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The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially 25 

large but highly uncertain feedback to warming. The magnitude of this feedback is poorly 

constrained by observations and theory, and is disparately represented in Earth system models 

(ESMs)1-3. To assess the climatological temperature sensitivity of soil carbon, we calculate 

apparent soil carbon turnover times4 that reflect long-term and broad-scale rates of 

decomposition.  Here, we show that the climatological temperature control on carbon turnover in 30 

the top meter of global soils is more sensitive in cold climates than in warm ones and argue that 

it is critical to capture this emergent ecosystem property in global-scale models. We present a 

simplified model that explains the observed high cold-climate sensitivity using only the physical 

scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this 

pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and C 35 

turnover. An observed weak tropical temperature sensitivity emerges in a different model that 

explicitly resolves mineralogical control on decomposition.  These results support projections of 

strong carbon-climate feedbacks from northern soils5,6 and demonstrate a method for ESMs to 

capture this emergent behavior. 

 40 

Carbon cycle feedbacks represent a large uncertainty on the terrestrial response to climate 

change1-3.  Much of this uncertainty arises from the dynamics of decomposing soil carbon under 

changing climate, in particular how the rate of carbon cycling through soils may change with 

warming.  Fast-timescale observations7 and general kinetic theory8 both suggest that 

decomposition rates should increase with warming. While this temperature response has long 45 

been thought to provide a positive feedback to warming9, its magnitude is poorly quantified due 

to the many confounding factors affecting soil metabolic rates8. Furthermore, acclimatory 

responses by soil microbiota that reduce the effect of warming on decomposition rates at longer 

timescales have been proposed10-12 to explain the reduction in temperature sensitivity observed in 

experiments13. Given the size of global soil C stocks, especially at high latitudes14 and the 50 

potential long-term vulnerability of soil C to warming, it is critical to accurately include these 

feedbacks in assessing emissions scenarios that are compatible with desired climate outcomes15. 

The current (Coupled-Model Intercomparison Project, phase 5; CMIP5) generation of ESMs 

actually show a relatively small contribution of climate-driven changes to carbon turnover times 
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on soil carbon stocks, with the majority of projected soil carbon change instead occurring due to 55 

changes in plant productivity3. The ESMs—which couple carbon cycle and climate processes—

typically use simplified temperature sensitivities12, omit realistic dynamics of soil microbial 

ecology16, show little predictive power in simulating current soil carbon stocks17, and 

systematically overestimate the transient sensitivity of soil carbon pools to productivity 

changes18. Equally troubling, the models omit crucial processes that may exacerbate warming-60 

related carbon losses, in particular the representation of frozen carbon in permafrost soils6. Thus, 

although ESMs show high inter-model divergence in soil carbon predictions, they likely 

underestimate the actual uncertainty16 surrounding increased atmospheric greenhouse gas 

burdens and accelerated warming under climate change scenarios. 

It is difficult to directly evaluate the transient climate-response predictions made by ESM 65 

soil carbon models, because dynamical observations of soil carbon responses to warming at the 

relevant timescale—multi-decadal to centennial—are scarce16 and ambiguous about both 

acclimation timescales and whether changes result from productivity or turnover responses19. An 

alternate approach is to look at model predictions across spatial gradients, since current soil 

conditions reflect the long-term accumulated effects of climate, vegetation, edaphic properties, 70 

and landscape changes on soil organic matter formation20 (see Methods).  Indeed, the large 

spatial variation of soil carbon turnover times across climate gradients served as an early piece of 

evidence supporting the idea that warming would lead to soil carbon losses21,22.  

Because the balance of carbon inputs and decomposition determine soil carbon stocks, and 

because both of these controls are mediated by climate, it is useful to separate them by defining 75 

an apparent turnover time, τ, as the ratio of carbon losses via heterotrophic respiration to total 

carbon stocks.  Since, at steady state, carbon losses and inputs are equal, and because we have 

more robust global estimates of productivity than of heterotrophic respiration, we assume that 

soils are approximately at steady state in order to estimate τ as the ratio of carbon stocks to 

carbon inputs4. 80 

 In figure 1 we show the global distribution of soil carbon stocks (fig. 1a), vegetation 

inputs to soil (fig. 1b), and τ, as a function of temperature and precipitation (fig. 1c). These 

results illustrate that τ is clearly sensitive to both soil temperature and moisture, but here we are 

primarily interested in identifying the temperature control on soil carbon turnover.  Moisture may 
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dominate turnover in places that are either highly moisture-limited4 or saturated, so we mask all 85 

points where we expect moisture to exert a dominant control (fig. S1), to isolate the temperature-

dominated soil carbon τ response (fig. 1d). This relationship clearly shows a change in the 

sensitivity of inferred τ to climatological temperature over the interval, with stronger sensitivity 

in cold climates than in warm ones. We note, however, that considerable variation remains. The 

residual two-fold variation in turnover times (residual variance in log(τ) = 0.1; table S1) is also a 90 

real and important feature of the data, and this may be driven by mineralogical or other 

factors23,24 beyond the simple climate metrics used here. We recognize that further research 

diagnosing the mechanisms responsible for this variation is critical, but here we focus on the 

central relationship between soil τ and temperature that emerges from our global analysis.   

Taking the derivative of the central soil τ to temperature relationship (fig. 1d), and placing 95 

this in terms of the exponential form Q10, gives a “climatological Q10” (fig. 2), which decreases 

with temperature, from Q10>5 in cold climates to Q10=1 (i.e. no temperature sensitivity) in hot 

climates. This climatological Q10 differs from the classical short-timescale Q10 in being 

diagnosed from the τ, whereas short-timescale Q10 values are diagnosed based on instantaneous 

decay rates, k (where, at steady state, k = 1/ τ). Short-timescale respiration observations show a 100 

widespread Q10-like behavior with a value in the range of approximately 1.4 based on eddy 

covariance fluxes7, or 1.5-2 based on soil incubations8.  Where the climatological Q10 value 

differs from the short- timescale Q10 value, this is evidence for emergent behavior at longer 

timescales that leads to the divergence between short- and long- timescale temperature 

sensitivities.  We thus divide the world heuristically into three roughly defined regimes (fig. 2): a 105 

cold-climate high-sensitivity emergent domain (climatological Q10~2 to 5), a temperate non-

emergent domain (climatological Q10~1.4 to 2), and possibly a warm-climate low-sensitivity 

emergent domain (climatological Q10<1.4). 

To understand why the climatological Q10 exceeds short-timescale Q10 values in cold 

climates, we explore a hierarchy of simplified decomposition models. These derive τ values 110 

based solely on modeled soil temperature (T) dynamics and differ only in the functional form of 

k(T) and how this is scaled in space and time to calculate τ (fig. 3). We consider four cases. The 

first three differ only in the form of k(T) and all use near-surface soil temperatures (10 cm): fixed 

Q10 over the entire temperature range, (fig. 3a); temperature-sensitive Arrhenius relationship25 

over the entire temperature range, (fig. 3b); fixed Q10 over thawed temperatures and no 115 
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respiration when soil is frozen (fig. 3c). The fourth case shown uses the same temperature 

function as the third, but diagnoses k using depth-resolved soil temperatures over the full 0-1m 

depth interval (fig. 3d). Only the fourth case is able to qualitatively capture the observed change 

in slope seen in the observations. 

The implication of the curve in figure 3d is that the increase in temperature sensitivity in 120 

cold climates can be explained simply as a result of the combined reductions in the thawed 

season length and thawed depth during the warm season.  Thus, vertical variation in soil climate 

must be accounted for to explain carbon stocks at high latitudes, even when considering carbon 

to only 1m depth. Models that explicitly resolve this process, by replacing traditional carbon 

cycle ordinary differential equations (ODEs) with a set of vertically resolved partial differential 125 

equations (PDEs) that include transport, are one such approach, but suffer from high uncertainty 

in the rates of cold-soil vertical mixing processes, such as cryoturbation6.  Those long-term 

mixing processes also contribute significantly to the large amounts of carbon stored even deeper, 

below 1 meter depth14,26, which add further uncertainty and bias to global carbon cycle 

projections. That a simpler ODE approach using a depth-averaged k approximates the observed 130 

relationship suggests that, at least in the near surface, such transport processes are sufficiently 

fast over long timescales for the soil to act as a well-mixed reservoir through which respiration 

can occur at any depth within the 0-1m interval.   

We contend that the climatological sensitivity of soil C to historical climate (fig. 1d) is an 

emergent ecosystem property that models should be expected to replicate. To test whether ESMs 135 

are able to match these qualitative patterns, we compare predictions of τ from models used in the 

CMIP5 carbon cycle experiments (fig. 4a-f, table S2)1. Most models show a linear relationship 

between log(τ) and MAAT, as would result from using fixed Q10 and a single-layer model that 

diagnoses k values from near-surface temperatures.  Some models show offsets and emergent 

behavior, but none are able to qualitatively capture both the increase in temperature sensitivity 140 

through the entire range of cold climates as well as the reduction in temperature sensitivity in 

tropical climates shown by the global data. The inability of the models to match spatial gradients 

implies that the transient response to warming will likewise be biased, particularly in the cold-

climate regime where the ESMs show a systematic underestimate of the climate sensitivity on 

soil carbon turnover. That the ESMs also show weak turnover-driven soil carbon responses to 145 
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warming3, and a net high-latitude carbon gain from warming2, is thus likely a shared artifact of 

the weak temperature control in these ESMs. 

Because none of the CMIP5 models represent permafrost carbon dynamics, we diagnose the 

same relationship from a model which does represent permafrost carbon via a PDE approach, 

CLM4.527 (fig. 4g-h). The two panels 4g and 4h differ only by a parameter, Zτ, that controls 150 

decomposition rates k at depth, beyond the resolved climatologic controls. The parameter is 

defined as an e-folding depth, and a short value assumes that the base decomposition rate (k) of 

deeper soil horizons is intrinsically slower than surface soil carbon stocks (Fig. 4g). A long e-

folding depth assumes that carbon pools in surface and deep soil horizons have similar intrinsic 

decomposability, which allows climatologic controls (e.g., temperature) to more strongly 155 

influence decomposition rates (Fig. 4h). The model is able to match the observed increase in 

sensitivity at cold climates, but only when the base rates of deep decomposition are more similar 

to those at the surface (fig. 4h).  Under these conditions CLM4.5 predicts a substantial (-23 Pg 

C/˚C) destabilizing carbon-climate feedback from the permafrost region28, which contrasts in 

sign with the stabilizing feedback projected by the CMIP5 ESMs from this region. The patterns 160 

of τ in fig. 4h better match observations in fig. 1 than other models analyzed here (Table S1), 

suggesting that the corresponding projection of a strong permafrost carbon-climate feedback is 

also more realistic. 

 The wide spread in τ (Fig 1d) and the low-sensitivity emergent domain observed in warm 

climates (Fig. 2) emerges from a model that includes mineral and microbial associations (fig. 4i).  165 

This mineral/microbial model predicts longer τ values for the clay rich tropical soils and 

therefore a reduced sensitivity to temperature.  Because weathering rates increase with 

temperature in sufficiently moist ecosystems, clay amounts and temperature are positively 

correlated, which may explain the reduced tropical temperature sensitivity (fig. S3). However, 

the reduced sensitivity of tropical soil carbon is also consistent with nonlinear models that 170 

predict a temperature optimum for decomposition29, though only at tropical temperatures. 

Separating these potential causes is not possible with the static benchmark proposed here, but is 

of great importance, as they would lead to different trajectories under global warming. 

 We propose that global temperature control on turnover, as expressed in spatial gradients, 

is a useful benchmark on dynamic models, which must predict these static relationships if we are 175 
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to have confidence in their transient responses. We recognize that projections of soil C response 

to warming are complicated by changes in plant productivity, organo-mineral stabilization, soil-

aggregate formation and shifts in belowground community structure and function30. Indeed, 

resolving these complex interactions should be a focus for the next generation of experiments 

and models16. The results shown here stress the importance of considering temperature effects on 180 

decomposition across the full range of climates found on Earth, as well as vertically, even within 

the top meter of soils. The systematic underestimation by the CMIP5 models of the sensitivity of 

carbon turnover in cold climates belies their projections of weak soil turnover-driven feedbacks 

to warming. Thus the relationships shown here support stronger carbon – climate feedbacks—

particularly from northern regions—than current estimates suggest. 185 
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Figures 190 

 
 

Fig. 1. Global distributions of the inferred apparent turnover time (τ) of global soil organic 

matter as function of climatological temperature. τ is calculated as the ratio of (a) carbon 

stocks to (b) net primary productivity. (c) τ plotted as function of Mean Annual Air Temperature 195 

(MAAT). Each gridcell is colored by climatological precipitation. (d) As in (c), but after filtering 

out gridcells that are likely to be dominated by either aridity (P minus PET < threshold of -1000 



 

 9 

mm/yr) or saturation (peatland fraction exceeds threshold of 50%). Best fit regression curve in 

(d) uses a quadratic regression of log(τ) versus MAAT, with 50% prediction intervals shown. 

  200 
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Fig 2.  Inferred “climatological Q10” as a function of temperature. Climatological Q10 is 

calculated from the derivative of the regression relationship between τ and MAAT in fig. 1d. We 205 

define emergent domains  as those where the climatological Q10 differs appreciably from short-

term Q10 values (i.e Q10 > 2 or Q10 < 1.4). 
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 210 

 
Fig. 3 A hierarchy of simplified models to explain the cold-climate emergent regime of high 

climatological temperature sensitivities.  In all cases, τ is calculated using daily soil 

temperatures from a land surface model, applying a simplified decomposition function to derive 

daily decomposition rates (k), and inferring τ as the reciprocal of the mean decomposition 215 

function k. (a) Simple Q10=1.5 function evaluated. (b) Arrhenius temperature function. (c) 

Thawed-only Q10=1.5 function evaluated at 10cm depth. (c) Thawed-only Q10=1.5 function 
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averaged over the surface-1m depth interval.  Blue lines are the decomposition function as 

evaluated on MAAT.  Red lines are the best-fit curve and prediction intervals are from fig. 1d.  
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 220 

Fig. 4 A comparison of relationships between soil turnover times and climate as predicted 

by a suite of ESMs and offline land models. Inferred apparent turnover time, τ, calculated as in 

figure 1 and colored by precipitation as in fig 1c, from soil models used in Earth system models. 

(a-f) CMIP5 models, each of which (other than GFDL-ESM2G) use single-layer soil temperature 

control on soil carbon turnover. (g-h) CLM4.5, which calculates vertically-resolved 225 
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decomposition rates.  (g) and (h) differ by varying  a parameter (Zτ) that controls decomposition 

rates with depth independently from resolved temperature, moisture, and oxygen controls (i) 

MIMICS, which treats decomposition as a microbially-enabled and mineral-resolved nonlinear 

model, shows the wide scatter in moist tropical climates as observed, due to its consideration of 

mineralogical control on decomposition.  230 
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Methods 

A central goal of this paper is to use observed spatial gradients in soil carbon turnover, in 

particular the relationship between apparent turnover and temperature, to develop a benchmark 

for dynamical models that are used to make projections of soil carbon storage in response to 

climate change.  We recognize that benchmarks derived from spatial gradients are insufficient to 

constrain transient responses, which is also why the direct use of spatial gradients to extrapolate 

forward in time (so-called space-for-time substitutions) is not possible. However, transient 

models must also make predictions about steady-state differences in soil carbon turnover across 

spatial climate gradients, which reflect a long-term climatological temperature sensitivity. 

Because such gradients are observable, we seek to use this information as a test of the dynamical 

models. We contend that this inverse “time-for-space” substitution can serve as a global, 

observationally-derived benchmark to ask where and whether the underlying processes 

represented in ESMs are consistent with the observations.  We note that the transient dynamics 

predicted by a given model may differ from that model’s steady-state spatial-gradient 

predictions, due to slow processes such as mineral associations that are important in governing 

spatial gradients, and whose transient effects may be highly timescale-dependent. We also note 

that the benchmarking approach here is fundamentally a consistency test, which is a necessary 

but insufficient constraint on model dynamics, that does not imply that any given model 

formulation provides a unique solution. We thus advocate that future experimental work also 

focus on understanding the transient soil carbon dynamics across the world’s climate regimes, 

and in particular focus on monitoring both the productivity and turnover responses to climate 

change. 

Soil carbon stocks are estimated by combining the Harmonized World Soilds Database 

(HWSD)1  and Northern Circumpolar Soil Carbon Database (NCSCD)2 soil carbon maps, using 

NCSCD where overlap occurs, and estimating productivity via the MODIS net primary 

productivity (NPP) product3 (fig. 1a & 1b).  Mean annual air temperatures (MAAT) are 

estimated from the CRU dataset4. Both NPP and soil carbon show relationships with 

temperature, however the log(NPP)-temperature relationship shows a more continuous slope (fig. 

1a) than the log(soil carbon)-temperature relationship (fig. 1b), which shows a clear difference 

between temperate-tropical and a cold-climate soils.  Inferred τ is plotted on a log scale because 

we expect it to have a roughly exponential relationship with temperature, following that of 
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respiration, and spans a range of about 2 orders of magnitude (fig. 1c & 1d). The full global 

dataset (Fig. 1c and S1a) shows a main set of points that span a curve of minimum turnover 

times for a given temperature, with a tail of points extending above this main population. Water 

also exerts a strong control on soil carbon turnover, with reduced decomposition in soils that are 

either dry or saturated. Since our main goal here is to focus on temperature controls to 

decomposition, we seek to separate and mask out those soils that are most strongly affected by 

having either too much or too little water.  

To isolate soils whose decomposition is limited by saturation, we use the thematic 6 

classification in the NCSCD and HWSD databases to exclude those gridcells that have an areal 7 

coverage of more than 50% peat soils, defined as the Histosol soil order or the Histel suborder of 8 

Gelisols (permafrost soils) (fig. S1b). To identify soils whose decomposition is limited by 9 

aridity, we derive the rainfall regime in each gridcell using the GPCC dataset 5 (fig. 1c).  We 10 

note that, while long turnover times are associated with both cold climates or very dry climates, 11 

only the former actually have large organic carbon stocks (fig. S1c). Furthermore, in cold 12 

climates, soils may receive relatively little rainfall but still have abundant moisture because 13 

evaporative demand in these climates is low. Thus, we mask out only those soils where demand 14 

exceeds supply and soils are dry. We calculate the demand as a potential evapotranspiration 15 

(PET) using the MODIS PET product6, and show the inferred τ-temperature relationship as 16 

controlled by precipitation minus PET (fig. S1d).  This supports the expectation that long-17 

turnover low latitude soils are predominantly found in dry climates with a strong moisture 18 

deficit. Finally, we exclude all points where this moisture deficit falls below a threshold level (-19 

1000 mm y-1), to arrive at the filtered dataset that we use to define the regression curve in fig. 1d.   20 

Once the points where τ is not primarily a function of temperature are removed, the 21 

relationship between τ and temperature becomes clear.  The relationship in log(τ) versus 22 

temperature is negative, with positive curvature. Although a linear regression shows high 23 

significance (r2=0.62), it also leaves a residual error with systematic structure. We thus reject a 24 

linear model relating log(τ) to temperature, and find that a quadratic model (fig. 1d, and table S1) 25 

fits the relationship well, with r2=0.68 and little systematic residual bias. Thus, the relationship 26 

between inferred τ and temperature is stronger than the hypothesized exponential in temperature 27 

over the range of climate conditions.  28 
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We calculate the curve in figure 2 based on the derivative of the central relationship in 29 

figure 1b.  Q10 is an exponential notation that is traditionally defined relative to the instantaneous 30 

decomposition parameter k as: 31 

𝑘 𝑇 =  𝑘 𝑇!"# 𝑄!"

!!!!"#
!"  

 32 

The Q10 parameter can therefore be calculated as: 33 

 34 

𝑄!" =
𝑘 𝑇
𝑘!"#

!"
!!!!"#

 

 35 

Since, by definition: 36 

𝑘 =
1
𝜏 

 37 

we can redefine Q10 in terms of τ: 38 

𝑄!" =
𝜏!"#
𝜏 𝑇

!"
!!!!"#  

 39 

and calculate the Q10 at any point along the curve as the derivative of log(τ) with respect to 40 

temperature via: 41 

𝑄!" = 10 !!"! !"# (!)
! !  

 42 

By choosing a polynomial regression in figure 1 of the form: 43 

 44 

log 𝜏 = 𝑎𝑇! + 𝑏𝑇 + 𝑐 

 45 

these equations combine as: 46 

𝑄!" = 10!!"(!!"!!) 

 47 

which is shown in figure 2. 48 
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 49 

We identify in figure 3 a framework to understand the implications of alternate ways of 50 

representing the temperature sensitivity of soil carbon decomposition on resulting spatial 51 

patterns. For results shown in figure 3, we diagnose daily decomposition rate values (k) as a 52 

function of daily soil temperatures, which are taken from a land model, CLM4.5, driven by bias-53 

corrected reanalysis meteorological data (CRU-NCEP, available at 54 

http://dods.ipsl.jussieu.fr/igcmg/IGCM/BC/OOL/OL/CRU-NCEP/ ). We then calculate the 55 

equilibrium τ as the reciprocal of time-averaged k values, and plot log(τ) as a function of the 56 

driving MAAT.  In each case, the k, and therefore τ, values are relative to an arbitrary offset to 57 

align with the central estimate from figure 1d at 15 ˚C. 58 

In the simplest case, we use a fixed Q10 value (Q10 =1.5) across all temperatures, and we 59 

diagnose k and τ using near-surface (10 cm depth) soil temperatures (fig. 3a). Log(τ) values show 60 

the expected linear relationship against air temperature with only two emergent features. First, all 61 

τ values fall slightly below the line relating MAAT to the log(τ) as diagnosed from that MAAT. 62 

This offset is a result of the seasonal cycles in soil temperatures, which give a time-average τ that 63 

is less than τ calculated from time-averaged temperatures, because the shape of the relationship 64 

k=f(T) has a positive curvature.  Secondly there is a step offset at the transition from temperate to 65 

cold climates attributable to the insulating effect of snow, which, where seasonally present, 66 

elevates mean soil temperatures above mean air temperatures 7.   67 

As a next step in complexity, we consider a temperature-dependent Arrhenius-like 68 

relationship8: 69 

𝑘 = 𝑘!"#𝑒
!"#.!" !

!".!"!
!

!!!!".!"  

 as a potentially more realistic model than a fixed Q10 model across all temperatures (Fig. 3b). 70 

Such an approach is a better match to the climatological temperature sensitivity in the cold-71 

climate regime, but fares worse as compared to the observation-based relationship in the warm-72 

climate regime.  We note as well that, particularly in cold climates, the modeled annual-mean τ 73 

values fall well below the blue line that represents the τ evaluated from the annual mean 74 

temperature.  This suggests that such chemical-kinetic factors, on their own, are not responsible 75 

for the observed climatological cold-climate sensitivity. 76 

A third step in complexity is to explicitly consider the role of soil freezing. Freezing is a 

powerful inhibitor of decomposition, and thus we can define the simplest freezing model as one 
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where Q10 is fixed (Q10 = 1.5, as in fig 3a) for thawed soils and ceases in frozen soils (k = 0 when 77 

Tsoil < 0˚C).  This is a simplifying assumption; in natural ecosystems, limited decomposition 78 

occurs even in frozen soils, but the log(τ) versus MAAT resulting from the no-frozen-respiration 79 

case (fig. 3c) is a useful approximation. The result is a slight positive curvature to the 80 

relationship that compensates for the snow insulation offset. But the model still fails to match the 81 

large increase in temperature sensitivity seen in the observations.   82 

The fourth piece of complexity in figure 3 is to consider the vertical variation in soil 83 

temperatures in addition to the seasonal variation. To do this, we diagnose k values at each model 84 

soil level (9 levels) across the 0-1m soil depth interval, and then calculate τ as the reciprocal of 85 

the mean k value averaged both in time and over the depth interval (fig. 3d).  This gives a curve 86 

of log(τ) versus MAAT that approximates the observed one. We note that this behavior arises 87 

from the step-function-like behavior in k=f(T) due to freezing, which gives particularly high 88 

sensitivity to small temperature changes around the freezing point.   89 

Comparing the quadratic regression coefficients for the simplified models shown in figure 3 90 

(table S1 and figure S4), the value of the quadratic parameter increases with each level of 91 

complexity.  While each of the simplified models shown in figure 3 underestimates the curvature 92 

as seen in the observations, only the fourth model begins to approach the observation-derived 93 

curvature in the temperature sensitivity. This emphasizes the importance of representing how 94 

freeze/thaw state scales both temporally and vertically in governing soil carbon decomposition. 95 

For the models shown in figure 4, inferred τ is calculated as the ratio of carbon stocks to 96 

NPP for each model over the recent historical period, in order to match the observation-based 97 

results discussed above, and individual gridcells are colored by a given ESM’s precipitation as in 98 

figure 1c, (fig. 4a-f).  The CMIP5 models used here are listed in table S2. For CMIP5 models 99 

(fig. 4a-4f) and MIMICS (fig. 4i), we diagnose τ using total soil carbon stocks, since the models 100 

do not provide depth-resolved soil carbon output. For CLM4.5 (fig. 4g-4h), we use stocks to 1m 101 

as the carbon stocks in the inferred τ calculation.  We note that the lower boundary for soil 102 

carbon both in the CMIP5 protocol and in any soil model that does not explicitly resolve depth  103 

is not clearly defined, and that there may be errors in correspondence between our comparison of 104 

model output and 0-1m integrated soil carbon stocks which could be reduced by models 105 

explicitly defining the depth integral over which their stocks correspond; nonetheless we believe 106 

this represents the best benchmark on the models. 107 



 

 23 

To create a metric of how well each model captures the pattern in the observed relationship 108 

(Table S1), we use a binned RMSE scoring approach following 9. We first filter all points in each 109 

model using the same P-PET threshold using model-predicted P and MODIS PET as in the 110 

observations (masked data shown fig. S5).  Next, we defined bins of 1˚C MAAT over the 111 

interval of -15.5C to 28.5C, and for each model, took the mean value of log(τ) within each bin to 112 

calculate an error score, e, as the RMSE for each bin i of the model prediction pi relative to the 113 

observational estimate oi of the central estimate from fig. 1 evaluated at the bin center: 114 

𝑒 = 𝑝!! − 𝑜!! 

In addition to the RMSE score, we also report in table S1 quadratic fit parameters between 115 

MAAT and log(τ) for each of the models (regression curves shown in fig. S5), as well as the data 116 

shown in figure 1D. For the regression, we mask arid areas using the same P minus PET criteria. 117 

In all cases, the quadratic coefficient a derived from the regression is less than that from the 118 

observations, and in some cases has the wrong sign; the three models that most closely approach 119 

the magnitude of the quadratic term are GFDL-ESM2G, MIMICS and CLM4.5. We also report 120 

the residual variance in log(τ) after subtracting the regression relationship, for the models and 121 

data. Each of these metrics provides different benchmarking constraints on the dynamical 122 

models; we leave them as separate constraints rather than merging into a single benchmark here. 123 

Each of the models shown in figure 4 has unique characteristics, and some better 

approximate the observed curve than others. Four models (CCSM410, MPI-ESM11, HadGEM21, 

and IPSL-CM5A-LR12) show temperature responses that approximate the simple Q10 

relationship.  The GFDL-ESM2G13 model captures the range in turnover in cold-climates well. 

This model calculates k values based on a function of the mean temperature over a root-profile 

weighted depth interval (E. Shevliakova, personal communication), so includes more 

information about deeper soil climate than models that diagnose k values based only on near-

surface information; however we also note that much of the high cold-climate sensitivity in this 

models appears to be due to a large offset that occurs at around 0˚C, which may also arise from 

the anomalously cold high-latitude soil temperatures in that model14,15. MIROC-ESM16 also 

captures some aspects of the cold-climate sensitivity, particularly over the range of temperatures 

5˚C to -5˚C, which is consistent with its use of the Lloyd-Taylor equation for its temperature 

sensitivity16; however, we note that its temperature sensitivity reverses direction in the -5˚C to -
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10˚C range, and decreases below that. With the exception of MPI-ESM and MIMICS, all models 124 

appear to underestimate the sensitivity of decomposition to dry conditions, as indicated by the 125 

lack of long-turnover soils in arid conditions that is seen in fig. 1c. CLM4.5 tends to 126 

underestimate turnover in the region near MAAT ~-5˚C, which indicates an underestimate on the 127 

limitation of decomposition in warm permafrost conditions in that model. 128 

All data and analysis scripts required to generate figures in this manuscript are available 129 

online at: http://portal.nersc.gov/archive/home/c/cdkoven/www/soil_tau_temp 130 

 131 
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