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- ABSTRACT

It is shown that the requirement that the Hamiltohian dehsity

commute with'itéelf'on a spacelike surface precludes the possibility that
.three or more different spiner fields, coupled to one'anéther in Yukawa-

Atjpe interactiotis,” commute with each other. If the Hamiltonian contains -

6nly two such fields, however, they méy'bé assumed to either commute or

anticommute without violating this requirement.
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ON THE COMMUTATION RELATIONS OF INTERACTING SPINOR FIELDS

Richard Spitzer |

Radiation Laboratory

University of California
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I. INTRODUCTION
The form of the comrutation relations between fiéld operators
that represent physically different Fermi-Dirac particles has been

, 1 ‘ .
recently investigated by Kinoshita. He has shown that if the Lagrangian

containé interaction terms that are bilinear in spinor fields, these

S %
fields must anticommute in order that unique equations of motion be

obtained from Schwinger's variational principle. However, if the equations

of motion are obtained from the canonical commutation laws

‘1‘2’1 =[H, (’,J], - _i"?i = [n, {i;’}, | (1.:;?

the results are unique fegardlees of whether the spinor fields commute or
anticommute. Since self-consistent results are obtained from the éanonical
formalism, it is not clear whether the inconsistency obtained by Kindéhita
reflects the impropriety of the commutation relations or the inapplicability
of the v#riational principle in this case. :It is of interest, therefors,

to determine whether Kinoshita's conclusions can bé obﬁained without

recourse to the variation fonﬁalism.

“

As used in this paper, the expression "commuting spinor fields®™ will
always refer to different spinor fields. For a single spinor field

the usual antigommutation relations are assumed.
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The question of whether different spinor fields commute or
anticommute is of no practical importance wheﬁ the Hamiltonian contains
only two such fields, since the physical observables obtained ﬁsing elther
choice of commutation relationslare the same. On the other hana, the
transition amplitude for a particular process involving threéidifferent
spinor fields is calculated in Section 2 b& the formél application of
the Dyson expansion of the S matiix,? and the result is found to depend
on the choice of commutation relations. However, it is shown in Section 4

that if three or more spinor fields interact with each other via Yukawa-

type interacfc.ions,t the~assumption that they commute with one another is

inconsistent with the requirement that the Hamiltonian density commute -
with itself at two points on a spacslike surface.3 If the Hamiltonian

contains only two different spinor fields, they may be assumed toveither

_commute or anticommute without vidlating the above requirement, which will

henceforth be referred to as Postuiate‘(II).

The case of three or more interacting spinor fields is thus
fundamentally different from that of only two such fields in that
Postulate (II) places a restricﬁion_on the commutation relations in the .
former case but not in the latter. Section 5 contains some speculations

concernihg_the apparent distinction between these two cases.

By “Yukawa-type interactions" we merely mean that an interaction term
in the Hamiltonian contains the spinor fields bilinearly and the boson

field linearly.
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II. TRANSITION MATRIX ELEMENTS
In this section the transition matrix for a simple prodesa is
evaluated by the formal appliéation of Dyson's S-matrix expansion. . This

example illustrates'a.difference.between'the cases in which the different

' spinor fields are assumed to comaute or anticommute

- The Dyson expansion -expansion of the S matrix is given by

o0 . o0

o0 S ' o
jE:: (_i)n 1 dAxl ces | den P i HI(xl),... , HI(xn)}
" n! ' o A ,
=0 - 00 -0 ' (2.1)

where P 1is an operator which orders thé factors chronologically so that
timé values decréase.from left to right. The transi@%on amplitude fér
the second-order process corresponding to the diagram in Fig. i«ﬂ will be
calculated for the two cases, '

:CaSe (a) the commutators of differeﬁt spinor fields vanish, and

Case (b) the anticommutators of different spinor fields vanish.
We shall see that in Case (a) the propagator fér'the virtual fermion of

x g

Type 2 is not the usual Feynman propagator i’

The form of the interaction repreéegfétion interaction Hamiltonian

) = gy P YW P+ s, PP F@ o+ He,  (22)

~ where the V}'s are different spin-3 fields and the @'s are different’

real scalar fields. The term of the S 'matrix corresponding tb'Fig.?i is

ST



-«

UCRL-3569
~5a

vhere | ' ' , . v .
) = g GO P g L o)

b 2 - _ ' o

i () = 8 B ) Y ) (22)

L 2 ‘ B :
The expectation value of M{ ) is taken between an initial state of the

system'containing_fermion 3 and boson 2 and a final state containing

fermion 1 and bdson 1, all pariicles being in plané—wavgiétateé and the

.- fermions being in definite spin states. Then we have

(2)
Mpr

KVAEE S
Y

oC .

-8,8 Sd;xl d;x, <1H, IP {q)](xg q,z(xz‘)fdl(kz), (",z(xl') ‘1’3(:&1)9{2(?!1)}[%)

-0

~818> S,,d’#xl éh"zv-<‘}’r‘ ‘ Pl ) |y s

the last two lines are a definition of P(xl; kz). In order to perform

‘the time orderihg we split the Feynman diagram of Fig. I . into 1ts two

constituent parts corresponding to propagation by a particle and by an

antipafﬁicle, Fig. IIa and Ilb, respectively. Then we have
- BN SN SN =2 3 ‘
Plxy, %) = 0(xz = )P () P2(xy) B x) P70 0x) By

. ~2 — . N
+ 6xy -~ )P <)Y ) PP ) ¢ ) Brixy)
: (2.5)
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where ‘
| 1 £ 0 ,
o(x) = T T2 ' (2.6)
, 0 . for x5« 0 s
8(x) o(-x) = 1
+ _ : _ (2.7)
' x !
8(x) - B(-x) = €(x) = 2 .
A | xo‘ ! '

. 2 )
Since ¢1 and @ commute with each other (and, of course, with the

fermion fields), Eq. (2.5) becomes

Py, %) = 7 () B (x) [otx, - ) Yy x) Y tx)

F ool -x) B¢ ) ] &fﬁ () ¢2 (x)

(2.8)
ihe upper sign arplying if we have
" 3 ~1
| [k‘jﬁ (xl)’ q’% (12) ]+ - 0,
2, .2l .
h (X1), (x,) = 0, (2.9)
{(P{;’; 1 LPO( | 2 ]“_ .

3 2
(%), Y, (x,) = 0
1:953 ! %21  X2 .]f
the lower sign applying if we have
FAC AR
L‘ﬁa (xl): q/q (Xz)} = O , , .(2.10)
,[t{)(:ul), VISCR) I

H]
o
n
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It can be noted that the minus sign in front of the second term on the
right side of Eq. (2.8) can also be obtained by requirihg two of the
commutators and one anticommutator to vanish. Making use of the usual

'Fburier decomposition of field operators, we obtain

@7 ' | v 2 —2 ‘
MFI - 3 d;xq d; Xy X\L‘P (xl, xz) [ e(x2 - xl) <kf)q (x2) (’Jp (xl) >0
" _o0 . . '
Lo —2 N
Foly - xp) (g le) ) j
- 5 d xl h 2 ,3 (xl, x ) 19(2{2 Xl) [ e{@ ». (Xz - Xl)j
o | ~(m)) 7
+ e(xl - X ) [ (x2 - xl) { ’
Ea J
(2.11)
where N = (x;, x,) is a c-number,
N (e, x) = - B2 i T \éu's(m P u (my, Py
ip3-xl -ipy xz‘ iq, X1 -!n.ql Xo
, X e
i | (2.12)
With the help of the relationships |
5T (x) = % {:S(X) -1 S(l)(X)] R | (2.13)
S = 3 [swresPw] | (2.14)
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(1)
SF(x) - 8 (x)+ 1 € (x) s(x) , (2.15)
Sp0) = € () Spla) 5 | ERTS

where SF(x) is the Feynman propagator, Eq. (2.11) becomes, for Case (a),

(2) éTa d,x, N (%9, %,)8 (m2)( )
- - x Xy, X, - X )
Mo = w1 A2 G Do XoPryp T B
~ao ' (2.17a)
and for Case (b),
=]
(2) ' - (my)
| MFI = - 3 dhxl dhx2 Nﬂ? (xl, x2)sFos,df' (x2 -x) . |
=0 - (2.17b)

For (b) we obtain, for the intermediate state, the Feynman propagator, which

" 4s a Green's function for the Dirac equation, i.e.,

(¥, 9+ w0

For (2) the propagator is the functidn ST’ which'satisfies

214 ‘Sh(x)- . | (2.18)

(X;“i‘ + m)ST(fc) = —% 5‘3(3’&)?-;; , | (2.19)

‘in which P indicates that one mnst'take the principal value when:
integrating over X0 . |

From Eq. (2.11) we see that the two propagatdrs differ only 1n-the‘
sign‘;f the part corresponding to propagation by a negative-enérgy.particie{
This difference in sign is due to the odd number of transpositions of -

different spinor fields involved in going from Eq. (2.5) to (2.8). Thus,
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"the transition probability for the physicalfprocess that corresponds to -

Fig. 2.1 depends on the commutation relations of the different spinor fields.
This dependence does not occur for all processes involving the Hamiltonian
(2.2). An example of a transition probability the‘calculation of which

involves an even number of transpositions of different spinor fields and

" which is therefore the same for Cases (a) and (b) is given in the next’

section.
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III. VACUUM EXPECTATION VALVE
The probability that a vacuum state at t = -o0 shall remain a

vacuum for t = oo is
4)0

o= (]t = (e «5“5""’“3) & ii“"”“"))o ','

. (B
where P - is the operator that orders the factors in the opposite order of

_times to that of P.

To prove that the expansion in Eq. (2.1) yields the same result for.

WO. whether the different spinor fields commute or anticommute, we merel&‘
show that the vacuum expectation value of each term in the expansion (2.1)

T

of S and the corresponding expansion of S is the same for the two .

possibilities. The expression of interest is

-<P(J%)>o = <P {}%xl); ~., Hl(xn)}->o .

After the time ordering is pérformed we have the product.of H Hamiltonian

densitiea, For convenience, the indices may be considered to be interchanged

after the ordering is carried out so that <<-P(xn);>o becomes

<Lq¥xl) ceo Héxn);>0 , which is the sum of 4" terms. However, only
the terms ‘which contain an even number of a given ¢ and which for every
\i}i have a corresponding K}/ a;‘e nonzero. ‘Thus <P(%)} 0
nonzero only if n is even. The order of the factors is now rearranged
soithat all the boson opératoré appear on the right. By splitting‘tbese

up into'positivé- and negative-frequency parts and operating successiVelj

_on the vacuum, we may replace them by c-numbers. Next, the following rearrange-

ment is carried ouﬁ. Call the operator on the extreme right H/ia.' Pick
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ia . :
out a \})ia_ such that between it and (}J there are equal numbers

— i —_i . '
of Lle and 'kl/i , and commute \1) 2 to the right until it is next to

(Fia. ' Calt '77(2(1% Lﬁgia a factor paii'. Repeat the procedure for Fhe
‘first iiJJ to the left of the last factor pair formed until all the

q:matms are in factor pairs, all pairs for a given i béing grouped
together. Now <‘P(xn) ,>0 may be unambiguously replaced by c-numbers, -
Since in thg'formation of each factor pair and later in the regrouping of

all pairs with a given 1 to stand together an even number of transpbsitions
of d_ifferent spinor fields is performed, the final result is the same for
Cas (a) as for (b). Sinﬂlarly < P-(ﬁ)>0 is the same for thé two cases,
and thug the result for the phjsic;l_ quantity WO is independent of whether

the different spinor fields commute or anticommute.
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IV. RESTRICTIONS IMPOSED BY :COMMUTATIVITY-CONDITION..

In this section it is shown that for Case (a), the Hamiltonian
'dénsity does not commute with itself on a spacelike surface. We shall
evaluate the commutator of the Hamiltonian densities for the interaction
" Hamiltonian (2. 2), considering separately the two cases (a) and (b)
.discussed in Section 2.

Postulate (II) implies that

' 7 ‘ |

& | [p, o+ o, O] [P =0, (4.1)

where @1}72> and L T}f‘> are any two state.vectors (not necessarily
physical ones), x' = (;, 0), ¥ = (;, 0), (P+ Q) 4is the commutator

of the total Hamiltonian,
P, )+ Qx, ¥) = [HG), B ], (4.2)

and

Wy = (e, we ] (1.3)

i.e., all terms in P(x, y) dinvolve the Hamiltonian of the free fields.

For Cam (a), with g =i g,z 1 for convenience, we have

Qlx, ¥) = iA(-ml)'(x' - y):{_ q)l(y) ?2§y)'-+ $3(y) Wl(y)}[ \Pl(¥) WZ(X)““‘V?(X)“PI(x)]
4 14%2:: PP P+ P09 0] P Py’ P ]
+1 8 d | Ql(x)s(mz)(x - DY )+ zp%y)“s(mz)‘(y? x) ¢ ()]
+ 1 fofe (#2005 ™ tx - 9 01+ P05 2y - 0901

~ Cont.
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A m2) (my) 1.
gt [ ws 2 ix - 5 wy) - Pes - 0yt

— (m) _ (my)
| +&P2(x)s ml(x - y)ﬂ-’z(y) - ‘{’_2(37)5 Y - *A-’Z(X)l
- (msq) | - (mq)
- 1 0f e [§Fos 2 Yo - P o - DY)

+ <x)s( (x - y)w"m -y 3s | 2 x)«/z’(x]
+2 08 ) [ m (x)w2<x)+tp <x>c;f’b§[ () Y «p O]

42 ¢1 (y);f(x) { P )W)+ ‘.[)B(X)‘f' (x>] [‘f D¢ )+ ‘f’l(y) " <y)]

(bd)

where

[¢1(x), ¢‘<y)] W in

o (L.5)
(my) '

(x), (y) = -1 S ‘ (x - y) .
[ g IRty -
Since the Z\ and S functions vanish for
. , |
(x-y)2: {v(x-y)z-(xo-yo)]> o,

only the terms which do not contain either the A or S function are

nonzero in Q(x', y').
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- It is convenient to choose
_ ,qf>
[¥) = % <q>quo> ,

) + n '
where bi (pi) creates a mesqn of type 1 with momentum Fi > 8y ‘31)‘

i

b, <P1) b (,,2) ay (&) | W)
' (4.6)

creates a fermion of type i with momentum E;‘i and spin s , and ' 'ql()}

is the vacuum state. For ]_.ater convenience we set

- - P

-3 ) -2
Pz 4 2 Pz -y = P

Evaluating Eq. (4.2), we obtain .

<?la<x»y>iq0 -

(2ﬂ) w? 2 ml.w‘f‘3

(=5

- T Y *(mz) 1 1 8 >
X [\& - (mq, 1!:)55Q""5 | (x‘ -y ) ug (mg, -p)

. - ) v -| : Y C
+ Eqr(l.nls. D)S m2 (y -X )_ups(mB) ‘p)]' ’

7P

vhers (v = +~~J 32 + m2 s uJ is a épinor, Ej its adjoint, and

' A (1)
ST(X, 0) = [S(x, 0) - 18 (X, o)]
| is
p

(4.7)

(1),

(x, 0) for x£0,

(4.8)

s™(x, 0) _;  [ s, 0) + 4 5(1)( %, 0]

3
z -21- S(l)(x, 0)  for ?{ o,
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'sinqe
' iﬁ.-\ - AA L . . :
S(x) = = ;)3 Sdfj e * [w"({h cos wxy - (k* ¥+ i m)sin wxol
Qo 2 A s . (4.9)
¥ ‘ : d. k ikex 7 . o4
3(1)(3!) = (21”_)3 5 fo e * {(k' ¥+ i m) cos cr Xgy +w‘b’h §in uaxOJ

Then we have ‘

(!P‘j Q(x,y)]ty) 2(2”) Ml_;j “‘3)

e . (1) (mp) . __' W@ . 4 ] s
X uq (mlt p)I qu (x -y, 0) - SO{ P (y - x) 0)} up. (m. ’ "p)
=~ i - m1m3 ——— é;r(m)p)

er) | A Jo omom

w'dk gk (x-7) s = }
5 —m% e | , k. Y‘?F P(mBs ‘p) ’
O » -

which is nonzero. Since the terms in P{x, y) that involve both boson

(4.10)

fields gust contain one of them bilinéarly,'it is clear_that we have

<}{;’] P(x', y') j‘i{>» = 0, and Eq. (4.2) is viqiayed. For Gase (b),
on the other hand, all the terms in Q(x, y) involve either the A or
the S function and so we have Q(x','y') = 0. Also we have P(i', y') g'O,
and thus the assumption that different spinor fiéids anticommute is the

simplest one that satisfies Postulate“(II);"
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It is an interesting fact that if the interaction involves only
two different spinor fields that commute with each other Postulaté'(II)

is not violated. This can be verifisd easily by direct calculation.

4
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V. CONCLUDING REMARKS

It has been shown that the requirement that the Hamiltoniaﬁ
density commute with itself on a spacelike surface implies that spinor.
field operators representing different particles which interagt with one
another cannot be assumed to commute, but that this c0nclusioh can be drawn
only when there are three or more such fields. The distinction between the
case of two fields and that of three fields is closely connected to a
difference invthe permutatioﬁ properties of two and three or more elements.
_ Thié suggests that for thrée_or more fields the commutation relations may
involve more than two field operatoré. The choice of the formsvof these
- commutation relations can be determined by éeneralizing the consequences of
- the usual commutation relations for a single field. Since quantizing with
commutators or anticommutators leads to ensembles of particles oﬁeying
Bose-Einstein or Fermi-Dirac statistics, and these are related respectively
to tﬁe identical and the alternating representations of the symmetric
group, the forms of the more complicated commutation relations should
perhaps be similarly related to the higher—order irreducible representations
of that group. In this connection we note that it is the distinctness of
the twd boson fields that destroys the symﬁetxy of the Hamiltonian iﬁ the
interchange of any two spinor fields, and permits nonzéro tranéition
amplitudes between initial and final sﬁates described by eigenfunctiéns
belonging to different irreducible representations of the symmetric group.
' However, the requifément that the eigenfunctions of two physically realizable

systems belong to definite representations of the symmetric group places
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severe restrictions on the symmetry properties of the Hamiltonian with
respect to interchanges involving the different spinor fields. This

fact may perhaps serve as a guide in the further investigation of the

interactions of several spinor fields.
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" FIGURE ‘omroxs ,

- Figure I: Peynman diagram for a second order process involving three

different spinor fields.

Figgre LI:  The Feynman diagram of Fig. I divided into ita two constituent

parts corresponding to propagation by a particle (a), and by
an antiparticle (b)
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