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Abstract

Maximal Inequalities and Mixing Times

by

Jonathan Hermon

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Allan Sly, Chair

The aim of this thesis is to present several (co-authored) works of the author concerning
applications of maximal inequalities to the theory of Markov chains and put them in a
unifying context. Using maximal inequalities we show that different notions of convergence
of a Markov chain to its stationary distribution are in some quantitative sense equivalent to
some seemingly weaker notions of convergence. In particular, it is shown that the convergence
to stationarity of an ergodic reversible Markov chain w.r.t. the Lp distances (p ∈ [1,∞]) and
the relative-entropy distance can be understood (up to a constant factor) in terms of hitting
time distributions. We present several applications of these characterizations, mostly ones
concerning the cutoff phenomenon and robustness of mixing times.

A sequence of Markov chains is said to exhibit (total variation) cutoff if the convergence
to stationarity in total variation distance is abrupt. Though many families of chains are
believed to exhibit cutoff, proving the occurrence of this phenomenon is often an extremely
challenging task. Verifying the occurrence of the cutoff phenomenon is a major area of
modern probability, and despite remarkable progress over the last three decades, there are
still only relatively few examples which are completely understood. Although drawing much
attention, the progress made in the investigation of the cutoff phenomenon was done mostly
through understanding examples and the field suffers from a lack of general theory.

The cutoff phenomenon was given its name by Aldous and Diaconis in their seminal paper
[2] from 1986 in which they suggested the following open problem (re-iterated in [14]), which
they refer to as “the most interesting problem”: “Find abstract conditions which ensure that
the cutoff phenomenon occurs”.

In a joint work with Riddhipratim Basu and Yuval Peres [6] we showed that under
reversibility, tmix(ε) (the ε total variation mixing time) can be approximated up to an additive
term, proportional to the inverse of the spectral gap, by the minimal time required for the
chain to escape from every (fixed) set of stationary probability at most 1/2 w.p. at least
1− ε. This substantially refines earlier works which only characterized tmix up to a constant
factor. As a consequence, (under reversibility) we derive a necessary and sufficient condition
for cutoff in terms of concentration of hitting times of large sets which are “worst” in some
sense.

As an application, we show that a sequence of (possibly weighted) nearest neighbor
random walks on finite trees exhibits cutoff if and only if it satisfies a spectral condition
known as the product condition. We obtain an optimal bound on the size of the cutoff
window, and establish sub-gaussian convergence within it. Our proof is robust, allowing us
to extend the analysis to weighted random walks with bounded jumps on intervals.
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There are several works characterizing the total-variation mixing time of a reversible
Markov chain in term of natural probabilistic concepts such as stopping times and hitting
times. In contrast, there is no known analog for the L2 mixing time, τ2 (while there are
sophisticated analytic tools to bound τ2, in general they do not determine τ2 up to a constant
factor and they lack a probabilistic interpretation). We show that τ2 can be characterized
up to a constant factor using hitting times distributions. We also derive a new extremal
characterization of the Log-Sobolev constant, cLS, as a weighted version of the spectral gap.
This characterization yields a probabilistic interpretation of cLS in terms of a hitting time
version of hypercontractivity. As applications of our results, we show that (1) for every
reversible Markov chain, τ2 is robust under addition of self-loops with bounded weights,
and (2) for weighted nearest neighbor random walks on trees, τ2 is robust under bounded
perturbations of the edge weights.

Let (Xt)
∞
t=0 be an irreducible reversible discrete-time Markov chain on a finite state space

Ω. Denote its transition matrix by P . To avoid periodicity issues one often considers the
continuous-time version of the chain, whose kernel is given by Ht := e−t

∑
k

1
k!

(tP )k. Since
reversible chains are either aperiodic or have period 2, it is plausible that a single lazy step
suffices to eliminate near periodicity issues. This motivates looking at the associated averaged
chain, whose distribution at time t ≥ 1 is obtained by replacing P t with At := 1

2
(P t−1 +P t).

We confirm a conjecture by Aldous and Fill [3, Open Problem 4.17] by showing that under
reversibility, for all t,M > e and x ∈ Ω

‖Ht+M
√

t(x, ∙)−π(∙)‖TV−e−cM2

≤ ‖At(x, ∙)−π(∙)‖TV ≤ ‖Ht−(M log M)
√

t(x, ∙)−π(∙)‖TV+C/M.

We deduce that given a sequence of irreducible reversible discrete-time Markov chains, the
sequence of the continuous-time chains exhibits cutoff around time tn iff the same holds for
the sequence of averaged chains. Moreover, we show that the size of the cutoff window of the
sequence of averaged chains is at most that of the sequence of the continuous-time chains
and that the latter can be determined in terms of the former.
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Chapter 1

Introduction

Led by the pioneer works of Aldous and Diaconis and driven by applications such as Monte
Carlo simulations and approximate counting of large combinatorial sets (many counting
problems in theoretical computer science can be reduce to the problem of sampling from the
stationary distribution of an auxiliary Markov chain, see [50]) and also by its connections
with statistical physics1, the modern theory of mixing times of Markov chains became in
the last few decades a lively and central part of modern probability theory. Among the
most fundamental quantities associated with an ergodic Markov chain is its mixing time,
which is the number of time units required for it to get within some target distance from
the stationary distribution of the chain, denoted by π. In the aforementioned applications
the running time of the algorithm/simulation can be bounded in terms of the mixing time
(in other words, a rigorous justification of simulation results requires a theoretical bound on
the mixing time).

1.1 Basic definitions and notation

Generically, we shall denote the state space of a Markov chain by Ω and its stationary
distribution by π. We say that the chain is finite, whenever Ω is finite. Let (Xt)

∞
t=0 be an

irreducible Markov chain on a finite state space Ω with transition matrix P and stationary
distribution π. We denote such a chain by (Ω, P, π). The hitting time of a set A ⊂ Ω is
defined to be TA := inf{t : Xt ∈ A}.

1.1.1 Three ways of avoiding periodicity or near-periodicity issues

We call a chain lazy , if P (x, x) ≥ 1/2 for all x ∈ Ω. To avoid periodicity and near-periodicity
issues, one often considers the lazy version of a discrete time Markov chain, (XL

t )∞t=0, obtained
by replacing P with PL := 1

2
(I + P ). Similarly, one can consider the δ-lazy version of the

chain, obtained by replacing P with δI + (1 − δ)P , in which we refer to δ as the holding
probability. Periodicity issues can be avoided also by considering the continuous-time version
of the chain, (Xc

t )t≥0. This is a continuous-time Markov chain whose heat kernel is given by

Ht = e−t(I−P ) (that is, Ht(x, y) :=
∑∞

k=0
e−ttk

k!
P k(x, y)). It is a classic result of probability

1Many of the Markov chains for which we desire to estimate the mixing time are often of a statistical
mechanics nature, such as the Glauber dynamics for the Ising model.
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theory that for any initial condition the distribution of both XL
t and Xc

t converge to π when
t tends to infinity. The object of the theory of Mixing times of Markov chains is to study the
characteristic of this convergence (see [36] for a self-contained introduction to the subject).

Since reversible Markov chains can only have period 2, one may wonder whether it suffices
to average over two consecutive times (i.e. to make a single lazy step) in order to avoid near-
periodicity issues. This motivates considering the following Markov chain. For any t ≥ 0,
denote At := (P t + P t+1)/2. The averaged chain, (Xave

t )∞t=0, with “initial state” x, is a
Markov chain, whose distribution at time t ≥ 0 is At(x, ∙), where At(x, y) := (P t(x, y) +
P t+1(x, y))/2. Equivalently, (Xave

t )∞t=0 := (Xt+ξ)
∞
t=0, where ξ is a Bernoulli(1/2) random

variable, independent of (Xt)
∞
t=0.

We denote by Pt
μ (resp. Pμ) the distribution of Xt (resp. (Xt)

∞
t=0), given that the initial

distribution is μ. To avoid ambiguity we introduce a separate notation for the continuous-
time and lazy versions of the chain. We denote by Ht

μ (resp. Hμ) the distribution of Xc
t

(resp. (Xc
t )t≥0) given that Xc

0 ∼ μ. Finally, we denote by Pt
L,μ (resp. PL,μ) the distribution

of XL
t (resp. (XL

t )∞t=0), given that XL
0 ∼ μ. When μ(∙) = 1∙=x, for some x ∈ Ω, we simply

write Pt
x (similarly, Ht

x, and Pt
L,x) and Px (similarly, Hx and PL,x). In the setup where we

consider only the continuous-time chain and there is no ambiguity, we usually write Xt, Px

and Pt
x instead of Xc

t , Hx and Ht
x.

The time-reversal of P is defined as P ∗(x, y) := π(y)P (y, x)/π(x). This is the dual oper-
ator of P w.r.t. L2(Ω, π). We say P is reversible if P = P ∗. The additive symmetrization
is defined as Q := (P + P ∗)/2. Note that Q = Q∗.

1.1.2 Different notions of distance and mixing times and their relations

There are different notions of distance w.r.t. which one can measure the distance from station-
arity. Each of which gives rise to a corresponding notion of mixing time and cutoff (to be de-
fined shortly). The most popular is the total-variation distance. We denote the set of proba-
bility distributions on a (finite) set B by P(B). For any μ, ν ∈ P(B), their total-variation
distance is defined to be ‖μ − ν‖TV := 1

2

∑
x |μ(x) − ν(x)| =

∑
x∈B: μ(x)>ν(x) μ(x) − ν(x).

The worst-case total variation distance at time t is defined as

d(t) := max
x∈Ω

dx(t), where for every x ∈ Ω, dx(t) := ‖Px(Xt ∈ ∙) − π‖TV,

The separation distance of μ w.r.t. π is 1 − minx∈Ω
μ(x)
π(x)

. Thus the worst case separa-

tion distance at time t is dsep(t) := 1 − minx,y P t(x, y)/π(y). The ε-total variation and
separation mixing times are defined (resp.) as

tmix(ε) := inf {t : d(t) 6 ε} and tsep(ε) := inf{t : dsep(t) ≤ ε}.

When ε = 1/4 we omit it from the above notation. It is a classical result (e.g. [36,
Lemmas 6.13 and 19.3]) that under reversibility the separation and total-variation distances
and mixing times can be compared as follows (the second line being an easy consequence of
the first)

∀t ≥ 0, d(t) ≤ dsep(t) ≤ 1 − (1 − min(2d(t/2), 1))2 ≤ 4d(t/2),

∀a ∈ (0, 1), tmix(a) ≤ tsep(a) ≤ 2tmix(a/4).
(1.1.1)
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Another important family of distances is the family of Lp distances (1 ≤ p ≤ ∞). The
Lp norm of a function f ∈ RΩ is ‖f‖p := (Eπ[|f |p])1/p for 1 ≤ p < ∞ (where Eπ[g] :=∑

x π(x)g(x)) and ‖f‖∞ := maxx |f(x)|. The Lp norm of a signed measure σ is

‖σ‖p,π := ‖σ/π‖p, where (σ/π)(x) = σ(x)/π(x).

We denote the worst case Lp distance at time t by dp(t) := maxx dp,x(t), where dp,x(t) :=
‖Ht

x−π‖p,π. When considering the Lp distance for p > 1 we always consider continuous-time
chains, unless otherwise is specified (and thus may write P instead of H, etc...). Denote
ht(x, y) := Ht(x, y)/π(y). Under reversibility for all x ∈ Ω and t ≥ 0 (e.g. (2.2) in [23])

d2
2,x(t) = h2t(x, x) − 1, d∞(t) = max

y
ht(y, y) − 1. (1.1.2)

The ε-Lp mixing time of the chain (resp. for a fixed starting state x) is defined as

τp(ε) := max
x

τp,x(ε), where τp,x(ε) := min{t : dp,x(t) ≤ ε}. (1.1.3)

When ε = 1/2 we omit it from this notation (this is consistent with the notation tmix =
tmix(1/4) since τ1(ε) = tmix(2ε)). Let mp := 1 + d(2− p)/(2(p− 1))e. It follows from (1.1.2),
Jensen’s inequality and the Reisz-Thorin interpolation Theorem that for reversible chains,
the Lp mixing times can be compared as follows (e.g. [49, Lemma 2.4.6]):

τ2(a) ≤τp(a) ≤ 2τ2(
√

a) = τ∞(a) for all p ∈ (2,∞] and a > 0,

1

mp

τ2(a
mp) ≤ τp(a) ≤ τ2(a) for all p ∈ (1, 2) and a > 0,

(1.1.4)

Hence for all 1 < p ≤ ∞ the Lp convergence profile is (essentially) determined by that of L2.
The relative entropy of a distribution μ w.r.t. π is defined as

D(μ||π) :=
∑

x

μ(x) log(μ(x)/π(x)), (1.1.5)

The mixing time in relative entropy is defined as

τEnt,x := inf{t : D(Pt
x||π) ≤ 1/2} and τEnt = max

x
τEnt,x. (1.1.6)

The relative entropy distance can be compared with the L1 and L2 distances as follows:
[32] 2D(μ||π) ≥ ‖μ − π‖2

1,π and ([22, Theorem 5])

D(μ||π) ≤ log(1 + ‖μ − π‖2
2,π). (1.1.7)

1.1.3 The spectral gap and the Log-Sobolev constant

Denote St := e−(I−Q)t =
∑∞

k=0
e−ttk

k!
Qt. When considering St instead of Ht we write Pt

x, Px

and Yt instead of Ht
x, Hx and Xc

t , respectively. We start with a few basic definitions.

3



Definition 1.1.1. Let (Ω, P, π) be a finite chain. For f, g ∈ RΩ, let Varπf := ‖f−Eπf‖2
2 and

〈f, g〉π := Eπ[fg]. We identify P t, P t
L, At, Ht and St with the linear operators on Lp(RΩ, π)

Atf(x) :=
∑

y∈Ω

At(x, y)f(y) = Ex[f(Xave
t )], Htf(x) :=

∑

y∈Ω

Ht(x, y)f(y) = Ex[f(Xc
t )],

P tf(x) :=
∑

y∈Ω

P t(x, y)f(y) = Ex[f(Xt)], P t
Lf(x) :=

∑

y∈Ω

P t
L(x, y)f(y) = Ex[f(XL

t )],

and Stf(x) :=
∑

y∈Ω St(x, y)f(y) = Ex[f(Yt)]. Similarly, Qtf(x) :=
∑

y∈Ω Qt(x, y)f(y).

Recall that if (Ω, P, π) is a finite irreducible chain, then Q is self-adjoint w.r.t. 〈∙, ∙〉π,
the standard inner product induced by π, and hence has |Ω| real eigenvalues. Through-
out we shall denote them by 1 = λ1 > λ2 ≥ . . . ≥ λ|Ω| ≥ −1 (where λ2 < 1 since the
chain is irreducible and for a lazy chain we also have that λ|Ω| > 0). The spectral-gap
and relaxation-time of P are defined as λ := (1 − λ2) and trel = 1/λ. The absolute
relaxation-time is tabsolute

rel := max{(1 − λ2)
−1, (1 − |λ|Ω||)−1}.2 Under reversibility, the

following general relation holds for continuous-time chains and for discrete-time lazy chains

(trel − 1)| log(2ε)| ≤ tmix(ε) ≤ τ2(2ε) ≤ trel| log (επ∗) |, (1.1.8)

where π∗ := minx∈Ω π(x). (see [36] Theorems 12.3 and 12.4). The following fact (often
referred to as the Poincaré inequality or L2-contraction) is standard (e.g. [23]).

Fact 1.1.2. Let (Ω, P, π) be a finite irreducible Markov chain. Let μ ∈ P(Ω). Then

‖μHs − π‖2,π ≤ e−s/trel‖μ − π‖2,π and ‖μP s − π‖2,π ≤ e−s/tabsolute
rel ‖μ − π‖2,π, (1.1.9)

for all s ≥ 0. In particular, for all x ∈ Ω and M ≥ 1,

τ2,x ≤ τ2,x(M/2) + trel log M.

Similarly, for all f ∈ RΩ and t ≥ 0, we have VarπHtf ≤ e−2t/trelVarπf and

VarπP kf ≤ e−2k/tabsolute
rel Varπf, for all k ∈ Z+. (1.1.10)

Another important parameter is the Log-Sobolev constant (resp. time) defined as

cLS := inf{E(f)/Entπ(f 2) : f is non-constant}, (resp. tLS := 1/cLS) (1.1.11)

where (with the convention 0 log 0 = 0)

Entπ(f) := Eπ[f log f ] − Eπ[f ] logEπ[f ] = Eπ[f log(f/Eπ[f ])],

E(f, g) := 〈(I − Q)f, g〉π and E(f) := E(f, f).

Note that D(μ||π) = Entπ(μ/π). It is always the case that tLS ≥ 2trel ([16, Lemma 3.1]).

2Note that for lazy chains trel = tabsolute
rel .
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There are numerous works aiming towards general geometric upper bounds on τ∞. Among
the most advanced techniques are the spectral profile [23] and Logarithmic Sobolev inequal-
ities (see [16] for a survey on the topic). It is classical (e.g. [16, Corollary 3.11]) that for
reversible chains

tLS/2 ≤ τ2(1/e) ≤ tLS(1 +
1

4
log log(1/π∗)). (1.1.12)

There are examples demonstrating both bounds can be attained up to a constant factor.
The Log-Sobolev constant has a useful characterization in terms of hypercontractivity.

Let 1 ≤ p1, p2 ≤ ∞. The p1 → p2 norm of a linear operator A is given by

‖A‖p1→p2 := max{‖Af‖p1 : ‖f‖p2 = 1}.

If ‖A‖p1→p2 ≤ 1 for some 1 ≤ p2 < p1 ≤ ∞ we say that A is a hypercontraction. For all
p1, p2, we have that ‖Ht‖p1→p2 is non-increasing in t. It is a classic result (e.g. [16, Theorem
3.5]) that the Log-Sobolev time can be characterized in terms of hypercontrativity.

Fact 1.1.3. Let (Ω, P, π) be a finite reversible chain. Let sq := inf{t : ‖Ht‖2→q ≤ 1}. Then
tLS = 4 supq:2<q<∞ sq/ log(q − 1).

1.2 Maximal inequalities

In this section we present some maximal inequality which shall be central in what comes.

Theorem 1.2.1 (Starr’s Maximal inequality [51]). Let (Ω, P, π) be an irreducible Markov
chain. Let f ∈ RΩ. Its corresponding maximal function f ∗ ∈ RΩ is defined as

f ∗(x) := sup
0≤t<∞

|St(f)(x)| = sup
0≤t<∞

|Ex[f(Yt)]|.

Then for every 1 < p < ∞

‖f ∗‖p ≤ p∗‖f‖p, where p∗ := p/(p − 1) is the conjugate exponent of p. (1.2.1)

Moreover, under reversibility, for f∗,even := supk∈Z+
|P 2kf(x)| we have that (1.2.1) holds also

with f∗,even in the role of f ∗ and hence f∗ := supk∈Z+
|P kf(x)| satisfies for all 1 < p < ∞

‖f∗‖
p
p ≤ ‖f∗,even‖

p
p + ‖(Pf)∗,even‖

p
p ≤ (p∗)p(‖f‖p + ‖Pf‖p

p) ≤ 2(p∗)p‖f‖p. (1.2.2)

For a short proof of Starr’s inequality (based on his original argument) see [6, Theorem
2.3]. The following lemma is essentially due to Norris, Peres and Zhai [45].

Lemma 1.2.2. Let (Ω, P, π) be a finite irreducible Markov chain. Let fA(x) := 1x∈A/π(A).

∀A ⊂ Ω, ‖f ∗
A‖1 ≤ e max(1, | log π(A)|).

Proof. By (1.2.1) for all 1 < p < ∞

‖f ∗
A‖1 ≤ ‖f ∗

A‖p ≤ p∗‖fA‖p = p∗[π(A)]−1/p∗ ,

Taking p∗ := max(1 + ε, | log π(A)|) and sending ε to 0 (noting that the r.h.s. is continuous
w.r.t. p∗) concludes the proof.
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We note that by [51, Theorem 2] (1−e−1)‖f ∗
A‖−1 ≤ ‖fA log[max(1, |fA|)]‖1 = | log π(A)|.

Definition 1.2.3. Let P be a linear operator and k ∈ Z+. We define 4P k := P k+1 − P k =
P k(P − I). For r > 1, we define inductively 4rP k := 4(4r−1P k) = 4r−1P k+1 −4r−1P k =
P k(P − I)r. Similarly, we define 4Ak := Ak+1 − Ak = 1

2
P k(P 2 − I).

Let (Ω, μ) be a probability space. Let P : L2(Ω, μ) → L2(Ω, μ) be a positive (i.e. f ≥
0 =⇒ Pf ≥ 0) self-adjoint linear operator whose spectrum is contained in the interval [0 , 1].
It is noted in [52] that for all r ≥ 1, there exists a constant Cr (independent of (Ω, μ) and
P ), such that for every f ∈ L2(Ω, μ)

‖ sup
t≥0

(t + 1)r 4r P tf‖2 ≤ Cr‖f‖2. (1.2.3)

In [35] Stein’s argument is extended to the setup where P is a positive contraction with
M(P ) := supt t‖P

t+1 − P t‖2 < ∞ without the assumptions that P is self-adjoint and that
its spectrum is contained in [0, 1]. In this more general setup Cr depends also on M(P ).

Corollary 1.2.4. There exists an absolute constant C such that for every finite irreducible
reversible Markov chain, (Ω, P, π) and every f ∈ RΩ

∥
∥
∥
∥sup

t≥0
(t + 1) 4 P t

Lf

∥
∥
∥
∥

2

2

≤ CVarπf and

∥
∥
∥
∥sup

t≥0
(t + 1) 4 Atf

∥
∥
∥
∥

2

2

≤ CVarπf. (1.2.4)

Proof: Note that 4A2tf = P 2t+2−P 2t

2
f = 1

2
4(P 2)tf and 4A2t+1f = 1

2
4(P 2)t(Pf). Hence

(1.2.4) follows from (1.2.3) applied to PL and P 2 by noting that 4P t
Lf = 4P t

L(f − Eπ[f ]),
4Atf = 4At(f − Eπ[f ]) and Varπ(Pf) ≤ Varπf .

1.3 The cutoff phenomenon

Next, consider a sequence of such chains, ((Ωn, Pn, πn) : n ∈ N), each with its corresponding

worst-distance from stationarity d(n)(t), its mixing-time t
(n)
mix, etc.. Loosely speaking, the

(total variation) cutoff phenomenon occurs when over a negligible period of time, known
as the cutoff window, the (worst-case) total variation distance (of a certain finite Markov
chain from its stationary distribution) drops abruptly from a value close to 1 to near 0. In
other words, one should run the n-th chain until the cutoff point for it to even slightly mix
in total variation, whereas running it any further is essentially redundant. Formally, we say
that the sequence exhibits a total variation cutoff (resp. pre-cutoff ) if the following sharp
transition in its convergence to stationarity occurs:

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1 − ε)

= 1, for all 0 < ε < 1 (resp. sup
0<ε≤1/2

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1 − ε)

< ∞). (1.3.1)

We say that the sequence has a cutoff window wn, if wn = o(t
(n)
mix) and for every ε ∈ (0, 1)

there exists cε > 0 such that for all n

t
(n)
mix(ε) − t

(n)
mix(1 − ε) ≤ cεwn. (1.3.2)
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Similarly, we later consider the corresponding notions of the mixing times and cutoffs for
the sequences of the continuous-time, lazy and averaged (resp.) versions of the chain 3

One can define the notions of separation and Lp cutoffs and cutoff windows in an anal-

ogous manner, by replacing t
(n)
mix(∙) in (1.3.1)-(1.3.2) with t

(n)
sep(∙) and τ

(n)
p (∙), resp.. However,

whenever we use the term “cutoff” without specifying the relevant notion of distance we
always consider the total variation distance.

1.3.1 Historical review of the cutoff phenomenon

The cutoff phenomenon was first identified for random transpositions in the ingenious work
of Diaconis and Shahshahani [18] and later by Aldous for random walk on the hypercube [1]
(see [15] for a survey on the topic). The cutoff phenomenon was given its name by Aldous
and Diaconis in their seminal paper [2] from 1986 in which they verified cutoff for several
card shuffling schemes and suggested the following open problem (re-iterated in [14]), which
they refer to as “the most interesting problem”: “Find abstract conditions which ensure that
the cutoff phenomenon occurs”. Though many families of chains are believed to exhibit
cutoff, proving the occurrence of this phenomenon is often an extremely challenging task.
Verifying the occurrence of the cutoff phenomenon is a major area of modern probability,
and despite remarkable progress over the last three decades, there are still only relatively
few examples which are completely understood.

We now give a short review of some large families of chains for which the cutoff phe-
nomenon is well-understood. The cutoff phenomenon for the glauber dynamics of the Ising
model was studied by several authors with the state of the art being Lubetzky and Sly work
on the universality of cutoff (for the Ising model) including some extremely precise results
concerning the lattice case, using their Information Percolation approach [38, 39, 40]. They
also proved that simple random walk on a sequence of random regular graphs exhibits cutoff
(with high probability over the choice of the graph) [41]. Together with Berestycki and Peres
they later generalized this result to the setup of random graphs with a given degree sequence
[7] (with minimal degree at least 3). Bordenave et al. [10] treated the random digraph setup.
Cutoff for the random adjacent transposition was verified by Lacoin [34] who very recently
verified cutoff also for the biased setup together with with Labbé [33]. Cutoff for simple
random walk on lamplighter graphs whose base graphs are locally uniformly transient 4 was
verified by Miller and Peres [43].

Although drawing much attention, the progress made in the investigation of the cutoff
phenomenon has been achieved mostly through understanding examples and the field suf-
fers from a lack of general theory. In 2004 [47], during an AIM workshop on the cutoff
phenomenon, Peres introduced the so called product condition :

t
(n)
rel = o(t

(n)
mix) (equivalently lim

n→∞
λ(n)t

(n)
mix = ∞), (1.3.3)

a necessary condition for pre-cutoff5 (by (1.1.8); e.g. [36, Proposition 18.4]), and suggested
that it is also a sufficient condition for cutoff for many “nice” families of reversible chains.

3We defer the presentation of the relevant notation until the point in which it is used.
4That is, the effective resistance between any pair of vertices is uniformly bounded from above.
5Using the product condition it is not hard to verify that simple random walk on a sequence of tori of

increasing side lengths and fixed dimension does not exhibit pre-cutoff (e.g. [36, Chapter 12]).
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In general, the product condition does not always imply cutoff. Aldous and Pak have con-
structed relevant (reversible) examples (see [36, Chapter 18]). This left open the problem
of identifying general classes of chains for which the product condition is indeed sufficient
for cutoff. This was verified e.g. for lazy birth and death chains, first for separation cutoff
by Diaconis and Saloff-Coste [17] and later for total variation by Ding et al. [19]. We note
that Chen and Saloff-Coste [13] proved that for a sequence of reversible chains the condition

t
(n)
rel = o(τ

(n)
2 ) is equivalent to cutoff in L2 (and in fact to cutoff in Lp for all p > 1).

1.3.2 The author’s contribution

Most of the author’s graduate research has been centered on the problem of developing
general theory of Markov chains, with a special emphasis on the cutoff phenomenon. Together
with Basu and Peres we gave the first general characterization of the cutoff phenomenon, in
terms of concentration of hitting times of sets which are “worst” in some sense 6 [6, Theorem
3]. This may be considered as an answer to the aforementioned problem of Aldous and
Diaconis of finding an abstract sufficient condition for cutoff. As an application, we show
that a sequence of (possibly weighted) nearest neighbor random walks on finite trees exhibits
cutoff if and only if it satisfies the product condition [6, Theorem 1]. We obtain an optimal
bound on the size of the cutoff window, and establish sub-gaussian convergence within it.
Our proof is robust and can be extended to weighted random walks with bounded jumps on
intervals [6, Theorem 2].

The novelty of our approach is the usage of Starr’s Lp maximal inequality [51] in order to
deduce that for all A ⊂ Ω and ε ∈ (0, 1) there exists a set GA of large stationary probability,
say π(GA) ≥ 1−ε/2, such that supt:t≥Ctrel| log ε| |P

t(g, A)−π(A)| ≤ ε, for all g ∈ GA. Hence by
the Markov property, hitting GA by time t−Ctrel| log ε| serves as a certificate that the chain
is ε-mixed w.r.t. A at time t. As a consequence, we show that under reversibility, tmix(ε) can
be approximated up to an additive term proportional to the inverse of the spectral gap, by
the minimal time required for the chain to escape from every set of stationary probability at
most β (where β ∈ (0, 1) is arbitrary) w.p. at least 1 − ε, denoted by hitβ(ε). In particular,
we show that for all ε ∈ (0, 1) and δ ≤ 1

2
(ε ∧ (1 − ε))

hit1/2(ε + δ) − 4trel| log δ| ≤ tmix(ε) ≤ hit1/2(ε − δ) + 4trel| log δ|, (1.3.4)

This substantially refines earlier works [4, 37, 48, 46] which only characterized tmix up to
a constant factor (and only for a fixed ε). Indeed, under reversibility (trel − 1)| log(2ε)| ≤
tmix(ε), however under the product condition, the terms involving trel in (1.3.4) are negligible.

Through more sophisticated applications of Starr’s inequality, in a joint work with Peres
[29] we obtained a characterization of L2 mixing and hypercontractivity in terms of hitting
times distributions. We show that (under reversibility) τ2 (resp. τEnt) is roughly the minimal
time required for the chain to escape from every set A of stationary mass at most 1/2 w.p. at
least 1 − 1

2

√
π(A)π(Ac), denoted by ρ (resp. 1 − C

| log π(A)| denoted by ρRE). More precisely,

ρ ≤ τ2 ≤ ρ + C1/cLS ≤ C2ρ and ρRE ≤ τEnt ≤ C2ρRE. (1.3.5)

6In [25] we gave certain extensions of this result, showing in particular that under transitivity, “worst”
can be interpreted as maximizing the expected hitting time among all large sets.
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In contrast with the aforementioned characterization of cutoff for reversible chains, some
of the difficulties in developing a “general theory of cutoff” are demonstrated in [27] (joint
with Hubert Lacoin and Peres) and [30] (joint with Peres). In the former we provided a
negative answer to a question asked by Ding et al. [19] by showing that separation cutoff
need not imply total variation cutoff and vice-versa. This is surprising considering the
aforementioned equivalence of Lp cutoffs for all p > 1 and the fact that the total variation and
separation distances are intimately related (1.1.1) in a way which resemblance the relation
between the Lp distances ((1.1.4)). In the latter we show that (in the setup of simple random
walk on unweighted bounded degree graphs) multiplication of the edge weights by a 1+ o(1)
factor may increase the order of the mixing time and lead to cutoff, despite the fact that
before the perturbations the sequence of simple random walks did not exhibit even pre-cutoff!
Moreover, we show that the occurrence of separation cutoff may depend on the choice of
the holding probability (in the discrete-time setup; Similarly, the corresponding sequence of
discrete-time lazy chains may exhibit separation cutoff, while the sequence of the associated
continuous-time chains does not). This is in sharp contrast with the total-variation case,
due to Chen and Saloff-Coste [12].

All of these examples are either simple random walks on bounded degree (unweighted)
graphs, or can be transformed into this setup using machinery from [30]. Since the analysis
of these examples is very subtle7 we chose not to include them in this thesis, despite their
compatibility with its overall theme.

In a joint work with Yuval Peres [28], we confirm a conjecture by Aldous and Fill [3,
Open Problem 4.17] by showing that under reversibility, for all t,M > e and x ∈ Ω

‖Ht+M
√

t(x, ∙)−π(∙)‖TV−e−cM2

≤ ‖At(x, ∙)−π(∙)‖TV ≤ ‖Ht−(M log M)
√

t(x, ∙)−π(∙)‖TV+C/M.

We deduce that given a sequence of irreducible reversible discrete-time Markov chains, the
sequence of the continuous-time chains exhibits cutoff around time tn iff the same holds for
the sequence of averaged chains. Moreover, we show that the size of the cutoff window of the
sequence of averaged chains is at most that of the sequence of the continuous-time chains
and that the latter can be determined in terms of the former.

The main technical tool we utilize is a maximal inequality due to Stein (namely, Corollary
1.2.4). As demonstrated by the above results, the idea of using ergodic theoretical maximal
inequalities to study Markov chains holds much promise. In the next chapter we revisit the
above results in more details and make various comments and remarks.

7Here “subtle” serves as a euphemism for “lengthy and tedious”.
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Chapter 2

The main results

2.0.3 A historical review on the connections between hitting times and mixing

The idea that expected hitting times of sets which are “worst in expectation” (in the sense
of (2.0.1) below) could be related to the mixing time is quite old and goes back to Aldous’
1982 paper [4]. A similar result was obtained later by Lovász and Winkler ([37] Proposition
4.8) as part of their elegant body of work on stopping rules.

The aforementioned connection was substantially refined recently by Peres and Sousi
([48] Theorem 1.1) and independently by Oliveira ([46] Theorem 2). Peres and Sousi [48]
considered the mixing times of the associated lazy and averaged chains: denoted by tL :=
inf
{
t : maxx ‖Pt

x,L − π‖TV 6 1/4
}

and tave := tave(1/4), where tave(ε) := inf {t : dave(t) 6 ε},
and dave(t) := maxx ‖At(x, ∙)−π(∙)‖TV. Their approach relied on the theory of random times
to stationarity combined with a certain involved “de-randomization” argument (which is the
discrete-time analog of a similar argument due to Aldous [4]) which shows that for every
finite irreducible reversible Markov chain and every stopping time T such that XT ∼ π, we
have that tave ≤ 220 maxx∈Ω Ex[T ]. As a consequence, they showed that for all α ∈ (0, 1/2)
(this was extended to α = 1/2 in [24]), there exist constants cα, c′α > 0 such that for every
finite irreducible reversible chain

c′αtH(α) 6 tave 6 cαtH(α), where

tH(α) := max
x∈Ω,A⊂Ω: π(A)≥α

Ex[TA].

Using this, they showed that there exist some absolute constants c1, C1, c2, C2 > 0 such that

c1tL 6 tave 6 C1tL and so c2tH(1/4) ≤ tL ≤ C2tH(1/4). (2.0.1)

Implicitly, they showed that for every 0 < ε ≤ 1/4 and 0 < α ≤ 1/2,

tave(ε) 6 cαε−4tH(α). (2.0.2)

2.1 Results concerning hitting times and the cutoff phenomenon.

It is natural to ask whether (2.0.1) and (2.0.2) could be further refined so that the cutoff
phenomenon could be characterized in terms of concentration of the hitting times of a se-
quence of sets An ⊂ Ωn which attain the maximum in the definition of t

(n)
H (1/2) (starting
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from the worst initial states). Corollary 1.5 in [25] asserts that this is indeed the case in the
transitive setup. More generally, Theorem 2 in [25] asserts that this is indeed the case for any

fixed sequence of initial states xn ∈ Ωn if one replaces t
(n)
H (1/2) and d(n)(t) by t

(n)
H,xn

(1/2) and

d
(n)
xn (t) (i.e. when the hitting times and the mixing times are defined only w.r.t. this sequence

of starting states). Alas, Proposition 1.6 in [25] asserts that in general cutoff could not be
characterized in this manner. It turns out that the following hitting parameter is better
suited (than tH,x(∙)) for the purpose of studying the profile of convergence to stationarity
(and cutoff).

Definition 2.1.1. Let (Ω, P, π) be an irreducible chain. For any x ∈ Ω, α, ε ∈ (0, 1) and
t ≥ 0, define px(α, t) := maxA⊂Ω: π(A)≥α Px[TA > t]. Set p(α, t) := maxx px(α, t). We define

hitα,x(ε) := min{t : px(α, t) ≤ ε} and hitα(ε) := min{t : p(α, t) ≤ ε}.

Definition 2.1.2. Let (Ωn, Pn, πn) be a sequence of irreducible chains and let α ∈ (0, 1). We
say that the sequence exhibits a hitα-cutoff, if for all ε ∈ (0, 1/4)

hit(n)
α (ε) − hit(n)

α (1 − ε) = o
(
hit(n)

α (1/4)
)

.

All of the results in the remainder of this subsection are taken from [6] (joint work with
Riddhipratim Basu and Yuval Peres). The following is the main abstract theorem from [6].

Theorem 2.1.1 ([6] Theorem 3). Let (Ωn, Pn, πn) be a sequence of lazy reversible irreducible
finite chains. The following are equivalent:

1) The sequence exhibits a cutoff.

2) The sequence exhibits a hitα-cutoff for some α ∈ (0, 1/2].

3) The sequence exhibits a hitα-cutoff for some α ∈ (1/2, 1) and t
(n)
rel = o(t

(n)
mix).

Remark 2.1.3. In Example 3.1.8 we show that there exists a sequence of lazy reversible
irreducible finite Markov chains, (Ωn, Pn, πn), such that the product condition fails, yet for
all 1/2 < α < 1 there is hitα-cutoff. Thus the assertion of Theorem 2.1.1 is sharp.

Remark 2.1.4. The proof of Theorem 2.1.1 can be extended to the continuous-time case.
The necessary adaptations can be found in § 4 of [6].

At first glance hitα(ε) may seem like a rather weak notion of mixing compared to tmix(ε),
especially when α is close to 1 (say, α = 1−ε). The following proposition gives a quantitative
version of Theorem 2.1.1 (for simplicity we fix α = 1/2 in (2.1.1) and (2.1.2)).

Proposition 2.1.5. For every reversible irreducible finite lazy chain and every ε ∈ (0, 1
4
],

hit1/2(3ε/2) − d2trel| log ε|e ≤ tmix(ε) ≤ hit1/2(ε/2) + dtrel| log (ε/4) |e and (2.1.1)

hit1/2(1 − ε/2) − d2trel| log ε|e ≤ tmix(1 − ε) ≤ hit1/2(1 − 2ε) + 1ε>1/18

⌈
1

2
trel log 8

⌉

. (2.1.2)

Moreover,

max{hit1−ε/4(5ε/4), (trel − 1)| log(2ε)|} ≤ tmix(ε) ≤ hit1−ε/4(3ε/4) +

⌈
3trel
2

| log (ε/4) |

⌉

.

(2.1.3)
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Remark 2.1.6. Our only use of the laziness assumption is to argue that trel = tabsolute
rel .

In particular, Proposition 2.1.5 holds also without the laziness assumption if one replaces
trel by tabsolute

rel . Similarly, without the laziness assumption the assertion of Theorem 2.1.1
should be transformed as follows. A sequence of finite irreducible aperiodic reversible Markov
chains exhibits cutoff iff (tabsolute

rel )(n) = o(t
(n)
mix) and there exists some 0 < α < 1 such that the

sequence exhibits hitα-cutoff.
Note that for any finite irreducible reversible chain, (Ω, P, π), it suffices to consider a

δ-lazy version of the chain, Pδ := (1 − δ)P + δI, for some δ ≥ 1−max{λ2,0}
2

, to ensure that
trel = tabsolute

rel (which by the previous paragraph, guarantees that all near-periodicity issues
are completely avoided).

Corollary 2.1.7. Let (Ωn, Pn, πn) be a sequence of irreducible reversible discrete-time chains.

Let λ
(n)
min be the smallest eigenvalue of Pn. Let t

(n)
L be the mixing time of the lazy version of

the nth chain in the sequence. Assume that t
(n)
L = o(t

(n)
mix). Then it must be the case that

λ
(n)
mint

(n)
mix = Θ(1).

Loosely speaking, we show that the mixing of a lazy reversible Markov chain can be
partitioned into two stages as follows. The first is the time it takes the chain to escape from
some small set with sufficiently large probability. In the second stage, the chain mixes at a
rate which is governed by its relaxation-time. This estimate is sharp is some cases (i.e. there
are examples in which the above description is accurate and the rate of convergence in the
“second stage” is also lower bounded by the relaxation time).

It follows from Proposition 3.1.2 that the ratio of the LHS and the RHS of (2.1.3) is
bounded by an absolute constant independent of ε. Moreover, (2.1.3) bounds tmix(ε) in
terms of hitting distribution of sets of π measure tending to 1 as ε tends to 0. In (3.1.2) we
give a version of (2.1.3) for sets of arbitrary π measure.

Either of the two terms appearing in the sum in RHS of (2.1.3) may dominate the other.
For lazy simple random walk on two n-cliques connected by a single edge, the terms in
(2.1.3) involving hit1−ε/4 are negligible. For a sequence of chains satisfying the product
condition, all terms in Proposition 2.1.5 involving trel are negligible. Hence the assertion of
Theorem 2.1.1, for α = 1/2, follows easily from (2.1.1) and (2.1.2), together with the fact

that hit
(n)
1/2(1/4) = Θ(t

(n)
mix). In Proposition 3.1.5, under the assumption that the product

condition holds, we prove this fact and show that in fact, if the sequence exhibits hitα-cutoff
for some α ∈ (0, 1), then it exhibits hitβ-cutoff for all β ∈ (0, 1).
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2.2 Results concerning characterization of τ2 and hypercontrac-
tivity in terms of hitting times distributions

All of the results from this section are taken from [29] (joint work with Yuval Peres) unless
otherwise specified.

There are numerous essentially equivalent characterizations of mixing in L1 (e.g. [3, The-
orem 4.6] and [48]) of a finite reversible Markov chain. Some involve natural probabilistic
concepts such as couplings, stopping times and hitting times. In contrast, (paraphrasing
Aldous and Fill [3] last sentence of page 155, which mentions that there is no L2 counterpart
to [3, Theorem 4.6]) while there are several sophisticated analytic and geometric tools for
bounding the L2 mixing time, τ2, none of them has a probabilistic interpretation, and none
of them determines τ2 up to a constant factor.

In a joint work with Peres [29] we provide probabilistic characterizations in terms of
hitting times distributions for the L2 mixing time and also for the mixing time in relative
entropy, τEnt of a reversible Markov chain (Theorem 2.2.1).

While the spectral gap is a natural and simple parameter, the Log-Sobolev constant, cLS,
is a more involved quantity. When one first encounters cLS, it may seem like an artificial pa-
rameter that “magically” gives good bounds on τ2. We give a new extremal characterization
of the Log-Sobolev constant as a weighted version of the spectral gap. This characterization
gives a direct link between cLS and τ2 (answering a question asked by James Lee, see Remark
2.2.2) and can be interpreted probabilistically as a hitting-time version of hypercontractivity
(see the discussion in § 4.3).

2.2.1 A characterization of τ2 and τEnt

All of the results in this subsection are in the continuous-time setup. The discrete-setup is
described in the following subsection. We say that A is connected if Pa[Tb < TAc ] > 0, for
all a, b ∈ A. We denote by Conδ the collection of all connected sets A satisfying π(A) ≤ δ,
where throughout, π shall denote the stationary distribution of the chain. Denote

ρ := max
x∈Ω

ρx and ρEnt := max
x∈Ω

ρEnt,x, where (2.2.1)

ρx := min{t : Px[TAc > t] ≤ π(A) +
1

2

√
π(A)π(Ac) for all A ∈ Con1/2},

ρEnt,x := min{t : Px[TAc > t] ≤
C

| log π(A)|
, for all A ∈ Con1/2},

(2.2.2)

for some absolute constant C > 0 to be determined later. Note that allowing A above to
range over all A ⊂ Ω such that π(A) ≤ 1/2 does not change the values of ρx and ρEnt,x.

Theorem 2.2.1 ([29] Theorem 1). There exist absolute constants C1, C2, C3 such that for
every irreducible reversible Markov chain on a finite state space

ρ ≤ τ2 ≤ ρ + C1/cLS ≤ C2ρ. (2.2.3)

ρEnt ≤ τEnt ≤ C3ρEnt. (2.2.4)
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Note that in the definitions of ρ and ρEnt, the smaller A is, the smaller we require the
chance of not escaping it by time ρ or ρEnt, respectively, to be. In other words, the smaller
A is, the higher the “penalty” we assign to the case the chain did not escape from it. As we
explain in § 4.0.4, the first inequalities in (2.2.3)-(2.2.4) are easy and even somewhat “naive”.

A lot of attention has been focused on inequalities that interpolate between the Log-
Sobolev inequality and the Poincaré (spectral gap) inequality (e.g. [8, 44]). We prove a new
extremal characterization (up to a constant factor) of the Log-Sobolev constant (Theorems
2.2.2). The aforementioned characterization has a relatively simple form which does not
involve any entropy. Instead, it describes the Log-Sobolev constant as a weighted version of
the spectral gap. This characterization provides some insights regarding the hierarchy of the
aforementioned inequalities.

Recall that Q := (P + P ∗)/2. Let A ( Ω. Let QA (resp. PA) be the restriction of Q
(resp. P ) to A. Note that QA and PA are substochastic. The spectral gap of PA, λ(A), is
defined as the minimal eigenvalue of I − QA. Denote trel(A) := 1/λ(A). Denote

κ := 1/α, α := min
A∈con1/2

α(A), where α(A) := λ(A)/| log π(A)|. (2.2.5)

As mentioned earlier, α is a weighted version of λ since ([3, Lemma 4.39] and [23, (1.4)])

λ/2 ≤ min
A∈con1/2

λ(A) ≤ λ, and so trel log 2 ≤ κ. (2.2.6)

Theorem 2.2.2 ([29] Theorem 2). For every irreducible Markov chain on a finite state space

κ ≤ tLS ≤ 2(κ + trel(1 + log 49)) ≤ 2(1 + (1 + log 49)/ log 2)κ < 17κ. (2.2.7)

Remark 2.2.1. The inequality κ ≤ tLS is easy. See Lemma 4.2 in [23] for a stronger
inequality. The harder and more interesting direction is tLS ≤ Cκ, which is an improvement
over the well-known inequality tLS ≤ trel

log[1/π∗−1]
1−2π∗

, where π∗ := minx∈Ω π(x) [16, Corollary
A.4].

Remark 2.2.2. Despite the fact that tLS is a geometric quantity, Logarithmic Sobolev in-
equalities have a strong analytic flavor and little probabilistic interpretation. For instance,
the proof of the inequality tLS ≤ 2τ2(1/e) [16, Corollary 3.11] (where τ2(ε) is the L2 mix-
ing time defined in (1.1.3)) relies on Stein’s interpolation Theorem for a family of analytic
operators. Our analysis yields a probabilistic proof of the fact that tLS ≤ Cτ2 for reversible
chains (the problem of finding such a proof was posed by James Lee at the Simons institute in
2015). Indeed by Theorem 2.2.2 and (4.1.2), tLS/17 ≤ κ ≤ 3ρ ≤ 3τ2 (this second inequality
is relatively easy, and is obtained by analyzing hitting times, rather than by analytic tools).
As we show in § 4.0.4, the inequality ρ ≤ τ2 also has a probabilistic interpretation.

2.2.2 Discrete-time and averaged chain analogs

Let (Ω, P, π) be a finite irreducible chain. We may consider the Lp-mixing times of the
discrete-time and averaged chains τdiscete

p (∙) and τ ave
p (∙), resp., defined in an analogous manner

as τp(∙), obtained by replacing ht(x, y) = Ht(x, y)/π(y) with kt(x, y) := P t(x, y)/π(y) and
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at(x, y) := At(x, y)/π(y), resp.. Similarly consider the relative-entropy mixing times of the
discrete-time and averaged chains τdiscrete

Ent (∙) and τ ave
Ent(∙), resp.. Define ρdiscete and ρdiscete

Ent in
an analogous manner to ρ, where now the hitting times are defined w.r.t. the discrete-time
chain. Define tabsolute

rel := max{(1−λ2)
−1, (1− |λ|Ω||)−1}. The following observation is new to

this thesis.

Theorem 2.2.3. There exist absolute constants C1, C2, C3 such that for every irreducible
reversible Markov chain on a finite state space

ρdiscete − 1 ≤ τ ave
2 ≤ ρdiscete + C1tLS ≤ C2ρdiscete. (2.2.8)

ρdiscete
Ent − 1 ≤ τ ave

Ent ≤ C3ρ
discete
Ent . (2.2.9)

ρdiscete ≤ τdiscete
2 ≤ ρdiscete + C1(tLS + tabsolute

rel ) ≤ C2(ρdiscete + tabsolute
rel ). (2.2.10)

ρdiscete
Ent ≤ τdiscrete

Ent ≤ C3(ρ
discete
Ent + tabsolute

rel ). (2.2.11)

In conjunction with Theorem 2.2.1, and Lemma 4.1.4, which asserts that ρdiscete ≤ C̄ρ
and ρdiscete

Ent ≤ C̄ ′ρEnt, we get the following corollary.

Corollary 2.2.4. There exists an absolute constant C > 0 such that for every irreducible
reversible Markov chain on a finite state space

τ ave
2 ≤ Cτ2 and τ ave

Ent ≤ CτEnt.

To see that the reverse inequalities are false consider simple random walk on the n-clique,
for which τ ave

2 ≤ 2 while τ2 = Θ(log n) and τEnt = Θ(log log n).
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2.3 Applications

2.3.1 Robustness of τ2 under addition of self-loops of bounded weights.

The following corollary (taken from [29], joint work with Peres), proved in § 4.4, is an analog
of [48, Corollary 9.5], which gives the corresponding statement for τ1. While the statement
is extremely intuitive, surprisingly, it was recently shown that it may fail for simple random
walk on an Eulerian digraph [9, Theorem 1.5].

Corollary 2.3.1. [[29] Corollary 1.3] Let (Xt) be a reversible irreducible continuous-time
Markov chain on a finite state space Ω with generator G. Let (X̃t) be a chain with generator
G̃ obtained by multiplying for all x ∈ Ω the xth row of G by some rx ∈ (1/M,M) (for some
M ≥ 1). Then for some absolute constant C the corresponding L2 mixing times satisfy

τ̃2/(CM log M) ≤ τ2 ≤ (CM log M)τ̃2. (2.3.1)

Observe that the generator G of a reversible chain on a finite state space Ω, can be
written as r(P − I), where P is the transition matrix of some nearest neighbor weighted
random walk on a network which may contain some weighted self-loops. The operation of
multiplying the xth row of G by some rx ∈ (1/M,M) for all x ∈ Ω is the same as changing
r above by some constant factor and changing the weights of the self-loops by a constant
factor.

Remark 2.3.2. Similarly, one can show that under reversibility the L2 mixing time in the
discrete-time lazy setup is robust under changes of the holding probabilities. More precisely,
for every δ ∈ (0, 1/2] if we consider a chain that for all x ∈ Ω, when at state x it stays put
w.p. δ ≤ a(x) ≤ 1 − δ and otherwise moves to state y w.p. P (x, y) (where P is reversible),
then its L2 mixing time can only differ from the L2 mixing time of the chain with a(x) = 1/2
for all x, by a factor of Cδ−1| log δ|.

2.3.2 A characterization of cutoff for trees.

We start with a few definitions. Let T := (V,E) be a finite tree. Fix some Markov chain,
(V, P, π), on a finite tree T := (V,E). That is, a chain with stationary distribution π and
state space V such that P (x, y) > 0 iff {x, y} ∈ E or y = x. Then P is reversible by
Kolmogorov’s cycle condition.

The following theorem generalizes previous results concerning birth and death chains
[19]. The relevant setup is weighted nearest neighbor random walks on finite trees.

Theorem 2.3.1 ([6] (5.15)). There exists an absolute constant C such that for every lazy
reversible Markov chain on a tree T = (V,E) with |V | ≥ 3,

tmix(ε) − tmix(1 − ε) ≤ C
√

treltmix| log ε| + Ctrel| log ε|, for all 0 ≤ ε ≤ 1/4. (2.3.2)

In particular, if the product condition holds for a sequence of lazy reversible Markov chains
(Vn, Pn, πn) on finite trees Tn = (Vn, En), then the sequence exhibits a cutoff with a cutoff

window wn =

√
t
(n)
rel t

(n)
mix.
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In [17], Diaconis and Saloff-Coste showed that a sequence of birth and death (BD) chains

exhibits separation cutoff if and only if t
(n)
rel = o(t

(n)
mix). In [19], Ding et al. extended this also

to the notion of total-variation cutoff and showed that the cutoff window is always at most√
t
(n)
rel t

(n)
mix and that in some cases this is tight (see Theorem 1 and Section 2.3 ibid). As BD

chains are a particular case of chains on trees, the bound on wn in Theorem 2.3.1 is tight.
We note that the bound we get on the rate of convergence ((2.3.2)) is better than the esti-

mate in [19, Theorem 2.2] (even for BD chains), which is tmix(ε)−tmix(1−ε) ≤ Cε−1
√

treltmix.
Concentration of hitting times was a key ingredient both in [17] and [19] (as it shall be

here). Their proofs relied on several properties which are specific to BD chains. Our proof
of Theorem 2.3.1 can be adapted to the following setup. Denote [n] := {1, 2, . . . , n}.

Definition 2.3.3. For n ∈ N and δ, r > 0, we call a finite lazy reversible Markov chain,
([n], P, π), a (δ, r)-semi birth and death (SBD) chain if

(i) For all i, j ∈ [n] such that |i − j| > r, we have P (i, j) = 0.

(ii) For all i, j ∈ [n] such that |i − j| = 1, we have that P (i, j) ≥ δ.

This is a natural generalization of the class of birth and death chains. Conditions (i)-(ii)
tie the geometry of the chain to that of the path [n]. We have the following theorem.

Theorem 2.3.2 ([6] Theorem 2). Let ([nk], Pk, πk) be a sequence of (δ, r)-semi birth and
death chains, for some δ, r > 0, satisfying the product condition. Then it exhibits a cutoff

with a cutoff window wk :=

√
t
(k)
mixt

(k)
rel .

2.3.3 Robustness of τ∞ for trees.

Recall that for reversible chains the L2 mixing time, τ2, determines the Lp-mixing time up to
a factor cp for all 1 < p ≤ ∞ (see (1.1.4)). Denote the Lp mixing time of simple random walk
on a finite connected simple graph G by τp(G). Kozma [31] made the following conjecture:

Conjecture 2.3.4 ([31]). Let G and H be two finite K-roughly isometric graphs of maximal
degree ≤ d. Then

τ∞(G) ≤ C(K, d)τ∞(H). (2.3.3)

It is well-known that (2.3.3) is true if one replaces τ∞ with tLS (e.g. [16, Lemma 3.4]). Ding
and Peres [20] showed that (2.3.3) is false if one replaces τ∞ with τ1 (various improvements
and extensions of their result can be found in [30], joint work with Yuval Peres). In part,
their analysis relied on the fact that the total variation mixing time can be related to hitting
times, which may be sensitive to small changes in the geometry. Hence it is natural to expect
that a description of τ∞ in terms of hitting times might shed some light on Conjecture 2.3.4.
Indeed this was one of the main motivations behind [29]. In [26] the author of this thesis
constructed a counterexample to Conjecture 2.3.4, where also there the key was sensitivity
of hitting times.

Peres and Sousi [48, Theorem 9.1] showed that for weighted nearest neighbor random
walks on trees, τ1 can change only by a constant factor, as a result of a bounded perturbation
of the edge weights. As an application of Theorem 2.2.1 we prove the L2 analog.
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Theorem 2.3.3 ([29] Theorem 3). There exists an absolute constant C such that for ev-
ery finite tree T = (V,E) with some edge weights (we)e∈E, the corresponding random walk
satisfies that

max(τ1, tLS/4) ≤ τ2 ≤ τ1 + C max(tLS,
√

tLSτ1), (2.3.4)

Consequently, if (w′
e)e∈E, (we)e∈E are two edge weights such that 1/M ≤ we/w

′
e ≤ M for all

e ∈ E, then there exists a constant CM (depending only on M) such that the corresponding
L∞ mixing times, τ∞ and τ ′

∞, satisfy

τ ′
∞/CM ≤ τ∞ ≤ CMτ ′

∞. (2.3.5)

Remark 2.3.5. Since tLS is robust under a bounded perturbation of the edge weights (e.g. [16,
Lemma 3.3]), indeed (2.3.5) follows from (2.3.4) in conjunction with the aforementioned L1

robustness of trees (and the fact that τ2 ≤ τ∞ ≤ 2τ2, see (1.1.4)).
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2.4 Results concerning the averaged chain

All of the results presented in this section are taken from [28] (joint work with Yuval Peres).

Recall that in order to avoid near-periodicity issues one can consider the continuous-time,
the lazy and the averaged versions of the chain. In order to compare the (total variation)
mixing times of these chains with no ambiguity, we introduce some additional notation.

dc(t) := max
x∈Ω

dc(t, x), dL(t) := max
x∈Ω

dL(t, x), dave(t) := max
x∈Ω

dave(t, x),

where for every μ ∈ P(Ω),

dc(t, μ) := ‖Pμ(Xc
t ∈ ∙) − π‖TV = ‖Ht

μ − π‖TV,

dL(t, μ) := ‖Pμ(XL
t ∈ ∙) − π‖TV = ‖Pt

L,μ − π‖TV and

dave(t, μ) :=
∥
∥(Pt

μ + Pt+1
μ )/2 − π

∥
∥

TV
= ‖μ(P t+1 + P t)/2 − π‖TV.

The corresponding ε-total variation mixing times are, resp.,

tc(ε) := inf {t : dc(t) 6 ε} ,

tL(ε) := inf {t : dL(t) 6 ε} tave(ε) := inf {t : dave(t) 6 ε} .

We also define the corresponding mixing-times w.r.t. initial distribution μ to be

tc(ε, μ) := inf {t : dct(t, μ) 6 ε} , tL(ε, μ) := inf {t : dL(t, μ) 6 ε} ,

tave(ε, μ) := inf {t : dave(t, μ) 6 ε} .

When ε = 1/4, it is we omitted. We denote Z+ := {n ∈ Z : n ≥ 0} and R+ := {t ∈ R :
t ≥ 0}. Let φ : R+ → R+ and ψ : (0, 1] → (0, 1]. We write φ(t) ∼ t if limt→∞ φ(t)/t = 1. We
write ψ = o(1) if limε→0 ψ(ε) = 0. In [3] Aldous and Fill raised the following question:

Question (Open Problem 4.17 [3]). Show that there exist ψ : (0, 1] → (0, 1] and φ : R+ → Z+

satisfying ψ = o(1) and φ(t) ∼ t such that for every finite irreducible reversible Markov chain,

∀t ≥ 0, dave(φ(t)) ≤ ψ(dc(t)).

The first progress towards resolving Aldous and Fill’s Open Problem is due to Peres and
Sousi (2.0.1)-(2.0.2). Alas, their result is too coarse for the purpose of resolving it. Theorem
2.4.2, which is in fact a weaker version of Theorem 2.4.1, solves Aldous and Fill’s Problem.
Denote a ∨ b := max{a, b}, a ∧ b := min{a, b}. For every t ∈ R we denote the ceiling of t by
dte := min{z ∈ Z : z ≥ t}.

Definition 2.4.1. Let 0 < α < 1/2, C > 0, t ≥ 1 and x ∈ (0, 1). We define

ψα,C(x) := 1 ∧ (x + C| log(2x)|−α) and φα,C(t) := t + dCt
1+2α

2

√
α log te.

Remark 2.4.2. Note that φα,C(t) ∼ t and ψα,C = o(1), for all C > 0 and 0 < α < 1/2.
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Theorem 2.4.1 ([28] Theorem 1.1). There exist absolute constants C1, C2, C3 > 0 such that
for every finite irreducible reversible Markov chain, (Ω, P, π), μ ∈ P(Ω), 0 < α ≤ 1/2 and
t ≥ 1,

dL(φα,C1(t), μ) ≤ dc(t/2, μ) + C2t
−α. (2.4.1)

dave(φα,C1(t), μ) ≤ dL(2t, μ) + C2t
−α. (2.4.2)

dave(φα,C3(t), μ) ≤ dc(t, μ) + 2C2t
−α. (2.4.3)

Moreover, (4.2.1)-(4.2.2) remain valid when μ is omitted from both sides.

Note that (4.2.2) follows from (4.2.1)-(2.4.2) by picking some C3 so that φα,C3(t) ≥
φα,C1(d

1
2
φα,C1(2t)e).

Remark 2.4.3. The converse inequality dc(t + 2t3/4) ≤ dave(t) + e−
√

t is easy ((2.4.9)).
Combined with (4.2.2) one can readily see that dc(∙) exhibits an abrupt transition iff dave(∙)
exhibits an abrupt transition (in which case, both occur around the same time).

Theorem 2.4.2. [[28] Theorem 1.2] There exist absolute constants C1, C2 > 0 such that for
every finite irreducible reversible Markov chain

dave(φα,C1(t)) ≤ ψα,C2(dc(t)), for every 0 < α < 1/2 and t ≥ 2. (2.4.4)

Remark 2.4.4. Theorem 2.4.2 can be rephrased as follows. There exist absolute constants
C1, C2 > 0 such that for every finite irreducible reversible Markov chain,

tave(ψα,C2(ε)) ≤ φα,C1(tc(ε)), for all 0 < α < 1/2 and 0 < ε < 1. (2.4.5)

Theorem 2.4.2 is an immediate consequence of (4.2.2) together with the “worst-case”
estimate dc(t) ≥ (e−2t/2)1|Ω|>1 (e.g. [36, Lemma 20.11]). We omit the details. Theorem
2.4.1 follows in turn as the particular case s := 2 ∨ tα

√
α log t of the following proposition.

Proposition 2.4.5 ([28] Proposition 1.5). There exists an absolute constant C such that for
every finite irreducible reversible chain, (Ω, P, π), every μ ∈ P(Ω), t ≥ 2 and s ∈ [2, et] we
have that

dL(t + ds
√

te, μ) ≤ dc(t/2, μ) + Cs−1
√

log s. (2.4.6)

dave(t + ds
√

te, μ) ≤ dL(2t, μ) + Cs−1
√

log s. (2.4.7)

We now make two remarks regarding the sharpness of (2.4.7). The first concerns the error
term Cs−1

√
log s (and also the “error term”, ψα,C2(dc(t)) − dc(t), in (2.4.4)). The second

concerns the “time-shift” term ds
√

te.

Remark 2.4.6. Denote s = sn,α := dn0.5+αe and t = tn,α := 4n + s. In § 6.4 we construct

for every 0 < α ≤ 1/2 a sequence of chains with t
(n)
c = (4 ± o(1))n such that for some

absolute constants c1, c2 > 0 the n-th chain in the sequence satisfies that

dave(t + s) − dc(t) ≥
c1

s
≥

c2

[log(1/dc(t))]
1+2α
4α

. (2.4.8)

Thus the inverse polynomial decay (w.r.t. s) in (2.4.7) is the correct order of decay, up to
the value of the exponent.
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Remark 2.4.7. When s is fixed, the “time-shift” term s
√

t in (2.4.7) is of order
√

t. This
cannot be improved. To see this, consider a birth and death chain on [n] := {1, 2, . . . , n} with
P (i + 1, i) = e−n = 1− P (i + 1, i + 2) for i ∈ [n− 2] and P (1, 2) = 1 = P (n, n− 1). Then if
rn = o(

√
n) we have that dL(2n − rn) = 1/2 ± o(1), while dave(n − 3) = 1 − o(1).

The following proposition offers a converse to Theorem 2.4.1. The argument in the proof
of (2.4.9) is due to Peres and Sousi ([48, Lemma 2.3]).

Proposition 2.4.8 ([28] Proposition 1.8). Let (Ω, P, π) be a finite irreducible Markov chain.
Then for every t ∈ N, 0 < s ≤

√
t and μ ∈ P(Ω),

dc(t + s
√

t, μ) ≤ dave(t, μ) + e−s2/4.

dL(2t + d2s
√

te, μ) ≤ dave(t, μ) + e−s2/4.
(2.4.9)

dc(t + s
√

t, μ) ≤ dL(2t, μ) + e−s2/2. (2.4.10)

Remark 2.4.9. In [53] p. 195, it is written: ”a theorem is Abelian if it says something
about an average of a sequence from a hypothesis about its ordinary limit; it is Tauberian if
conversely the implication goes from average to limit”.

Proposition 2.4.8 is easier and more general than Theorem 2.4.1 (as it does not assume
reversibility) because it is an Abelian theorem, while Theorem 2.4.1 is Tauberian, hence
requires the reversibility assumption, as we now demonstrate. One (non-reversible) instance
in which (2.4.7) fails is a biased random walk on the n-cycle with P (i, i − 1) = n−` =
1 − P (i, i + 1), where i − 1 and i + 1 are defined modulo n and ` > 0 is arbitrary. In
this example tL(ε)/(n2| log ε|) = Θ(1), however tave(ε)/(n`+2| log ε|) = Θ(1) (uniformly in
ε ∈ (0, 1/2]).

Next, consider a sequence of such chains, ((Ωn, Pn, πn) : n ∈ N), each with its corre-

sponding worst-distance from stationarity dn(t), its mixing-time t
(n)
c , etc.. We say that a

sequence of chains exhibits a continuous-time cutoff if the following sharp transition in
its convergence to stationarity occurs:

lim
n→∞

t(n)
c (ε)/t(n)

c (1 − ε) = 1, for every 0 < ε < 1.

We say that a sequence of chains exhibits an averaged cutoff (resp. lazy cutoff ) if

lim
n→∞

t(n)
ave(ε)/t

(n)
ave(1 − ε) = 1 (resp., lim

n→∞
t
(n)
L (ε)/t

(n)
L (1 − ε) = 1), for every 0 < ε < 1.

The following corollary follows at once from Theorem 2.4.1 together with Proposition 2.4.8.

Corollary 2.4.10 ([28] Corollary 1.10). Let (Ωn, Pn, πn) be a sequence of finite irreducible
reversible Markov chains. Then the following are equivalent

(i) The sequence exhibits a continuous-time cutoff.

(ii) The sequence exhibits a lazy cutoff.

(iii) The sequence exhibits an averaged cutoff.
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Moreover, if (i) holds, then limn→∞ t
(n)
ave/t

(n)
c = limn→∞ t

(n)
L /(2t

(n)
c ) = 1.

Remark 2.4.11. The equivalence between (i) and (iii) was previously unknown. In [12] it
was shown that (i) and (ii) are equivalent even without the assumption of reversibility.

Our last point of comparison is related to the width of the cutoff window. We say that
a sequence of chains exhibits a continuous-time (resp. averaged) cutoff with a cutoff window

wn if wn = o(t
(n)
c ) (resp. wn = o(t

(n)
ave)) and for every 0 < ε ≤ 1/4 there exists some constant

Cε > 0 (depending only on ε) such that

∀n, t(n)
c (ε) − t(n)

c (1 − ε) ≤ Cεwn (resp. t(n)
ave(ε) − t(n)

ave(1 − ε) ≤ Cεwn).

One can define the notion of a cutoff window for a sequence of associated lazy chains in an
analogous manner. Note that the window defined in this manner is not unique.

Theorem 2.4.3 ([28] Theorem 1.3). Let (Ωn, Pn, πn) be a sequence of finite irreducible re-
versible Markov chains.

(i) Assume that the sequence exhibits a continuous-time cutoff with a window wn. Then
it exhibits also an averaged cutoff with a window wn.

(ii) Assume that the sequence exhibits an averaged cutoff with a window wn. Then it exhibits

also a continuous-time cutoff with a window w′
n := wn ∨

√
t
(n)
c .

Theorem 2.4.3 follows easily from Propositions 2.4.5 and 2.4.8 in conjunction with the
following result. We prove Theorem 2.4.3 in § 6.3 for the sake of completeness.

Proposition 2.4.12 ([12] Chen and Saloff-Coste). Let (Ωn, Pn, πn) be a sequence of finite
irreducible reversible Markov chains. The sequence exhibits a continuous-time cutoff with a

window wn iff it exhibits a lazy cutoff with a window wn, in which case wn = Ω

(√
t
(n)
c

)

.

Remark 2.4.13. There are cases in which the cutoff window for the sequence of the associ-
ated averaged chains can be much smaller than that of the associated continuous-time chains.
For instance, let Gn be a sequence of random n-vertex dn-regular graphs, for some dn such
that log n � dn log dn = no(1). Let (X

(n)
t )t∈Z+ be the sequence of discrete-time simple random

walks on Gn. Then [41] w.h.p. (i.e. with probability 1 − o(1), over the choice of the graphs)

|t(n)
ave(ε) − dlogdn−1(dnn)e| ≤ 1, for every ε ∈ (0, 1),

while the cutoff window for the sequence of associated continuous-time chains is
√

logdn−1 n.
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Chapter 3

Characterization of cutoff for reversible
Markov chains

In this Chapter we present the proofs of the results from Section 2.1.

3.0.1 An overview

Definition 3.0.14. Let (Ω, P, π) be a finite reversible irreducible lazy chain. Let A ⊂ Ω,
s ≥ 0 and m > 0. Denote ρ(A) :=

√
Varπ1A =

√
π(A)(1 − π(A)). Set σs := e−s/trelρ(A).

We define
Gs(A,m) :=

{
y : |Pk

y(A) − π(A)| < mσs for all k ≥ s
}

. (3.0.1)

We call the set Gs(A,m) the good set for A from time s within m standard-deviations.

As a simple corollary of Starr’s L2 maximal inequality and the L2-contraction lemma we
show in Corollary 3.0.15 that for any non-empty A ⊂ Ω and any m, s ≥ 0 that π(Gs(A,m)) ≥
1 − 8/m2. To demonstrate the main idea of our approach we now prove the following
inequalities.

tmix(2ε) ≤ hit1−ε(ε) +

⌈
trel
2

log

(
2

ε3

)⌉

. (3.0.2)

hit1−ε(1 − 2ε) ≥ tmix(1 − ε) −

⌈
trel
2

log

(
8

ε2

)⌉

. (3.0.3)

We first prove (3.0.2). Let A ⊂ Ω be non-empty. Let x ∈ Ω. Let s, t,m ≥ 0 to be defined
shortly. Denote G := Gs(A,m). We want this set to be of size at least 1 − ε. By Corollary
3.0.15 we know that π(G) ≥ 1 − 8/m2. Thus we pick m =

√
8/ε. The precision in (3.0.1)

is mσs ≤
√

8/ε(
√

Varπ1Ae−s/trel) ≤
√

2/εe−s/trel . As we want to have ε precision, we pick
s :=

⌈
trel
2

log
(

2
ε3

)⌉
.

We seek to bound |Pt+s
x (A)−π(A)|. If |Pt+s

x (A)−π(A)| ≤ 2ε, then the chain is “2ε-mixed
w.r.t. A”. This is where we use the set G. We now demonstrate that for any t ≥ 0, hitting
G by time t serves as a “certificate” that the chain is ε-mixed w.r.t. A at time t + s. Indeed,
from the Markov property and the definition of G,

|Px[Xt+s ∈ A | TG ≤ t] − π(A)| ≤ max
g∈G

sup
s′≥s

|Ps′

g (A) − π(A)| ≤ ε.
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In particular,

|Pt+s
x (A) − π(A)| ≤ Px[TG > t] + |Px[Xt+s ∈ A | TG ≤ t] − π(A)| ≤ Px[TG > t] + ε. (3.0.4)

We seek to have the bound Px[TG > t] ≤ ε. Recall that by our choice of m we have that
π(G) ≥ 1− ε. Thus if we pick t := hit1−ε(ε), we guarantee that, regardless of the identity of
A and x, we indeed have that Px[TG > t] ≤ ε. Since x and A were arbitrary, plugging this
into (3.0.4) yields (3.0.2). We now prove (3.0.3).

We now set r := tmix(1 − ε) − 1. Then there exist some x ∈ Ω and A ⊂ Ω such that
π(A) − Pr

x(A) > 1 − ε. In particular, π(A) > 1 − ε. Consider again G2 := Gs2(A,m). Since
again we seek the size of G2 to be at least 1 − ε, we again choose m =

√
8/ε. The precision

in (3.0.1) is mσs2 ≤
√

8/ε(
√

Varπ1Ae−s2/trel) ≤
√

8/ε(
√

1 − π(A)e−s2/trel) ≤
√

8e−s2/trel . We
again seek ε precision. Hence we pick s2 :=

⌈
trel
2

log
(

8
ε2

)⌉
. As in (3.0.4) (with r − s2 in the

role of t and s2 in the role of s) we have that

Px[TG2 > r − s2] ≥ π(A) − Pr
x(A) − ε > 1 − 2ε.

Hence it must be the case that hit1−ε(1 − 2ε) > r − s2 = tmix(1 − ε) − 1 −
⌈

trel
2

log
(

8
ε2

)⌉
.

We now prove the claim concerning the size of the good set.

Corollary 3.0.15. Let (Ω, P, π) be a finite reversible irreducible lazy chain. As in Definition
3.0.14, define ρ(A) :=

√
π(A)(1 − π(A)), σt := ρ(A)e−t/trel and

Gt(A,m) :=
{
y : |Pk

y(A) − π(A)| < mσt for all k ≥ t
}

.

Then
π(Gt(A,m)) ≥ 1 − 8m−2, for all A ⊂ Ω, t ≥ 0 and m > 0. (3.0.5)

Proof. For any t ≥ 0, let ft(x) := P t(1A − π(A))(x) = Pt
x(A) − π(A). Then in the notation

of Theorem 1.2.1,

(ft)∗(x) := sup
k≥0

|P kft(x)| = sup
k≥0

|Pk+t
x (A) − π(A)|,

Hence Gt ⊇ {x ∈ Ω : (ft)∗(x) < mσt}. Whence

1 − π(Gt) ≤ π {x : (ft)∗(x) ≥ mσt} . (3.0.6)

Note that since πP t = π we have that Eπ(ft) = Eπ(f0) = Eπ(1A − π(A)) = 0. Now (1.1.10)
implies that

‖Pft‖
2
2 ≤ ‖ft‖

2
2 = VarπP tf0 ≤ e−2t/trelVarπf0 = e−2t/trelρ2(A) = σ2

t . (3.0.7)

Hence by Markov inequality and (1.2.1) we have

π {x : (ft)∗(x) ≥ mσt} = π
{
x : ((ft)∗(x))2 ≥ m2σ2

t

}
≤ 8m−2. (3.0.8)

The corollary now follows by substituting the last bound in (3.0.6).
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3.1 Inequalities relating tmix(ε) and hitα(δ)

Our aim in this section is to obtain inequalities relating tmix(ε) and hitα(δ) for suitable values
of α, ε and δ using Corollary 3.0.15.

The following corollary uses the same reasoning as in the proof of (3.0.2)-(3.0.3) with a
slightly more careful analysis.

Corollary 3.1.1. Let (Ω, P, π) be a lazy reversible irreducible finite chain. Let x ∈ Ω,
δ, α ∈ (0, 1), s ≥ 0 and A ⊂ Ω. Denote t := hit1−α,x(δ). Then

Pt+s
x (A) ≥ (1 − δ)

[
π(A) − e−s/trel

[
8α−1π(A)(1 − π(A))

]1/2
]
. (3.1.1)

Consequently, for any 0 < ε < 1 we have that

hit1−α((α + ε) ∧ 1) ≤ tmix(ε) and tmix((ε + δ) ∧ 1) ≤ hit1−α(ε) +

⌈
trel
2

log+

(
2(1 − ε)2

αεδ

)⌉

,

(3.1.2)
where a ∧ b := min{a, b} and log+ x := max{log x, 0}. In particular, for any 0 < ε ≤ 1/2,

hit1−ε/4(5ε/4) ≤ tmix(ε) ≤ hit1−ε/4(3ε/4) +

⌈
3trel
2

log (4/ε)

⌉

, (3.1.3)

tmix(ε) ≤ hit1/2(ε/2) + dtrel log (4/ε)e and tmix(1− ε/2) ≤ hit1/2(1− ε) + 1ε>1/9

⌈
1

2
trel log 8

⌉

.

(3.1.4)

Proof. We first prove (3.1.1). Fix some x ∈ Ω. Consider the set

G = Gs(A) :=
{

y : |Pk
y(A) − π(A)| < e−s/trel

(
8α−1π(A)(1 − π(A))

)1/2
for all k ≥ s

}
.

Then by Corollary 3.0.15 we have that

π(G) ≥ 1 − α.

By the Markov property and conditioning on TG and on XTG
we get that

Px[Xt+s ∈ A | TG ≤ t] ≥ π(A) − e−s/trel
[
8α−1π(A)(1 − π(A))

]1/2
.

Since π(G) ≥ 1 − α we have that Px[TG ≤ t] ≥ 1 − δ for t := hit1−α,x(δ). Thus

Pt+s
x (A) ≥ Px[TG ≤ t]Px[Xt+s ∈ A | TG ≤ t] ≥ (1−δ)

[
π(A) − e−s/trel

[
8α−1π(A)(1 − π(A))

]1/2
]
,

which concludes the proof of (3.1.1). We now prove (3.1.2). The first inequality in (3.1.2)
follows directly from the definition of the total variation distance. To see this, let A ⊂ Ω be
an arbitrary set with π(A) ≥ 1 − α. Let t1 := tmix(ε). Then for any x ∈ Ω,

Px[TA ≤ t1] ≥ Px[Xt1 ∈ A] ≥ π(A) − ‖Pt1
x − π‖TV ≥ 1 − α − ε.
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In particular, we get directly from Definition 2.1.1 that hit1−α(α + ε) ≤ t1 = tmix(ε). We
now prove the second inequality in (3.1.2).

Set t := hit1−α(ε) and s :=
⌈

1
2
trel log+

(
2(1−ε)2

αεδ

)⌉
. Let x ∈ Ω be such that d(t + s) =

‖Pt+s
x − π‖TV and set A := {y ∈ Ω : π(y) > Pt+s

x (y)}. Observe that by the choice of t, s, x
and A together with (3.1.1) we have that

d(t + s) = π(A) − Pt+s
x (A) ≤ επ(A) + (1 − ε)e−s/trel

[
8α−1π(A)(1 − π(A))

]1/2

≤ ε[π(A) + 2
√

δ/ε
√

π(A)(1 − π(A))] ≤ ε[1 + (2
√

δ/ε)2/4] = ε + δ,
(3.1.5)

where in the last inequality we have used the easy fact that for any c > 0 and any x ∈ [0, 1]
we have that x + c

√
x(1 − x) ≤ 1 + c2/4. Indeed, since x ∈ [0, 1] it suffices to show that

x+c
√

(1 − x) ≤ 1+c2/4. Write
√

1 − x = y and c/2 = a. By subtracting x from both sides,
the previous inequality is equivalent to 2ay ≤ y2 + a2. This concludes the proof of (3.1.2).

For the second inequality of (3.1.3), apply (3.1.2) with (α, ε, δ) being (ε/4, 3ε/4, ε/4).
Similarly, to get (3.1.4) apply (3.1.2) with (α, ε, δ) being (1/2, ε/2, ε/2) or (1/2, 1 − ε, ε/2),
respectively.

Let α ∈ (0, 1). Observe that for any A ⊂ Ω with π(A) ≥ α, any x ∈ Ω and any t, s ≥ 0,
by the Markov property we have that Px[TA > t + s] ≤ Px[TA > t]

(
maxz Pz[TA > s]

)
≤

p(α, t)p(α, s). Maximizing over x and A yields that p(α, t + s) ≤ p(α, t)p(α, s), from which
the following proposition follows.

Proposition 3.1.2. For any α, ε, δ ∈ (0, 1) we have that

hitα(εδ) ≤ hitα(ε) + hitα(δ). (3.1.6)

In the next corollary, we establish inequalities between hitα(δ) and hitβ(δ′) for appropriate
values of α, β, δ and δ′.

Corollary 3.1.3. For any reversible irreducible finite chain and 0 < ε < δ < 1,

hitβ(δ) ≤ hitα(δ) ≤ hitβ(δ−ε)+

⌈

α−1trel log

(
1 − α

(1 − β)ε

)⌉

, for any 0 < α ≤ β < 1. (3.1.7)

The general idea behind Corollary 3.1.3 is as follows. Loosely speaking, we show that
any set A ⊂ Ω has a “blow-up” set H(A) (of large π-measure), such that starting from
any x ∈ H(A), the set A is hit “quickly” (in time proportional to trel/π(A)) with large
probability.

In order to establish the existence of such a blow-up, it turns out that it suffices to consider
the hitting time of A starting from the initial distribution π, which is well-understood.

Lemma 3.1.4. Let (Ω, P, π) be a finite irreducible reversible Markov chain. Let A ( Ω be

non-empty. Let α > 0 and w ≥ 0. Let B(A,w, α) :=
{

y : Py

[
TA >

⌈
trelw
π(A)

⌉]
≥ α

}
. Then

Pπ[TA > t] ≤ π(Ac)

(

1 −
π(A)

trel

)t

≤ π(Ac) exp

(

−
tπ(A)

trel

)

, for any t ≥ 0. (3.1.8)

In particular,

π (B(A,w, α)) ≤ π(Ac)e−wα−1 and π(A)Eπ[TA] ≤ trelπ(Ac). (3.1.9)
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The proof of Lemma 3.1.4 is deferred to the end of this section.

Proof of Corollary 3.1.3. Denote s = sα,β,ε :=
⌈
α−1trel log

(
1−α

(1−β)ε

)⌉
. Let A ⊂ Ω be an

arbitrary set such that π(A) ≥ α. Consider the set

H1 = H1(A,α, β, ε) := {y ∈ Ω : Py[TA ≤ s] ≥ 1 − ε} .

Then by (3.1.9)

π(H1) ≥ 1 − (1 − (1 − ε))−1(1 − π(A)) exp

[

−
sπ(A)

trel

]

≥ 1 − ε−1(1 − α) exp

[

− log

(
1 − α

(1 − β)ε

)]

= β.

By the definition of H1 together with the Markov property and the fact that π(H1) ≥ β, for
any t ≥ 0 and x ∈ Ω,

Px[TA ≤ t + s] ≥ Px[TH1 ≤ t, TA ≤ t + s] ≥ (1 − ε)Px[TH1 ≤ t]

≥ (1 − ε)(1 − px(β, t)) ≥ 1 − ε − max
y∈Ω

py(β, t). (3.1.10)

Taking t := hitβ(δ − ε) and minimizing the LHS of (3.1.10) over A and x gives the second
inequality in (3.1.7). The first inequality in (3.1.7) is trivial because α ≤ β.

3.1.1 Proofs of Proposition 2.1.5 and Theorem 2.1.1

Now we are ready to prove our main abstract results.

Proof of Proposition 2.1.5. First note that (2.1.3) follows from (3.1.3) and the first inequality
in (1.1.8). Moreover, in light of (3.1.4) we only need to prove the first inequalities in (2.1.1)
and (2.1.2). Fix some 0 < ε ≤ 1/4 and t > 0. Take any set A with π(A) > 1

2
and x ∈ Ω.

Denote sε := d2trel| log ε|e. Consider a coupling (P, (Yk, Zk)k≥0) of the chain (Yk)k≥0 with
initial distribution Y0 ∼ Pt

x with the stationary chain (Zk)k≥0 so that P[(Yk)k≥0 6= (Zk)k≥0] =
dx(t) (cf. the proofs of Proposition 4.7 and of Theorem 5.2 in [36] for the existence of such
a coupling). By the Markov property

Px[TA > t + sε] ≤ Px[Xk /∈ A for all t ≤ k ≤ t + sε] = P[Yk /∈ A for all k ≤ sε]

≤ P[(Yk)k≥0 6= (Zk)k≥0] + P[Zk /∈ A for all k ≤ sε] = dx(t) + Pπ[TA > sε].

Hence by (3.1.8)

Px[TA > t + sε] 6 dx(t) +
1

2
e−sε/2trel 6 d(t) +

ε

2
.

Putting t = tmix(ε) and t = tmix(1 − ε) successively in the above equation and maximizing
over x ∈ Ω and A such that π(A) > 1

2
gives

hit1/2(3ε/2) 6 tmix(ε) + sε and hit1/2(1 − ε/2) 6 tmix(1 − ε) + sε,

which completes the proof.
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Before completing the proof of Theorem 2.1.1, we prove that under the product condition
if a sequence of reversible chains exhibits hitα-cutoff for some α ∈ (0, 1), then it exhibits
hitα-cutoff for all α ∈ (0, 1).

Proposition 3.1.5. Let (Ωn, Pn, πn) be a sequence of lazy finite irreducible reversible chains
for which the product condition holds. Then (1) and (2) below are equivalent:

(1) There exists α ∈ (0, 1) for which the sequence exhibits a hitα-cutoff.

(2) The sequence exhibits a hitα-cutoff for any α ∈ (0, 1).

Moreover,
hit(n)

α (1/4) = Θ(t
(n)
mix), for any α ∈ (0, 1). (3.1.11)

Furthermore, if (2) holds then

lim
n→∞

hit(n)
α (1/4)/hit

(n)
1/2(1/4) = 1, for any α ∈ (0, 1). (3.1.12)

Proof. We start by proving (3.1.11). Assume that the product condition holds. Fix some
α ∈ (0, 1). Note that we have

hit(n)
α (1/4) ≤ 4α−1hit(n)

α

(

1 −
3α

4

)

≤ 4α−1t
(n)
mix

(α

4

)
≤ 4α−1(2 + dlog2(1/α)e)t(n)

mix.

The first inequality above follows from (3.1.6) and the fact that (1 − 3α/4)4α−1−1 ≤ 4e−3 ≤
1/4. The second one follows from (3.1.2)(first inequality). The final inequality above is a
consequence of the sub-multiplicativity property: for any k, t ≥ 0, d(kt) ≤ (2d(t))k (e.g. [36],
(4.24) and Lemma 4.12).

Conversely, by (3.1.6) (second inequality) and the second inequality in (3.1.2) with
(α, ε, δ) here being (1 − α, 1/8, 1/8) (first inequality)

t
(n)
mix

2
−

⌈
t
(n)
rel

4
log

(
100

1 − α

)⌉

≤
hit(n)

α (1/8)

2
≤ hit(n)

α (1/4).

This concludes the proof of (3.1.11). We now prove the equivalence between (1) and (2)
under the product condition. It suffices to show that (1) =⇒ (2), as the reversed implication
is trivial. Fix 0 < α < β < 1. It suffices to show that hitα-cutoff occurs iff hitβ-cutoff occurs.

Fix ε ∈ (0, 1/8). Denote sn = sn(α, β, ε) :=
⌈
t
(n)
rel α

−1 log
(

1−α
(1−β)ε

)⌉
. By the second

inequality in Corollary 3.1.3

hit(n)
α (1 − ε) ≤ hit

(n)
β (1 − 2ε) + sn and hit(n)

α (2ε) ≤ hit
(n)
β (ε) + sn. (3.1.13)

By the first inequality in Corollary 3.1.3

hit
(n)
β (2ε) ≤ hit(n)

α (2ε) ≤ hit(n)
α (ε) and hit

(n)
β (1−ε) ≤ hit

(n)
β (1−2ε) ≤ hit(n)

α (1−2ε). (3.1.14)

Hence

hit
(n)
β (2ε) − hit

(n)
β (1 − 2ε) ≤ hit(n)

α (ε) − hit(n)
α (1 − ε) + sn,

hit(n)
α (2ε) − hit(n)

α (1 − 2ε) ≤ hit
(n)
β (ε) − hit

(n)
β (1 − ε) + sn.

(3.1.15)
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Note that by the assumption that the product condition holds, we have that sn = o(t
(n)
mix).

Assume that the sequence exhibits hitα-cutoff. Then by (3.1.11) the RHS of the first line of

(3.1.15) is o(t
(n)
mix). Again by (3.1.11), this implies that the RHS of the first line of (3.1.15) is

o(hit
(n)
β (1/4)) and so the sequence exhibits hitβ-cutoff. Applying the same reasoning, using

the second line of (3.1.15), shows that if the sequence exhibits hitβ-cutoff, then it also exhibits
hitα-cutoff.

We now prove (3.1.12). Let a ∈ (0, 1). Denote α := min{a, 1/2} and β := max{a, 1/2}.
Let sn = sn(α, β, ε) be as before. By the second inequality in Corollary 3.1.3

hit(n)
α (1/4 + ε) − sn ≤ hit

(n)
β (1/4) ≤ hit(n)

α (1/4). (3.1.16)

By assumption (2) together with the product condition and (3.1.11), the LHS of (3.1.16) is
at least (1 − o(1))hit(n)

α (1/4), which by (3.1.16), implies (3.1.12).

The following proposition shows that for all α 6 1/2 the occurrence of hitα-cutoff implies
that the product condition holds. In particular, this implies the equivalence of 2) and 3) in
Theorem 2.1.1.

Proposition 3.1.6. Let (Ωn, Pn, πn) be a sequence of lazy finite irreducible reversible chains.
Assume that the product condition fails. Then for any α ≤ 1/2 the sequence does not exhibit
hitα-cutoff.

Before providing the proof of Proposition 3.1.6, we complete the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. By Proposition 3.1.6 it suffices to consider the case in which the
product condition holds. By Propositions 3.1.5 it suffices to consider the case α = 1/2 (that
is, it suffices to show that under the product condition the sequence exhibits cutoff iff it
exhibits hit1/2-cutoff). This follows at once from (2.1.1), (2.1.2) and (3.1.12).

Proof of Proposition 3.1.6. Fix some 0 < α ≤ 1/2. We first argue that for all n, k ≥ 1

hit(n)
α ([1 − α/2]k) ≤ kd| log2(α/2)|et(n)

mix. (3.1.17)

By the submultiplicativity property (3.1.6), it suffices to verify (3.1.17) only for k = 1. As
in the proof of Proposition 3.1.5, by the submultiplicativity property d(mt) ≤ (2d(t))m,

together with (3.1.2), we have that hit(n)
α (1 − α/2) ≤ t

(n)
mix(α/2) ≤ d| log2(α/2)|e)t(n)

mix.
Conversely, by the laziness assumption, we have that for all n,

hit(n)
α (ε/2) ≥ | log2 ε|, for all 0 < ε < 1. (3.1.18)

To see this, consider the case that X
(n)
0 = yn, for some yn ∈ Ωn such that πn(yn) ≤ 1/2 ≤

1−α, and that the first b| log2 ε|c steps of the chain are lazy (i.e. yn = X
(n)
1 = ∙ ∙ ∙ = Xb| log2 ε|c).

By (3.1.17) in conjunction with (3.1.18) we may assume that limn→∞ t
(n)
mix = ∞, as other-

wise there cannot be hitα-cutoff. By passing to a subsequence, we may assume further that
there exists some C > 0 such that t

(n)
mix < Ct

(n)
rel . In particular, limn→∞ t

(n)
rel = ∞ and we may

assume without loss of generality that (λ
(n)
2 )t

(n)
mix ≥ e−C for all n, where λ

(n)
2 is the second

largest eigenvalue of Pn.
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For notational convenience we now suppress the dependence on n from our notation. Let
f2 ∈ RΩ be a non-zero vector satisfying that Pf2 = λ2f2. By considering −f2 if necessary,
we may assume that A := {x ∈ Ω : f2 ≤ 0} satisfies π(A) ≥ 1/2. Let x ∈ Ω be such that
f2(x) = maxy∈Ω f2(y) =: L. Note that L > 0 since Eπ[f2] = 0.

Consider Nk := λ−k
2 f2(Xk) and Mk := Nk∧TA

, where X0 = x. Observe that (Nk)k≥0 is
a martingale and hence so is (Mk)k≥0 (w.r.t. the natural filtration induced by the chain).
As Mk ≤ 0 on {TA ≤ k} and Mk ≤ λ−k

2 L on {TA > k}, we get that for all k > 0,
Mk ≤ λ−k

2 L1TA>k, and so

L = Ex[M0] = Ex[Mk] ≤ Ex[λ
−k
2 L1TA>k] = λ−k

2 LPx[TA > k]. (3.1.19)

Thus Px[TA > k] ≥ λk
2, for all k. Consequently, for all a > 0,

Px[TA > atmix] ≥ λatmix
2 ≥ e−aC . (3.1.20)

Thus
hitα(ε/2) ≥ hit1/2(ε/2) ≥ C−1tmix| log ε|, for any 0 < ε < 1.

This, in conjunction with (3.1.17), implies that hitα(ε)
hitα(1−ε)

≥ | log ε|
Cdlog2(α/2)e , for all 0 < ε ≤ α/2.

Consequently, there is no hitα-cutoff.

3.1.2 Proof of Lemma 3.1.4

Now we prove Lemma 3.1.4. As mentioned before, the hitting time of a set A starting from
stationary initial distribution is well-understood (see [21]; for the continuous-time analog see
[3], Chapter 3 Sections 5 and 6.5 or [11]). Assuming that the chain is lazy, it follows from
the theory of complete monotonicity together with some linear-algebra that this distribution
is dominated by a distribution which gives mass π(A) to 0, and conditionally on being
positive, is distributed as the Geometric distribution with parameter π(A)/trel. Since the
existing literature lacks simple treatment of this fact (especially for the discrete-time case)
we now prove it for the sake of completeness. We shall prove this fact without assuming
laziness. Although without assuming laziness the distribution of TA under Pπ need not be
completely monotone, the proof is essentially identical as in the lazy case.

For any non-empty A ⊂ Ω, we write πA for the distribution of π conditioned on A. That
is, πA(∙) := π(∙)1∙∈A

π(A)
.

Lemma 3.1.7. Let (Ω, P, π) be a reversible irreducible finite chain. Let A ( Ω be non-
empty. Denote its complement by B and write k = |B|. Consider the sub-stochastic matrix
PB, which is the restriction of P to B. That is PB(x, y) := P (x, y) for x, y ∈ B. Assume
that PB is irreducible, that is, for any x, y ∈ B, exists some t ≥ 0 such that P t

B(x, y) > 0.
Then

(i) PB has k real eigenvalues 1 − π(A)/trel ≥ γ1 > γ2 ≥ ∙ ∙ ∙ ≥ γk ≥ −γ1.

(ii) There exist some non-negative a1, . . . , ak satisfying
∑k

i=1 ai = 1 such that for any t ≥ 0,

PπB
[TA > t] =

k∑

i=1

aiγ
t
i . (3.1.21)
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(iii)

PπB
[TA > t] ≤ γt

1 ≤

(

1 −
π(A)

trel

)t

≤ exp

(

−
tπ(A)

trel

)

, for all t ≥ 0. (3.1.22)

Proof. We first note that (3.1.22) follows immediately from (3.1.21) and (i). Indeed, by (i),

|γi| ≤ γ1 ≤ 1 − π(A)
trel

for all i, and so (3.1.21) implies that PπB
[TA > t] ≤ γt

1 ≤
(
1 − π(A)

trel

)t

for all t ≥ 0. We now prove (i).
Consider the following inner-product on RB, 〈f, g〉πB

:=
∑

x∈B πB(x)f(x)g(x). Since P is
reversible, PB is self-adjoint w.r.t. this inner-product. Hence indeed PB has k real eigenvalues
γ1 > γ2 ≥ ∙ ∙ ∙ ≥ γk and there is a basis of RB, g1, . . . , gk of orthonormal vectors w.r.t. the
aforementioned inner-product, such that PBgi = γigi (i ∈ [k]). By the Perron-Frobenius
Theorem γ1 > 0 and γ1 ≥ −γk.

By the Courant-Fischer variational characterization of eigenvalues we have

1

trel(B)
= 1 − γ1 = inf

{
〈(I − P )g, g〉π

〈g, g〉π
: g > 0, g = 0 on A, g non-constant

}

. (3.1.23)

Also observe that for all g > 0 such that g = 0 on A we have by the Cauchy-Schwarz
inequality that EπB

g2 > (EπB
g)2 (where for f ∈ RΩ we denote EπB

f :=
∑

b πB(b)f(b))
which rearranges to

Varπg = 〈g − Eπg, g − Eπg〉π > π(A)〈g, g〉π.

Thus by (3.1.23) 1−γ1 ≥ π(A) inf{〈(I−P )g, g〉π/Varπg : g > 0, g = 0 on A, g non-constant},
which in comparison with the variational characterization of trel (e.g. [36, Remark 13.13])

1/trel = inf{〈(I − P )g, g〉π/Varπg : g non-constant},

yields that 1 − γ1 ≥ π(A)/trel. This concludes the proof of part (i). We now prove part (ii).
By summing over all paths of length t which are contained in B we get that

PπB
[TA > t] =

∑

x,y∈B

πB(x)P t
B(x, y). (3.1.24)

By the spectral representation (cf. [36, Lemma 12.2] and Section 4 of Chapter 3 in [3]) for
any x, y ∈ B and t ∈ N we have that P t

B(x, y) =
∑k

i=1 πB(y)gi(x)gi(y)γt
i . So by (3.1.24)

PπB
[TA > t] =

∑

x,y∈B

πB(x)
k∑

i=1

πB(y)gi(x)gi(y)γt
i =

k∑

i=1

aiγ
t
i ,

where ai :=
(∑

x∈B πB(x)gi(x)
)2

. Plugging t = 0 shows that indeed
∑k

i=1 ai = 1, as desired.

Using the same argument for the continuous-time setup, it follows that

HπB
[TA > t] =

∑

x,y∈B

πB(x)
k∑

i=1

πB(y)gi(x)gi(y)e−(1−γi)t =
k∑

i=1

aie
−(1−γi)t ≤ e−tπ(A)/trel .
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Proof of Lemma 3.1.4. We first note that (3.1.9) follows easily from (3.1.8). For
the first inequality in (3.1.9) set t = t(A,w) := dtrelw/π(A)e and B := B(A,w, α) =
{y : Py [TA > t] ≥ α}. Then by (3.1.8)

απ(B) ≤ π(B)PπB
[TA > t] ≤ Pπ[TA > t] ≤ π(Ac) exp (−tπ(A)/trel) ≤ π(Ac)e−w.

For the first inequality in (3.1.9) recall that Eπ[TA] =
∑

t>0 Pπ[TA > t] and apply (3.1.8).
We now prove (3.1.8). Denote the connected components of Ac := Ω\A by {C1, . . . , Ck}.

Denote the complement of Ci by Cc
i . By (3.1.22) we have that

Pπ[TA > t] =
k∑

i=1

π(Ci)PπCi
[TA > t] =

k∑

i=1

π(Ci)PπCi
[TCc

i
> t] ≤

k∑

i=1

π(Ci)

(

1 −
π(Cc

i )

trel

)t

≤
k∑

i=1

π(Ci)

(

1 −
π(A)

trel

)t

= π(Ac) exp

(

−
tπ(A)

trel

)

.

3.1.3 Sharpness of Theorem 2.1.1

Now we give an example to show that in Proposition 3.1.6 (and hence in Theorem 2.1.1) the
value 1

2
cannot be replaced by any larger value.

Example 3.1.8. Let (Ωn, Pn, πn) be the nearest-neighbor weighted random walk from Figure

3.1. Then t
(n)
rel = Θ(t

(n)
mix), yet for every 1/2 < α < 1, the sequence exhibits hitα-cutoff.

Proof. Let Φn := minA⊂Ωn:0<πn(A)≤1/2 Φn(A) be the Cheeger constant of the n-th chain,

where Φn(A) :=
∑

a∈A,b∈Ac πn(a)Pn(a,b)

πn(A)
. Then by taking A to be either A1 or A2, by Cheeger

inequality (e.g. [36], Theorem 13.14), we have that t
(n)
rel ≥ 1

2Φn
≥ c1n

2 ≥ c2t
(n)
mix (it is easy

to show that by (2.0.1) and the fact that πn(Ai) = 1/2 − o(1) for i = 1, 2 we have that

t
(n)
mix ≤ Cn2). By (1.1.8), indeed t

(n)
rel = Θ(t

(n)
mix) and it follows that there is no cutoff.

Fix some 1/2 < α < 1. Let B ⊂ Ωn be such that πn(B) ≥ α. Denote the set of vertices
belonging to the path, but not to A1 by D. Then πn(D) = O(n−2) = o(1). Consequently,
πn(Ai ∩B) ≥ α− 1/2− o(1), for i = 1, 2. Using this observation, it is easy to verify that for
all x ∈ A1 ∪ A2 we have that

hitα,x(ε) ≤ cα log(1/ε), for any 0 < ε < 1, (3.1.25)

for some constant cα independent of n.
Let y be the endpoint of the path which does not lie in A1. Let z be the other endpoint

of the path. The hitting time of z under Py is concentrated around time 6 log n. Then by
(3.1.25), together with the Markov property (using the same reasoning as in the proof of
Lemma 5.1.1) for all sufficiently large n we have that for any 0 < ε ≤ 1/4

hit(n)
α,y(2ε) ≤ (6 + o(1)) log n + hit(n)

α,z(ε) = (6 + o(1)) log n,

hit(n)
α,y(1 − ε) ≥ (6 − o(1)) log n.

(3.1.26)

Similarly to the proof of Lemma 5.1.1, for any B ⊂ Ωn and any x ∈ D, we have that
Py[TB\D > t] ≥ Px[TB > t], for all t. Since πn(D) = o(1), this implies that for all sufficiently
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k = kn = dlog ne

1

1
2

1
2k−1

A1

A2

y

z

D
1
4

...

Figure 3.1: We consider a lazy weighted nearest-neighbor random walk on the above graph
consisting of two disjoint cliques A1 and A2 of size n connected by a single edge and a path
of length kn = dlog ne connected to A1. The edge weights of all edges incident to vertices in
A1 ∪ A2 is 1, while those belonging to the path are indicated in the figure. Inside the path,
the walk has a fixed bias towards the clique.

large n, for any 1/2 < α < 1, there exists some 1/2 < α′ < α (α′ depends on α but not on n),

such that for any x ∈ D we have that hit(n)
α,y(ε) ≥ hit

(n)
α′,x(ε), for all 0 < ε < 1. This, together

with (3.1.25) and the fact that the leftmost terms in both lines of (3.1.26) are up to negligible
terms independent of α and ε, implies that the sequence of chains exhibits hitα-cutoff for all
1/2 < α < 1.

Remark 3.1.9. One can modify the sequence from Example 3.1.8 into a sequence of lazy
simple nearest-neighbor random walks on a graph. Construct the n-th graph in the sequence
as follows. Start with a binary tree T of depth n. Denote its root by y, the set of its leaves
by A1 and D := T \ A1. Turn A1 into a clique by connecting every two leaves of T by an
edge. Take another disjoint complete graph of size |A1| = 2n and denote its vertices by A2.
Finally, connect A1 and A2 by a single edge. Since the number of edges which are incident
to D is at most 2n+2, while the total number of edges of the graph is greater than 22n, we
have that πn(D) = o(1). The analysis above can be extended to this example with minor
adaptations (although a rigorous analysis of this example is somewhat more tedious).
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Chapter 4

A characterization of L2 mixing and
hypercontractivity via hitting times and
maximal inequalities

In this Chapter we prove the results from Section 2.2. Hence as in Section 2.2 we concentrate
on the continuous-time setup (and write Xt and Px instead of Xc

t and Hx).

4.0.4 An overview of our approach

We start with an illustrating example: if Px[TAc > t] > 3π(A)/2 for some set A, then

[Ht(x,A) − π(A)]/π(A) ≥ [Px[TAc > t] − π(A)]/π(A) > 1/2.

Denote π conditioned on A by πA(a) := 1a∈Aπ(a)/π(A). Finally, note that

d∞,x(t) ≥ max
a∈A

ht(x, a) − 1 ≥
∑

πA(a)(ht(x, a) − 1) = [Ht(x,A) − π(A)]/π(A) > 1/2.

Hence τ∞,x ≥ min{t : Px[TAc > t] ≤ 3π(A)/2, for all A}.

This generalizes as follows. Let A ( Ω, x ∈ Ω, t > 0 and δ ∈ (0, 1). Let PA,δ be
the collection of all distributions μ on Ω, satisfying that μ(A) ≥ π(A) + δπ(Ac). Clearly, if
Px[TAc > t] ≥ π(A) + δπ(Ac), then Pt

x ∈ PA,δ. Note that

νA,δ := δπA + (1 − δ)π ∈ PA,δ.

Moreover, min{δ′ : νA,δ′ ∈ PA,δ} = δ. It is thus intuitive that for a convex distance function
between distributions, νA,δ is the closest distribution to π in PA,δ.

Proposition 4.0.10. Let (Ω, P, π) be some finite irreducible Markov chain. Let A ( Ω.
Denote νA,δ := δπA + (1 − δ)π. Then for all δ ∈ (0, 1),

min
μ∈PA,δ

‖μ − π‖2,π = ‖νA,δ − π‖2,π = δ
√

π(Ac)/π(A).

min
μ∈PA,δ

D(μ‖π) = D(νA,δ‖π) = u(π(A), δ),
(4.0.1)

where u(x, y) := [y + x(1 − y)] log(1 + y(1−x)
x

) + (1 − y)(1 − x) log(1 − y).
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Proof. The first equality in both lines can be verified using Lagrange multipliers. The second
equality in both lines is straightforward.

Proposition 4.0.10 motivates the definitions in (2.2.2). We argue that (4.0.1), implies
both (2.2.3)-(2.2.4) by making suitable substitutes for δ in (4.0.1). For (2.2.3) substitute

δ = 1
2

√
π(A)
π(Ac)

in the first line of (4.0.1). For every x ∈ Ω and t < ρx there is some A ∈ Con1/2

such that

Px[TAc > t] > π(A) +
1

2

√
π(A)π(Ac) = π(A) + δπ(Ac),

where the equality follows by our choice of δ. As mentioned above, this implies that Pt
x ∈

PA,δ′ for some δ′ > δ and so by (4.0.1) and the choice of δ, we have that ‖Pt
x − π‖2,π > 1/2.

For (2.2.4), it is not hard to verify that for some C ′, C > 0, we have that u(x, min( C′

| log x| , 1)) ≥

1/2 and x + C′

| log x|(1 − x) ≤ C
| log x| for all x ≤ 1/2. Substituting δ = C′

| log π(A)| in the second

line of (4.0.1) implies (2.2.4) in a similar manner to the above derivation of (2.2.3).

We now explain the idea behind the proof of the upper bound on τ2 from (2.2.3). Let
x ∈ Ω. Denote t := ρx + 8κ + 6trel log 2. By Theorem 2.2.2 it suffices to bound d2,x(t).

Step 1: Show that (Proposition 4.1.3)

∀B ∈ Con1/2, Px[TBc > t] ≤ π(B)3.

Step 2: Show that (Lemma 4.2.1) for As := {y : ht(x, y) ≥ (s + 1)}

∀M ≥ 1 ‖Pt
x − π‖2

2,π ≤ M2 +

∫ ∞

M

2sπ(As)ds.

=⇒ By Poincaré ineq. (1.1.2) it suffices that sπ(As) ≤ 2s−3/2 for s ≥ M (for some M).

Step 3: For Bs = {y : supk Hk(y, As) > s
2
π(As)} by step 1 and the Markov property,

sπ(As) ≤ Ht(x,As) = Px[TBc
s

> t,Xt ∈ As] + Px[TBc
s
≤ t,Xt ∈ As]

≤ Px[TBc
s

> t] + sup
y/∈Bs,k≥0

Hk(y, As) ≤ π(Bs)
3 +

s

2
π(As).

(4.0.2)

Step 4: If π(Bs) ≤ s−1/2, then we are done. Unfortunately, we do not know how to prove this
estimate. Hence we have to define the set Bs in a slightly different manner: Bs := {y :
supk Hk(y, As) > e

√
s| log π(As)|π(As)}. By Lemma 1.2.2 indeed π(Bs) ≤ s−1/2. Since

e
√

s| log π(As)|π(As) ≤ sπ(As)/2, unless π(As) ≤ Ce−
√

s, repeating the reasoning in
(4.0.2) with the new choice of Bs concludes the proof.

The proof of Theorem 2.2.2 is similar. The general scheme is as follows. Define a relevant
family of sets As. Define Bs to be of the following form {y : sup |gs(y)| > as} with appropriate
choices of gs and as ∈ R+ so that the desired inequality we wish to establish for As holds
with some room to spare given that TBc

s
≤ t (for an appropriate choice of t). Finally, control

the error term P[TBc
s

> t] (using the choice of t) by controlling π(Bs) using an appropriate
maximal inequality.
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4.1 Bounding escape probabilities using κ

Recall that PA and QA are the restriction to A of P and Q, resp.. Denote

HA
t (x, y) := e−t(I−PA)(x, y) = Px(Xt = y, TAc > t) and similarly SA

t := e−t(I−QA).

Recall that λ(A) is the smallest eigenvalue of I−QA. By the Perron-Frobenius Theorem there
exists a distribution μA on A, known as the quasi-stationary distribution of A, satisfying
that the escape time from A w.r.t. Q, starting from μA, has an Exponential (resp. Geometric
in discrete-time) distribution with mean trel(A) = 1/λ(A). Equivalently, for all t ≥ 0

μAQA = (1 − λ(A))μA and μASA
t = e−λ(A)tμA.

Throughout we use μA to denote the quasi-stationary distribution of A. Recall that we
denote π conditioned on A by πA.

Using the spectral decomposition of QA (e.g. [6, Lemma 3.8] or [3, (3.87)]) it follows that

∀A ( Ω, s ≥ 0, PπA
[TAc > s] ≤ PμA

[TAc > s] = μASA
t 1A = e−λ(A)sμA(A) = e−λ(A)s.

(4.1.1)

Proposition 4.1.1. For reversible chains

κ ≤ 3ρ. (4.1.2)

Proof: Let A ∈ Con1/2 be such that κ = trel(A)| log π(A)|. By (4.1.1) PμA
[TAc > κ/3] =

π(A)1/3. Since a1/3 ≥ a + 1
2

√
a(1 − a), for all 0 ≤ a ≤ 1/2, we get that

max
x∈A

Px[TAc > κ/3] ≥ PμA
[TAc > κ/3] = π(A)1/3 ≥ π(A) +

1

2

√
π(A)π(Ac).

Definition 4.1.2. ρ̄ := maxx ρ̄x and ρ̄Ent := maxx ρEnt,x, where

ρ̄x := min{t : Px[TAc > t] ≤ π(A)3 for all A ∈ Con1/2}.

ρ̄Ent,x := min{t : Px[TAc > t] ≤
1

16e2[log(e3/2/π(A))]3
for all A ∈ Con1/2}

(4.1.3)

Note that by the Markov property, maxx Px[TAc > mt] ≤ (maxy Py[TAc > t])m and so

ρ ≤ ρ̄ ≤ 8ρ and ρEnt ≤ ρ̄Ent ≤ C ′ρEnt, (4.1.4)

for some absolute constant C ′ > 0. The following proposition refines the inequality ρ̄ ≤ 8ρ.

Proposition 4.1.3. For every reversible chain,

∀x ∈ Ω, ρ̄x ≤ ρx + s, where s := 8κ + 2trel log 8. (4.1.5)
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Proof: Let x ∈ Ω and A ∈ Con1/2. By (2.2.6) 2trel ≥ maxB∈Con1/2
trel(B) and so by (4.1.1)

PπA
[TAc > s] ≤ e−λ(A)[trel(A)(8| log π(A)|+log 8)] = π(A)8/8.

Thus the set
B = B(A) := {y : Py[TAc > s] > π(A)3/2}

satisfies
π(B)/π(A) = πA(B) < PπA

[TAc > s]/(π(A)3/2) ≤ π(A)5/4,

and so by the definition of ρx, Px[TBc > ρx] ≤ π(B) + 1
2

√
π(B)π(Bc) ≤

√
π(B) ≤ 1

2
π(A)3

(where we used π(B) < 2−8). Finally, by the definition of B and the Markov property

Px[TAc > ρx + s] ≤ Px[TBc > ρx] + max
b/∈B

Pb[TAc > s] ≤
1

2
π(A)3 +

1

2
π(A)3 = π(A)3.

Lemma 4.1.4. For every finite irreducible Markov chain we have that

ρdiscete ≤ Cρ,

ρdiscete
Ent ≤ C ′ρEnt.

Proof. Let A ∈ Con1/2 and x ∈ Ω. To avoid ambiguity we denote the distributions of the
discrete and the continuous-time chains started at x by Px and Hx, resp.. Since for all M ∈ N
we have that Hx[TA > Mt] ≤ (maxy Hy[TA > t])M it suffices to show that for all t ∈ N we
have that Px[TA > 4t] ≤ 4Hx[TA > t]. Indeed, if Nt ∼ Pois(t) then

Hx[TA > t] =
∑

k

P[Nt = k]Px[TA > k] ≥ P[Nt ≤ 4t]Px[TA > 4t] ≥
1

4
Px[TA > 4t].

4.2 An upper bound on τ2 and τEnt - Proof of Theorem 2.2.1

4.2.1 A hitting times characterization of mixing in L2

In this section we prove the following theorem.

Theorem 4.2.1. For every finite irreducible reversible Markov chain (Ω, P, π) we have that

∀x, ρx ≤ τ2,x ≤ ρ̄x + 4etrel ≤ ρx + 8κ + (4e + 6 log 2)trel. (4.2.1)

The same holds when x is omitted from all of the terms above. Consequently,

ρ ≤ τ2 ≤ (8 + 12e/ log 2)ρ. (4.2.2)

Lemma 4.2.1. Let Ax,t(s) := {y : ht(x, y) ≥ s + 1}. For every finite irreducible reversible
chain, for all x ∈ Ω and ` ≥ 1

∀t ≥ 0, ‖Pt
x − π‖2

2,π ≤ `2 +

∫ ∞

`

2sπ(Ax,t(s))ds.
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Proof: Fix some x ∈ Ω, t ≥ 0 and ` ≥ 1. Let f(y) := |ht(x, y) − 1|. Then ‖Pt
x − π‖2

2,π =
‖f‖2

2 = Eπ[f 2]. Note that for all s > 1, {f ≥ s} = Ax,t(s). Observe that

Eπ[f 21f>`] =

∫ ∞

0

2sπ({f1f>` > s})ds ≤ π(f > `)`2 +

∫ ∞

`

2sπ(Ax,t(s))ds.

Finally, since f 2 ≤ f 21f>` + 1f≤``
2, we get that

Eπ[f 2] ≤ π(f ≤ `)`2 + Eπ[f 21f>`] ≤ `2 +

∫ ∞

`

2sπ(Ax,t(s))ds .

Proof of Theorem 4.2.1: Let x ∈ Ω. The inequality ρx ≤ τ2,x follows from (4.0.1). Set
t := ρ̄x. As above, denote As := {y : ht(x, y) ≥ s + 1}. By Fact 1.1.2 and Lemma 4.2.1 it
suffices to show that ∫ ∞

ee

2sπ(As)ds ≤ e8e/4 − e2e.

Let gs(y) := supk Hk(y, As)/π(As). By Lemma 1.2.2 ‖g‖1 ≤ e| log π(As)|. Let

Bs := {y : gs(y) > e
√

s + 1| log π(As)|} = {y : sup
k

Hk(y, As) ≥ e
√

s + 1π(As)| log π(As)|}.

Let s ≥ ee. By Markov inequality π(Bs) ≤ 1/
√

s + 1 ≤ 1
2

and so by the definition of ρ̄x

Px[TBc
s

> t,Xt ∈ As] ≤ Px[TBc
s

> t] ≤
1

(s + 1)3/2
.

Also, by the definition of Bs we clearly have that

Px[TBc
s
≤ t,Xt ∈ As] ≤ sup

b/∈Bs,k≥0

Hk(b, As) ≤ e
√

s + 1π(As)| log π(As)|.

Since by the definition of As

(s + 1)π(As) ≤ Ht(x,As) = Px[TBc
s

> t,Xt ∈ As] + Px[TBc
s
≤ t,Xt ∈ As],

we get that if Px[TBc
s

> t,Xt ∈ As] ≤ Px[TBc
s
≤ t,Xt ∈ As], then

(s + 1)π(As) ≤ 2e
√

s + 1π(As)| log π(As)|,

which simplifies as follows
2sπ(As) ≤ 2se−

√
s+1+2e.

while if Px[TBc
s

> t,Xt ∈ As] > Px[TBc
s
≤ t,Xt ∈ As], then we have that

2sπ(As) < 4Px[TBc
s
≤ t,Xt ∈ As] ≤

4

(s + 1)3/2
.

In conclusion, as desired,
∫ ∞

ee

2sπ(As)ds ≤
∫ ∞

ee

max(2se−
√

s+1+2e,
4

(s + 1)3/2
)ds ≤ e8e/4 − e2e.
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4.2.2 A hitting times characterization of mixing in relative entropy

Recall the definitions of ρEnt, ρ̄Ent, ρEnt,x and ρ̄Ent,x from (2.2.1) and (4.1.3). Recall that by
(4.1.4), ρEnt ≤ ρ̄Ent ≤ CρEnt. The following theorem refines (2.2.4) from Theorem 2.2.1.

Theorem 4.2.2. Let (Ω, P, π) be a finite irreducible reversible Markov chain. Then

∀x, ρx,Ent ≤ τEnt,x ≤ ρ̄x,Ent + 14trel. (4.2.3)

The same holds when x is omitted from all of the terms above. Consequently

ρEnt ≤ τEnt ≤ C1ρEnt. (4.2.4)

4.2.3 Proof of Theorem 4.2.2

Proof of Theorem 4.2.2: Let x ∈ Ω. The inequality ρx,Ent ≤ τEnt,x follows from (4.0.1). The
inequality τEnt ≤ C1ρEnt follows from (4.2.3) and (4.1.4), in conjunction with the fact that
(under reversibility) ctrel ≤ ρEnt for some absolute constant c > 0 (c.f. [6, (3.19)] for the fact
that there exist some A ∈ Con1/2 and a ∈ A so that Pa[TAc > εtrel] ≥ e−ε ≥ 1 − ε, for all
ε ≥ 0). We now prove that τEnt,x ≤ ρ̄x,Ent + 14trel. Denote r := ρ̄x,Ent, r′ := 14trel. Let

D := {y : hr(x, y) > e10}.

Denote δ := Hr(x,D) − e10π(D),

μ(y) := δ−11y∈D[Hr(x, y) − e10π(y)],

ν(y) := (1 − δ)−1[1y/∈DHr(x, y) + 1y∈De10π(y)].

Denote μ` := μH` and ν` := νH`. Then Pr+r′

x = δμr′ + (1 − δ)νr′ and so by the triangle
inequality (which holds for D, by Jensen’s inequality applied to each y separately) and (1.1.7)

D(Pr+r′

x ||π) ≤ δD(μr′ ||π)+(1−δ)D(νr′ ||π) ≤ δD(μr′ ||π)+(1−δ) log(1+‖νr′−π‖2
2,π). (4.2.5)

By (1.1.9)

‖νr′ − π‖2,π ≤ ‖ν − π‖2,πe−14 ≤ ‖ν − π‖∞,πe−14 ≤ (1 − δ)−1e−4.

Using
√

1 + a ≤ 1 +
√

a and log(1 + a) ≤ a we get that

(1 − δ) log(1 + ‖νr′ − π‖2
2,π) ≤ 2(1 − δ) log (1 + ‖νr′ − π‖2,π) ≤ 2e−4.

By (4.2.5) to conclude the proof it is left to show that δD(μr′ ||π) ≤ 1/2 − 2e−4. Denote

ay := 1y∈D[Hr(x, y) − e10π(y)], g(y) = ay/π(y).

δD(μr′ ||π) =
∑

ay log(g(y)/δ) = δ| log δ| + Eπ[g log g].

Since δ| log δ| ≤ 1/e, for all δ ∈ [0, 1], in order to show that δD(μr′ ||π) ≤ 1/2 − 2e−4

it suffices to show that Eπ[g log g] ≤ 1/10 < 1/2 − 1/e − 2e−4. (4.2.6)
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Similarly to the proof of Theorem 4.2.1, let

As = {y : g(y) ≥ s} and Bs := {y : sup
`

H`(y, As) >
√

s + e10π(As)| log π(As)|}.

Then

Eπ[g log g] ≤
∫ ∞

0

π({y : g(y) log g(y) > s})ds =

∫ ∞

1

(1 + log s)π(As)ds. (4.2.7)

Note that (e10 + s)π(y) ≤ Hr(x, y) for every y ∈ As. Hence as in the proof of Theorem 4.2.1

(e10 + s)π(As) ≤ Hr(x,As) ≤ Px[TBc
s

> r] + Ex[Xr ∈ As | TBc
s
≤ t]. (4.2.8)

By the definition of Bs and the Markov property,

Ex[Xr ∈ As | TBc
s
≤ r] ≤ sup

y/∈Bs,`≥0

H`(y, As) ≤
√

s + e10π(As)| log π(As)|. (4.2.9)

By Lemma 1.2.2 π(Bs) ≤ e/
√

s + e10 ≤ 1/2 and hence by the definition of r,

Px[TBc
s

> r] ≤
1

16e2(1
2
(log(s + e10) + 1))3

=
1

2e2(1 + log(s + e10))3
.

As in the proof of Theorem 4.2.1, it follows that for all s ≥ 1, (s+e10)π(As) ≤ 2
2e2(1+log(s+e10))3

,

as otherwise by (4.2.8) (s + e10)π(As) < 2Ex[Xr ∈ As | TBc
s
≤ t], which by (4.2.9) implies

that

π(As) ≤ exp(−
1

2

√
s + e10) ≤ exp(−

√
s/8 +

√
e10/8) < e−50−

√
s/8 <

(s + e10)−1

e2(1 + log(s + e10))3
,

a contradiction. Thus for all s ≥ 1,

(1 + log s)π(As) ≤
1

e2(s + e10)(1 + log(s + e10))2
,

which yields that
∫∞

1
(1 + log s)π(As)ds ≤

∫∞
1+e10

e−2ds
s(1+log s)2

= e−2

1+log(1+e10)
< e−2/11. This

concludes the proof using (4.2.6) and (4.2.7).

4.2.4 The discrete-time and averaged chain analogs

The proof of the lower bounds in Theorem 2.2.3 (that is, the first inequality in each of the
four equations) is identical to that of Theorem 2.2.1 (namely, these are “naive” bounds that
can be proven using the same ideas as in § 4.0.4). The proofs of the upper bounds require
the following minor adaptations:

(i) In the definition of the sets As we need to replace ht with kt and at, resp..

(ii) In the applications of Starr’s inequality (in the proof of Lemma 1.2.2) one has to work
with the discrete-time version, and thus pick up a multiplicative factor of 2 (which is
a non-issue).
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(iii) One has to replace the Poincaré inequality with the discrete and averaged analogs: For
all μ ∈ P(Ω), M ≥ 1 and k ∈ Z+ we have that

‖μP k − π‖2,π ≤ ‖μ − π‖2,πe−k/tabsolute
rel , thus τdiscete

2 ≤ τdiscete
2 (M/2) + dtabsolute

rel log Me.

‖μAk−π‖2,π ≤ ‖μ−π‖2,π max(|λ2|
k,

1

2
|λ|Ω||

k(1+λ|Ω|)) ≤ ‖μ−π‖2,π max(e−k/trel ,
1

2ek
), thus

τ ave
2 ≤ τdiscete

2 (M/2) + dmax(trel log M,M)e.

The second inequality in the second line follows from elementary calculus. We now
explain why the first inequality in the second row holds. Let fμ = μ

π
. By reversibility

‖μAk − π‖2,π = ‖Akfμ − 1‖2 = ‖Ak(fμ − Eπ[fμ])‖2 = 1
2
‖P k(P + I)(fμ − Eπ[fμ])‖2.

Consider an orthonormal basis of RΩ consisting of eigenvectors f1, . . . , f|Ω| such that
Pfi = λifi for all i (where f1 = 1 and λ1 = 1). Denote bj := Eπ[fμfj ]. Then,

‖μAk − π‖2
2,π =

1

4

|Ω|∑

i=2

b2
jλ

2k
i (1 + λi)

2 ≤ max(λ2k
2 ,

1

4
λ2k
|Ω|(1 + λ|Ω|)

2)

|Ω|∑

j=2

bj .

Substituting ‖μ−π‖2
2,π = ‖fμ−Eπ[fμ]‖2

2 =
∑|Ω|

j=2 b2
j in the r.h.s. concludes the proof.

4.3 A characterization of the Log-Sobolev constant - Proof of The-
orem 2.2.2

The following result ([16, Theorem 3.10]) will allow us to bound tLS from above.

Fact 4.3.1. Let (Ω, P, π) be a finite reversible chain. Fix 2 < q < ∞. Assume that rq and
Mq satisfy that ‖Hrq‖2→q ≤ Mq. Then

tLS ≤
2q

q − 2
rq + 2trel(1 +

q

q − 2
log Mq). (4.3.1)

Fix some 0 < ε < 1/2 and A ∈ Con2−1/ε . Assume that Pπ[TAc > t] ≥ 2π(A)1+ε. Recall
that πA denotes π conditioned on A. Then PπA

[TAc > t] ≥ 2π(A)ε and so

B = {a ∈ A : Pa[TAc > t] ≥ π(A)ε}

satisfies πA(B) ≥ π(A)ε (i.e. π(B) ≥ π(A)1+ε). Consequently, for q > 2(1+ε)
1−2ε

‖Ht1A‖q ≥ [
∑

b∈B

π(b)Ht(b, A)q]1/q ≥ π(B)1/qπ(A)ε ≥ π(A)ε+(1+ε)/q >
√

π(A) = ‖1A‖2.

Thus a natural hitting time version of hypercontractivity is

tht := min{t : Pπ[TAc > t] ≤ π(A)5/4 for all A ∈ Con1/2}.

Question. Is there an absolute constant C such that for every finite irreducible reversible
Markov chain tht/C ≤ tLS ≤ Ctht.
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Trivially, tht = min{t : PπA
[TAc > t] ≤ π(A)1/4 for all A ∈ Con1/2}. Note that if we

replace πA by the quasi-stationary distribution of A, μA, then by (4.1.1) we get precisely κ/4.
This explains why also κ can be interpreted as a hitting time version of hypercontractivity.
We note that the above question resembles Open problem 4.38 in [3], which asks whether
for reversible chains trel ≤ C maxA∈Con1/2

EπA
[TAc ], where indeed [3, Lemma 4.39] trel ≤

maxA∈Con1/2
EμA

[TAc ] (the formulation in [3] is slightly different, but it is equivalent to our
formulation).

4.3.1 Proof of Theorem 2.2.2

Proof of Theorem 2.2.2: As mentioned in the introduction, it is known that κ ≤ tLS. Denote
r := 1

2
κ. Note that P and Q = (P + P ∗)/2 have the same trel and tLS. Thus we may work

with St = e−t(I−Q) instead of Ht. By (4.3.1) it suffices to show that ‖Sr‖2→4 ≤ 7. Fix some
f ∈ RΩ such that ‖f‖2 = 1. Our goal is to show that ‖Srf‖4 ≤ 7. By considering |f | instead
of f we may assume that f ≥ 0. Let

As := {x : Srf(x) ≥ s}.

Then ‖Srf‖4
4 =

∫∞
0

4s3π(As)ds ≤ 64 +
∫∞

6
4s3π(As)ds. Hence to conclude the proof

it suffices to show that

∫ ∞

6

4s3π(As)ds ≤ 16 ≤ 74 − 64. (4.3.2)

Recall that Stf(x) = Ex[f(Yt)] and that for all A ⊂ Ω, SA
t f(a) = Ea[f(Yt)1TAc>t]. Let

Bs := {x : sup
t

Stf(x) > s/2} = {f ∗ > s/2}, where f ∗(x) = sup
t

Stf(x)

Ds := {x ∈ Bs : Ex[f(Yr)1TBc
s
>r] ≥ s/2}, Fs := {x ∈ Bs : Ex[f

2(Yr)1TBc
s
>r] ≥ s2/4}.

By the Markov property (first inclusion), As ⊂ Ds ⊂ Fs (the second inclusion follows by the
Cauchy-Schwarz inequality). Thus π(As) ≤ π(Fs). Hence, by (4.3.2) in order to conclude
the proof it suffices to show that

∫∞
6

4s3π(Fs)ds ≤ 16. By Starr’s maximal inequality
(1.2.1) we know that

∫∞
0

4sπ(Bs)ds = ‖f ∗‖2
2 ≤ 4‖f‖2

2 = 4. Thus in order to show that∫∞
6

4s3π(Fs)ds ≤ 16, and conclude the proof, it suffices to show that for all s ≥ 6 we have
that π(Fs) ≤ 4s−2π(Bs).

Fix some s ≥ 6. Note that since ‖f ∗‖2
2 ≤ 4, by Markov inequality we have that π(Bs) ≤

16/s2 < 1/2. Using the spectral decomposition of the restriction of f to Bs (c.f. [6, Lemma
3.8]) and the choice of r

EπBs
[f 2(Yr)1TBc

s
>r] ≤ EπBs

[f 2(Y0)]e
−2λ(Bs)r ≤ (‖f‖2

2/π(Bs))e
−2λ(Bs)r = (1/π(Bs))×π(Bs) = 1.

Thus by the def. of Fs,
1
4
s2πBs(Fs) ≤

∑
y∈Fs

πBs(y)Ey[f
2(Yr)1TBc

s
>r] ≤ EπBs

[f 2(Yr)1TBc
s
>r] ≤ 1

and so indeed π(Fs) ≤ 4s−2π(Bs).
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4.4 An application to robustness of mixing

Proof of Corollary 2.3.1 It is not hard to verify that Theorem 2.2.1 is still valid in the
above setup (this can be formally deduced from Theorem 2.2.1 via the representation of the
generator appearing in the paragraph following Corollary 2.3.1). Hence it suffices to verify
that (2.3.1) is valid if we replace τ2 and τ̃2 by ρ and ρ̃, resp. (where ρ̃ is the parameter ρ
of the chain (X̃t)). A straightforward coupling of the chains in which they follow the same
trajectory (i.e. they make the same sequence of jumps, possibly at different times) shows
that for all x and A the hitting time of A starting from x for the two chains, TA and T̃A,
resp., satisfy that T̃A/M 6 stTA 6 stMT̃A, where 6 st denotes stochastic domination. Since
for all A we have that π̃(A)/M ≤ π(A) ≤ Mπ̃(A), by the submultiplicity property

∀t ≥ 0,m ∈ Z+ and A ⊂ Ω, max
x

Px[TA > tm] ≤ (max
x

Px[TA > t])m,

this implies that ρ̃/(C1M log M) ≤ ρ ≤ (C1M log M)ρ̃, as desired.

43



Chapter 5

Trees

In this chapter we prove the results from Section 2.3. The results in this chapter are valid
both in the discrete-time lazy and in the continuous-time setup.

5.1 Total variation cutoff for trees - Proof of Theorem 2.3.1

We start with a few definitions. Given a network (V,E, (ce)e∈E), where each edge {u, v} ∈ E
is endowed with a conductance (weight) cu,v = cv,u > 0, a random walk on (V,E, (ce)e∈E)
repeatedly does the following: when the current state is v ∈ V , the random walk will move
to vertex u (such that {u, v} ∈ E) with probability cu,v/cv, where cv :=

∑
w:{v,w}∈E cv,w. This

is a reversible Markov chain whose stationary distribution is given by π(x) := cx/cV , where
cV :=

∑
v∈V cv = 2

∑
e∈E ce. Conversely, every reversible Markov chain can be presented in

this manner by setting cx,y = π(x)P (x, y) (e.g. [36, Section 9.1]).

Let T := (V,E) be a finite tree. By Kolmogorov’s cycle condition every Markov chain
on T (i.e. P (x, y) > 0 iff {x, y} ∈ E or x = y) is reversible. Hence we may assume that
T is equipped with edge weights (ce)e∈E. Following [48], we call a vertex v ∈ V a central-
vertex if each connected component of T \ {v} has stationary probability at most 1/2. A
central-vertex always exists (and there may be at most two central-vertices). Throughout,
we fix a central-vertex o and call it the root of the tree. The root induces a partial order
≺ on V , as follows. For every u ∈ V , we denote the shortest path between u and o by
`(u) = (u0 = u, u1, . . . , uk = o). We say that u′ ≺ u if u′ ∈ `(u) (i.e. u is a descendant of u′

or u = u′). The induced tree at u is Tu := {v : u ∈ `(v)} = {u}∪{v : v is a descendant of u}.
Fix some leaf x and δ ∈ (0, 1/2). Let Wx,δ be the collection of all y ≺ x such that π(Ty) ≥ δ
and let

xδ := argmin{π(Ty) : y ∈ Wx,δ}

(i.e. d(x, xδ) = miny∈Wx,δ
d(x, y), where d denotes the graph distance w.r.t. T ). Recall that

α(A) = λ(A)/| log π(A)| and that by Theorem 2.2.2, α := supA∈Con1/2
α(A) ≥ cLS. Let

Dβ = Dβ,x be the connected component of x in T \ {xβ}. For a leaf x we denote

αx(δ) := α(Dδ) and αx := max
δ∈(0,1/4]

αx(δ) ≥ α.

Recall that for any ∅ 6= A ⊂ V , we write πA for the distribution of π conditioned on A,
πA(∙) := π(∙)1∙∈A

π(A)
.
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A key observation is that starting from the central vertex o, the chain mixes rapidly (this
follows implicitly from the following analysis). Let To denote the hitting time of the central
vertex. We define the mixing parameter τo(ε) for ε ∈ (0, 1) by

τo(ε) := min{t : Px[To > t] 6 ε ∀x ∈ Ω}.

We show that up to terms of the order of the relaxation-time (which are negligible under
the product condition) τo(∙) approximates hit1/2(∙) and then using Proposition 2.1.1, the
question of cutoff is reduced to showing concentration for the hitting time of the central
vertex. Below we make this precise.

Lemma 5.1.1. Denote sδ := d4trel| log(4δ/9)|e. Then

τo(ε) 6 hit1/2(ε) 6 τo(ε − δ) + sδ, for every 0 < δ < ε < 1. (5.1.1)

Proof. First observe that by the definition of central vertex, for any x ∈ V , x 6= o there
exists a set A with π(A) > 1

2
such that the chain starting at x cannot hit A without first

hitting o. Indeed, we can take A to be the union of {o} and all components of T \ {o} not
containing x. The first inequality in (5.1.1) follows trivially from this.

To establish the other inequality, fix A ⊆ V with π(A) > 1
2
, x ∈ V and some 0 < δ <

ε < 1. It follows using Markov property and the definition of τo(ε − δ) that

Px[TA > τo(ε − δ) + sδ] 6 Px[To > τo(ε − δ)] + Po[TA > sδ] ≤ ε − δ + Po[TA > sδ].

Hence it suffices to show that Po[TA > sδ] ≤ δ. If o ∈ A then Po[TA > sδ] = 0, so without
loss of generality assume o /∈ A. It is easy to see that we can partition T \{o} = T1∪T2 such
that both T1 and T2 are unions of components of T \{o} and π(T1), π(T2) 6 2/3. For i = 1, 2,
let Ai := A ∩ Ti and without loss of generality let us assume π(A1) > 1

4
. Let B = T2 ∪ {o}.

Clearly the chain started at any x ∈ B must hit o before hitting A1. Hence

Po[TA > sδ] 6 Po[TA1 > sδ] 6 PπB
[TA1 > sδ] 6 π(B)−1Pπ[TA1 > sδ] (5.1.2)

Using π(A1) > 1
4
, π(B) > 1

3
it follows from (3.1.8) that π(B)−1Pπ[TA1 > sδ] ≤ δ.

In light of Lemma 5.1.1 and Proposition 2.1.5, in order to conclude the proof of Theorem
2.3.1 it suffices to show that τo(ε) − τo(1 − ε) ≤ C

√
treltmix log(1/ε) + Ctrel| log ε|, for all

ε ∈ (0, 1/4]. This follows from Proposition 5.1.5 below.

Let x, y ∈ V be such that y ≺ x. Let (v0 = x, v1, . . . , vk = y) be the path from x to y.
Define ξi := Tvi

−Tvi−1
. Then by the tree structure, under Px, we have that Ty =

∑k
i=1 ξi and

that ξ1, . . . , ξk are independent. It is thus beneficial to investigate the marginal distributions
of the ξ’s, which we now do.

For any set A ⊂ Ω, we define ψAc ∈ P(Ac) as ψAc(y) := PπA
[X1 = y | X1 ∈ Ac]. For

A ⊂ Ω, we denote T+
A := inf{t ≥ 1 : Xt ∈ A} and Φ(A) :=

∑
a∈A,b∈Ac π(a)P (a,b)

π(A)
= PπA

[X1 /∈ A].
Note that

π(A)Φ(A) =
∑

a∈A,b∈Ac

π(a)P (a, b) =
∑

a∈A,b∈Ac

π(b)P (b, a) = π(Ac)Φ(Ac). (5.1.3)

This is true even without reversibility, since the second term (resp. third term) is the asymp-
totic frequency of transitions from A to Ac (resp. from Ac to A).
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Proposition 5.1.2. Let (Ω, P, π) be a finite irreducible Markov chain. Let A  Ω be non-
empty. Denote the complement of A by B. To avoid ambiguity, let T ct

A := inf{t : Xc
t ∈ A}.

PπB
[TA = t]/Φ(B) = PψB

[TA ≥ t], for all t ≥ 1.

d

dt
HπB

[T ct
A ≤ t]/Φ(B) = HψB

[T ct
A > t], for all t ≥ 0.

(5.1.4)

Consequently, EψB
[TA] = 1

Φ(B)
= EψB

[T ct
A ], and

EψB
[T 2

A] = EψB
[TA] (2EπB

[TA] − 1) ≤ 2EψB
[TA]trel(B) ≤

2EψB
[TA]trel

π(A)
.

EψB
[(T ct

A )2] = 2EψB
[T ct

A ]EπB
[T ct

A ] ≤ 2EψB
[T ct

A ]trel(B) ≤
2EψB

[T ct
A ]trel

π(A)
.

(5.1.5)

Moreover, assuming reversibility and in the discrete-time case also laziness, the law of TA

(resp. T ct
A ) under PψB

(resp. HψB
) is a mixture of Geometric (resp. Exponential) distributions.

Proof. We first note that by Wald’s equation we have that EψB
[TA] = EψB

[T ct
A ] and EπB

[TA] =
EπB

[T ct
A ]. The inequalities in (5.1.5) follow from the estimate EπB

[TA] ≤ trel(B) ≤ trel/π(A).
Summing (5.1.12) over t yields EψB

[TA] = 1
Φ(B)

. Multiplying both sides of the first row

of (5.1.12) by 2t − 1 and summing over t yields the equality in the first row of (5.1.5). For
the equality in the second row, multiply both sides of the second row of (5.1.12) by 2 t and
integrate from 0 to ∞.

We now prove (5.1.12). Let t ≥ 1. As {TA = t} = {X0 /∈ A, . . . , Xt−1 /∈ A,Xt ∈
A}, {T+

A = t + 1} = {X1 /∈ A, . . . , Xt /∈ A,Xt+1 ∈ A} we have by stationarity that Pπ[TA =
t] = Pπ[T+

A = t + 1]. Thus

π(B)PπB
[TA = t] = Pπ[TA = t] = Pπ[T+

A = t + 1] = Pπ[X1 /∈ A, . . . , Xt /∈ A,Xt+1 ∈ A]

= Pπ[X1 /∈ A, . . . , Xt /∈ A] − Pπ[X1 /∈ A, . . . , Xt /∈ A,Xt+1 /∈ A]

= Pπ[X1 /∈ A, . . . , Xt /∈ A] − Pπ[X0 /∈ A, . . . , Xt /∈ A] = Pπ[X0 ∈ A,X1 /∈ A, . . . , Xt /∈ A]

= π(A)Φ(A)PψB
[X0 /∈ A, . . . , Xt−1 /∈ A] = π(A)Φ(A)PψB

[TA ≥ t],

which by (5.1.3) implies the first row in (5.1.12). The continuous time follows from the
discrete-time case by a standard argument as follows:

d

dt
HπB

[T ct
A ≤ t] =

∑

k≥0

P[Pois(t) = k]PπB
[TA = k + 1]

= Φ(B)
∑

k≥0

P[Pois(t) = k]PψB
[TA ≥ k + 1] = Φ(B)HψB

[T ct
A > t],

where we used HπB
[T ct

A ≤ t] =
∑

k≥0 P[Pois(t) = k + 1]PπB
[TA = k + 1], d

dt
P[Pois(t) =

k + 1] = P[Pois(t) = k]. Finally, the claim about the law of TA under PψB
and HψB

follows
from (5.1.12) together with the fact that the claim is true under PπB

and HπB
(see § 3.1.2).

Corollary 5.1.3. If y is the parent of x then the law of Ty under Px (resp. Hx) is a mixture of
Geometric (resp. Exponential) distributions whose maximal mean is at most trel(Tx) ≤ 2trel.
Moreover, Ex[Ty] = 1

Φ(Tx)
and Ex[T

2
y ] ≤ 2trel(Tx)Ex[Ty] ≤ 4trel Ex[Ty] (both holding both in

discrete and continuous time).
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Lemma 5.1.4. If (V, P, π) is a chain on a (weighted) tree (T, o) then (both in discrete-time
and in continuous-time)

Ex[To] ≤ 4tmix, for all x ∈ V. (5.1.6)

Proof. Fix some x ∈ V . Let Cx be the component of T\{o} containing x. Denote B := V \Cx.
Consider τB := inf{k ∈ N : Xktmix

∈ B}. Clearly, To ≤ τBtmix. Since π(B) > 1/2, by the
Markov property and the definition of the total variation distance, the distribution of τB is
stochastically dominated by the Geometric distribution with parameter 1/2 − 1/4 = 1/4.
Hence Ex[To] = Ex[TB] ≤ tmixEx[τB] ≤ 4tmix.

Proposition 5.1.5. Let x, y ∈ V be such that y ≺ x. Let (v0 = x, v1, . . . , vk = y) be the
path from x to y. Define ξi := Tvi

− Tvi−1
, so that Ty =

∑k
i=1 ξi (starting from x). Denote

the connected component of x in T \ {y} by Ax,y. Denote σx,y :=
√∑k

i=1 Ex[ξ2
i ]. Then

Varx[Ty] ≤ σ2
x,y ≤ 2trel(Ax,y)Ex[Ty] ≤ 8trel(Ax,y)tmix ≤ 16treltmix. (5.1.7)

For all t ≥ 0 we have that

Px[Ty < Ex[Ty] − t] ≤ exp(−
t2

2σ2
x,y

) ≤ exp(−
t2

32treltmix

) (5.1.8)

Moreover, if y = xδ for some δ ≤ 1/2 (one can always find such a δ) then

∀t ∈ [0, 2Ex[Txδ
]], Px[Txδ

≥ Ex[Txδ
] + t] ≤ exp(−

t2λ(Dδ)

8Ex[Txδ
]
) ≤ exp(−

t2

64tmixtrel
). (5.1.9)

∀t ≥ 2Ex[Txδ
], Px[Txδ

≥ Ex[Txδ
] + t] ≤ exp[−λ(Dδ)t/4]. (5.1.10)

Proof. We first note that (5.1.7) is an immediate consequence of Corollary 5.1.3 and (5.1.6),
using independence. The first inequality of (5.1.8) holds by [42] (it only uses the fact that
the ξ’s are non-negative). The second inequality in (5.1.8) follows from (5.1.7). We now
prove (5.1.9)-(5.1.10). We focus on the continuous-time setup.

Claim 5.1.6. Fix some leaf x and δ ∈ (0, 1/4]. Let Dδ be the connected component of x in
T \ {xδ}. Let y ∈ Dδ and z be its parent. Then for all β ≤ λ(Dδ)/2 we have that

Ey[e
βTz ] ≤ 1 + Ey[Tz]β(1 + 2β/λ(Dδ)) ≤ eEy [Tz ]β(1+2β/λ(Dδ)). (5.1.11)

Proof of (5.1.11): Let Φ(Ty) := π(y)P (y,z)
π(Ty)

. Let g be the density functions of Tz started

from πTy , resp.. By Proposition 5.1.2

∀t ≥ 0, g(t) = Φ(Ty)Py[Tz > t], and hence Φ(Ty)Ey[Tz] = 1. (5.1.12)

Recall that by (4.1.1) the law of Tz starting from πTy is stochastically dominated by the
Exponential distribution with parameter λ(Ty) ≥ λ(Dδ) and so for every non-decreasing
function k we have that

∫∞
0

k(t)g(t)dt ≤
∫∞

0
k(t)λ(Dδ)e

−λ(Dδ)tdt. Finally by (5.1.12)

Ey[e
βTz ] − 1 =

∫
(eβt − 1)f(t)dt =

∫
βeβtPy[Tz > t]dt = Ey[Tz]

∫
βeβtg(t)dt
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= βEy[Tz]

∫
eβtλ(Dδ)e

−λ(Dδ)tdt =
βEy[Tz]λ(Dδ)

λ(Dδ) − β
≤ Ey[Tz]β(1 + 2β/λ(Dδ)),

where we used β ≤ λ(Dδ)/2 to deduce that λ(Dδ)
λ(Dδ)−β

= 1 + β
λ(Dδ)−β

≤ 1 + 2β
λ(Dδ)

.

We now return to conclude the proofs of (5.1.9)-(5.1.10). Let t ∈ [0, 2Ex[Txδ
]]. Set

β = tλ(Dδ)
4Ex[Txδ

]
(note that β ≤ λ(Dδ)/2). Let the path from x to xδ be (y1 = x, . . . , yr = xδ).

Observe that starting from x we have that Txδ
=
∑r

i=2 Tyi
− Tyi−1

. By the Markov property
the terms in the sum are independent and Tyi

− Tyi−1
is distributed as Tyi

started from yi−1.
Denote μi := Eyi−1

[Tyi
] and μ :=

∑r
i=2 μi = Ex[Txδ

]. By (5.1.11), independence and our
choice of β

Px[Txδ
≥ μ + t] ≤ e−β(μ+t)

r∏

i=2

Eyi−1
[eβTyi ] ≤ e−β(μ+t)

r∏

i=2

eμiβ(1+2β/λ(Dδ)) = e−t2λ(Dδ)/(8μ).

The proof of (5.1.10) is analogous, now with the choice β = λ(Dδ)/2.

5.2 Robustness of the L∞ mixing time for trees - Proof of Theorem
2.3.3

Let us first describe the skeleton of the argument of the proof of Theorem 2.3.3.

Step 1: Show that it suffices to consider leafs as initial states. More precisely

Lemma 5.2.1. There exists an absolute constant C > 0 so that if y ≺ x then

τ2,y ≤ τ2,x + C(tLS +
√

trelτ1). (5.2.1)

Step 2: Show that for a leaf x we can replace (in (4.1.4)) ρ̄x (defined in (4.1.3)) with

bx := sup
δ∈(0,1/4]

bx(δ) where bx(δ) := min{t : Px[Txδ
> t] ≤ δ3/4}.

Proposition 5.2.2. Let x be a leaf. Let 0 < δ ≤ 1/4 and A ∈ Conδ. Denote
Ā = Ac \ Dδ, where Dβ = Dβ,x is the connected component of x in T \ {xβ}. Then

Px[TAc > bx + 3κ + 10trel] ≤ Px[Txδ
> bx] + Pxδ

[TĀ > 3κ + 10trel] < δ3/2. (5.2.2)

Step 3: For a leaf x and δ ∈ (0, 1/4], derive a large deviation estimate for Txδ
:

Proposition 5.2.3. There exists some C > 0 so that for a leaf x and δ ∈ (0, 1/4],

bx(δ) ≤ Ex[Txδ
] + max

(
32

αx(δ)
, 8
√
Ex[Txδ

]/αx(δ)

)

≤ τ1 + C max(κ,
√

κτ1). (5.2.3)

The second inequality follows from the first using the fact that Ex[Txδ
] ≤ τ1 +C5

√
τ1trel

[6, Corollary 5.5].
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Step 4: Similar reasoning as in the proof of (4.1.5) yields that (c.f. [6, Corollary 3.4])

ρ̄x ≤ min{t : Px[TAc > t] ≤ π(A)3/2 for all A ∈ Con1/4} + 10trel

By (5.2.1)-(5.2.3) in conjunction with (4.2.1) and (2.2.7) we have that

τ2 − C1

√
trelτ1 ≤ max

x:x a leaf
τ2,x + C1tLS ≤ max

x:x a leaf
ρ̄x + C2tLS

≤ max
x:x a leaf

bx + C3tLS ≤ τ1 + C4 max(tLS,
√

tLSτ1).

To conclude the proof of Theorem 2.3.3 we now prove Lemma 5.2.1 and Propositions
5.2.2-5.2.3.

Proof of Lemma 5.2.1: Let y ≺ x. Let s := τ2,y − MtLS for some constant M > 0 to
be determined later. We may assume s > 16

√
trelτ1 as otherwise there is nothing to prove.

Form the proofs of (4.1.5) and (4.2.1) it follows that we can choose M so that for some
A ∈ Con1/100

Py[TAc > s] > 2π(A) +
√

π(A)π(Ac). (5.2.4)

We leave this as an exercise (the main issue is moving from an estimate for some B ∈ Con1/2

to one for some A ∈ Con1/100. This can be done using similar reasoning as in the proof of
(4.1.5), c.f. [6, Corollary 3.4]).

Denote the connected component of x in T \ {y} by A. By (5.1.7) Varx[Ty] ≤ 16trelτ1.
By Chebyshev inequality

Px[|Ty − Ex[Ty]| > 8
√

trelτ1] ≤ 1/4. (5.2.5)

Let s′ := max(Ex[Ty] − 8
√

trelτ1, 0). By (5.2.4), (5.2.5), s > 16
√

trelτ1 and the Markov
property

Px[Xs+s′ ∈ A] ≥ Px[|Ty − Ex[Ty]| ≤ 8
√

trelτ1] × Py[TAc > s] > π(A) +
1

2

√
π(A)π(Ac).

The proof is concluded using (4.0.1) (in the notation from (4.0.1), P s+s′

x ∈ PA,δ for some

δ > 1
2

√
π(A)/π(Ac) and thus ‖Ps+s′

x − π‖2,π ≥ δ
√

π(Ac)/π(A) > 1/2).

Proof of Proposition 5.2.2: Fix some leaf x, 0 < δ ≤ 1/4 and A ∈ Conδ. Recall that
Ā = Ac \ Dδ. Using the tree structure it is easy to see that for all s, s′ ≥ 0

Px[TAc > s+s′] ≤ Px[TĀ > s+s′] ≤ Px[Txδ
> s]+Pxδ

[TĀ > s′] ≤ Px[Txδ
> s]+PπTxδ

[TĀ > s′]

and so by (4.1.1), the def. of bx and the fact that πV \Ā(Txδ
) > 1/2 (as π(V \ Ā) < 2δ <

2π(Txδ
))

Px[TAc > bx + 3κ + 10trel] ≤ Px[Txδ
> bx] + PπTxδ

[TĀ > 3κ + 10trel]

< Px[Txδ
> bx] + 2PπV \Ā

[TĀ > 3κ + 10trel] ≤ δ3/4 + δ3/4 = δ3/2.

Proof of Proposition 5.2.3: By [6, Corollary 5.5] we have that Ex[Txδ
] ≤ τ1 +C5

√
τ1trel. If

t1 := 8
√
Ex[Txδ

]/αx(δ) ≤ 2Ex[Txδ
] then by (5.1.9) Px[Txδ

≥ Ex[Txδ
] + t1] ≤ δ3/4. Otherwise,

t2 := 32/αx(δ) > 2Ex[Txδ
], and by (5.1.10), Px[Txδ

≥ Ex[Txδ
] + t2] ≤ δ3/4.
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5.3 Semi BD chains - Proof of Theorem 2.3.2

In this section we prove Theorem 2.3.2 and establish that product condition is sufficient for
cutoff for a sequence of (δ, r)-SBD chains. Although we think of δ as being bounded away
from 0, and of r as a constant integer, it will be clear that our analysis remains valid as
long as δ does not tend to 0, nor does r to infinity, too rapidly in terms of some functions of
trel/tmix.

Throughout the section, we use C1, C2, . . . to describe positive constants which depend
only on δ and r. Consider a (δ, r)-SBD chain on ([n], P, π). We call a state i ∈ [n] a central-
vertex if π([i − 1]) ∨ π([n] \ [i]) ≤ 1/2. As opposed to the setting of Section 5.1, the sets
[i−1] and [n]\ [i] need not be connected components of [n]\{i} w.r.t. the chain, in the sense
that it might be possible for the chain to get from [i − 1] to [n] \ [i] without first hitting i
(skipping over i). We pick a central-vertex o and call it the root.

Divide [n] into m := dn/re consecutive disjoint intervals, I1, . . . , Im each of size r, apart
from perhaps Im. We call each such interval a block. Denote by Iõ the unique block such that
the root o belongs to it. Since we are assuming the product condition (and thus t

(n)
mix → ∞),

in the setup of Theorem 2.3.2 we can assume that n � r and hence Iõ 6= [n] (it is not hard

to show that t
(n)
mix can be bounded from above in terms of n and δ, and thus we must have

n → ∞). Observe the following. Consider some v /∈ Iõ and u ∈ Iõ such that |u − v| = 1.
Then by the definition of a (δ, r)-SBD chain, we have for all v′ ∈ Iõ, π(v) > δrπ(v′). Hence
π(Iõ) 6 r

r+δr . For the rest of this section let us fix α = α(δ, r) := 1 − δr

4(r+δr)
.

Recall that in Section 5.1 we exploited the tree structure to reduce the problem of showing
cutoff to showing the concentration of the hitting time of the central vertex by showing that
starting from the central vertex the chain hits any large set (with large probability) quickly.
We argue similarly in this case with the central vertex replaced by the central block. First
we need the following lemma.

Lemma 5.3.1. In the above setup, let I := {v, v + 1, . . . , v + r − 1} ⊂ [n]. Let μ ∈ P(I).
Then

Eμ[TA] ≤ max
y∈I

Ey[TA] ≤ δ−r min
x∈I

Ex[TA], for any A ⊂ [n] \ I. (5.3.1)

Consequently, for any i ∈ I and A ⊂ [v − 1] (resp. A ⊂ [n] \ [v + r − 1]) we have that

Ei[TA] ≤ δ−rEπ[n]\[v−1]
[TA], (resp. Ei[TA] ≤ δ−rEπ[v+r−1]

[TA]). (5.3.2)

Proof. We first note that (5.3.2) follows from (5.3.1). Indeed, by condition (i) of the definition
of a (δ, r)-SBD chain, if A ⊂ [v−1] (resp. A ⊂ [n]\[v+r−1]), then under Pπ[n]\[v−1]

(resp. under
Pπ[v+r−1]

), TI ≤ TA. Thus (5.3.2) follows from (5.3.1) by averaging over XTI
. We now prove

(5.3.1).
Fix some A such that A ⊂ [n] \ I. Fix some distinct x, y ∈ I. Let B1 be the event that

Ty ≤ TA. One way in which B1 can occur is that the chain would move from x to y in |y−x|
steps such that |Xk − Xk−1| = 1 for all 1 ≤ k ≤ |y − x|. Denote the last event by B2. Then

Ex[TA] ≥ Ex[TA1B2 ] ≥ Px[B2]Ey[TA] ≥ δrEy[TA].

Minimizing over x yields that for any y ∈ I we have that Ey[TA] ≤ δ−r minx∈I Ex[TA], from
which (5.3.1) follows easily.
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The next proposition reduces the question of proving cutoff for a sequence of (δ, r)-SBD
chains under the product condition to that of showing an appropriate concentration for the
hitting time of the central block. The argument is analogous to the one in Section 5.1 and
hence we only provide a sketch to avoid repetitions. As in Section 5.1, for ε ∈ (0, 1) let

τC(ε) := min{t : Px[TIõ
> t] 6 ε, ∀x ∈ [n]}. As always, we write τ

(k)
C (∙) to indicate that this

parameter is taken w.r.t. the k-th chain in a sequence of (δ, r)-SBD chains.

Proposition 5.3.2. Let ([nk], Pk, πk) be a sequence of (δ, r)-SBD chains. Suppose that there
exist constants Cε for ε ∈ (0, 1

8
) and a some sequence (wk)

∞
k=1 of numbers such that for all k

τ
(k)
C (ε) − τ

(k)
C (1 − ε) 6 Cεwk for all 0 < ε < 1/8. (5.3.3)

Then there exist some constants C ′
ε, C

′′
ε such that for all k and all ε ∈ (0, 1/8)

hit
(k)
1/2(3ε/2) − hit

(k)
1/2(1 − 3ε/2) 6 Cεwk + C ′

εt
(k)
rel and (5.3.4)

t
(k)
mix(2ε) − t

(k)
mix(1 − 2ε) 6 Cεwk + C ′′

ε t
(k)
rel . (5.3.5)

Proof. Observe that (5.3.5) follows from (5.3.4) using Proposition 2.1.5 and Corollary 3.1.3.
To deduce (5.3.4) from (5.3.3), we argue as in Lemma 5.1.1 using Lemma 5.3.3 below, which
shows that starting from any vertex in Iõ the chain hits any set of π-measure at least α in
time proportional to trel with large probability. We omit the details.

Lemma 5.3.3. Let v ∈ Iõ. Let D ⊂ [n] be such that π(D) ≥ 1+α
2

. Then Ev[TD] ≤ C(α)δ−rtrel
for some constant C(α). In particular, by Markov inequality hitα,v(ε) ≤ ε−1C(α)δ−rtrel.

Proof. Let Iõ = {v1, v1 + 1, . . . , v2}. Set A1 = [v1 − 1] and A2 = [n] \ [v2]. For i = 1, 2, let
Di = D ∩ Ai. Using the definition of α, without loss of generality let π(D1) > 1−α

2
. Set

A = A2 ∪ Iõ. By (5.3.2) and the fact that π(A) > 1
2

Ev[TD] 6 Ev[TD1 ] 6 δ−rEπA
[TD1 ] ≤ 2δ−rEπ[TD1 ].

The proof is completed using Lemma 3.1.4.

Observe that using Cheybeshev inequality it follows that (5.3.3) holds for some constants
Cε if we take wn = maxx∈[n]

√
Varx[TIõ

]. Theorem 2.3.2 therefore follows at once from
Proposition 5.3.2 provided we establish Varx[TIõ

] 6 C1Ex[TIõ
]trel for all x /∈ Iõ (e.g. by

(2.0.1)). This is what we shall do.
Observe that the root induces a partial order on the blocks. We say that Ij ≺ Ik if Ij

is a block between Ik and Iõ. For j ∈ [m], Ij 6= Iõ, we define the parent block of Ij in the
obvious manner and denote its index by fj . We define

T (j) := TIj
and τ̄j := T (fj) − T (j).

Consider some arbitrary x ∈ [n] and j ∈ [m] \ {õ} such that x ∈ Ij . Denote k := |j − õ|,
j0 = j and ji+1 = fj for all 0 < i < k. Observe that starting from x we have that

TIõ
=
∑k−1

`=0 τ̄j`
. As mentioned above, we will bound Varx[

∑k−1
`=0 τ̄j`

]. As opposed to the
situation in Section 5.1, the terms in the sum are no longer independent. We now show
that the correlation between them decays exponentially (Lemma 5.3.5) and that for all
` we have that Varx[τ̄j`

] ≤ C2trelEx[τ̄j`
] (Lemma 5.3.6). The desired variance estimate,

Varx[
∑k−1

`=0 τ̄j`
] 6 C1Ex[TIõ

]trel, follows by combining these two lemmata. We omit the details.
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Lemma 5.3.4. In the above setup, let v ∈ [m] \ {õ}. Let (v0 = v, v1, . . . , vs) be indices of

consecutive blocks. Let μ1, μ2 ∈ P(Iv). Let k ∈ [s]. Denote by ν
(j)
k (j = 1, 2) the hitting

distribution of Ivk
starting from initial distribution μj (i.e. ν

(j)
k (z) := Pμj

[XT (vk) = z]). Then

‖ν(1)
k − ν

(2)
k ‖TV ≤ (1 − δr)k.

Proof. It suffices to prove the case k = 1 as the general case follows by induction using the
Markov property. The case k = 1 follows from coupling the chain with the two different
starting distributions in a way that with probability at least δr there exists some zv ∈ Iv

such that both chains hit zv before hitting Ifv (not necessarily at the same time) and from
that moment on (which may occur at different times for the two chains) they follow the same
trajectory. The fact that the hitting time of zv (and thus also of Ifv) might be different for
the two chains makes no difference (as regardless of the hitting time of Ifv w.r.t. the two

chains, this coupling is also a coupling of (ν
(1)
1 , ν

(2)
1 ), having the desired property). We now

describe this coupling more precisely.
Let μ1, μ2 ∈ P(Iv). Let (X

(1)
t )t≥0 and (X

(2)
t )t≥0 be independent Markov chains where

(X
(i)
t )t≥0 is distributed as the chain (Ω, P, π) with initial distribution μi (i = 1, 2) as follows.

Pick v1 ∼ μ1 and v2 ∼ μ2 respectively. Run the chain X
(1)
t started from v1. Let R := min{t :

X
(1)
t = X

(2)
0 } and Li := min{t : X

(i)
t ∈ Ifv}. Let S denote the event: R ≤ L1. On S, define

Y
(1)
t by setting Y

(1)
t = X

(1)
t for t < R and Y

(1)
R+t = X

(2)
t for any t ≥ 0, and on Sc, define

Y
(1)
t = X

(1)
t for all t. Denote the joint law of (Y

(1)
t , X

(2)
t ) by Pμ1,μ2 and of (X

(1)
t , Y

(1)
t , X

(2)
t )

by Pμ1,μ1,μ2 . Clearly Pμ1,μ2 is a coupling with the correct marginals and Pμ1,μ1,μ2 [S] ≥ δr.

Let L2 be as above and L̄1 := min{t : Y
(1)
t ∈ Ifv}. Note that on S, X

(2)
L2

= Y
(1)

L̄1
. Hence for

any D ⊂ Ivk
,

ν
(1)
1 (D) − ν

(2)
1 (D) = Pμ1,μ2 [Y

(1)

L̄1
∈ D] − Pμ1,μ2 [X

(2)
L2

∈ D]

≤ Pμ1,μ2 [Y
(1)

L̄1
∈ D,X

(2)
L2

/∈ D] ≤ 1 − Pμ1,μ1,μ2 [S] ≤ 1 − δr.

Lemma 5.3.5. In the setup of Lemma 5.3.4, let 0 ≤ i < j < s. Let μ ∈ P(Iv). Write
τi := τ̄vi

and τj := τ̄vj
. Then

Eμ[τiτj ] ≤ Eμ[τi]Eμ[τj ]

(

1 + (1 − δr)j−i−1δ−r

)

.

Proof. Let μi+1 and μj be the hitting distributions of Ivi+1
and of Ivj

, respectively, of the
chain with initial distribution μ. By the Markov property, the hitting distribution of Ivj

for
the chain started with initial distribution either μ or μi+1 is simply μj . Again by the Markov
property Eμ[τj ] = Eμi+1

[τj ] = Eμj
[τj ] and

Eμ[τiτj ] ≤ Eμ[τi] max
y∈Ivi+1

Ey[τj ]. (5.3.6)

Let y∗ ∈ Ivi+1
be the state achieving the maximum in the RHS above. By Lemma 5.3.4 we

can couple successfully the hitting distribution of Ivj
(and thus also τj) of the chain started
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from y∗ with that of the chain starting from initial distribution μi+1 with probability at least
1 − (1 − δr)j−i−1. If the coupling fails, then by (5.3.1) we can upper bound the conditional
expectation of τj by δ−r Eμ[τj ]. Hence

Ey∗ [τj] ≤ Eμj
[τj] + (1 − δ)j−i−1δ−rEμ[τj ] = Eμ[τj ]

(

1 + (1 − δr)j−i−1δ−r

)

.

The assertion of the lemma follows by plugging this estimate in (5.3.6).

Lemma 5.3.6. Let j ∈ [m] \ {o}. Let ν ∈ P([n]). Then there exists some C1, C2 > 0
(depending on δ and r) such that Eν [τ̄

2
j ] ≤ C1trelΦ(Ij)

−1 ≤ C2trelEν [τ̄j].

Proof. Let μ := ψIj
. By condition (i) in the definition of a (δ, r)-SBD chain, μ ∈ P(Ij).

By (5.1.5), Eμ[τ̄ 2
j ] ≤ C3trelΦ(Ij)

−1 ≤ C4trelEμ[τ̄j ] for constants C3, C4 depending on δ and r.
The proof is concluded using the same reasoning as in the proof of (5.3.1) to argue that the
first and second moments of τ̄j w.r.t. different initial distributions can change by at most
some multiplicative constant.
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Chapter 6

The power of averaging at two consecutive
time steps: Proof of a mixing conjecture by
Aldous and Fill

In this chapter we prove the results from Section 2.4. Accordingly, the proofs in this chapter
are taken from [28].

6.1 Proof of Proposition 2.4.5.

In this section we prove Proposition 2.4.5. As noted in the introduction, Theorem 2.4.1
follows as a particular case of Proposition 2.4.5 and Theorem 2.4.2, in turn, follows in a
trivial manner from Theorem 2.4.1. We now state large deviation estimates for the Poisson
and Binomial distributions. For a proof see e.g. [5, Appendix A].

Fact 6.1.1. Let Y ∼ Pois(μ) and let Y ′ ∼ Bin(t, 1/2). Then for every ε > 0 we have that

P[Y ≤ μ(1 − ε)] ≤ e−ε2μ/2, P[Y ≥ μ(1 + ε)] ≤ exp

(

−
ε2μ

2(1 + ε/3)

)

,

P[Y ′ ≤ t(1 − ε)/2] = P[Y ′ ≥ t(1 + ε)/2] ≤ e−ε2t/4.

(6.1.1)

Let (N(t))t≥0 and (M(t))t≥0 be homogeneous Poisson processes with rate 1, such that
(N(t))t≥0 , (M(t))t≥0 and (Xt)

∞
t=0 are mutually independent. We define

NL(t) := N(t) + M(t) and S(`) :=
∑̀

k=1

qk ∼ Bin(`, 1/2),

where qk := 1N(Tk)>N(Tk−1) and Tk := inf{t : NL(t) = k}.

Let (Ω, P, π) be a Markov chain. The natural coupling of (Xct
t )t≥0, (Xt)t∈Z+ and (XL

t )t∈Z+

is defined by setting XL
t := XS(t) and Xct

t := XN(t) = XL
NL(t).

As can be seen from the natural coupling, Ht =
∑

k≥0
e−2t(2t)k

k!
P k

L . This also follows from

Poisson thinning. Also, in the natural coupling (XL
t )t∈Z+ and (NL(t))t≥0 are independent.

The same holds for (Xt)t∈Z+ and (S(t))∞t=0. The next lemma follows from the natural coupling
by a standard construction (cf. the proofs of Proposition 4.7 and Theorem 5.2 in [36]).
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Lemma 6.1.2. Let (Ω, P, π) be a finite irreducible Markov chain. Let μ ∈ P(Ω) and t ∈ R+.

(1) There exists a coupling ((Y L
i )i∈Z+ , (ZL,π

i )i∈Z+ , ξt), such that (Y L
i )i∈Z+ ∼ PL,μ, (ZL,π

i )i∈Z+ ∼
PL,π (the law of the stationary lazy chain), ξt ∼ Pois(t) in which ξt and (Y L

i )i∈Z+ are
independent and

P[Y L
ξt

= ZL,π
0 ] = P[Y L

ξt+i = ZL,π
i for all i ≥ 0] = 1 − dc(t/2, μ).

(2) There exists a coupling ((Yi)i∈Z+ , (Zπ
i )i∈Z+ , ξ′t), such that (Yi)i∈Z+ ∼ Pμ, (Zπ

i )i∈Z+ ∼
Pπ (the law of the stationary chain), ξ′t ∼ Bin(2t, 1/2) in which ξ′t and (Yi)i∈Z+ are
independent and

P[Yξ′t
= Zπ

0 ] = P[Yξ′t+i = Zπ
i for all i ≥ 0] = 1 − dL(2t, μ).

Definition 6.1.3. Let t ≥ 1 and s ∈ [2, et]. Denote

r = rs,t := 2
√

2t log s,

J = Js,t := [(t − r) ∨ 0, t + r],

m = ms,t := dr(
√

s + 1)e.

(6.1.2)

In the notation of Lemma 6.1.2 (with both couplings taken w.r.t. time t), let G be the event
that Y L

ξt+i = ZL,π
i for all i ≥ 0 and that ξt ∈ J . Similarly, let G′ be the event that Yξ′t+i =

Zπ
i for all i ≥ 0 and that ξ′t ∈ J .

In the following proposition, we only care about (6.1.5) and (6.1.8) (which imply (2.4.6)
and (2.4.7), respectively; i.e. the below proposition implies Proposition 2.4.5). We present
the rest of the equations in order to make it clear that (6.1.8) is obtained in an analogous
manner to (6.1.5). Thus, we shall only prove part (i) of Proposition 6.1.4.

In the notation of Definition 6.1.3, the term dc(t/2, μ) + 2/s2 appearing in (6.1.3) and
(6.1.5) (resp. dL(2t, μ) + 2/s2 appearing in (6.1.6) and (6.1.8)) is an upper bound on the
probability that G (resp. G′) fails (where the term 2/s2 is obtained via Fact 6.1.1).

Proposition 6.1.4. Let (Ω, P, π) be a finite irreducible reversible chain. Let μ ∈ P(Ω). Let
B ⊂ Ω. Let t ≥ 1 and 2 ≤ s ≤ et. In the notation of Definition 6.1.3,

(i) Let ηL := 1Y L
t+m∈B and ηL,π := 1L,π

Zm∈B (where m = dr(
√

s + 1)e, r = 2
√

2t log s). Then

π(B) − Pμ[XL
t+m ∈ B] ≤

2

s2
+ dc(t/2, μ) + E[(ηL,π − ηL)1G]. (6.1.3)

|E[(ηL − ηL,π)1G]|2 ≤ s−1Eπ

[

sup
i≥r

√
s

i2| 4 P i
L1B|

2

]

≤ Cs−1Varπ1B ≤
C

s
. (6.1.4)

Consequently,

dL(t + m,μ) ≤ dc(t/2, μ) +
2

s2
+
√

C/s. (6.1.5)
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(ii) Let w ∼ Bernoulli(1/2) be independent of ((Yi)i∈Z+ , (Zπ
i )i∈Z+ , ξ′t). Let η = 1Yt+m+w∈B

and ηπ = 1Zπ
m+w∈B. Then

π(B) − Pμ[Xave
t+m ∈ B] ≤

2

s2
+ dL(2t, μ) + E[(ηπ − η)1G′ ]. (6.1.6)

|E[(η − ηπ)1G′ ]|2 ≤ s−1Eπ

[

sup
i≥r

√
s

i2| 4 Ai1B|
2

]

≤ Cs−1Varπ1B ≤
C

s
. (6.1.7)

Consequently,

dave(t + m,μ) ≤ dL(2t, μ) +
2

s2
+
√

C/s. (6.1.8)

Proof. We first note that (6.1.5) follows from (6.1.3)-(6.1.4) by maximizing over B ⊂ Ω. We
now prove (6.1.3). Let B ⊂ Ω. Let r, J and m be as in Definition 6.1.3. By Fact 6.1.1 and
our assumption that s ≤ et (which implies that ε := r/t = 2

√
2t−1 log s ≤ 3),

P[ξt /∈ J ] ≤ P[ξt < t − r] + P[ξt > t + r] ≤ e−tε2/2 + e−
tε2/2

(1+ε/3) = e−4 log s + e−
4 log s

(1+ε/3) ≤ 2s−2.

Hence 1 − P[G] ≤ dc(t/2, μ) + 2s−2, which implies (6.1.3), as

π(B) − Pμ[XL
t+m ∈ B] ≤ 1 − P[G] + P[G ∩ {ZL,π

m ∈ B}] − P[G ∩ {Y L
t+m ∈ B}]

= 1 − P[G] + E[(ηL,π − ηL)1G].

We now argue that for every x ∈ Ω,

|E[η − ηL,π | G, Y L
ξt

= x = ZL,π
0 ]| ≤

√
1

s
sup

i≥r
√

s

i| 4 P i
L1B(x)|. (6.1.9)

Indeed, for every x ∈ Ω and j ∈ J

E[ηL | ξt = j, Y L
j = x = ZL,π

0 ] = P t+m−j
L 1B(x),

E[ηL,π | ξt = j, Y L
j = x = ZL,π

0 ] = Pm
L 1B(x).

Thus by the triangle inequality

|E[ηL − ηL,π | ξt = j, Y L
j = x = ZL,π

0 ]| = |P t+m−j
L 1B(x) − Pm

L 1B(x)|

≤ 1j 6=t

[(t+m−j)∨m]−1∑

i=(t+m−j)∧m

| 4 P i
L1B(x)|.

(6.1.10)

Note that by the definition of m = dr(
√

s + 1)e and J = [(t − r) ∨ 0, t + r], for every j ∈ J
we have that |j − t| ≤ r and (t + m − j) ∧ m ≥ r

√
s. Whence,

1j 6=t

[(t+m−j)∨m]−1∑

i=(t+m−j)∧m

| 4 P i
L1B(x)| ≤ r sup

i≥r
√

s

| 4 P i
L1B(x)|

≤
r

r
√

s
sup

i≥r
√

s

i| 4 P i
L1B(x)| =

√
s−1 sup

i≥r
√

s

i| 4 P i
L1B(x)|.
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Plugging this estimate in (6.1.10) and averaging over j yields (6.1.9).
Since

|E[(ηL − ηL,π)1G]| ≤ E[|E[(ηL − ηL,π)1G | ZL,π
0 , ξt]|],

averaging (6.1.9) over ZL,π
0 , and using the fact that P[G ∩ {Y L

ξt
= x = ZL,π

0 }] ≤ π(x), for all
x, together with Jensen’s inequality and (1.2.4), we get that

|E[(ηL−ηL,π)1G]|2 ≤
1

s
(Eπ[ sup

i≥r
√

s

i|4P i
L1B|])

2 ≤
1

s
Eπ[ sup

i≥r
√

s

i2|4P i
L1B|

2] ≤ Cs−1Varπ1B ≤ C/s.

6.2 Proof of Proposition 2.4.8

We start the section by stating a standard fact.

Claim 6.2.1. Let (Ω, P, π) be a finite irreducible chain. Let μ ∈ P(Ω). Let (Xt)t∈Z+ be
the discrete-time version of the chain. Let T1, T2 be independent Z+ valued random variables
independent of (Xt)t∈Z+. Then ‖Pμ[XT1+T2 ∈ ∙] − π‖TV ≤ ‖Pμ[XT1 ∈ ∙] − π‖TV, where
Pμ[XT1 = y] :=

∑
t P[T1 = t]Pt

μ[Xt = y] and Pμ[XT1+T2 = y] :=
∑

t P[T1 +T2 = t]Pt
μ[Xt = y].

Proof of Proposition 2.4.8: Fix some t > 0 and 0 < s ≤
√

t. Denote τ := t + s
√

t. We
first prove (2.4.10). In the notation of the standard coupling, NL(τ) ∼ Poisson(2τ) and

Hτ
μ − π =

∑

k≥0

P[NL(τ) = k](Pk
L,μ − π).

By the triangle inequality, together with (6.1.1) and the fact that ‖Pk
L,μ − π‖TV is non-

decreasing in k and bounded by 1,

‖Hτ
μ − π‖TV =

∑

k≥0

P[NL(τ) = k]‖Pk
L,μ − π‖TV ≤ P[NL(τ) < 2t] +

∑

k≥2t

P[NL(τ) = k]‖Pk
L,μ − π‖TV

≤ exp

[

−
4s2t

2(2t + 2s
√

t)

]

+ ‖P2t
L,μ − π‖TV ≤ dL(2t, μ) + e−δ2/2,

where in the last inequality we have used the assumption that s ≤
√

t. This concludes the
proof of (2.4.10). We now prove the first line in (2.4.9). We omit the second line in (2.4.9)
as its proof is analogous and as it essentially appears in [48, Lemma 2.3].

As above, denote τ := t+s
√

t. Let Y ∼ Poisson(2τ). Let Z1 be a random variable whose
conditional distribution, given that Y = n, is Bin((n − 1) ∨ 0, 1/2). Let η be a Bernoulli
random variable with mean 1/2, independent of Z1 and Y . Set Z := Z1 + η1Y >0. Let
(Xt)t∈Z+ be the discrete-time version of the chain with X0 ∼ μ. Pick Y , Z1, η and (Xt)t∈Z+

to be jointly independent. Note that the conditional distribution of Z, given that Y = n, is
Bin(n, 1/2). Hence by Poisson thinning Z ∼ Poisson(τ) and so Xct

τ ∼ XZ .

Let T := t + η. Then Z = (T + Z1 − t)1Y >0. Thus Z1Z1≥t = (T + (Z1 − t)+)1Z1≥t, where
a+ := a ∨ 0 (since Z1 ≥ t implies that Y > 0 and Z1 − t = (Z1 − t)+). Consequently,

‖Pμ(XZ ∈ ∙) − Pμ(XT+(Z1−t)+ ∈ ∙)‖TV ≤ ‖Z − [T + (Z1 − t)+]‖TV ≤ P[Z1 < t]. (6.2.1)
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By (6.1.1) and the assumption s ≤
√

t,

P[Z1 < t] ≤ P[Z ≤ t] ≤ exp

[

−
s2t

2(t + s
√

t)

]

≤ e−s2/4. (6.2.2)

Finally, by Claim 6.2.1, in conjunction with (6.2.1)-(6.2.2), we get that

dc(t + s
√

t, μ) = ‖Pμ[XZ ∈ ∙] − π‖TV ≤

‖Pμ(XZ ∈ ∙) − Pμ(XT+(Z1−t)+ ∈ ∙)‖TV + ‖Pμ(XT+(Z1−t)+ ∈ ∙) − π‖TV

≤ e−s2/4 + ‖Pμ(XT ∈ ∙) − π‖TV = dave(t, μ) + e−s2/4.

6.3 Proof of Theorem 2.4.3

Assume that there is a continuous-time cutoff with a window wn. Fix some 0 < ε < 1/4. By
Propositions 2.4.5 (first inequality) and 2.4.12 (second inequality)

t(n)
ave(ε) ≤ t(n)

c (ε/2) + C1(ε)

√
t
(n)
c (ε/2) ≤ t(n)

c (ε/2) + C2(ε)wn.

By Propositions 2.4.8 (first inequality) and 2.4.12 (second inequality) we have that

−t(n)
ave(1 − ε) ≤ −t(n)

c (1 − ε/2) + C3(ε)

√

t
(n)
c ≤ −t(n)

c (1 − ε/2) + C4(ε)wn.

Hence
t(n)
ave(ε) − t(n)

ave(1 − ε) ≤ t(n)
c (ε/2) − t(n)

c (1 − ε/2) + C5(ε)wn ≤ C6(ε)wn,

as desired. Now assume that the sequence of averaged chains exhibits a cutoff with a window
w̃n. By Proposition 2.4.8

t(n)
c (ε) ≤ t(n)

ave(ε/2) + C7(ε)

√

t
(n)
c .

By Propositions 2.4.5 we have that

−t(n)
c (1 − ε) ≤ −t(n)

ave(1 − ε/2) + C8(ε)

√

t
(n)
c .

Hence

t(n)
c (ε) − t(n)

c (1 − ε) ≤ t(n)
ave(ε/2) − t(n)

ave(1 − ε/2) + C9(ε)

√

t
(n)
c ≤ C10(ε)(w̃n ∨

√

t
(n)
c ),

as desired.

6.4 Example

In this section we consider an example which demonstrates that the assertions of Theorems
2.4.1 and 2.4.2 and of Proposition 2.4.5 are in some sense nearly sharp. For notational
convenience we suppress the dependence on n in some of the notation below. Throughout
this section we write c0, c1, c2, . . . for positive absolute constants, which are sufficiently small
to guarantee that a certain inequality holds.
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Equation (6.4.1) below resembles our main results apart from the fact that below the
direction of the inequality is reversed, and the exponent of s in the error term of the middle
term in (6.4.1) (which decays like an inverse polynomial in s) is larger (compared to the
corresponding exponent in Theorem 2.4.1; similarly, the error term on the RHS of (6.4.1) is
similar to the one appearing in Theorem 2.4.2, that is to ψα,C2(dc(t)) − dc(t)).

Example 6.4.1. Fix some 0 < α ≤ 1/2. Let n ∈ N be such that s = sn,α := dn0.5+αe ≥ 2.
Consider a nearest-neighbor random walk on the interval {0, 1, 2, . . . , 2n + 1}, with a bias
towards state 2n+1, whose transition matrix is given by P (0, 1) = 1, P (2n+1, 2n) = 1− 1

3s
,

P (i, i) =

{
1
3s

i ≥ 2n − 2s,

0 otherwise.

Finally, P (i, i + 1) = 3P (i, i − 1) for all 1 ≤ i ≤ 2n and is given by

P (i, i + 1) =

{
3
4
− 1

4s
i ≥ 2n − 2s,

3/4 otherwise.

By Kolmogorov’s cycle condition, this chain is reversible. Both the sequence of the associated
continuous-time chains and the sequence of the associated averaged chains exhibit cutoff
around time 4n with a cutoff window of size

√
n. In particular, prior to time 4n − s the

worst-case total variation distance from stationarity of both chains tends to 1 as n tends to
infinity. Moreover, it is not hard to show that

dc(4n + s) = (1 ± o(1))H0[T2n+1 > 4n + s] ≤ e−c3s2/n ≤ e−c3n2α

.

Conversely, we now show that for t = 4n + s, we have that

dave(t + s) ≥ dc(t) +
c1

s
≥ dc(t) +

c2

[log(1/dc(t))]
1+2α
4α

. (6.4.1)

The second inequality in (6.4.1) follows from the choice s = dn
1+2α

2 e together with dc(t) =
dc(4n + s) ≤ e−c3n2α

. We now prove the first inequality in (6.4.1).
Consider the sets Even := {2i : 0 ≤ i ≤ n}, Odd := {2i + 1 : 0 ≤ i ≤ n} and

B := {i : i ≥ 2n − 2s}. It is easy to see that π(B) ≥ 1 − 2−(2s+1) and that

0 ≤ π(Even) − 1/2 ≤
π(2n − 2s)

3s
≤ 2−2s. (6.4.2)

In order to prove (6.4.1), we shall show that

At+s(0, Even) ≥
1

2
+

c1

s
. (6.4.3)

Let (Xk)
∞
k=0 be the discrete-time chain with X0 = 0. Note that T2n−2s is even, deterministi-

cally. If both X4n+2s and X4n+2s+1 lie in B, we define

T := min{k : T2n−2s ≤ k ≤ 4n + 2s and X` ∈ B for all k ≤ ` ≤ 4n + 2s + 1}.
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Otherwise, set T = 0. It is easy to see that P[T = 0] ≤ Ce−c4s2/n and that

1

2
P0[X4n+2s ∈ Even | T = 0] +

1

2
P0[X4n+2s+1 ∈ Even | T = 0] = 1/2. (6.4.4)

Moreover, conditioned on T > 0, the number of returns to state 2n− 2s by time 4n + 2s has
an exponential tail. Using this fact, it is not hard to verify that

min
0≤r≤4s

P[T is even | T 6= 0, 4n + 2s − T2n−2s = 2r] ≥ 1 −
c5

s
.

P[4n + 2s − T2n−2s > 8s | T 6= 0] ≤ e−c6s2/n.
(6.4.5)

Consider the projected chain (Yk)
4n+2s+1−T
k=0 (conditioned on T 6= 0) on Ω := {±1} defined

via Yk := 1T+k∈Even − 1T+k∈Odd. This two state chain whose transition matrix is given by

P =

(
λ
2

1 − λ
2

1 − λ
2

λ
2

)

, where λ := 2
3s

, satisfies P

(
1
−1

)

= (λ − 1)

(
1
−1

)

. Using the spectral

decomposition it is easy to verify that Ak(1, 1) = 1
2

+ (λ−1)kλ
4

. Note that if k ≤ 8s then for
even k’s we have that 0 ≤ Ak(1, 1)− 1

2
= Θ(s−1) and for odd k’s 0 ≤ 1

2
−Ak(1, 1) = Θ(s−1).

Applying this for k = r when T = 4n + 2s − r > 0, in conjunction with (6.4.4)-(6.4.5)
yields (6.4.2) by averaging over 4n + 2s − T and bounding separately the contribution of all
even times (i.e. 4n + 2s − T = 2k, k ≤ 4s) and of all odd times, which are bounded from
above by 8s . We leave the details as an exercise.

60



Bibliography

[1] David Aldous. Random walks on finite groups and rapidly mixing markov chains. In
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