Lawrence Berkeley National Laboratory

 Recent WorkTitle
SOME CONSEQUENCES OF CHAEGE INDEPENDENCE FOR STRANGE-PARTICLE REACTIONS
Permalink
https://escholarship.org/uc/item/7q64b8rm

Author

Feldman, David.
Publication Date
1955-09-08

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Radiation Laboratory Berkeley, California
 Contract No. W-7405-eng-48

SOME CONSEQUENCES OF CHARGE INDEPENDENCE FOR STRANGE-PARTICLE REACTIONS

David Feldman
September 8, 1955

Printed for the U_{n} S. Atomic Energy Commission

SOME CONSEOUENCES OF CHARGE INDEPENDENCE FOR STRANGE-PARTICLE REACTIONS

David Feldman*
Radiation Laboratory University of California
Berkeley ${ }_{\theta}$ California
September 8, 1955

Abstract

The implications of isotopic-spin conservation for fast strangeparticle reactionsp especially the production processes as well as the Kparticle interactions with nuclei, have been investigated. The possibility of distinguishing the Gell-Mann, Paiso and Salam-Polkinghorne theories of strange particles is also discussed.

[^0]I.

Gell-Mann ${ }^{1,2}$ has recently proposed a theory of strange particles which accounts for their stability and copious production in terms of a new ccncept $\mathrm{t}_{\mathrm{g}} \mathrm{z}_{0}$, the conservation of strangeness. A brief statement of this proposal ${ }_{0}$ expressed in terms that can be readily adapted to our subsequent discussion, can be given in the following way.

We introduce two charge spaces ${ }_{0}$ labeled by I_{1} and $I_{2^{s}}$ respectively of which the first is the usual isotopic spin space. We then postulate that the vain is elementary particles (hyperons and mesons) carry intrinsic angular monenta I_{1} and I_{2} in these spaces and so can be characterized by the eigenvalues of the operators $I_{1}{ }^{2}, I_{1 z^{9}} I_{2}{ }^{2}, I_{2 z}, p r o v i d e d ~ t h e ~ l a t t e r ~ q u a n t i c i e s ~ a r e ~$ conserved in the presence of the strong interactions (those couplings responsible for the production of π mesons and strange particles),

In Gell-Mann's scheme ${ }_{6}$ it is supposed that the strong interactions axe invariant with respect to arbitrary rotations in I_{1}-space e_{0} but only with respect to rotations about the z-axis in I_{2}-space; accordingly for this case ${ }_{0}$ $I_{1^{\circ}} I_{1 z^{p}}$ and $I_{2 z}$ are good quantum numbers. The conservation of $I_{1 z}$ and $I_{2 z^{0}}$ which takes place even in the presence of electromagnetic interactions, implies that charge is conserved ${ }^{\circ}$ since the charge Q of a particle is given by the relation

$$
\begin{equation*}
Q=I_{1 z}+I_{2 z}+\frac{n}{2} \tag{1}
\end{equation*}
$$

where $n=1_{\theta} 0_{0}$ and -1 for fermions s_{s} bosons $_{s}$ and antifermions, respectively. The "strangeness" quantum number S is directiy related to $I_{2 z}$ by the equality $S=2 I_{z}$ 。 Upon introduction of the weak interactions ${ }_{s}$ which account for the instability of the strange particles. $I_{1 z}$ and $I_{2 z}$ (and hence S) are no longer separately conserved.

[^1]A trivial variation of the Gell－Mann scheme can now be obtained by uging，in place of Eq．（1），the following definition for the charge：

$$
\begin{equation*}
Q=I_{1 z}+I_{2 z}{ }^{\prime} \tag{2}
\end{equation*}
$$

$i_{0} e_{0} I_{2 z}$ and $I_{2 z}{ }^{0}$ are related by the equation

$$
\begin{equation*}
I_{2 z}^{\prime}=I_{2 z}+\frac{n}{2} \tag{3}
\end{equation*}
$$

Upon introducing a new strangeness quantum number $S^{\prime \prime}=2 \mathrm{I}_{22}{ }^{\circ}$ 。 we notice that ${ }_{n}$ whereas the＂ordinary＂particles［nucleons（7）and π mesons］are char－ acterized in the original Gell－Mann formulation by strangeness $\mathrm{S}=\mathrm{O}_{8}$ we now have $S^{\prime}=1$ and 0 for η and π_{0} respectively．In Table I_{s} we have listed the assignments of $I_{1^{\prime}} I_{2 z^{\circ}}$ and $I_{2 z}$ ，for the various types of elementary particles．

II．
A generalization of Gell－Mann＇s scheme can be obtained by postulating invariance of the strong interactions under arbitrary rotations in both 1 spaces． independently．This is essentially the result contained in Pais＇s theoryo ${ }_{0}{ }_{0} 3$ However，there are two ways of proceeding with this generalization depending upon which of the two definitions of charge $[(1)$ or（2）］is adopted，and the distinction between the resultant classifications of the elementary particles is no longer trivial．Pais＇s original theory is based on Eq．（1）；the variation of this theory that is obtained from Eq。（2）was given recently by Sialam and Polkinghorne（referred to henceforth as SP）．${ }^{4}$

The magnitude of the intrinsic spin in I_{2}－space will now be a good quantum number．If we denote this quantity by I_{2} or $I_{2}^{\prime \prime}$ ，according to whether the charge is defined by Eq．（1）or Eq．（2），and we assume that I_{2} and I_{2}＇take on the minimal values allowed by Table I_{0} we obtain the assigaments of quantum

[^2]numbers given in Table II．${ }^{5}$ It will be noticed that ${ }^{5}$ whereas the Gell－Mann scherne deals with displaced charge multiplets，the essential feature of Pais＇s theory is that one now has double multiplets．

III．

As is well known the assumption that the $\pi-7$ and π－N interactions are charge－independent（or，equivalently，conserve isotopic spin）leads to im－ portant relations for reactions involving pions and nucleons．6－8 In the theories of shange particles，we may expect analogous restrictions to appear when only strong interactions are involved．

The situation is now somewhat more complicated，however．So far as the implications of the conservation of ordinary isotopic spin are concerred－a we also refer to this symmetry property as charge independence of the first kind or CI_{1}－the results will cleaxly be the same for all three schemes－Gell－ Mann $_{8}$ Pais．$_{0}$ SP．In the Pais and SP theories，we have also to deal with the conservation of isotopic spin in I_{2} space $e_{i_{0}} e_{0}$ with charge independence of the second kind $\left(\mathrm{CI}_{2}\right)$ 。 One has therefore ${ }_{0}$ in principle ${ }_{s}$ a means of distinguishing all three classification schemes from one another．

An essential question which needs to be considered at this point however，is this：How is one to reconcile Cr_{2} with the facts that Pais＇s for－ mulation contains too many particles s_{s} some of which are multiply charged ${ }_{0}$ and that SP assign ℓ and $\xi_{\xi} 0$ with widely differing masses，to the same double multiplet？To answer this question，we assume，first with Pais．that the superfluous particles that appear in his scheme are sufficiently massive so

[^3]that they decay quickly（in other words，the mass degeneracy with respect to $I_{2 z}$ is supposed to be lifted）。 Secondly we will conjecture that the interactions that give rise to the mass differences that now appear in both the Pais and SP theories do not alter appreciably the charge－independent character of the inter－ particle forces at the energies under consideration（these interactions may be with fields of very heavy quanta ${ }_{0}$ say）．

Hence，it will be assumed that CI_{2} is still applicable ${ }_{0}$ in the usual wayo to reactions involving strange particles ${ }_{0}$ except that one must take notice of the fact that the matrix elements depend explicitly on the masses of the in－ coming and outgoing particles．A comparison of a set of reactions that are related by Cl_{2} but whose outgoing products ${ }_{\theta}$ say ${ }_{0}$ do not have corresponding masses is then impossible（except at energies that are sufficiently high so as to render the mass differences negligible）unless one knows the functional form of the matrix elements for the various isotopic spin eigenstates involved．

The arguments of the preceding paragraphs are ${ }_{\theta}$ of course ${ }_{3}$ highly speculative and have clearly been introduced so as to provide some plausibility for the retention of I_{2} as a good quantum number in the Pais and SP proposals． For，otherwise，the generalizations inherent in the latter theories do not constitute any improvement over the Gell－Mann scheme．
IV。

We have examined the implications of CI_{1} and CI_{2} for all possible strange－particle reactions in which one has an incident pion nucleon $_{9}$ or K particle impinging on a target nucleon or deuter $\mathrm{n}_{\text {g }}$ subject only to the limita－ tion that no more than three particles shall emerge in any reaction．The results are tabulated in Tables III to VI．The consequences of CI_{1} for some of the reac－ tions listed have been studied previously by several authors．${ }^{1,9-11}$

The constraints imposed by charge independence take the form of equalities and inequalities which relate the differential cross sections for reactions that differ from one another solely in the assignment of $I_{1 z}$（or $I_{2 z}$ ）

[^4]to the particles involved. Clearly reactions for which one can deduce relations in the form of equalities are to be preferred as a test of charge independence. For such reactions, one can gencrally also derive weaker relations in the form of liegualities ${ }_{0}$ some of which have been noted in the footnotes to : Ta Tables. All the relations given in the Tdbles are applicable to reactions involving either polarized or unpolarized particles. They are also valid when applied to total crosa sections except that some relations may be lost (one can thens for example, no longer distinguish $K^{-} P \longrightarrow \Lambda^{0} \pi^{+} \pi^{-}$from $K^{-} P \longrightarrow \wedge^{\circ} \pi^{-} \pi^{+}$; one must alwe wercise the customary care in defining total cross sections wres identical parcicles are emitted.

The symmetry property that we have denoted by Cl_{1} also implies, 20 a special case, invariance under rotations through 180° about the x-axis, seys in I_{1} space (charge symmetry of the first kind or $C S_{1}$)。 For the sake of brevily y_{0} we have not listed reactions that are related by CS_{1} only; these are quite familiar and are readily recognized. On the other hand, we have not ignored the implications of CS_{2}; indeed ${ }_{0}$ most of the relations deduced for Pais's theory and as cribed to CI_{2} are equally correct under the less stringent requirement of CS_{2} 。

V.

We conclude this note with several miscellaneous remarks.
(1). The implications of CI_{1} and CI_{2} for strange-particle reactions are valid even if the K-particle beams contain τ mesons. The only precaution that needs to be observed is that the proportion of such t mesons to be found among incident K particles must be kept constant for a series of comparable reactions.
(2). The equalities that are implied by Cl_{1} all have the form of Watson's relation ${ }^{6}{ }^{6}$ which may be phrased in the following way. Suppose we have a proton or charged K particle incident on a target nucleon which iso with equal probability, a neutron or a proton ${ }^{12}$ and consider a set of reactions that are identical with one another except for the $I_{1 z}$ assignment of the target and outgoing particles. Then ${ }_{0}$ denoting by $v_{+^{0}} v_{-0}$ and v_{0} the number of positive ${ }_{3}$

[^5]negative，and neutral π mesons（or Σ particles ${ }^{13}$ ）emitted into a given solid angle we have
\[

$$
\begin{equation*}
v_{+}+v_{-}=2 v_{0} . \tag{4}
\end{equation*}
$$

\]

While the utility of these relations with respect to Σ particles may well be limited（because of the difficulty in distinguisting Σ^{0} from Λ^{0} ）this is not the case for π mesons．A rest of the validity of Cl_{1} for strange particles can shus be made by counting the charged and neutral π mesons eiritted in the absorption of K^{-}particles that have been brought to rest in $\mathrm{D}_{0}{ }^{14}$
（3）．Although we have assumed specifically that the target nucleus is \mathscr{K} or D_{θ} our results dealing with the implications of Cl_{1} can be readily generalized so as to be applicable to the use of other light nuclei as targets．Thus by way of example e_{n} in every reaction in which we have a deuter on target and a nucleon or deuteron appearing as one of the reaction products，we can make the re－ placement $\mathrm{D} \longrightarrow \mathrm{He}_{\mathrm{g}}^{4} \mathrm{P} \longrightarrow \mathrm{He}^{3}{ }_{,} \mathrm{N} \longrightarrow \mathrm{H}^{3}$ ；the utility of $\mathrm{K}^{-}-\mathrm{He}^{4}$ reactions as a test of CI_{1} has recently been noted by Lee．${ }^{9}$
（4），Perhaps the simplest test of CI_{2} in Pais＇s theory would consist of a comparison of the elastic scat tering of K^{+}and K^{-}mesons by self－conjugate nuclei ${ }_{0} \mathbf{e}_{\text {。 }} \mathrm{g}_{\text {。 }}$

$$
\begin{align*}
& \mathrm{K}^{+}+\mathrm{D} \longrightarrow \mathrm{~K}^{+}+\mathrm{D} \tag{5a}\\
& \mathrm{~K}^{-}+\mathrm{D} \longrightarrow \mathrm{~K}^{-}+\mathrm{D} ; \tag{5b}
\end{align*}
$$

the equality of the two cross sections is actually based on CS_{1} and CS_{2}［Table VI（5）］．As has already been noted ${ }^{\prime}$ a test of the various inequalities that are listed for the SP theory would have to be performed at energies hïgh enough so

[^6]as to render the $\chi \sim$ mass difference unimportant except for reactions (3) and (4) of Table VI for which curiously enough ${ }_{0}$ the implications are the same in both the Pais and SP theories.

It is a pleasure to thank Dr. David L. Judd and che Theoretical Group of the Radiation Laboratory University of Californian for their kind hospitality during the summer of 1955 .

This work was performed under the auspices of the U_{0} S. Alomic Energy Commission.

Table I

\left.| Classification of elementary particles according to the | |
| :--- | :---: | :---: | :---: |
| Gell-Mann scheme | |$\right]$

Table II

Classification of elementary particles according to Pais and Salam-Polkinghorne			
Particle	I_{1}	I_{2}	$\mathrm{I}_{2}{ }^{\circ}$
Hyperons: \backslash	1/2	0	$1 / 2^{(*)}$
\wedge	0	1/2	0
Σ	1	1/2	0
Ξ	1/2	1	$1 / 2^{(m)}$
Mesons: π	1	0	0
K_{0} 醇	1/2	1/2	1/2

*Since $\not \subset$ and $=$ bear the same quantum numbers in the SP theory, they are assigned to the same double multiplet.

Table III

Table III (Cont.)

Reaction	Relation
82 PP $\longrightarrow \mathrm{Pr}^{+} \mathrm{K}^{0}$	
L $\longrightarrow \mathrm{P} \Sigma^{\circ} \mathrm{K}^{+}$	
$\mathrm{c} \quad \longrightarrow \mathrm{N} \mathrm{\Sigma}{ }^{+} \mathrm{K}^{+}$	
i $\mathrm{NP} \longrightarrow \mathrm{P} \mathrm{\Sigma} \Sigma^{0} \mathrm{~K}^{0}$	$a+c+e+1=2(b+d+g)^{(+)}$
ה $\quad \longrightarrow \mathrm{P} \mathrm{\Sigma} \mathrm{E}^{-}{ }^{+}$	
$\square \longrightarrow \mathrm{N} \Sigma^{+} \mathrm{K}^{\mathbf{0}}$	
$\mathrm{g} \quad \longrightarrow \mathrm{N} \Sigma \mathrm{O}^{+}$	
9a PP $\longrightarrow \mathrm{DK}^{+} \overline{\mathrm{K}}^{0}$	
b NP $\longrightarrow \mathrm{DK}^{\circ} \mathrm{K}^{\circ}$	$\Delta\left(a_{0}, b_{s} c\right) \geqslant 0$
c $\longrightarrow \mathrm{DK}^{+} \mathrm{K}^{-}$	
$10 \mathrm{a} P \mathrm{PD} \longrightarrow \mathrm{D} \Sigma^{+} \mathrm{K}^{\circ}$	
$\mathrm{b} \quad \longrightarrow \mathrm{D}{ }^{\circ} \mathrm{K}^{+}$	$a=2 b$

* We use the notation $\Delta\left(a_{0} b_{\theta} c\right) \geqslant 0$ to denote the three triangular inequalities $a^{1 / 2}+b^{1 / 2}-c^{1 / 2} \geqslant 0, b^{1 / 2}+c^{1 / 2}-a^{1 / 2} \geqslant 0 c^{1 / 2}+$ $a^{1 / 2}-b^{1 / 2} \geqslant 0$ 。
${ }^{*} *{ }^{\prime}$ There is also an equality relating the eight cross sections ${ }_{\theta}$ which is of the form of a phase relationship. ${ }^{7}$ This equality is lost, however, when one deals with unpolarized particleso ${ }^{8}$
+ There are also inequalities for this case e $_{\circ} g_{\circ \circ} \Delta\left(a_{8} 2 b_{0} c\right)>0_{0}$ etc.

Table IV
Implications of CI_{1} for $\mathrm{K}-7$ and $\mathrm{K}-\mathrm{D}$ reactions

Reaction

Relation

Ia $\mathrm{K}^{-} \mathrm{P} \longrightarrow \wedge^{0}{ }^{\circ}$
b $\mathrm{K}^{-} \mathrm{N} \longrightarrow \Lambda^{\circ} \pi^{-}$
$2 a=b^{(1)}$
$\begin{aligned} \therefore K^{-} \mathrm{P} & \longrightarrow \Sigma^{+} \pi^{-} \\ \cdots & \longrightarrow \Sigma^{\circ} \pi^{\circ} \\ \mathrm{C} & \longrightarrow \Sigma^{-} \pi^{+}\end{aligned}$
d $K^{-} N \longrightarrow \Sigma^{C} \pi^{-}$
$a+c+e=2(b+d)$
e $\longrightarrow \Sigma^{-} \pi^{\circ}$
3a $K^{-} \mathrm{P} \longrightarrow \Lambda^{\circ} \pi^{+} \pi^{-}$
b $\quad \longrightarrow \Lambda^{\circ}{ }^{\circ} \pi^{\circ}$
c $\quad \longrightarrow へ^{\circ} \pi_{\pi}^{+}$
Same as 2
d $\mathrm{K}^{-} \mathrm{N} \longrightarrow \mathrm{NO}^{\circ}{ }^{\circ}{ }^{-}$
e $\longrightarrow へ^{\circ}{ }^{-} \pi^{\circ}$
sa $\mathrm{K}^{-} \mathrm{N} \longrightarrow \mathrm{K}^{-} \mathrm{N}$
b $K^{-} P \longrightarrow K^{-} P$
$\mathrm{c} \quad \mathrm{MX}^{\circ} \mathrm{N}$
$5 z \cdot \mathrm{~K}^{-} \mathrm{P} \longrightarrow \Sigma^{+} \pi^{\circ} \pi^{-}$
$\mathrm{b} \quad \longrightarrow \Sigma^{+} \pi \pi^{-}{ }^{0}$
c $\quad \longrightarrow \Sigma^{O_{\pi}{ }^{+} \pi^{-}}$
$\mathrm{d} \quad \longrightarrow \Sigma^{\circ} \pi^{\circ} \pi^{\circ}$
e $\quad \longrightarrow \Sigma^{\circ} \pi_{\pi}^{-}$
$b+c+e+f+h+j+k+m=2(a+d+g+i \div 2)$
i $\quad \longrightarrow \Sigma^{-} \pi^{+} \pi^{\circ}$
$\mathrm{g} \quad \longrightarrow \mathrm{E}^{-} \pi^{\circ} \pi^{+}$
$\mathrm{h} \mathrm{K}^{-} \mathrm{N} \longrightarrow \Sigma^{+}{ }_{\pi}^{-}{ }^{-}{ }^{-}$
i $\longrightarrow \Sigma^{\circ} \pi^{\circ} \pi^{-}$
$j \quad \longrightarrow \Sigma^{\circ} \pi^{-} \pi^{0}$
$\mathrm{k} \quad \longrightarrow \Sigma^{-} \pi^{+} \pi^{-}$
R $\quad \longrightarrow \Sigma^{-} \pi^{\circ}{ }^{\circ}$
$m \quad \longrightarrow \Sigma^{-} \pi^{-} \pi^{+}$

Table IV (Cont.)

Table V

Reaction	Relation	
	Pais	SP
	$\begin{aligned} & a=b \\ & a=b \\ & a=b \end{aligned}$	$\Delta\left(a_{0} b_{0} c\right) \geqslant 0$

Implications of CI_{2} for $\mathrm{K}-7$ and $\mathrm{K}-\mathrm{D}$ reactions

Reaction	Relation	
	Pais	SP
$\begin{array}{rl} 1 \mathrm{a} & \mathrm{~K} \eta \longrightarrow K \eta \\ \mathrm{~b} & \bar{K} \eta \longrightarrow \overline{\mathrm{~K}} \cap \\ \mathrm{c} & \longrightarrow \mathrm{~K} \end{array}$	$a=b$	$\Delta\left(\mathrm{a}, \mathrm{b}_{i} \mathrm{c}\right) \geqslant 0$
	Same as 1	
3a K 久 $\longrightarrow \mathrm{KK}$ b $\bar{K} \eta \longrightarrow A \bar{K} \bar{K}$ c $\longrightarrow i K K$	$\Delta\left(a_{g} b_{n} c\right) \geqslant 0$	$\Delta\left(a_{n} b_{0} c\right) \geqslant 0$
$\begin{array}{rr} 4 \mathrm{a} & \mathrm{~K} \backslash \\ \mathrm{~b} & \mathrm{~K} \nsim \Sigma \mathrm{~K} \end{array} \mathrm{EK}$	Same as 3	
5a K D $\longrightarrow \mathrm{K} D$ b $\bar{K} D \longrightarrow \bar{X} D$	$a=b$	
6a K D $\longrightarrow 7 n \mathrm{~K}$		
$\begin{aligned} & \mathrm{b} \overline{\mathrm{~K}} \mathrm{D} \longrightarrow \lambda \eta \overline{\mathrm{~K}} \\ & \mathrm{c} \quad \longrightarrow \neq \mathrm{F} \end{aligned}$	$a=b$	$(2 c+2 d)^{1 / 2} \geqslant\left\|a^{1 / 2}-b^{1 / 2}\right\|$
$\mathrm{d} \quad \rightarrow \quad \rightarrow \pi \mathrm{K}$		
$7 \mathrm{KaD} \longrightarrow \mathrm{KK} \pi$ b $\bar{K} \mathrm{D} \longrightarrow \mathrm{D}_{\pi}$	$a=b$	

[^0]: * On leave during the summer of 1955 from the Department of Physics University of Rochester, Rochester. New York

[^1]: MoGell-Mann ${ }^{\text {M }}$ Phys. Rev. 92.833 (1953); also a paper entitled "The Inter pretation of the New Particles as Displaced Charge Multiplets. "in press.
 ${ }^{2}$ M. Gell-Mann and A。Pais, Proceedings of the 1954 Glasgow Conference (Fergamon Press. London. 1955). p. 342,

[^2]: ${ }^{3}$ Ac Pais，Proc．Nat．Acad．Sci． $40_{0} 484$（1954）；Proceedings of the Fifth Annual Rochester Conference，1955s p． 131 。

[^3]: ${ }^{5}$ SP（Reference 4）distinguish between the θ and τ meson by making the assignments $I_{1}=1 / 2_{,} I_{2}{ }^{\prime}=1 / 2$ and $I_{1}=0_{0} I_{2}{ }^{\circ}=1$ for these two particles ${ }_{0}$ respectively．However，the observation of the production mechanism $\eta+\eta \longrightarrow \eta+\Sigma+T$ by P。S．Goel and K．A。Noelakantan（see the Report on the Pisa Conference by R．E，Marshak．NYO－7138，unpublished）would seem to preclude this assignment for the $;$ meson．Accordingly，following Gell－ Mann and Pais we treat the θ and T meson on an equal footing．
 ${ }^{6} \mathrm{~K}_{0}$ Mi．Watson，Phys．Rev。 85082 （1952）。
 ${ }^{7}$ Van Fove，Marshak， and Pais．Phys．Rev。 $88_{0} 1211$（1952）；Lo Van Hove ${ }_{0}$ NYO－3704．1952．
 ${ }^{8}$ D．Feldman ${ }^{2}$ Phys。Rev。 8901159 （1953）。

[^4]: ${ }^{10}$ T．D．Lee．Phys。Rev。 99， 337 （1955）。
 ${ }^{5}$ ．Gasiorowicz ${ }^{6}$＂Isotopic Spin Conservation in K^{\prime} Interactions with Nuclear Matter ${ }^{\text {＂Univer sity of California Rediation Laboratory Report No。UCRL－}}$ 3074。1955。
 ${ }^{\text {Case，Karplus }}$ ，and $\mathrm{Yang}_{\mathrm{g}}$ Phys．Rev．（in press）．

[^5]: More generally, the state of the target must be isotropic in isotopic spin space; the target can therefore also be $\mathrm{D}_{\text {, }} \mathrm{He}^{4_{0}} \mathrm{C}_{n}$ etc.

[^6]: 13
 These are the only two species of elementary particles that are assigned $14^{\text {spin unity in } I_{1} \text {－space．}}$

 The only reactions that are then energetically capable of producing π mesons are those listed in Table $\mathbb{K}\left(14\right.$ and 15 ）and $K^{-} D \longrightarrow \wedge O N \pi^{+} \pi^{-}$。 etc．；for the latter case，there are two equalities similar to those given in Table IV（15）．

