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Abstract

User elements provide the flexibility to introduce and test novel topologies, interpolation schemes,
material models and element formulations. The user element routines are used to calculate
the element residual equations and their tangent for these formulations. In FEAP the element
equations are expressed as variational equations and the tangent can be obtained by a linearization
with respect to the vector of unknowns. This work leverages the Mathematica toolbox AceGen and
proposes a template to derive user elements for multi-physics problems in an automated manner.
The template is used to demonstrate its applicability for 2D and 3D, static and transient, linear
and nonlinear problems, including coupled field problems, as a part of the examples provided in
this report. The resulting code is verified against traditionally coded elements.

Keywords: AceGen, FEAP, Automatic Differentiation, Coupled problems, Thermal conduction,
Linear elastic, Poroelasticity, neoHookean

1. Introduction

The addition of a new finite element formulation to the program FEAP consists of adding a single
module elmtnn.f [where nn ranges from 01 to 50] as described in the FEAP programmer’s
manual[1].

The minimal structure for a typical module (programmed in Fortran) is given by:

subroutine elmt01(d,ul,xl,ix,tl,s,p,ndf,ndm,nst,isw)

! include & variable definitions

if(isw.lt.0) then

utx(1) = ’Name_U_Want’ ! 15 character naming option

elseif(isw.eq.1) then ! Input material set data

elseif(isw.eq.2) then ! Check input data

elseif(isw.eq.3 .or. isw.eq.6) then ! Compute residual/tangent

elseif(isw.eq.4 .or. isw.eq.8) then ! Output/plot element data

elseif(isw.eq.5) then ! Compute mass matrix

elseif(isw.eq.9) then ! Compute damping matrix

elseif(isw.eq.14) then ! Set non-zero history values

endif

end subroutine elmt01
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The operations carried out within an element module are controlled by the parameter isw with
some of the options indicated in the comments above. For a working element, it is required to
implement at least the options for isw=1,3 and 6. A typical implementation for an element is
based on a set of one or more variational equations associated with a set of governing partial
differential equations that one wishes to solve.

A finite element development requires the description of the interpolating functions (e.g., shape
functions), an appropriate quadrature rule to evaluate spatial integrals, and for transient problems
an appropriate time discretization scheme to render the final problem in algebraic form.[2, 3]

Generally, after all discretizations, a Newton solution scheme is employed to solve the resulting
non-linear algebraic equations. For a complicated set of governing equations the linearization
required in a Newton solution can be tedious to carry out and prone to missed terms and blunders.
This is especially true for the case of multi-physics simulations.

In such cases automated generation of the element residual and its linearization can be used to
simplify the development. AceGen,[4, 5] a system built on Mathematica[6] and tailored to finite
element applications, can be used for this purpose.

This report describes the use of AceGen templates that may be used to generate FEAP element
modules for coupled multi-physics problems. The problems may be linear or non-linear and
transient or quasi-static. The templates described subsequently are devised such that, if desired,
the time integration schemes included in FEAP may be directly utilized.

The report is organized as follows. Section 2 presents a synopsis of the coupled problems
considered. Section 3 presents a summary of the types of the AceGen commands used in the
templates. Section 4 presents the complete set of templates needed to describe the set of weak
forms and the finite element formulations used. Section 5 presents a set of examples to demonstrate
the use of the templates. The examples include a simple single scalar equation for Fourier heat
conduction; a single vector equation for small strain elasticity; a combined vector and scalar
equation for linear poro-elasticity; and a vector equation for finite-strain elasticity. Section 6
provides some closing comments and thoughts.

2. General variational and FEM formulation

The governing equations for a coupled multi-physics problem can be expressed by a set of partial
differential equations (PDE) that are then recast as the pair of weak variational forms

Gui(ui, u̇i, üi, p j, ṗ j, p̈ j; δui) = 0
Hp j(ui, u̇i, üi, p j, ṗ j, p̈ j; δp j) = 0

(1)

∀i = 1,2,⋯,n and ∀ j = 1,2,⋯,m; here, Gui and Hp j are the set of n- and m-variational equations
related to the the vectorial ui and scalar p j fields. Examples of vector fields include displacement
and that of scalar fields include pressure or temperature.

A finite element approximation can be given as

uk = Nak(ξ) ũak and pk = N p
ak
(ξ) p̃ak , (2)

where Nak and N p
ak are shape functions expressed in terms of parent coordinates ξ and ũak and p̃ak

are the nodal values of the degrees of freedom for the vector and scalar fields, respectively. The
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possibility of using different interpolations for the dependent variables can often be motivated by
the need to reduce the possibility of spurious oscillations in solutions.[7] Note, summation over ak

is implied in Eq. (2).

Inserting approximations Eq. (2) into the weak forms in Eq. (1) yields the semi-discrete form

{Ru
rp

} = {0
0} (3)

which may be linearized into a convenient form for using a Newton method as

[Muu Mup

Mpu Mpp
]{d ¨̃uk

d ¨̃pk
} + [Cuu Cup

Cpu Cpp
]{d ˙̃uk

d ˙̃pk
} + [Kuu Kup

Kpu Kpp
]{dũk

dp̃k
} = {Ru

rp
} , (4)

where, the above quantities can be defined individually for each problem of interest. However, if a
time discretization is introduce such that[1, 2]

ũk = c1 ũk ; p̃k = c1 p̃k

d ˙̃uk = c2 dũk ; d ˙̃pk = c2 dp̃k

d ¨̃uk = c3 dũk ; d ¨̃pk = c3 dp̃k ,
(5)

in which the ci are parameters from the time integration scheme used, then (5) becomes an
algebraic equation given by

[Auu Aup

Apu App
]{dũk

dp̃k
} = {Ra

ra
} , (6)

where Axy = c1 Kxy + c2 Cxy + c3 Mxy, and with updates given by

ũi+1
k = ũi

k + dũk and p̃i+1
k = p̃i

k + dp̃k (7)

in which i denotes the iteration number. For linear systems proper discretization should lead to
convergence in one iteration. The variational statements and the finite element approximations are
discussed individually for each problems in Section 2 to Section 4.

3. AceGen operators

An advantage of AceGen[4] is its automated code generation and use of automatic differentiation
methods.[8] In order to enable a seamless communication with Mathematica, AceGen employs
auxiliary variables as an interface between them. These variables are inherently shown as
an array v[i,j] when the expressions are evaluated in Mathematica. In general, there are two
types of auxiliary variables, namely single- and multi-valued variables. While most often
single-valued variables are employed, the cases where if-then-else or do/for constructs are
necessary, a multi-valued variable is necessary. During the point of the code-generation, the
possible active branch of the if-then-else statement is unknown apriori and hence all instances
of the variable(s) of interest for each branch of the statement need to be stored. Here, multi-valued
variables are employed and stored in the AceGen database in the format v[i,j] where the index
j refers to the different instances of the variable v[i]. The above is tailored to a FEAP user
intending to use AceGen to generate elements while a more detailed discussion on the auxiliary
variables can be found on Page 49 of the AceGen manual.[5]

3



In order to define and store the auxiliary variables precisely, AceGen defines four operators.
The general structure of any AceGen statement is given as

LHS operator RHS.

The single-valued variables are defined using the operators ⊧ (or SMSR) and ⊢ (or SMSV) as:

1. v ⊧ exp or SMSR[v,exp]: This is the most generic form of an expression where a new
auxiliary variable is created for the expression on the RHS, if and only if, AceGen
determines that there is a need to introduce a new variable.

2. v ⊢ exp or SMSV[v,exp]: A new auxiliary variable is forcefully created for the LHS,
irrespective of the contents of the expression on the RHS. This is often used when a variable
is declared for the first time where a new auxiliary variable is forced to be created.

Similarly, the multi-valued variables are defined using the operators â (or SMSM) and ⊣ (or SMSS)
as:

1. v â exp or SMSM[v,exp]: This forces the creation of a new auxillary variable irrespec-
tive of the expression on the RHS. It is necessary to use this operator when a multi-valued
variable is used for the first time.

2. v ⊣ exp or SMSS[v,exp]: This operator assigns the new expression to a new instance of
an already created auxiliary variable v. This is used when a variable has already been
created earlier using the â or SMSM operator.

4. Automation of quantity calculations

To use AceGen to create FEAP elements, one needs to define the problem to be solved and
indicate how the model parameters will be read along with defining the finite element method
to be used. In FEAP the flow of the element subroutine is controlled by the isw switch. Section
4.4 illustrates these isw calls. As will be seen later, each isw call includes a reference to
ElementDefinitions[] which defines most of the elemental level calculations. This section
outlines the automation related to the calculation of kinematical, interpolation, and constitutive
quantities. The overall AceGen subroutines are broadly divided into fixed and user-editable input
routines. When assembled together, they are read by AceGen/Mathematica and output a Fortran
subroutine for use with FEAP.

4.1. User-defined inputs

The user-defined inputs described in Template 4.1 form the basis for setting up the parameters for
the numerical solution for the set of PDE’s of interest. The user-defined inputs provide a generic
setup to model problems, including coupling between one or more fields. This primarily includes,
definition of the element topology for one or more of the coupled PDEs, alongside the material
properties, history variables, etc. The parameter elemname defines the name of the routine to be
generated; ndm sets the number of spatial dimensions, i.e. if 2D or 3D; npde defines the number
of PDEs that are being solved.

The element topology is controlled by the variables: elmttype: element topology to be considered
for each PDE; nelu: number of nodes to be considered for each PDE; and du: number of degrees-
of-freedom at each node to be considered for each PDE.

4



The material properties are controlled by three variables, viz. nmatdata specifying the number of
material properties; properties being the list of the names of the material property parameters
and is printed when isw = 1 where isw FEAP’s control switch variable; and matdefdata the
default values for material parameters.

The last set of important element-related inputs includes definition of the number of time-
dependent and time-independent history variables, viz., hist1 and hist3; number of quadrature
points ngp. The variable Tangissymmetric allows one to a select a symmetric or unsymmetric
element tangent matrix, if known apriori.

Template 4.1: User defined inputs (Taken from Poro-elastic example)

1 elemname = ”elmt12”;
2 npde = 2;
3 nelu = {9,4};
4 du = {2,1};
5 elmttype = {”Q2”,”Q1”};
6 ndm = 2;
7 nmatdata = 6;
8 properties = {”Kd−Drained bulk modulus”,”mu−Shear modulus”,”gamma−1/Biot Modulus”,
9 ”kp−permeability”,”alpha−poro parameter”,”rho0−density”};

10 matdefdata = {2.167, 1, 0, 1, 1, 0};
11 hist1 = 0;
12 hist3 = 0;
13 ngp = 9;
14 Tangissymmetric = False;

4.2. User-editable inputs

The recommended user-editable inputs are primarily restricted to the functions ElementDefinitions01[]–
ElementDefinitions04[], each of which include statements that are common for all types of
problems. In the template models below the presence of “. . . ” represents the quantities that need
to be provided by the user and are listed in Sec. 5 for different problems.

4.2.1. ElementDefinitions01[]
The function ElementDefinitions01[], shown in Template 4.2, accounts for the input of
material properties, nodal coordinates and separation of field quantities into appropriate vectors.
The nodal coordinates are extracted as a table / array with dimensions of ndm × nen. Here, ndm
represents the space dimension, i.e. 1D / 2D / 3D; nen represents the number of nodes in the
element topology defined for the primary field. The complete degree-of-freedom table consisting
of the displacement, velocity, acceleration of current and previous timesteps is imported into an
AceGen table of size nst ×6, where nst equals the number of element nodes times the number
of degrees of freedom per node, summed over all fields – i.e., is the dot product of nelu and du

from Template 4.1.

The rest of the function includes separation of the degree-of-freedom table into the field variables,
velocity, and acceleration of the field variables.

Template 4.2: Material properties and kinematical quantities

1 ElementDefinitions01[]:=(
2
3 (* Definition of material properties relevant to the problem *)
4 (* User−defined for problem of interest *)
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5 ...
6
7 (* Nodal coordinates *)
8 XI ⊢ Transpose[Table[SMSReal[nd$$[i,”X”,j]],{i,SMSNoDimensions},{j,nelu[[1]]}]];
9

10 (* Create a table of all d.o.f *)
11 uI ⊢ Transpose[Table[SMSReal[nd$$[i,”at”,j]],{i,6},{j,nst}]];
12
13 (* Separate the displacement / velocity / acceleration of 1st field into separate tables *)
14 (* Separate the displacement / velocity / acceleration of 2nd field into separate tables *)
15 (* Separate the displacement / velocity / acceleration of nth field into separate tables *)
16 (* User−defined for problem of interest *)
17 ...
18
19 (* Convert each separate table into a vector *)
20 (* User−defined for problem of interest *)
21 ...
22
23 (* Join the displacements / velocities / accelerations each into one vector *)
24 (* User−defined for problem of interest *)
25 ...
26
27 );

4.2.2. ElementDefinitions02[]
The function ElementDefinitions02[], shown in Template 4.3, is concerned with the defini-
tions of the interpolations. This is called for each integration point. The parent coordinates of
the integration points (ξg, ηg, ζg) and weights (wg)1 are obtained first and subsequently used to
calculate the values of the shape functions (Ni). The spatial coordinates of the integration points
are obtained through isoparametric mapping:

Xg =
nen

∑
i=1

Ni (ξg, ηg, ζg) Xi . (8)

The Jacobian is determined as

J = [dX
dΞ

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx1

dξ
dx1

dη
dx1

dζ
dx2

dξ
dx2

dη
dx2

dζ
dx3

dξ
dx3

dη
dx3

dζ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

and further the determinant of the Jacobian as det J. Similarly, the fields of interest and their
rate of change in time (i.e. velocity and acceleration) are also interpolated using appropriate
shape function related to the field. This is further illustrated for particular problems of interest in
Sec. 5.

Template 4.3: Definition of the interpolations

1 ElementDefinitions02[]:=(
2

1Values shown are for three dimensions.
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3 (* Initialize variable for Guass quadrature points *)
4 {xi,eta,zeta} ⊢ Table[SMSReal[es$$[”IntPoints”,i,Ig]],{i,3}];
5 If[SMSNoDimensions==2, Chi = {xi,eta}, Chi = {xi,eta,zeta}];
6 (* Define the weights of the integration points *)
7 wgp ⊢ SMSReal[es$$[”IntPoints”,4,Ig]];
8
9 (* Get the shape functions for the primary field (default is 1st) *)

10 (* Note: This is also used to interpolate the coordinates *)
11 Nhu ⊧ NormalShapeFunction[nelu[[1]]];
12
13 (* Interpolate for coordinates of the Gauss point *)
14 X ⊢ SMSFreeze[Nhu.XI];
15 (* Calculate the Jacobian *)
16 JX ⊧ SMSD[X,Chi];
17 (* Determinant of Jacobian *)
18 JXd ⊧ Det[JX];
19
20 (* Interpolate to get the displacement / velocity / acceleration *)
21 (* of the 1st field at the integration point *)
22 (* User−defined for problem of interest *)
23 ...
24
25 (* Get the shape functions for 2nd field *)
26 (* User−defined for problem of interest *)
27 ...
28
29 (* Interpolate to get the displacement / velocity / acceleration *)
30 (* of the 2nd field at the integration point *)
31 (* User−defined for problem of interest *)
32 ...
33
34 (* Get the shape functions for n−nd field *)
35 (* User−defined for problem of interest *)
36 ...
37
38 (* Interpolate to get the displacement / velocity / acceleration *)
39 (* of the n−th field at the integration point *)
40 (* User−defined for problem of interest *)
41 ...
42
43 (* Define the variation of all fields *)
44 (* User−defined for problem of interest *)
45 ...
46
47 );

4.2.3. ElementDefinitions03[]
The function ElementDefinitions03[], shown in Template 4.4, is primarily related to the
definition of the material model of interest. For problems in solid mechanics this includes the
definition of strain in the small or large deformation context, stress and variation of strain required
for the definition of the weak form. This needs to be customized for each problem considered and
is thus not defined explicitly here but demonstrated later for each element of interest.

Template 4.4: Variations, strain, and stress definition

1 ElementDefinitions03[]:=(
2
3 (* Define strain and stress required for the weak form *)
4 (* User−defined for problem of interest *)
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5 ...
6
7 );

4.2.4. ElementDefinitions04[]
The last part of the element that needs to be user-defined is function ElementDefinitions04[]

as shown in Template 4.5. Depending on the problem of interest, the residual resulting from
the weak form of each field can contain one or more terms. The example below considers two
field variables with n-terms (T1,T2,...,Tn) and m-terms (R1,R2,...,Rm), respectively. The
resulting residual terms from each field-variable are joined using the Mathematica Join command.
Concrete example residual terms for various problems are explored in Sec. 5.

Template 4.5: Terms in the weak form

1 ElementDefinitions04[]:=(
2
3 (* Define each term of the weak form *)
4 (* User−defined for problem of interest *)
5 ...
6
7 (* Join all the terms *)
8 (* User−defined for problem of interest: Sample provided here, 2 fields *)
9 Weakform ⊧ Join[T1+T2+...+Tn , R1+R2+...+Rm];

10 );

4.3. Other non-editable inputs (Fixed template)

The data obtained from the user-defined parts of the templates is used in the initialization of the
element including functional arguments. The vector nelu and du include the elemental topology
considered for each field and the degrees of freedom per node, respectively. The dot product of
the two vectors provides the total number of degrees of freedom in the element, which is also the
size of the element’s residual vector and stiffness matrix – nst. Since the template outlined here
does not use the standard AceGen to FEAP generator, it is necessary to define the input-output
arguments for the Fortran element (elmt) routine. A new set of datarules, suitable for the current
template, are defined in the Template 4.6; like all templates in this subsection, it should not be
modified.

Template 4.6: Derived quantities and datarules

1 nst = nelu.du;
2 datarules = {
3 es$$[”Data”,i ] :−> d$$[i], (* material data *)
4 nd$$[i ,”X”,j ] :−> xl$$[i,j], (* nodal coordinates *)
5 nd$$[i ,”at”,j ] :−> ul$$[i,j], (* nodal disp, vel, accel *)
6 s$$[i ,j ] :−> s$$[i,j], (* tangent matrix *)
7 c$$[i ,j ] :−> c$$[i,j], (* damping matrix *)
8 m$$[i ,j ] :−> m$$[i,j], (* mass matrix *)
9 p$$[i ] :−> p$$[i], (* residual *)

10 ed$$[”ht”,i ] :−> ht$$[i], (* history t n *)
11 ed$$[”hp”,i ] :−> hp$$[i], (* history t {n−1} *)
12 es$$[”IntPoints”,i ,j ] :−> gp$$[i,j], (* integration data *)
13 es$$[”id”,”NoIntPoints”] :−> ngpo$$ (* num. Gauss pts *)
14 };
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The element is initialized using the SMSInitialize and SMSTemplate commands. While
AceGen offers the Environment of “FEAP”, this template presented here uses the “User”
Environment to ensure that the above defined novel datarules are considered during the
compilation process. It is important to note that the primary topology of the element is given by
the element topology considered by the first field (also known as the primary field). For example,
in the poro-elastic problem illustrated later, the primary field is considered to be displacements
while pressure is the secondary field.

Template 4.7: Element initialization

1 SMSInitialize[elemname, ”Environment”−>”User”, ”Language”−>”Fortran”];
2 SMSTemplate[
3 ”SMSTopology” −> elmttype[[1]],
4 ”SMSSymmetricTangent” −>Tangissymmetric,
5 ”SMSDomainDataNames” −> properties,
6 ”SMSDefaultData” −> matdefdata,
7 ”SMSUserDataRules” −> datarules
8 ];

All the quantities related to the element are sub-divided and computed in four functions, namely,
ElementDefinitions01[] - 04[], which are encapsulated into the function ElementDefinitions[].
For more elaborate elements additional ElementDefinitionXX[] functions may be defined and
included in ElementDefinitions[].

Template 4.8: Functional call for all element definitions

1 ElementDefinitions[]:=(
2
3 (* Material and kinematical quantities *)
4 ElementDefinitions01[];
5
6 (* Interpolations *)
7 ElementDefinitions02[];
8
9 (* Variations, strains, and stresses *)

10 ElementDefinitions03[];
11
12 (* Construction of the weak form *)
13 ElementDefinitions04[];
14 );

4.4. Automation of FEAP isw calls

FEAP uses the flag isw to request various elemental actions[1]. The following sub-sections outline
the AceGen statements used to automate the generation of the isw-related subroutines. It is
recommended that these AceGen statements be modified only by expert users.

4.4.1. FEAP isw=1

In FEAP, the flag isw=1 is called upon to input the material properties. In addition, this subroutine
also returns the information about the number of PDEs, number of nodes per PDE and number
of degrees-of-freedom per node per PDE. This information is used to define the sizes of the
elemental residual and tangent. An important addition to note includes the export of the array
dofu. This array is a one-to-one map of the standard ordering of the degrees of freedom in FEAP
to the ordering required in the block-matrix structure, shown in Eq. (4).
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Template 4.9: FEAP isw = 1 (Initialize properties)

1 (* Define the user module for ISW 01 *)
2 SMSModule[”ISW01”,Integer[npde$$,du$$[10],nelu$$[10],hist1$$,hist3$$]]
3
4 (* Export all quantities for usage in FEAP *)
5 SMSExport[npde,npde$$];
6 SMSExport[du,du$$];
7 SMSExport[nelu,nelu$$];
8 SMSExport[hist1,hist1$$];
9 SMSExport[hist3,hist3$$];

4.4.2. FEAP isw=3,5,6,9

In FEAP, the flag isw=3 is called upon to calculate the elemental stiffness and residual. In
this regard, the standard “Tangent and residual” module offered by the AceGen environment is
employed with modifications to the input and output arguments of the routine. The option isw=6

is used to compute only the residual; isw=5 to compute only the mass matrix M; and isw=9 to
compute only the damping matrix C. As seen in the Templates 4.10 - 4.13, all the quantities of
interest, namely residual, stiffness / damping / mass matrices are calculated by a loop over all the
integration points.[2, 3, 9, 10, 11] The residual is calculated at each integration point as

R = det J ×wgp × Weakform , (10)

where the term Weakform is calculated in the call to the function ElementDefinitions[] which
is discussed in the subsequent sections on user-editable quantities. These include information
about the interpolation used, material properties and more. The stiffness K, damping C and mass
M matrices are calculated as a derivative of the residual R and given as

K = ∂R
∂x

, C = ∂R
∂ẋ

and M = ∂R
∂ẍ

(11)

where x, ẋ and ẍ are the vectors of unknowns, their velocities, and their accelerations, respectively.
Here, x = [u1,u2, ...,un, p1, p2, ...., pm]T

The variables of interest (like residual etc.) are exported using the SMSExport command.

Template 4.10: FEAP isw = 3 (Tangent and residual)

1 (* Define the module for ISW 03 *)
2 SMSStandardModule[”Tangent and residual”]:=
3 SMSModule[”ISW03”,Real[d$$[nmatdata],xl$$[ndm,nelu[[1]]],ul$$[6,nst],
4 s$$[nst,nst],c$$[nst,nst],m$$[nst,nst],p$$[nst],
5 ht$$[hist1],hp$$[hist3],gp$$[4,ngp]],Integer[ngpo$$]];
6 SMSStandardModule[”Tangent and residual”];
7
8 (* Start loop over all integration points *)
9 SMSDo[Ig,1,SMSInteger[es$$[”id”,”NoIntPoints”]]];

10
11 (* Calculate all quantities required *)
12 ElementDefinitions[];
13
14 (* Calculate and export the elemental residual *)
15 Rg ⊧ JXd*wgp*Weakform;
16 SMSExport[SMSResidualSign Rg,p$$,”AddIn”−>True];
17
18 (* Calculate the stiffness, damping and mass matrices *)

10



19 Kg ⊧ SMSD[Rg,ppf];
20 Cg ⊧ SMSD[Rg,ppvf];
21 Mg ⊧ SMSD[Rg,ppaf];
22
23 (* Export the stiffness, damping and mass matrices *)
24 SMSExport[Kg,s$$,”AddIn”−>True];
25 SMSExport[Cg,c$$,”AddIn”−>True];
26 SMSExport[Mg,m$$,”AddIn”−>True];
27
28 (* End of loop over all the integration points *)
29 SMSEndDo[];

Template 4.11: FEAP isw = 5 (Mass matrix)

1 (* Define the module for ISW 05 *)
2 SMSModule[”ISW05”,Real[d$$[nmatdata],xl$$[ndm,nelu[[1]]],ul$$[6,nst],m$$[nst,nst],p$$[nst],
3 ht$$[hist1],hp$$[hist3],gp$$[4,ngp]],Integer[ngpo$$]];
4
5 (* Start loop over all integration points *)
6 SMSDo[Ig,1,SMSInteger[es$$[”id”,”NoIntPoints”]]];
7
8 (* Calculate all quantities required *)
9 ElementDefinitions[];

10
11 (* Calculate the elemental residual *)
12 Rg ⊧ JXd*wgp*Weakform;
13
14 (* Calculate and export the elemental mass matrix *)
15 Mg ⊧ SMSD[Rg,ppaf];
16 SMSExport[Mg,m$$,”AddIn”−>True];
17
18 (* End of loop over all the integration points *)
19 SMSEndDo[];

Template 4.12: FEAP isw = 6 (Residual)

1 (* Define the module for ISW 06 *)
2 SMSModule[”ISW06”,Real[d$$[nmatdata],xl$$[ndm,nelu[[1]]],ul$$[6,nst],p$$[nst],
3 ht$$[hist1],hp$$[hist3],gp$$[4,ngp]],Integer[ngpo$$]];
4
5 (* Start loop over all integration points *)
6 SMSDo[Ig,1,SMSInteger[es$$[”id”,”NoIntPoints”]]];
7
8 (* Calculate all quantities required *)
9 ElementDefinitions[];

10
11 (* Calculate and export the elemental residual *)
12 Rg ⊧ JXd*wgp*Weakform;
13 SMSExport[SMSResidualSign Rg,p$$,”AddIn”−>True];
14
15 (* End of loop over all the integration points *)
16 SMSEndDo[];

Template 4.13: FEAP isw = 9 (Damping matrix)

1 (* Define the module for ISW 09 *)
2 SMSModule[”ISW09”,Real[d$$[nmatdata],xl$$[ndm,nelu[[1]]],ul$$[6,nst],c$$[nst,nst],p$$[nst],
3 ht$$[hist1],hp$$[hist3],gp$$[4,ngp]],Integer[ngpo$$]];
4
5 (* Start loop over all integration points *)
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6 SMSDo[Ig,1,SMSInteger[es$$[”id”,”NoIntPoints”]]];
7
8 (* Calculate all quantities required *)
9 ElementDefinitions[];

10
11 (* Calculate the elemental residual *)
12 Rg ⊧ JXd*wgp*Weakform;
13
14 (* Calculate and export the elemental damping matrix *)
15 Cg ⊧ SMSD[Rg,ppvf];
16 SMSExport[Cg,c$$,”AddIn”−>True];
17
18 (* End of loop over all the integration points *)
19 SMSEndDo[];

One of the primary advantages of using the Mathematica add-on AceGen rests in using the
command SMSD which performs a symbolic derivative of a quantity. Automatic differentiation
easily allows evaluation of consistent tangent stiffness matrices for complex physical models,
which would otherwise be difficult to evaluate. Consider the function y that is defined via a
composition of functions f(i) depending on an increasing number of precomputed arguments
as:

for i = n+1,m:

v(i) = f(i)( v(1),...,v(i-1) )

y = v(m)

Here each of the functions f(i) are computed and depend on the already computer variables
v(1),...,v(i-1). The variables v(i) ∀ i ∈ {1,2,...,n} are independent variables while
v(i) ∀ i in {n+1,n+2,...,m} are dependent variables. The gradient of any quantity y can be
calculated with respect to the independent variables as

∇y = { ∂y

∂v1
,
∂y

∂v2
, . . . ,

∂y

∂vn
} (12)

This derivative is calculated in one of two modes: forward or backward. A detailed discussion for
both modes of evaluation can be found in the AceGen manual[5] pages 96-98; see also.[12]

5. Numerical examples

In the subsections to follow, a number of concrete examples of the user-defined templates are given.
All examples may accessed at the Github site: https://github.com/bhajay/FEAP-AceGen.
The AceGen generated elements are verified using existing (hand coded) FEAP elements.

5.1. Linear heat conduction

In this section, linear heat conduction is discussed in which the temperature distribution θ (x, y, z)
in a 3D body is determined as a function of the point P (x, y, z) and of time t. The heat conduction
is based on two principles of classical physics

• Heat is transferred from high temperature points to low temperature points of the solid,
depending on the thermal conductivity.
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• The accumulation of heat in a material point increases the temperature at a point, depending
on the specific heat.

At each point P (x, y, z) in the domain, the dependent variable is the temperature θ (x, y, z, t).
Consider an isothermal surface with normal n̂ and passing through P, then the heat flux qn can be
defined as the heat Q per unit surface area and per unit time passing through the surface.

The strong form governing PDE for heat conduction is given as

ρCvθ̇ +∇ ⋅ q = s (13)

where ρ is the mass density, Cv is the heat capacity, and q = −κ∇θ with κ the thermal conductivity
tensor. The governing equations may be expressed in the weak form as

Gθ(θ; δθ) = ∫
V
[ρCvδθ θ̇ +∇δθ ⋅ (κ ⋅ ∇θ) − s δθ] dV + ∫

∂Vt

q δθ dS = 0 (14)

5.1.1. Finite element solution
The finite element approximation may be given as

x = Na(ξ) x̃a and θ = Na(ξ) θ̃a(t) , (15)

where Na are shape functions expressed in terms of parent coordinates ξ, and θ̃a and x̃a are the
nodal values of the temperature and coordinates, respectively.

The discretized version is given as

∑
a
∑

b
∫

V
[ρCvNaδθ̃aNb

˙̃θb +∇Naδθ̃a ⋅ (κ∇Nbθ̃b) − sNaδθ̃a] dV + ∫
∂Vt

qNaδθ̃a dS = 0

⇒∑
a
δθ̃a∑

b
∫

V
[ρCvNaNb

˙̃θb +∇Na ⋅ (κ∇Nbθ̃b) − sNa] dV + ∫
∂Vt

qNa dS = 0

⇒ [∫
V
ρCpNaNb dV]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cab

˙̃θb + [∫
V
ρBT

a κBb dV]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Kab

θ̃b − [∫
V

sNa dV + ∫
∂V

qNa dS ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fa

= 0

(16)

where Cab is the heat capacity or thermal mass matrix, Kab is the conductivity or stiffness matrix,
and fa is the generalized force vector. A Newton solution then may be given as

[Cab] {d ˙̃θb} + [Kab] {dθ̃b} = {Ra} , (17)

If a time discretization is introduce such that[1, 2]

d ˙̃θb = c2 dθ̃b , (18)

then Eq. (17) becomes an algebraic equation given by

[Kab + c2 Cab] {dθ̃b} = {Ra} , (19)

with updates given by
θ̃i+1

b = θ̃i
b + dθ̃b (20)

in which i denotes the iteration number. For linear systems proper discretization should lead to
convergence in one iteration.
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5.1.2. Implementation using AceGen
The above formulation is implemented for a two-dimensional case using AceGen and 4-noded
bilinear isoparametric elements. The implementation details, particularly related to the user-
defined items for the template are outlined below. The Fig. 5.1 shows the user settings for the
element. The value of npde is set to one which represent one variational form presented in

Figure 5.1: User defined inputs.

Eq. (14); the four nodes for the temperature are declared with nelu and elmttype indicates
a bilinear quadrilateral. Each node has one degree of freedom given by du. The element is a
two-dimensional element; ndm equals two. The element uses a four-point integration scheme and
requires three material parameters (nmatdata). The names of the material properties are given in
properties and default data in matdefdata. The present element does not require any history
variables (i.e., hist1=hist3=0).

The variational governing equations, given in Eq. (14), are sub-divided into two terms:

T1 = ρCvδθ θ̇

T2 = ∇δθ ⋅ (κ ⋅ ∇θ)
(21)

where T1 denotes the transient term which will be used to define Cab and, similarly, T2 the thermal
conductivity term used to define Kab; see Fig. 5.2.

Figure 5.2: Terms in the weak form (assuming an isotropic conductivity).

The Fig. 5.3 shows the definitions of the kinematical quantities starting with the definition of the
variable for material properties. The temperature (θI) and rate of change of temperature (θvI) are
obtained by reshaping the degree of freedom table obtained from FEAP. The resulting tables are
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converted individually into vectors (pθ,pθv) representing the vector of unknowns and their rate
of change with time. To maintain uniformity across the various elements presented, these vectors
are also equivalent to the vectors (ppf,ppvf).

Figure 5.3: Material properties and kinematical quantities.

Figure 5.4: Definition of the interpolations.
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In the Fig. 5.4, the interpolations of the field variables are considered. Temperature being the
primary field, its interpolation is considered using the same shape functions as the coordinates (i.e.
Nhu). Both the temperature and its rate of change are interpolated using the shape function Nhu.
Finally, the variations of the field, i.e. δθ, are initialized by applying SMSD to θ.

Most of the user-defined quantities are centralized into the definition of the model. In this problem,
this includes the calculation of the gradient of temperature to aid in the computation of the heat
flux. All the steps involved are depicted here for convenience but the same can be written in
more abridged forms. Here, the optimization is left to AceGen during the code-generation process.

Figure 5.5: Variations, strain and stress definition.

5.1.3. Numerical results: Thermal
The developed element for thermal conduction is verified using two test problems, a steady-
state and a transient problem. In a steady-state problem FEAP automatically sets the nodal rates
and c2 to zero. The results obtained from the described element, generated from AceGen, are
compared with those from the standard FEAP heat conduction element. More information related
to the formulation and problem statement can be found in the FEAP user[13] and example[14]

manuals.

The geometry and boundary conditions for the benchmark problems are as shown in Fig. 5.6. A
linear thermal problem over a square domain of side lengths 5-units is considered. The thermal
material parameters are considered as κ = 10, Cv = 1 and ρ = 0.1. For the case of steady state
analysis, a temperature of T = 1 unit is applied on the entire left boundary and the right boundary
is restrained to have a zero temperature. Alternatively, for the transient analysis, the left side has a
specified unit temperature i.e. (T = 1) suddenly applied at time zero and held constant while the
right boundary is insulated (qn = 0). The top and bottom boundaries are insulated in both cases.

The steady-state problem also has an analytical solution and the temperature shows a linear
variation along the direction of temperature gradient, given as

T (x, y) = 1 − x
5

(22)

and is exactly captured by the solution, as shown in Fig. 5.7. Fig. 5.7a and Fig. 5.7b compare
the results obtained from the AceGen-generated element, outlined above, with the standard FEAP

element.[13]

The solution to the transient problem is shown in Fig. 5.8. Here, again the temperature contour
snapshot is shown at different times, namely t = 0.01, 0.02 and 0.2 units. As shown, there is full
agreement between the solutions obtained from the above outlined AceGen-generated and the
standard FEAP element.
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Figure 5.6: Dimensions and boundary conditions considered for the benchmark problems: Steady state (left) and transient
(right).
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(b) Standard FEAP element

Figure 5.7: Comparison of solution to the steady state thermal problem: Temperature contours obtained using the
AceGen-generated and standard FEAP element.

5.1.4. 3D Linear heat conduction
The 2D element generated, discussed in Section 5.1, for linear heat conduction is extended to 3D
below. A H1-type (8-node hexahedron) trilinear interpolation is proposed for the temperature (θ)
variable. The only changes required in the template are to the user defined inputs as shown in
Fig. 5.9.

Here, the element name is changes to elmt23 for convenience. That apart, the other important
changes include

• nelu - Number of nodes used for the PDE

• elmttype - Element type. See Appendix A for the list of available element topologies

• ndm - Number of dimensions

• ngp - Number of quadrature points

The steady state heat conduction problem, already discussed in 5.1.3 is considered to benchmark
the 3D element. The comparison of results obtained from the standard FEAP element and the
AceGen-generated element is shown in Fig. 5.10.
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 4.0000E-01

 4.5000E-01

 5.0000E-01

 5.5000E-01

 6.0000E-01

 6.5000E-01

 7.0000E-01

 7.5000E-01

 8.0000E-01

 8.5000E-01

 9.0000E-01

 1.0000E+00

 0.0000E+00

             

_________________ DISPLACEMENT  1 

                    Time = 2.0000000E-01
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(f) FEAP (t = 0.2 units)

Figure 5.8: Comparison of solution to the transient thermal problem: Temperature contours obtained using the AceGen-
generated (left) and standard FEAP element (right). The snapshots at three different times, t = 0.01, 0.02 and 0.2 units are
shown.

5.2. Small-strain Elasticity

The underlying principles of linear stress analysis have been studied extensively. The theory of
linear elasticity assumes that

• the deformations are small, and

• the stress-strain relation of materials is linear.

The constitutive equations for the stress, σ for a linear isotropic material is given as

σ = 2µ ε + λ(trε)1 , (23)
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Figure 5.9: User defined inputs for 3D thermal element.
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(b) Standard FEAP element

Figure 5.10: Comparison of solution to the 3D steady state thermal problem: Temperature contours obtained using the
AceGen-generated and the standard FEAP element – looking at one face of a cubic extension of the 2D test problem.

where ε is the linear strain, µ is the shear modulus and λ is the Lamé parameter.

The governing equations may be expressed in weak form as

Gu(u; δu) = ∫
V
[δuT (ρ ü − b) + δεTσ] dV − ∫

∂Vt

δuT t̄ dS = 0 , (24)

where t = σn is the boundary traction.

5.2.1. Finite element solution
The finite element approximation may be given as

x = Na(ξ) x̃a and u = Na(ξ) ũa , (25)

where Na are the shape functions expressed in terms of parent coordinates ξ, and ũa and x̃a are
the nodal values of the displacements and coordinates respectively.

The strain may be expressed, assuming summation convention, by

ε = Ba ũa , (26)
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where for the two-dimensional plane strain case considered here, the Ba matrix is defined
by

Ba =
⎡⎢⎢⎢⎢⎢⎣

Na,x 0
0 Na,y

Na,y Na,x

⎤⎥⎥⎥⎥⎥⎦
. (27)

Inserting the approximations into the weak forms Eq. (24) yields the semi-discrete form

Gu = δũT
a [Mab ¨̃ub + Pa − fa] = 0 , (28)

where Mab, Pa and fa are defined by

Mab = ∫V Na ρNb dV I ,

Pa = ∫V BT
aσdV ,

fa = ∫V Nab dV + ∫∂Vt
Na t̄ dS .

(29)

A Newton solution then may be given as

[Mab] {d ¨̃ub} + [Kab] {dũb} = {Ra} , (30)

where, in addition to quantities defined above,

Kab = ∫V BT
a DBb dV ,

Ra = fa − Pa −Mab ¨̃ub .
(31)

If a time discretization is introduce such that[2, 1]

d ¨̃ub = c3 dũb , (32)

then Eq. (31) becomes an algebraic equation:

[Kab + c3 Mab] {dũb} = {Ra} , (33)

with updates given by
ũi+1

b = ũi
b + dũb (34)

in which i denotes the iteration number. For linear systems proper discretization should lead to
convergence in one iteration.

5.2.2. Implementation using AceGen
The above formulation is implemented using AceGen using a bilinear interpolation for the
displacement (u) variable. The implementation details, particularly related to the user-defined
items for the template are outlined below. Figure 5.11 shows the user settings for the element. The
value of npde is set to one which represent one variational form presented in Eq. (24); the element
has four nodes for the represented by nelu and elmttype selects a bilinear quadrilateral. Each
displacement node has two degrees of freedom given by du. The element is a two-dimensional
element; ndm equals two. The element uses a four-point integration scheme and requires two
material parameters (nmatdata). The names of the material properties are given in properties
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Figure 5.11: User defined inputs.

and default data in matdefdata. The present element does not require any history variables (i.e.,
hist1=hist3=0).

The variational governing equations given in Eq. (24) are sub-divided into two terms:

T1 = ρ (δuT ⋅ ü)
T2 = δεT ⋅σ

(35)

Figure 5.12: Terms in the weak form.

The Fig. 5.13 shows the definitions of the kinematical quantities and the variables for the material
properties. The displacement (uT), velocity (vT), and acceleration (aT) are obtained by reshaping
the degree of freedom table obtained from FEAP. While velocity is not required for this prob-
lem, it is added for completeness. The resulting tables are converted individually into vectors
(pu,pv,pa) representing the vector of unknowns, their velocities and accelerations. To maintain
uniformity across the various elements presented, these vectors are also equivalent to the vectors
(ppf,ppvf,ppaf).

In Fig. 5.14, the interpolations of the field variables are considered. The displacements and
coordinates use the same interpolation or shape functions (i.e. Nhu), likewise for the velocity, and
acceleration. Finally, the variations δu are set using SMSD.

Most of the user-defined quantities are centralized into the definition of the material model. All
the steps involved are depicted here for convenience but the same can be written in more abridged
forms. Here, the optimization is left to AceGen during the code-generation process.
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Figure 5.13: Material properties and kinematical quantities.

Figure 5.14: Definition of the interpolations.
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In the small-deformation elasticity problem, the strains (ε) are defined as the symmetric part of
the displacement gradient (Du) and given as

ε = 1
2
( ∂u
∂X

+ ∂u
∂X

T

) . (36)

The strain is further split to define a volumetric part (θ):

θ = ε [[1,1]] + ε [[2,2]] . (37)

Figure 5.15: Variations, strain and stress definition for 2D plane strain.

As shown in Fig. 5.15, the stress given in Eq. (23) is calculated as sig2 and constructed into Voigt
notation in sigv. The other term required for the weak form, given in Eq. (35), is δε.

5.2.3. Results: Small-strain elasticity
The developed element for linear elasticity is verified using two test problems, a quasi-static and
a dynamic problem. The results obtained from the described element, generated from AceGen

is compared with the standard FEAP element. More information related to the formulation and
problem statement can be found in the FEAP user[13] and example[14] manuals.

The geometry and boundary conditions for the benchmark problems are as shown in Fig. 5.16. A
square (with side lengths of 200 units) which has a central circular hole (with radius 10 units) is
considered. The left and right boundary surfaces are subjected to a uniform normal loading. Due
to the symmetry of the problem only one quadrant is modeled and symmetry boundary conditions
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are imposed as

u1 = 0; on x1 = 0
u2 = 0; on x2 = 0

It is important to note here that the same geometry and boundary conditions are used for verifica-
tion in the rest of this report. The top of the quadrant is traction free.

Figure 5.16: Geometry and boundary conditions considered for all mechanics problems.

The material parameters are considered as Young’s modulus E = 10000 units and Poisson ratio
ν = 0.25. In the case of dynamic analysis, an additional parameter, density ρ = 21 units is
also considered. For both analyses, a traction of 450 units is applied on the right face. For the
dynamic case, the loading is applied proportionally over the first 1 unit of time and then held
constant.

Fig. 5.17 shows a comparison of the quasi-static results obtained from the AceGen-generated
element, outlined above, with the standard FEAP element.[13]

The solution to the dynamic problem is shown in Fig. 5.18 and Fig. 5.19 for displacements u1
and u2 respectively. Here, again the displacement contour snapshots are shown at different times,
namely t = 1,2 and 3 units. As shown, there is a complete agreement between the solutions
obtained from the above outlined AceGen-generated and the standard FEAP element.

5.3. Poro-elasticity

Poroelastic problems arise in many interesting areas of engineering and science, ranging from
classical civil engineering to modern biological sciences. The dominant presentation of poroelas-
ticity is generally attributed to the efforts of Biot[15, 16] and countless subsequent studies. As a
computational problem poroelasticity, even in the linear setting, presents interesting challenges
due to the unique nature of the coupling between the variation in fluid content and the deforma-
tion of the media. In particular, it is well-known that in a finite element setting the governing
field equations are most effectively interpolated with continuous but unequal orders for the pore
pressure and the displacements. The first apparent recognition of this point appears in Sandhu
and Wilson,[17] where a T6/T3 element was proposed (continuous quadratic displacements with
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Figure 5.17: Comparison of solution to the quasi-static problem: Displacement contours obtained using the AceGen-
generated (left) and standard FEAP element (right).

continuous linear pressures) for seepage problems. Later Hood and Taylor[18] introduced a Q8/Q4
variant within the context of solving the Navier-Stokes equations; see also Huyakorn et al.,[19]

where the Q9/Q4 extension of this element appears. The challenge of the numerical problem to
this date still attracts continued attention.[20]

The programming of such elements while straightforward can be tricky and tedious to get correct
and error free, making the use of AceGen an attractive option.

5.3.1. Linear poroelasticity: Theory
The constitutive equations for the stress, σ, and variation in fluid content, ζ, in a linear isotropic
poroelastic material are given by[21]

σ = 2G ε + (K(d) − 2
3G)(trε)1 − α p 1

ζ = α (trε) +Υ p ,
(38)

where ε is the linear strain and p is the pore pressure. The volumetric fluid flux, q, is given
by

q = −k∇p . (39)

The required material parameters to define the model are given by the elastic shear moduli G and
drained bulk modulus K(d), the Biot modulus M = 1/Υ, the Biot coefficient α, and the permeability
k. The relationship between the undrained and drained bulk modulus is given by

K(u) − K(d) = α2M . (40)
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Figure 5.18: Comparison of solution to the dynamic problem: Displacement (u1) contours obtained using the AceGen-
generated (left) and standard FEAP element (right). Snapshots at three different times, t = 1, 2 and 3 units.

We also note that the Skempton compressibility index is defined for isotropic materials by

B = 1
α

(1 − K(d)

K(u)
) . (41)

The governing differential equations are given by linear momentum balance

divσ + b = ρ ü (42)

and, using the second of Eq. (38), fluid balance

ζ̇ = Υ ṗ + αdivu̇ = −divq . (43)
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Figure 5.19: Comparison of solution to the dynamic problem: Displacement (u2) contours obtained using the AceGen-
generated (left) and standard FEAP element (right). Snapshots at three different times, t = 1, 2 and 3 units.

5.3.2. Variational equations
The governing equations may be expressed in terms of the pair of weak forms

Gu(u, p; δu) = ∫
V
[δuT (ρ ü − b) + δεTσ] dV − ∫

∂Vt

δuT t̄ dS = 0

Gp(u, p; δp) = ∫
V
[δp (Υ ṗ + αdivu̇) − (∇δp)T q] dV + ∫

∂Vp

δp q̄ dS = 0 ,
(44)

where t = σn is the boundary traction and q = qT n is the normal boundary flux; an over-bar
denotes a specified value.
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5.3.3. Finite element solution
A finite element approximation for the theory presented above may be given as

x = Na(ξ) x̃a ; u = Na(ξ) ũa(t) and p = N p
a (ξ) p̃a(t) , (45)

where Na and N p
a are shape functions expressed in terms of parent coordinates ξ, and ũa, x̃a, and

p̃a are nodal values of the coordinates, displacements, and pressure, respectively. The possibility
of using different interpolations for the dependent variables is motivated by a need to reduce the
possibility of spurious oscillations in solutions.[7] The strains and gradient of the pressure may be
expressed, assuming summation convention, by

ε = Ba ũa and ∇p = ba p̃a , (46)

where for the two-dimensional plane case considered here, the Ba and ba matrices are defined
by

Ba =
⎡⎢⎢⎢⎢⎢⎣

Na,x 0
0 Na,y

Na,y Na,x

⎤⎥⎥⎥⎥⎥⎦
and ba = [

N p
a,x

N p
a,y

] . (47)

Inserting the approximations into the weak forms Eq. (44) yields the semi-discrete form

Gu = δũT
a [Mab ¨̃ub + Pa − fa] = 0

Gp = δ p̃a [Cab ˙̃pb +Gab ˙̃ub − Ja] = 0 ,
(48)

where Mab, Pa, fa, Cab, Gab and Ja are defined by

Mab = ∫V Na ρNb dV I; Pa = ∫V BT
aσdV

Cab = ∫V NaΥ Nb dV; Gab = ∫V N p
a αbT

b dV

fa = ∫V Nab dV + ∫∂Vt
Na t̄ dS ; Ja = ∫V bT

a q dV − ∫∂Vp
N p

a q̄ dS .

(49)

A Newton solution then may be given as

[Mab 0
0 0]{

d ¨̃ub

d ¨̃pb
} + [ 0 0

Gab Cab
]{d ˙̃ub

d ˙̃pb
} + [Kab −Qab

0 Hab
]{dũb

dp̃b
} = {Ra

ra
} , (50)

where, in addition to quantities defined above

Kab = ∫V BT
a DBb dV ; Hab = ∫V k bT

a bb dV ;

Qab = ∫V ba αN p
b dV = GT

ba ; ra = Ja −Cab ˙̃pb +Gab ˙̃ub ;

Ra = fa − Pa −Mab ¨̃ub .

(51)

If a time discretization is introduce such that[2, 1]

d ˙̃ub = c2 dũb ; d ¨̃ub = c3 dũb and d ˙̃pb = c2 dp̃b , (52)

then Eq. (51) becomes an algebraic equation given by

[Kab + c3 Mab −GT
ba

c2Gab Hab + c2 Cab
]{dũb

dp̃b
} = {Ra

ra
} , (53)
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with updates given by
ũi+1

a = ũi
a + dũa and p̃i+1

a = p̃i
a + dp̃a , (54)

in which i denotes the iteration number. For linear systems proper discretization should lead to
convergence in one iteration.

5.3.4. Implementation using AceGen
The above formulation is implemented using AceGen to produce a (Q9/Q4) Taylor-Hood type
interpolation with bi-quadratic displacements (u) and bilinear pressures (p). The implementation
details, particularly related to the user-defined items for the template are outlined below.

Figure 5.20 shows the user settings for the element. The value of npde is set to two which
represent the two variational forms presented in Eq. (44); nelu indicates 9 nodes for the first
field (displacements) and 4 nodes for the second field (pressures); elmttype indicates the use
of a biquadratic quadrilateral for the first field and a bilinear quadrilateral for the second field.
Each displacement node has two dofs and each pressure node has one dof, as indicated by du.
The element is a two-dimensional element as indicated by the value of ndm. The element uses a
nine-point integration scheme and requires six material parameters (nmatdata). The names of
the material properties are given in properties with default values in matdefdata. The present
element does not require any history variables (i.e., hist1=hist3=0). Note, the tangent matrix is
declared to be unsymmetric by setting Tangissymmetric to False.

Figure 5.20: User defined inputs.

The variational equations given in Eq. (44) are sub-divided into four terms, two related to
displacement and two to pressure:

T1 = ρ (δuT ⋅ ü)
T2 = δεT ⋅σ
T3 = δp (Υṗ + αdivu̇)
T4 = −(∇δp)T q = k(∇δp)T(∇p)

(55)
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This is encoded into ElementDefinitions04[] as shown in Fig. 5.21.

Figure 5.21: Terms in the weak form.

Figure 5.22 shows the definitions of the kinematical quantities and the material properties. The
displacement (uT,pT), velocity (vT,pvT), and acceleration (aT,paT) are obtained by reshaping
the degree of freedom table obtained from FEAP. The resulting tables are converted individually
into vectors (pu,pv,pa,pp,ppv,ppa) and the individual vectors are further joined into a single
vector (ppf,ppvf,ppaf). Thus, the vectors (ppf,ppvf,ppaf) represent the vector of unknowns,
their velocities and accelerations, respectively.

In Fig. 5.23, the interpolations of the field variables are considered. Displacement being the
primary field, its interpolation is considered using the same shape functions as the coordinates (i.e.
Nhu). The displacements, velocity, and accelerations are all interpolated using the shape function
Nhu.

A second set of shape functions, related to the 4-node quadrilateral element topology is defined as
Nhp The second field, here, namely pressure p (and its first and second time-derivatives, i.e. ṗ
and p̈) are interpolated using these new shape functions.

Finally, the variations of the fields, i.e. δu and δp are defined via SMSD.

Most of the user-defined quantities are centralized into the definition of the material model shown
in Fig. 5.24. This includes the definition of strains and stresses. All the steps involved are depicted
here for convenience but the same can be written in more abridged forms. Here, the optimization
is left to AceGen during the code-generation process.

In the small-deformation poro-elasticity problem, the strains (ε) are defined as the symmetric part
of the displacement gradient (Du) and given as

ε = 1
2
( ∂u
∂X

+ ∂u
∂X

T

) . (56)

The strain is further decomposed into volumetric (θ) and deviatoric part (εd) as

θ = ε [[1,1]] + ε [[2,2]]
εd = ε − (1/3)θ I .

(57)

The stress given in Eq. (38) is calculated as sig2 and constructed into Voigt notation in sigv.
The other terms required for the four terms of the residual, given in Eq. (55), include div u̇ (divv),
∇p (gradp), ∇δp (graddp) and δε (δε).
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Figure 5.22: Material properties and kinematical quantities.

5.3.5. Results: Linear poroelasticity
In order to verify the AceGen generated FEAP element, two benchmark problems, namely the
Mandel and Consolidation problems, are considered.

Mandel problem. In the theory proposed by Biot,[15] Mandel showed that when a soil is loaded
by a constant load, the pore-pressure can initially increase before decreasing to a final value of
zero. This effect, later came to be known as the Mandel-Cryer effect and was also confirmed
experimentally.[22, 23] Mandel[24] and others[25, 26] have presented a set of three problems to discuss
this non-monotonic variation of pore-pressure in porous media, one of these problems is considered
here.

As shown in the Fig. 5.25, an infinitely long (out of the plane) rectangular plate of width 2a is
sandwiched between two rigid and frictionless plates. Additionally, drainage is allowed on the
two lateral sides, which are stress free. A generalized plane strain condition is considered by
preventing any deformation or flux in the direction perpendicular to the plane. At time t = 0,

31



Figure 5.23: Definition of the interpolations.

a vertical force F is applied and remains constant. At the instant of loading, the pore pressure
is homogeneous while instantaneously it drops to zero at the two sides, i.e. ∣x∣ = a. Since the
pressure is constant in the vertical direction, a single row of 25 elements is used for the analysis
(employing symmetry).

The material properties are: Shear modulus: (G = 1); drained Poisson ratio: (ν(d) = 0.2);
permeability: k = 1; density: (ρ = 0); and Skempton coefficient: (B = 1). Two cases are
considered: Compressible (with ν(u) = 0.4) and incompressible (with ν(u) = 0.5).

The non-dimensional pressure is compared to the analytical solution given by Cheng and
Detournay.[27, 28] The non-dimensional pressure as a function of the distance from the center
of the plate is shown for the incompressible and compressible cases in Fig. 5.26; the FEA results
(open-circles) are seen to match the analytic solution (solid lines) well.

Consolidation problem. As a second verification example we look at the time dependent consoli-
dation problem proposed by Booker and Small[29] for modeling surface footings on horizontally
layered soils on a rigid base. The example considered here is an infinite finite depth strip sub-
jected to periodic uniform loading as shown in Fig. 5.27a. Due to symmetry the region modeled
is shown in Fig. 5.27b. The imposed boundary conditions are: ux(0, y) = ux(B, y) = 0 and
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Figure 5.24: Variations, strain and stress definition for the 2D plane strain case.

Figure 5.25: Geometry for the Mandel problem.

τxy(0, y) = τxy(B, y) = 0. At the bottom a rough condition is assumed with ux(x, 0) = uy(x, 0) = 0.
The top surface is considered to be permeable with p(x,h) = 0 and an applied normal traction of
q0 for 0 < x < b.

The material parameters considered for the analysis are G = 1, ν(d) = 0.3, k = 1, α = B = 1 and
ρ = 0. The geometry is modeled with a mesh of 40 × 40 elements. The geometric ratio for B:b is
considered for two values: 1:1 and 2:1. The applied load is q0 = −1. The resulting dimensionless
time settlement behavior at (x, y) = (0,h) is shown in Fig. 5.28a.
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(a) Incompressible (b) Compressible

Figure 5.26: Comparison of analytical solution (solid lines) with FEA solution from FEAP using the Q9/Q4 element

generated by AceGen (circles). Time labels t′ correspond to non-dimensional time t′ = t kG
a2 [ 2

3
B
α

1+ν(u)
1−ν(u)

1−ν(d)
1−2ν(d) ].

b

2B

h

y

x

(a) Actual geometry
(b) Geometry with boundary conditions

Figure 5.27: Geometry and boundary conditions considered for the Booker problem.

(a) Non-dimensional displacement (b) Pressure variation

Figure 5.28: Consolidation problem: (left) Dimensionless settlement vs. time. Red markers FEAP result with AceGen
Q9/Q4 element. Solid lines from Booker and Small.[29] (right) Comparison of pore pressure at the center line for a Q4
element with equal order interpolation vs. Q9/Q4 Taylor-Hood interpolation.

Fig. 5.28a shows that the time settlement behavior changes dramatically with the B:b ratio.
Fig. 5.28b shows the excess pore pressure at the center line of the domain and its variation with
depth. A Q4 element (dashed curve) shows significant oscillations and instability as compared to
the solutions from the Q9/Q4 element (solid red line).
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The programming of a Taylor-Hood element for this problem is modestly complex, and AceGen
is a significant aid in this regard.

5.4. Finite-strain Elasticity
As a final example we consider now a geometrically and materially nonlinear problem. A primary
characteristic of rubber-like materials is their ability to sustain large reversible deformations under
the action of forces. Some of the major observable features of the stress-strain response of these
materials include

• an ability to sustain large and reversible stretches of orders of up to 7 or more,

• a maximum stress at such large deformations on the order of a few MPa,

• a stress-strain behavior that is non-linear,

• a material behavior that is largely incompressible.

In this work, two hyperelastic models are implemented. First, the simplest model for the non-linear
elastic response of an isotropic (nearly) incompressible rubber-like material, the neo-Hookean [30]

material model, is considered. The model is based on Gaussian statistics and molecular network
theory and the free energy function is given to be

Ψ = κ

2
(J − 1)2 + µ

2
(I1 − 3) . (58)

The second hyperelastic model is the Yeoh model [31] and the free energy function is given to
be

Ψ = κ

2
(J − 1)2 + µ

2
[(I1 − 3) + k1 (I1 − 3)2 + k2 (I1 − 3)3] . (59)

where κ and µ are the Bulk and Shear moduli of the material, I1 = J−2/3I1 with I1 is the first-
invariant of the right Cauchy-Green deformation tensor C = FT F, and F is the deformation
gradient. In (58) and (59) we employ, for illustration purposes, the commonly used quadratic
volumetric energy 1

2(J − 1)2 but recognize that it has incorrect energy growth characteristics as
J → 0.

The governing equations, in the reference configuration, may be expressed in weak form as

Gu (u, δu) = ∫
V
[δuT ⋅ (ρü −B) + P ∶ δF] dV − ∫

∂Vt

δuT ⋅T dS = 0 , (60)

where P = ∂Ψ/∂F is the first Piola-Kirchhoff, B is the applied body force, and T is the applied
traction.

5.4.1. Finite element solution
The finite element approximation may be given as

x = Na(ξ) x̃a and u = Na(ξ) ũa , (61)

where Na are the shape functions expressed in terms of parent coordinates ξ, and ũa and x̃a are
the nodal values of the coordinates and displacements respectively. Inserting the approximations
and converting to semi-discrete form as earlier, a Newton solution then may be given as

[Mab] {d ¨̃ub} + [Kab] {dũb} = {Ra} , (62)
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where the mass and stiffness, Mab and Kab, respectively, are given as appropriate variations of
Eq. (60).[3] If a time discretization is introduced such that[2, 1]

d ¨̃ub = c3 dũb , (63)

then Eq. (62) becomes an algebraic equation given by

[Kab + c3 Mab] {dũb} = {Ra} , (64)

with updates given by
ũi+1

b = ũi
b + dũb (65)

in which i denotes the iteration number. For linear systems proper discretization should lead to
convergence in one iteration.

5.4.2. Implementation using AceGen
The above formulation is implemented using AceGen using a 4-node bilinear quadrilateral type
interpolation for the displacement (u) variable. The implementation details, particularly related
to the user-defined items for the template are outlined below. Figure 5.29 shows the user settings
for the element using the neo-Hookean model. The value of npde is set to one which represent
one variational form presented in Eq. (60); nelu is 4, for four nodes, and elmttype is set to the
AceGen code Q1 for a 4-node quadrilateral. Each displacement node has two degrees of freedom
given by du. The element is a two-dimensional element; thus ndm is set equal to two. The element
uses a four-point integration scheme and requires two material parameters (nmatdata). The
names of the material properties are given in properties and default data in matdefdata. The
present element does not require any history variables (i.e., hist1=hist3=0) and the tangent
will be symmetric due to the variational structure of the model. The changes made for the Yeoh

Figure 5.29: User defined inputs (neo-Hookean)

model are in the element name, material property names, and default values. This is as shown in
Fig. 5.30

For simplicity, the implementation here only considers the quasi-static case. Thus, only the stress
term will be needed in the AceGen weak form definition

T1 = δF ∶ P . (66)
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Figure 5.30: User defined inputs (Yeoh).

Figure 5.31: Terms in the weak form.

Figure 5.32 shows the definitions of the kinematical quantities starting with the setting of the
material properties. The displacement (uT), velocity (vT) and acceleration (aT) are obtained by
reshaping the degree of freedom table obtained from FEAP. While velocity and acceleration are
not required for our quasi-static elastic case, they are added for completeness. The resulting tables
are converted individually into vectors (pu,pv,pa) representing the vector of unknowns, their
velocities, and accelerations. To maintain uniformity across the various elements presented, these
vectors are also equivalent to the vectors (ppf,ppvf,ppaf).

In the Fig. 5.33, the interpolations of the field variables are considered. Displacement is interpo-
lated using the same shape functions as the coordinates (i.e. Nhu), as are velocity and accelerations
(albeit not needed here). Finally, the variation δu is set using SMSD.

Most of the user-defined quantities are centralized into the definition of the material model.
This includes the definition of strains and stresses. All the steps involved are depicted here for
convenience but the same can be written in more abridged forms. Here, the optimization is left
to AceGen during the code-generation process. In the context of large-deformation mechanics,
the material model is defined based on the deformation gradient (Fg), defined as sum of the
displacement gradient (Du) and the identity:

F = I + ∂u
∂X

. (67)

The deformation gradient is further used to calculate the right Cauchy-Green deformation tensor
C = FT F and the Jacobian as J = det F. The strain-energy density, given in Eq. (58), is used to
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Figure 5.32: Material properties and kinematical quantities.

Figure 5.33: Definition of the interpolations.

compute the first Piola-Kirchhoff stress, PK as P = ∂Ψ/∂F and stored in Voigt notation in PKv.

38



Figure 5.34: Variations, strain and stress definition (neo-Hookean) for 2D plane strain.

The only change in ElementDefinitions03 for the Yeoh model is in the free energy density
function and shown in Fig. 5.35

Figure 5.35: Free-energy density for Yeoh model.

It is pertinent to note here for the hyperelastic elements, the deformation gradient F is expanded
from 2 × 2 to 3 × 3 by addition of zeros and ones. The material models are formulated in 3D. At
the end, a 2D first Piola-Kirchhoff stress is extracted. The process is as shown in Fig. 5.34 and
Fig. 5.35.

5.4.3. Results: Hyperelastic
The developed neo-Hookean and Yeoh elements are verified using a quasi-static test problem.
The displacement contours obtained from the described element, generated from AceGen are
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compared with those from a standard FEAP element. More information related to the formulation
of the finite elasticity element in FEAP can be found in the FEAP user manual.[13]

The geometry and boundary conditions for the benchmark problems are as shown, earlier, in
Fig. 5.16. As earlier, a square (with side lengths of 200 units) which has a central circular hole
(with radius 10 units) is considered. The left and right boundary surfaces are subjected to a
uniform normal loading. Due to the symmetry of the problem only one quadrant is modeled and
symmetry boundary conditions are imposed as

u1 = 0; on x1 = 0
u2 = 0; on x2 = 0 .

The material parameters are considered as Young’s modulus E = 10000 units and Poisson ratio
ν = 0.25. For the Yeoh model, we take k1 = 1000 and k2 = 100. A traction of 4500 units is applied
on the right face.

Figures 5.36 and 5.37 shows a comparison of the results obtained from the AceGen-generated
element with neo-Hookean and Yeoh models, outlined above, with the standard FEAP element;[13]

the results are seen to be identical.
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Figure 5.36: Comparison of solution to the quasi-static neo-Hookean problem: Displacement contours obtained using the
AceGen-generated (left) and standard FEAP element (right).
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Figure 5.37: Comparison of solution to the quasi-static problem with the Yeoh model: Displacement contours obtained
using the AceGen-generated (left) and standard FEAP element (right).

6. Closure

This report outlines an automated computational approach to generate user elements for FEAP. The
templates described above present the framework to generate elements for non-linear, transient,
multi-physics problems. The specification of the problem is simplified by using the standard
time integration algorithms included within FEAP. In this form, the linearization of the residual
equations is split to describe consistent tangents for stiffness, damping, and mass arrays separately.
The use is illustrated for both linear and nonlinear problems. The templates, generated user
elements, and examples presented in this report can be obtained from the Github repository
FEAP-AceGen v1.0.1 (https://github.com/bhajay/FEAP-AceGen). In this work, the
post-processing module, i.e. for isw=4,8, was omitted for simplicity.

Appendix A. Element Topology

The variable elmttype is used to identify the element topology. Tables A.1 – A.3 list the available
options.

41

https://github.com/bhajay/FEAP-AceGen


Table A.1: One-dimensional elements

elmttype nelu ngp
(recommended) Description

D1 2 2 Two nodes connected in 1-D
D2 3 3 Three nodes connected in 1-D
L1 2 2 Straight line segment with two nodes in 2-D
L2 3 3 Curve with three nodes in 2-D
C1 2 2 Straight line segment with two nodes in 3-D
C2 3 3 Curve with three nodes in 3-D
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Table A.2: Two-dimensional elements

elmttype nelu ngp
(recommended) Description Connectivity

T1 3 3 Three-noded triangle in 2-D

T2 6 4 Six-noded triangle in 2-D

Q1 4 2 x 2 Four-noded quadrilateral in 2-D

Q2 9 3 x 3 Nine-noded quadrilateral in 2-D

Q2S 8 2 x 2 Eight-noded quadrilateral in 2-D

P1 3 3 Three-noded triangle in 3-D

P2 6 4 Six-noded triangle in 3-D

S1 4 2 x 2 Four-noded quadrilateral in 3-D
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Table A.2: Two-dimensional elements

elmttype nelu ngp
(recommended) Description Connectivity

S2 9 3 x 3 Nine-noded quadrilateral in 3-D

S2S 8 2 x 2 Eight-noded quadrilateral in 3-D

Table A.3: Three-dimensional elements

elmttype nelu ngp Description Connectivity

O1 3 4 Four-noded tetrahedron

O2 6 5 Ten-noded tetrahedron

H1 4 2 x 2 x 2 Eight-noded hexahedron

H2 9 3 x 3 x 3 Twenty seven-noded hexahedron
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Table A.3: Three-dimensional elements

elmttype nelu ngp Description Connectivity

H2S 8 2 x 2 x 2 Twenty-noded hexahedron
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