem to minimize
∫ 1

0
u(τ)′u(τ)dτ subject to a terminal condition ξ(1) = 0. This will be further

explained in Section IV for the more general case of linear time-varying dynamics.
We now consider the corresponding “controlled” SDE

dξ(t) =

[
0 1

− 6
(1−t)2 −

4
1−t

]
ξ(t)dt+

[
0
1

]
dw(t). (6)
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We claim that (6) realizes the Ornstein-Uhlenbeck bridge. To establish this, we need to show that the
statistics of solutions to (6) are consistent with those of the “pinned” process generated by (4) derived
earlier. That is, for ξ(t)′ = [x(t), v(t)] it suffices to show that for solutions of (6),

E{v(t)v(t)} = −t(3t3 − 6t2 + 4t− 1)

and
E{v(t)v(s)} = −t(s− 1)(3st− 3s+ 1).

Since x(t) is
∫ t

0
v(τ)dτ in both cases, the statistics of x(t) will also be consistent. The proof is given in

Section IV for the more general case of time-varying linear dynamics.

IV. THE BRIDGE FOR A TIME-VARYING LINEAR SYSTEM

We consider the linear SDE

dξ(t) = A(t)ξ(t)dt+B(t)dw(t) (7a)

with initial condition

ξ(0) = 0, (7b)

and are interested in solutions that are conditioned to satisfy

ξ(1) = 0 (7c)

as well. Below, we first determine the statistics of the pinned process and then an SDE that generates the
bridge.

A. Statistics of the bridge
Since (7a) is a linear SDE driven by Wiener process and ξ(0) = 0, it follows that ξ(t) is a zero-mean

Gaussian process. Thus, we only need to determine second order statistics of the conditioned process.
The covariance of [

ξ(t)′ ξ(s)′ ξ(1)′
]′

is  P (t) P (t)Φ(s, t)′ P (t)Φ(1, t)′

Φ(s, t)P (t) P (s) P (s)Φ(1, s)′

Φ(1, t)P (t) Φ(1, s)P (s) P (1)

′ , (8)

where Φ(s, t) is the state transition of (7a) and

P (t) = E{ξ(t)ξ(t)′}

satisfies the Lyapunov equation

Ṗ (t) = A(t)P (t) + P (t)A(t)′ +B(t)B(t)′. (9)

Since ξ(0) = 0 is given, P (0) = 0. Taking the Schur complement of (8) gives the covariance of[
ξ(t)′ ξ(s)′

]′ conditioned on ξ(1) = 0 as [
Q(t, t) Q(t, s)
Q(t, s)′ Q(s, s)

]
,

where

Q(t, s) = P (t)Φ(s, t)′ − P (t)Φ(1, t)′P (1)−1Φ(1, s)P (s). (10)

Any stochastic process that agrees with these statistics will be referred to as a bridge of (7).
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B. SDE representation
Once again let us consider the linear-quadratic optimization problem to minimize

ξ(1)′Fξ(1) +

∫ 1

0

u(τ)′u(τ)dτ

subject to the dynamics
dξ(t) = A(t)ξ(t)dt+B(t)u(t)dt.

The optimal solution is uopt(t) = −B(t)′P̂ (t)−1ξ(t) where P̂ (t) satisfies the differential Lyapunov equation

˙̂
P (t) = A(t)P̂ (t) + P̂ (t)A(t)′ −B(t)B(t)′ (11)

with boundary condition P̂ (1) = F−1. We consider the limiting case of infinite terminal cost, i.e., F →∞,
corresponding to P̂ (1) = 0 and verify that the corresponding controlled stochastic system realizes the
sought bridge.

Proposition 1: Under the earlier notation and assumptions on A,B, P̂ , w, the SDE

dξ(t) = (A(t)−B(t)B(t)′P̂ (t)−1)ξ(t)dt+B(t)dw(t) (12)

generates a bridge of (7).
Proof: We only need to consider second order statistics of solutions to (12) and establish that these

coincide with the statistics computed in Section IV-A. Hence, for 0 ≤ t ≤ s ≤ 1 we denote Q̂(t, s) =
E{ξ(t)ξ(s)′} to be the covariance of solutions to (12) and we will show that Q̂(t, s) = Q(t, s). For
simplicity we denote Q̂(t, t) = Q̂(t) and the same for Q.

We first begin with
Q(t) = P (t)− P (t)Φ(1, t)′P (1)−1Φ(1, t)P (t) (13)

and show that it also satisfies the differential Lyapunov equation

Q̇(t) = Â(t)Q(t) +Q(t)Â(t)′ +B(t)B(t)′ (14)

for
Â(t) = (A(t)−B(t)B(t)′P̂ (t)−1),

and, since Q(0) = 0, that indeed Q(t) = Q̂(t). To this end, consider Q(t) as in (13). Then,

Q̇(t)− Â(t)Q(t)−Q(t)Â(t)′ −B(t)B(t)′

= B(t)B(t)′G(t) +G(t)′B(t)B(t)′,

where

G(t) = P̂ (t)−1Q(t)− Φ(1, t)′P (1)−1Φ(1, t)P (t)

= P̂ (t)−1P (t)− P̂ (t)−1T (t)Φ(1, t)′P (1)−1Φ(1, t)P (t)

and
T (t) = P (t) + P̂ (t).

From (9) and (11),
Ṫ (t) = A(t)T (t) + T (t)A(t)′,

and therefore
T (t) = Φ(t, 0)T (0)Φ(t, 0)′,
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while T (0) = P̂ (0) and T (1) = P (1). Since

T (t)Φ(1, t)′P (1)−1Φ(1, t)

=Φ(t, 0)T (0)Φ(t, 0)′Φ(1, t)′P (1)−1Φ(1, t)

=Φ(t, 1)Φ(1, 0)T (0)Φ(1, 0)′P (1)−1Φ(1, t)

=Φ(t, 1)T (1)P (1)−1Φ(1, t) = I,

the identity matrix, we deduce that

G(t) = P̂ (t)−1P (t)− P̂ (t)−1IP (t) = 0.

Therefore (14) holds and Q(t) = Q̂(t).
For general 0 ≤ t ≤ s ≤ 1,

Q̂(t, s) = Q̂(t, t)Φ̂(s, t)′

where
∂Φ̂(s, t)

∂s
= Â(s)Φ̂(s, t).

Therefore,
∂Q̂(t, s)

∂s
= Q̂(t, s)Â(s)′.

We now show that Q(t, s) satisfies the same differential equation, i.e., that
∂Q(t, s)

∂s
= Q(t, s)Â(s)′. (15)

From (10) we deduce that
∂Q(t, s)

∂s
−Q(t, s)Â(s)′ = H(t, s)B(s)B(s)′

where

H(t, s) = Q(t, s)P̂ (s)−1 − P (t)Φ(1, t)′P (1)−1Φ(1, s)

= P (t)Φ(s, t)′P̂ (s)−1 − P (t)K(t, s)P̂ (s)−1.

But

K(t, s) = Φ(1, t)′P (1)−1Φ(1, s)T (s)

= Φ(1, t)′P (1)−1Φ(1, s)Φ(s, 0)T (0)Φ(s, 0)′

= Φ(1, t)′P (1)−1T (1)Φ(s, 1)′ = Φ(s, t)′.

Therefore H(t, s) = 0 and (15) holds. Since we already know that Q(t, t) = Q̂(t, t), it follows that
Q(t, s) = Q̂(t, s). This completes the proof.

V. BRIDGE WITH ARBITRARY BOUNDARY POINTS

So far we have discussed bridges with initial and terminal states being 0. The more general case with
nonzero initial and terminal states is straightforward. More specifically, we consider the linear SDE

dξ(t) = A(t)ξ(t)dt+B(t)dw(t) (16a)

with initial condition

ξ(0) = ξ0, (16b)

whle the process ξ(t) is conditioned to satisfy

ξ(1) = ξ1. (16c)

Below, we determine the statistics of the pinned process and then the SDE that generates the bridge.
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A. Statistics of the bridge
The second order statistics of (16) coincide with those of (7). Hence, we only need to compute first-order

statistics. Considering only (16a) and (16b),

E{ξ(t)} = Φ(t, 0)ξ0.

Thus, the conditional expectation of ξ(t), given ξ(1) = ξ1, is

L(t) = Φ(t, 0)ξ0 + P (t)Φ(1, t)′P (1)−1(ξ1 − Φ(1, 0)ξ0). (17)

B. SDE representation
In order to enforce the terminal constraint (16c), we penalize the difference between ξ(1) and ξ1 and

consider the linear-quadratic optimal control problem to minimize

JF = (ξ(1)− ξ1)′F (ξ(1)− ξ1) +

∫ 1

0

u(τ)′u(τ)dτ

subject to the dynamics
dξ(t) = A(t)ξ(t)dt+B(t)u(t)dt.

The optimal solution is
uopt(t) = −B(t)′P̂ (t)−1(ξ(t)− Φ(t, 1)ξ1)

where P̂ (t) satisfies the differential Lyapunov equation (11) with boundary condition P̂ (1) = F−1. Once
again the limit as F →∞ corresponds to P̂ (1) = 0. We now verify that the resulting “controlled” SDE
realizes the sought bridge.

Proposition 2: Under the above assumptions on A, B, P̂ , and w, the SDE

dξ(t) = Â(t)ξ(t)dt+B(t)B(t)′P̂ (t)−1Φ(t, 1)ξ1dt

+B(t)dw(t) (18)

with
Â(t) = A(t)−B(t)B(t)′P̂ (t)−1

generates a bridge of (16).
Proof: The second order statistics of (18) coincide with those of (12) and, by Proposition 1 with

those of (7) and therefore (16) as well. Next we show that the first order statistics are also consistent. For
this, it suffices to show that L(t) in (17) satisfies

L̇(t) = Â(t)L(t) +B(t)B(t)′P̂ (t)−1Φ(t, 1)ξ1.

Using the same argument as in the proof of Proposition 1 we obtain

L̇(t)− Â(t)L(t)−B(t)B(t)′P̂ (t)−1Φ(t, 1)ξ1

= B(t)B(t)′P̂ (t)−1(Φ(t, 1)(ξ1 − Φ(1, 0)ξ0)

+ Φ(t, 0)ξ0 − Φ(t, 1)ξ1)

= 0.

This completes the proof.
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Fig. 1: Position x(t) of Ornstein-Uhlenbeck bridge sample paths

Fig. 2: Velocity v(t) of Ornstein-Uhlenbeck bridge sample paths

Fig. 3: Phase plots of Ornstein-Uhlenbeck bridge sample paths
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Fig. 4: Phase plots of 2-dimensional Browian bridge sample paths

VI. ILLUSTRATIVE EXAMPLES

We consider a double integrator as in Section III with state ξ(t) = [x(t) v(t)]′, and plot two representative
sample paths of (6). More specifically, Figure 1 and Figure 2 show position and velocity, respectively,
while Figure 3 shows the two paths in phase space. Phase plots of a 2-dimensional Brownian bridge are
shown in Figure 4 for comparison.

VII. CONCLUSION

The Ornstein-Uhlenbeck bridge represents a “pinned” process with Ornstein-Uhlenbeck dynamics. We
introduced such a process and a corresponding realization via a suitable SDE. The latter is constructed
based on an optimal control problem. Generalization to bridges of linear diffusion processes is also
presented. Our original aim has been to study possibly ways to interpolate density functions (probability
distributions of many-particle systems, power spectral distributions, and so on) and develop suitably
geometric ideas [8], [13] in the spirit of [6], [7]. The example of a pinned process is a first step towards
a more general Schödinger bridge as a possible such mechanism (see [11] and the references therein) and
this will be the subject of future work.
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