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I N .  
I g ‘ I N  = N - I g T + ( N -  1) /2 

That is 

IN = N (A21 1 + I g ‘ + “ -  1 1 0  

where “g” is a primitive element. According to the number theory 
[7], we have 

1 g ( N -  I l / 2  I N  = - 1; I A  = 1 I A l N  l B I N I N  Utilization of Bandpass Filtering for the Matrix 
Pencil Method then 

Fengduo Hu, T. K. Sarkar, and Yingbo Hua 

= II g f l N  x (N - 1)IN = 1 - 1  g ‘ l N l N  
Abstract-This correspondence describes an alaorithm named the 

= IN - I R ’ I N I N  

a s 0  < I g ’ I N  5 N - 1, 1 5 i 5 N - 1, we have 

IN - I g ’ l N l N  = N - I g ’ l N .  

It means that 

bandpass matrix pencil (BPMP) method for estimating the parameters 
of an exponential data sequence. The matrix pencil (MP) method, along 
with a filtering technique, is used to estimate the complex exponentials 
of the signal. However, due to special requirements to the filtered data 
by the MP method, the prefiltering process is not trivial. The approach 
presented here utilizes the backward process for the IIR filtering and 
the circular convolution for the FIR filtering. resoectivelv. Monte Carlo 

I _  

simulations are presented to illustrate the performance of the proposed 
filtering schemes. IN = IN - I d I N I N  = N - I g ’h .  I g l + ( N -  I ) / 2  

so 

1 g ‘ I N  + I g r + ( N - I l 1 2  I N  = N .  I. INTRODUCTION 

Therefore, ( 1  1) is proved. 
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The mathematical model of an observed signal can generally be 
formulated as 

M 

y ( k )  = x ( k )  + n ( k )  = c R,Zf  + n ( k ) ,  
, = I  

k = 0 ,  1, . . .  , N -  1 ( 1 )  comments. 
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where 

z, = exp ( - a ,  + jw,) (2 )  

and z,’s and R,’s are the poles and residues of the signal, respec- 
tively. M is the number of poles of the signal, and n ( k )  is the back- 
ground noise. a, and w, are the damping factor and angular fre- 
quency of the i th  sinusoid, respectively. Once the number of poles 
and their values have been determined, the residues at the poles 
can be found by the least squares method. Hence, only the problem 
of estimation of the poles is considered in this correspondence. 

The most popular method for pole retrieval is Prony’s method. 
However, Prony’s method is notorious for its extreme sensitivity 
to noise. There are many modified versions of the Prony method. 
The most well known one is the principal eigenvector (PE) method 
111. Recently, Hua and Sarkar 121, [3] developed a new technique, 
named the matrix pencil (MP) method, for pole estimation. The 
advantage of using matrix pencil is that the signal poles can be 
found directly from the eigenvalues of the matrix contrast to the 
PE method, which generally requires two-step processes. In the 
first step one solves a matrix equation, and finds the roots of a 
polynomial equation in the second step. 
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Even though the MP method can filter out part of the noise by 
using a singular value decomposition (SVD) of the data matrix and 
discarding the nonprincipal singular vectors similar to ESPIRT, 
some effects of noise still exist in the principal singular values and 
vectors. Therefore, to further combat noise, prefiltering can be used 
prior to the SVD filtering. To keep the underlying property of the 
exponentially damped or  undamped sinusoidal signals after prefil- 
tering, the backward process for the IIR filters is introduced. For 
the FIR filters, we suggest using the circular convolution instead 
of the linear convolution. 

11. POLE RETRIEVAL BY THE MP METHOD 

In order to motivate the development of the bandpass matrix pen- 
cil (BPMP) method, the algorithm of the MP method for pole es- 
timation is briefly reviewed in this section. For the noiseless data, 
we can define the matrix pair Y , ,  Y, as 

(3) 

where x, = [ x ( i ) ,  x( i  + I ) ,  . . . , x ( N  - L + i - l ) l f .  The su- 
perscript T denotes the transpose. It can be shown that 

Y,  = [XI ,  x2 ,  . . . , X,l; Y, = txo,  XI, . . . , X,-II 

Y ,  = ZrRZoZ2; Y2 = ZLRZ, (4) 

where zo = diag[z,, z2, . . . , zM], R = diag [ R I ,  R2 ,  . . . , R,]. 
Z ,  and Z2 are full rank Vandermonde matrices [3]. Then we gen- 
erate the matrix pencil as 

Y ,  - AY2 = Z I R ( Z ,  - XI)&. ( 5 )  

One can show in general that the rank of Y ,  - AY2 will be M ,  
provided M 5 L 2 N - M where L is the matrix pencil parameter. 
However, if X = z,, i = 1, 2 ,  . . . , M ,  the ith row of Zo - X I  is 
zero, thus, the rank of Zo - XI will be M - 1.  Therefore, the 
matrix pencil Y ,  - AY2 will also reduce in rank to M - 1. By 
definition, z,'s are exactly the generalized eigenvalues of the matrix 
pair { Y , ,  Y 2 } .  Furthermore, it can be shown that the generalized 
eigenvalues of Y ,  - AY2 can be found from the nonzero eigenvalues 
of Y: Y , ,  where Y: is the Moore-Penrose pseudoinverse of Y,. 

111. THE INFINITE IMPULSE RESPONSE (IIR) FILTER 
PROCESSING 

The backward process is proposed for the IIR filtering. The input 
signal is required to be a linear combination of exponentially 
damped sinusoidal signals. This requirement can be satisfied by 
most signals encountered in practice. 

The backward process in the time domain can be written as 
,n ,1 

y ( k )  = c b J x ( j  + k )  - c a i y ( i  + k ) .  (6) 
1 - 0  , = I  

If all poles of the signal are different from those of the IIR filter, 
then y [ k ]  can be divided into two parts. One part is generated by 
means of the poles of the signal, denoted as y,(k), while the other 
part arises from the poles of the filter, denoted as y, ,(k).  It can be 
shown that y r  ( k )  satisfies the following difference equation 

,n " 
~ . , ( k )  = b J x ( j  + K) - a,y,(i + k )  (7) 

8 =, 
where 

Since the backward process starts at the endpoint of the data se- 
quence, it is required that the initial conditions be zero, that is, 

x ( k )  = 0,  y,(k) = 0 ,  for k 5 N .  Therefore, the input signal must 
be an exponentially damped signal! To secure the backward pro- 
cess without involving the poles of the filter, yh ( k )  must not be zero 
for k 2 N .  This can be achieved by placing the poles of the filter 
outside the unit circle. Because the backward process does not in- 
volve the poles of the filter, placement of the poles of the IIR filter 
outside the unit circle would not induce the process unstable. Also, 
such a procedure guarantees that the poles of the signal would be 
different from those of the filter. 

To simplify the filter design procedure, we consider the second- 
order IIR bandpass filter. The transfer function H(z) of the band- 
pass filter is defined as 

(9) 

where K is a constant controlling the gain of the filter. To find the 
difference equation of the filter, we rewriter H(z) in the canonical 
form. That is, 

(10) 
1 - 2, 

H(z) = K '  1 - q l z  - 42z* 

where 

K '  is chosen so that the filter has a unit gain at w = wo. To control 
the sharpness or wideness of the passband of the filter, we intro- 
duce another parameter BW such that 

1 
1 - BW 

r = -  (12) 

Substituting (14) into (13), we have 

91 = 2(1 - BW) COS W O ;  92 = - (1  - BW)2. (13) 

Provided that Nand the damping factors are large enough, x ( k )  and 
y , ( k )  are approximately zero when k is larger than N. Using (9), 
we get 

y,(N - 1) K ' x ( N  - 1) 

y.,(h' - 2) = 91 y , (N  - 1) + K'x(N - 2)  

To get the desired filtering effect, the filtering process can be done 
by using a series of cascaded bandpass filters. Assuming that the 
number of the filters is d and denoting the output of the d th  filter 
as y\'"(k), one can use ~ . \ ~ ' ( k )  to form the matrix pair Y ,  and Y2.  
The poles of the signal can be obtained from the eigenvalues of 

The way to decide the central frequency wo and the bandwidth 
parameter BW of the filter is to do a coarse FFT analysis of the 
data. Based on our simulations, we have found that the choices of 
wo and BW are not critical when SNR is not too low. 

Y: Y , .  

IV. THE FINITE IMPULSE RESPONSE (FIR) FILTER PROCESSING 

It is well known that IIR filtering is usually faster than FIR fil- 
tering due to the utilization of the recursive equation in the IIR 
filtering. However, IIR filtering can only be used for the signals 
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Fig. 1 .  The inverted sample variance of U ,  versus SNR. BW = 0.1, wo = 0.8796, N = 50, L = 20, d = 1. *: MP, +: BPMP. 

which contain exponentially damped sinusoidal signals as men- 
tioned in the previous section. 

The first step for the FIR filtering is to find the impulse response 
of the filter. From the magnitude of the FFT of the signal, the 
cutoff frequencies of the bandpass filter wL, wu (wL < wu)  can be 
obtained. The truncated finite impulse response is given by 

where q is the length of the bandpass filter and odd w ( n )  is the 
window function. The FIR filtering then is achieved by using the 
linear convolution. Even though the FIR filtering would not in- 
crease the number of poles of the filtered data, the number of the 
filtered data available to form the matrix pair Y ,  and Yz will be 
reduced because of the linear convolution. Now we introduce 
Lemma 1. 

Lemma I: If the length of the input signal is N and of the im- 
pulse response of the filter is 4 ,  then there are N - q + 1 data 
samples of the filter output. The output can be expressed as 

M 

y ( k )  = c R : Z f - y ' ' ,  f o r q  - 1 s k 5 N - 1.  (18) 
I =  I 

Lemma 1 indicates that the longer the length of the filter, the shorter 
the filtered data that can be used by the MP method. To maintain 
the performance of the SVD filtering, we introduce a prefiltering 
approach by using the circular convolution. 

The crux of the circular convolution is to generate a ( N  - L )  x 
( N  - L )  filtering matrix by using the impulse response of the filter. 

That is, 

H =  

If N - L is even, the filter length is chosen as N - L - 1 and one 
zero is padded to the sequence. Premultiplying both Y ,  and Y, by 
H ,  we have 

where y: = Hy,. Since H is full rank, for the no noise case, sub- 
stituting (4) into ( 2 3 )  results in 

Y ;  = HZIRZOG, Y i  = HZIRZZ. (21) 

Therefore, 

Yi' Y ;  = Z:&z,. (22)  

The signal poles are still the nonzero eigenvalues of Yi' Y ; .  
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Fig. 2. The inverted sample variance of a ,  versus SNR. BW = 0.1, wo = 0.8796, N = 50, L = 20, d = 1 .  *: MP, f :  BPMP 

T A B L E  I 
THE MEAN-SQUARED ERROR A N D  THE B I A S  OF 01 FOR DIFFERENT BW (SNR = 18.3 dB) 

10 

BW 0.001 0.01 0.05 0.1 0.3 

MSE 6.43 x IO-' 6.46 x I O - '  6.98 x lo-' 7.56 x lo-' 1.32 x 10 ' 
Bias 0.0016 0.0006 -0.00 19 - 0.0044 ~ 0.0097 

IV. THE PERFORMANCE STUDY OF THE BPMP METHOD 

In this section, the computer simulations are carried out to illus- 
trate the performance of the BPMP method. In the following sim- 
ulations, the exponentially damped sinusoidal signals are used. 
Since the signals are real, (1) can be written as 

M / 2  

y ( k )  = x ( k )  + n ( k )  = b,e-"" sin (w,k  + 4,) + n ( k ) ,  
I =  I 

k = O , I ; . . , N -  1 (23) 

where n ( k )  is a zero-mean variance a' Gaussian white noise. The 
signal-to-noise ratio (SNR) is defined as 

Y -  I 

c x 2 ( k )  
SNR (dB) = 10 log,,, I=o (24) 

In the first example, we consider the signal with the following 
parameters: M = 4,  w ,  = 0.26?r, w2 = 0.3?r, cyI = a2 = 0.1, b, 
= b2 = I ,  dI  = d2 = 0. The number of data N is 50. The IIR 
bandpass filter is used for filtering. The central frequency of the 
bandpass filter wo is set as the average of wI and w2.  The parameters 
of the bandpass filter BW is chosen as 0.1. The number of filters d 
is 1. The matrix pencil parameter L equals 20. 

N u 2  ' 

To get the sample variance of the estimate of w , ,  200 runs are 
performed. The noise used in each run is independent of the others. 
For comparison to the BPMP method, we have computed the 
Cramer-Rao lower hound (CRLB) for the variance of the angular 
frequency estimate. It can be seen that the BPMP method is slightly 
poorer than the MP method at high SNR as shown in ,Fig. 1. This 
is due to the truncation error of the backward process. However, 
the threshold is extended downward from 26 to 12 dB. The plot of 
the inverted sample variance of ai in Fig. 2 further confirms that 
the BPMP method is better than the M P  method especially at low 
SNR. 

In Table I, we tabulate the mean-squared error and the bias of 
wI for BW changing from 0.001 to 0.3. One can see that the mean- 
squared error and the bias increases with the bandwidth of the filter 
as more noise pass through the filter. The mean-squared error and 
the bias in estimating w ,  for the different choices of U,, are given 
in Table 11. It is obvious that the mean-squared error and the bias 
of wI become smaller when wo is closer to wI. 

T o  ascertain the performance of the FIR filtering, the exponen- 
tially damped sinusoid signal with a small N and small damping 
factors is used for simulations. The parameters are N = 30, M = 

0 . 0 3 5 ~ ,  b ,  = b2 = I ,  and 4I  = 42 = 0. L is chosen as 10. wL and 
wu are set at 0.5 and 1.2, respectively. The window function is the 

4, U ,  = 0 . 2 ~  = 0.628, ~2 = 0 . 3 5 ~  = 1.1, CYI = 0 . 0 2 ~ ,  CY? = 
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TABLE I1 
THE MEAN-SQUARED ERROR A N D  THE BIAS OF WITH DIFFERENT wg (SNR = 18.3 dB) 

WO 0.7796 0.8168 0.8796 0.9424 0.9796 

MSE 1.32 X IO-' 9.21 X 7.56 X 8.92 X 1.21 X IO- '  
Bias 0.0104 0.0038 - 0.0044 -0.0137 -0.0222 

10 
l ' l ' l ' l ' ~ ' l ' ~ ' ~ ' ~ ' ~ ' ~ ' ~  -P-r' I ' I ' I ' I ' I ' I ' I--I- 

- 1  0 1 2 3 1 Ti 6 1 8 9 10 1 1  12 13 I 4  15 If, 17 18 19 20  

SNIt (d l l )  
Fig 3 The inverted sample vanance of w ,  versus SNR L = 10, q = 19, wL = 0 5 ,  w,, = 1 2, 0 = 5 658, Kaiser window * 

MP. + BPMP 

Kaiser window with p = 5.658 [ 5 ] .  The length of the FIR filter is 
chosen as 19. From the plot of the sample variance of the estimate 
of U ,  in Fig. 3, it is evident that the BPMP method performs better 
than the MP method. 

V.  CONCLUSION 

The combination of MP method and the prefiltering provides a 
new robust technique for estimating parameters of exponential sig- 
nals in noise. Since the MP method is based on the underlying 
property of the exponential signals, we proposed the backward pro- 
cess and the circular convolution for the IIR and the FIR filtering, 
respectively. The IIR filtering is especially suitable for long damped 
sinusoidal signals, while FIR filtering is more efficient for short 
damped or undamped sinusoidal signals. Finally, simulation re- 
sults have been presented which confirm the expected performance 
of the proposed filtering techniques. 
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A Simplified Derivation of the Performance of 
Edge-Connected Crossed-Electrode Arrays for 

Two-Dimensional Projection and 
Beamforming 

Jules S .  Jaffe 

Abstract-This correspondence presents a theoretical analysis of :he 
possible performance of edge-connected crossed arrays for two-dimen- 
sional beamforming introduced by Schau. The approach utilizes stan- 
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