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loop diagrams resulting from the exchange of both heavy and light fields, as some confusion

has recently arisen in the literature. To efficiently evaluate functional traces containing

these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE)
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The technique is detailed in an appendix, so that it can be read independently from the

rest of this work. We review the well-known matching procedure to one-loop order with

functional methods. What we add to this story is showing how to isolate one-loop terms

coming from diagrams involving only heavy propagators from diagrams with mixed heavy

and light propagators. This is done using a non-local effective action, which physically

connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a

CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We

demonstrate the methodologies by several explicit example calculations.
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1 Introduction

The purpose of this paper primarily concerns the process of matching an ultraviolet (UV)

theory onto an effective field theory (EFT). We review the proper matching procedure

and present techniques for computing the Wilson coefficients up to one-loop level in a

gauge-covariant fashion with functional methods, i.e. using a covariant derivative expansion

(CDE). As a byproduct, we also show how to use CDE to do running analyses in an EFT,

namely to compute the anomalous dimension matrix of the Wilson coefficients.

1.1 Review of matching to one-loop order

Consider a theory, which we will call the UV theory, containing a heavy field Φ of mass M ,

and light fields denoted collectively by φ. At low-energy scales, E < M , the only physically

accessible degrees of freedom are those of the light fields φ. So instead of working with the

UV theory of both Φ and φ, one can equivalently work with an EFT containing only φ by

averaging over the short-distance physics.

Using Lagrangian language, one can split the UV Lagrangian into two parts: Lφ that

consists of only the light fields φ, and LΦ that involves the heavy field Φ:

LUV (φ,Φ) = Lφ (φ) + LΦ (φ,Φ) . (1.1)

At low energies, the EFT of φ is obtained essentially by replacing LΦ by a set of local

effective operators Oi(φ),

LEFT (φ) = Lφ (φ) +
∑
i

ci (µ)Oi (φ), (1.2)

with the Wilson coefficients ci (µ) to be determined. The EFT is required to reproduce the

physics predictions of the UV theory at low energy scales E < M . As physical observables

are built from correlation functions, this is achieved by requiring that the one-light-particle

irreducible (1LPI) diagrams computed from LEFT and those computed from LUV agree at

the renormalization group (RG) scale µ = M . Equivalently, in the functional approach we

require that the 1LPI effective action ΓL[φ]—the generating functional for 1LPI correlation

functions — of each theory coincide at µ = M . This is the well-known “matching” criterion,

e.g. [1, 2].

– 1 –
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For weakly coupled theories, the matching of 1LPI diagrams between the EFT and the

UV theory is done order-by-order in perturbation theory. For many practical applications,

it is sufficient to perform the matching up to one-loop order. Restricting our attention to

this case, the Wilson coefficients at µ = M can in general be decomposed into three parts:

ci (M) = c
(0)
i (M) + c

(1)
i,heavy (M) + c

(1)
i,mixed (M) . (1.3)

Here the superscript denotes the loop order of the corresponding 1LPI diagrams in the UV

theory. Specifically, c
(0)
i (M) is tree-level, while c

(1)
i,heavy and c

(1)
i,mixed are one-loop size. In

general there are two types of one-loop 1LPI diagrams in the UV theory: (1) those with only

heavy field as propagators, and (2) those with mixed propagators of both light and heavy

fields. c
(1)
i,heavy and c

(1)
i,mixed correspond to these two types of contributions, respectively.

Let us summarize the origin of the components in eq. (1.3) and the relative ease in

computing them:

c
(0)
i (M). Tree-level terms arise when the UV Lagrangian has a term linear in the heavy

field Φ, LUV ⊃ ΦB(φ), with B(φ) built from light fields only. c
(0)
i (M) is simply

obtained by first solving the equation of motion of Φ,

δSUV [φ,Φ]

δΦ

∣∣∣∣
Φc[φ]

= 0, (1.4)

where SUV =
∫
d4xLUV is the action of the UV theory, and then inserting the solution

Φ = Φc [φ] back into the UV Lagrangian in eq. (1.1)∑
i

c
(0)
i (M)Oi (φ) = LΦ (φ,Φc [φ]) . (1.5)

c
(1)
i,heavy(M). One-loop contributions from 1LPI diagrams with only heavy fields as the

propagators can always be computed by evaluating a functional determinant of the

elliptic operator D2 +M2 + U(x)∫
d4x

∑
i

c
(1)
i,heavy (M)Oi (φ) ∝ log det

(
−δ

2SUV

δΦ2

)
∝ log det

[
D2 +M2 + U (x)

]
,

(1.6)

where Dµ is the covariant derivative and U(x) depends only on the light fields φ.

In [3], building on techniques introduced in [4, 5], we showed how to evaluate such

functional determinants in a manifestly gauge-covariant fashion, termed the covariant

derivative expansion (CDE). Because of the simplicity of expressions gained through

using the CDE, it was clear that universal results could be obtained in evaluating

the functional determinant. The universal results of [3], and their generalization

in [6], tremendously ease the computation of c
(1)
i,heavy(M). These results have been

successfully employed for a variety of matching analyses in the Standard Model (SM)

EFT, e.g. [3, 6–11].

– 2 –
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c
(1)
i,mixed(M). One-loop contributions from 1LPI diagrams with mixed heavy and light

propagators only arise when there is a non-zero tree-level piece, i.e. if a certain

c
(0)
j (M) 6= 0. The calculation of these terms is generically fairly involved. A good

portion of the present work is devoted to showing how to do this calculation in a

relatively easier way, using functionals and evaluating them in a manifestly gauge-

covariant fashion.

A recent work [12] raised the importance of the mixed heavy-light contribution to

matching analyses. The authors of [12] pointed out that the functional determinant in

eq. (1.6) does not account for c
(1)
i,mixed(M), and opted to proceed with traditional diagra-

matic techniques. In this paper, we show how to use functional methods to compute

c
(1)
i,mixed(M). The functional traces encountered in this calculation are generally not of the

form in eq. (1.6), so the CDE results of [3–6] do not immediately apply. However, we

present a new way of performing a covariant derivative expansion to evaluate a wide class

of functional traces, which provides a way to use a CDE to directly extract c
(1)
i,mixed(M).

Although we currently have no universal formula for c
(1)
i,mixed(M) analogous to the formu-

las for c
(1)
i,heavy(M) of [3, 6], the method we present is as systematic as Feynman diagram

calculations, with the additional advantage of being manifestly gauge-covariant.

Note added. During the preparation of this manuscript the work [13] appeared, which

partially addresses the use of functional methods in matching analyses. While there is some

conceptual overlap in [13] with the present work, the main purposes and computational

techniques are quite different.

Some time lapsed between our posting a preprint to the arXiv and submitting this

manuscript for peer review. In this interim period, several additional works have appeared

that address the one-loop, mixed heavy-light contribution [14–17]. These works offer ad-

ditional techniques to compute this term, as well as provide further insight into its nature.

An excellent review of covariant matching techniques, as well as other EFT matters, can

be found in [18].

1.2 Nature of c
(1)
i,mixed(M)

Even with the new CDE technique, the computation of c
(1)
i,mixed(M) is generically fairly

involved. Therefore, before diving into its calculation steps, we briefly review the physical

meaning of this term, as well as discuss its relative size within the context of present and

future experimental resolution. In particular, we highlight when this term dominates.

Physical meaning. By definition, c
(1)
i,mixed(M) is a one-loop sized piece of the renormal-

ized coupling ci(M). This immediately implies that it generically would not have a physical

meaning on its own, because it is not renormalization scheme independent — choosing a

renormalization scheme defines the one-loop finite piece of the counterterm δci(M), and

consequently affects c
(1)
i,mixed(M). The only exception to this is when a symmetry protects

– 3 –
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ci(M) (or some combination of the ci(M)) from getting renormalized. Barring this, in

generic situations this scheme dependence implies that c
(1)
i,mixed(M) is not physical.1

To see this concretely, let us suppose that we map2 our Wilson coefficients, up to

one-loop order, onto a low energy physical observable Ti that directly corresponds to the

effective operator Oi. The generic expression of Ti is

Ti = ci (v) +
1

(4π)2

∑
j

λijcj (v), (1.7)

where ci(v) is the Wilson coefficient ci at the weak scale µ = v (see eq. (1.8) below for its

constituents), and the second piece is the one-loop order calculation of Ti in terms of ci(v)

(“mapping”), with λij denoting certain functions of the low energy couplings contained in

Lφ(φ). If c
(1)
i,mixed(M) 6= 0, this implies a certain c

(0)
j (M) 6= 0 (with either j = i or j 6= i).

If this happens, however, the corresponding λij in eq. (1.7) must also be nonzero; namely,

the second piece in eq. (1.7) has a one-to-one correspondence with the contributions to

c
(1)
i,mixed(M) 6= 0. Now it is easy to see that a change in renormalization scheme will result

in a change of both c
(1)
i,mixed(M) 6= 0 and the one-loop mapping term in a consistent way

such that Ti is unchanged.

We see that if one does not intend to perform one-loop level mapping — i.e. one chooses

to omit the second piece in eq. (1.7)—then there is no need to compute (actually, it is not

consistent to include) the piece c
(1)
i,mixed(M) in ci(v).3 Nevertheless, as experimental sensi-

tivity increases, next-to-leading order mapping analyses may be important (e.g. [19–28]),

which makes it necessary to include the corresponding piece c
(1)
i,mixed(M) in the matching

step.4 In this paper, we will show how to compute this piece with a CDE technique.

Leading and sub-leading contributions. Let us now discuss how the various pieces of

the Wilson coefficients at the matching scale feed into low-energy observables. Accounting

for RG evolution, we identify general scenarios where any one of the terms in eq. (1.3) gives

the dominant contribution. Consider the Wilson coefficients ci(µ) at a scale µ < M where

physical observations are made. This requires RG evolving the Wilson coefficients from M

to µ using the anomalous dimension matrix γij , which is a function of marginal couplings

1Renormalization scheme dependence under dimensional regularization is just one manifestation of its

unphysicalness. If we regulate the effective action with a hard cut off, this term will be absent, i.e. it

vanishes — see footnote 11 and appendix C for further elaboration.
2We adopt the language of [3] where “mapping” refers to determining physical observables as functions

of the EFT parameters.
3One may wonder if the scheme dependence issue also exists for the other one-loop piece c

(1)
i,heavy. The

answer is yes. Generically, c
(1)
i,heavy is not scheme independent either. But in a large class of models without

tree-level Wilson coefficients, i.e. all c
(0)
i = 0, c

(1)
i,heavy is scheme independent since it is the leading order

piece, and the counterterm δci starts from two-loop order.
4To be very explicit, we work under the reasonable assumption that next-to-leading order mapping

analyses are done in the MS scheme. In order to consistently use such results, the matching process needs

to use the same scheme. Hence, we adopt MS scheme throughout this work.

– 4 –
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in Lφ(φ) (e.g. gauge, Yukawa, and the Higgs quartic couplings in the case of the SM):

ci (µ) = ci (M) +
1

(4π)2

∑
j

γijcj (M) log
µ

M

= c
(0)
i (M) + c

(1)
i,heavy (M) + c

(1)
i,mixed (M) +

1

(4π)2

∑
j

γijc
(0)
j (M) log

µ

M
. (1.8)

Asking which term dominates, there are four general cases to consider:

1. There are no tree-level effects, i.e. all c
(0)
i (M) = 0. In this case, c

(1)
i,mixed(M) vanishes.

The only term to survive in eq. (1.8) is c
(1)
i,heavy(M), which is very straightforward to

compute through eq. (1.6) and the universal results of evaluating the elliptic operator

presented in [3, 6].

2. There is a certain tree-level effect c
(0)
j (M) 6= 0 that results in a non-vanishing

c
(1)
i,mixed(M), but the tree-level piece of ci(M) also exists, i.e. c

(0)
i (M) 6= 0. In this

case, obviously the dominant contribution to eq. (1.8) is c
(0)
i (M), which can be easily

computed through eq. (1.5).

3. A certain tree-level effect c
(0)
j (M) 6= 0 yields a non-vanishing c

(1)
i,mixed(M) while the

tree-level piece c
(0)
i (M) = 0, but the matching scale is much higher than the obser-

vation scale, i.e. M � µ. In this case, the RG running term dominates eq. (1.8). As

the anomalous dimension matrix γij is inherent to the EFT and has nothing to do

with the UV theory we start with, it can be computed separately once and for all

and applied to any UV matching/running analysis. For example, in the case of the

SM EFT, γij for dimension-six operators is known [29–35]. Once γij is given, the RG

running term in eq. (1.8) is straightforward to compute.

4. A certain tree-level effect c
(0)
j (M) 6= 0 yields a non-vanishing c

(1)
i,mixed(M), the tree-

level piece c
(0)
i (M) = 0, and the matching scale is not much higher than the observa-

tion scale. In this case, c
(1)
i,mixed(M) could dominate eq. (1.8).

The above scenarios only address the leading contribution; of course, an experiment may

have sensitivity to multiple or all of the terms in eq. (1.8). Moreover, next order terms

may not be all that subdominant — notice, especially, the diffence between scenarios 3

and 4 is only a logarithmic running factor. In the context of the SM, present and near

future precision Higgs and electroweak measurements may achieve sensitivity at the per

mille level — enough to probe one-loop effects. Existing measurements currently constrain

deviations from SM processes to be relatively small; in other words, the ci(µ = v) in the

SM EFT do not lead to O(1) deviations. Should precision experiments find evidence that

some ci(v) is non-zero due to new physics then, broadly speaking, it will be difficult — but

by no means impossible — to resolve subleading contributions. It is therefore important to

go beyond estimation and develop efficient methods to both isolate and explicitly compute

all contributions — a goal taken up as the primary subject of this paper.

– 5 –
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1.3 Outline and summary of results

For whatever reason, functional methods seem less commonly used in the EFT community

in comparison to diagrammatic calculations. Moreover, while techniques for functional

evaluation exist in the literature, they (unfortunately) are not standard material. The

basic hurdle is sort of obvious: many textbooks explain how to evaluate functionals with

constant field configurations (usually to obtain the Coleman-Weinberg effective potential),

but do not cover the case of arbitrary field configurations. This latter situation is necessary

if one wishes to compute, for example, Wilson coefficients of operators involving deriva-

tives.

With this in mind, we provide many computational details in the spirit of pedagogy.

While we hope this approach is helpful, it has contributed to the considerable length

of this paper. Because of this length, here we provide an extended outline of the main

ideas and results of this paper. We note that a “short path” through this paper, which

hits the main and new ideas, is to read this introduction, sections 2.3, 3.1, and 5.1, and

appendix A.

As evaluation of functionals — in particular, functional determinants — pervades

this work, let us first address this topic. A major contribution of the present work is

showing how to evaluate a wide class of functional traces in a manifestly gauge-covariant

fashion with a covariant derivative expansion. There seems to be some confusion in the

literature as to what exactly is meant by a CDE, which we try to clear up in section 2.2.

Essentially, a “covariant derivative expansion” is exactly what the name implies: if we

can expand a function of the covariant derivative in a power series of D without breaking

Dµ into its individual components, then this is a CDE by definition. In [4], a specific

transformation was introduced that enabled functional determinants of the elliptic operator

D2 +m2 + U(x) to be evaluated in a covariant derivative expansion. The two steps of the

transformation plus the expansion has gained the single name “the CDE” in the literature.

In many cases, the transformation introduced in [4] is not needed to develop a CDE. To

avoid confusion, we will refer to covariant derivative expansions with the article “a” and

not “the”.

The ability to use a covariant derivative expansion to evaluate functionals tremendously

improves calculations. In appendix A we develop a method to evaluate arbitrary functional

traces with a CDE. We separate this result into an appendix so that it stands alone and can

be read separately from the rest of this work. The manipulations and techniques explained

in this appendix are used over and over throughout this paper, and we encourage the

interested reader to study it carefully.

Let us move onto the physics ideas contained in this work concerning EFT matching

and running analyses. Section 2 begins with a basic review of functional methods. The

material here is standard, but we include it to set the tone as well as clarify the equivalence

between functional methods and Feynman diagrams, as some spurious claims have recently

arisen in the literature.

We next move onto matching, the practical conclusion of which, e.g. [1, 2], is that the

one-light-particle-irreducible (1LPI) effective actions, ΓL[φ], of the UV theory and the EFT

– 6 –
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are equated at the matching scale.5 In equations the matching condition reads,

ΓL,UV[φ](λ, µ = M)− ΓL,EFT[φ](c, µ = M) = 0, (1.9)

where λ and c represent parameters of the UV theory and EFT, respectively, with the

parameters of the EFT adjusted to solve the above equation. This equation is solved

order-by-order in perturbation theory, i.e. by first equating the tree-level components,

Γ
(0)
L,UV = Γ

(0)
L,EFT, then the one-loop-level terms, Γ

(1)
L,UV = Γ

(1)
L,EFT, etc.

The 1LPI correlation functions may be computed either with Feynman diagrams or

with functional methods; in this work, we take the latter approach. The “traditional”

solution through one-loop order is detailed in subsection 2.3. Here, “traditional” refers to

the concept of first computing ΓL,UV and ΓL,EFT separately and then equating them as in

eq. (1.9); this terminology is adopted as it is conceptually the most straightforward proce-

dure for matching and is precisely how it is done when matching with Feynman diagrams.

However, the traditional procedure in the functional approach has the conceptual

disadvantage that the origin of c
(1)
i,heavy(M) and c

(1)
i,light(M) are entangled, see eq. (2.37).

Clearly, it would be advantageous if we could isolate these terms individually. This is the

task taken up in section 3, with the answer given in eqs. (3.9) and (3.10). The physical

idea to arrive at these results is to understand what it means to integrate out Φ from the

UV theory using the path integral. To one-loop order this produces a non-local effective

action Seff[φ] = SUV[φ,Φc[φ]] + i
2 log det(−δ2SUV[φ,Φ]/δΦ2|Φc[φ]), obtained by evaluating

eiSeff[φ] =
∫
DΦeiSUV[φ,Φ] in the saddle-point approximation. If we tried to match this non-

local action onto ΓL,EFT[φ] by expanding Seff[φ] in a series of local operators we would

get spurious results for the Wilson coefficients: c
(0)
i (M) and c

(1)
i,heavy(M) would be correctly

identified but c
(1)
i,mixed(M) would be missed. This is not surprising: Seff[φ] is not the same

functional as ΓL,UV[φ].

The crucial idea derived in section 3 is: we can use the non-local Seff[φ] to compute

ΓL,UV[φ]. To one-loop order, it is clear that the UV 1LPI effective action contains Seff[φ]

as well as the one-loop terms built from the tree-level terms in Seff[φ]:

ΓL,UV[φ] = Seff[φ] +
i

2
log det

(
−δ

2SUV[φ,Φc[φ]]

δφ2

)
. (1.10)

The c
(1)
i,mixed(M) “missing” from Seff[φ] obviously must originate from the second term in

the above equation.

Using the non-local action to isolate c
(1)
i,mixed(M) in the matching not only provides

a better conceptual understanding, but also a route to an improved method for directly

computing c
(1)
i,mixed(M). In particular, it provides a clear way to perform the matching step

in eq. (1.9) before computing both functionals individually. This computational technique

is explained in the rest of section 3. We highlight this technique by example in two different

theories: the first is a simple toy theory of two scalars, the second is the more phenomeno-

logically relevant (and more complicated) case of a heavy electroweak triplet scalar added

to the SM.
5As a reminder, the 1LPI effective action diagrammatically consists of diagrams with only light fields

as external legs that are one-particle-irreducible with respect to cutting light field propagators. We use the

subscript L to distinguish the 1LPI effective action ΓL from the 1PI effective action Γ.

– 7 –
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In section 4 we demonstrate all aspects of matching in a toy Yukawa model with a heavy

scalar. Specifically, we obtain the one-loop Wilson coefficients using both the “traditional”

procedure of section 2.3 as well as the “direct” procedure of section 3.

Section 5 concerns the process of renormalization group running in the EFT. We

show how functional methods easily allow us to derive the RG equation for the Wilson

coefficients. Since the relevant functional can be evaluated with a CDE, this provides

an improved computational technique for obtaining the anomalous dimension matrix of

an EFT.

We conclude in section 6. Some detailed computations are relegated to appendices.

2 Matching by functional methods

The purpose of this section is to explain how to perform a matching analysis using func-

tional methods, with an emphasis on computing the piece c
(1)
i,mixed(M). For this purpose,

several preparations are needed. We first review some basics about functional methods

in section 2.1, to unambigously clarify that functional methods and Feynman diagrams

are equivalent. We then discuss in section 2.2 what the essence of a “covariant derivative

expansion” is and what role it plays in evaluating functionals. With these preparations,

we explain in section 2.3 how to compute c
(0)
i (M), c

(1)
i,heavy(M), and c

(1)
i,mixed(M) using func-

tional methods. The preparation sections 2.1 and 2.2 are basic reviews of the relevant

subjects — readers familiar with them may wish to skip to section 2.3.

2.1 Basic review on functional methods

2.1.1 Equivalence between functional methods and Feynman diagrams

Feynman diagrams are a widely used technique in perturbative calculations of quantum

field theory (QFT). The physical quantities the diagrams calculate for us, such as cross

sections, decay rates, etc., can essentially be attributed to the calculation of the quantum

correlation functions 〈φ (x1) · · ·φ (xn)〉 (and its LSZ reduction, i.e. amplitudes). As is

well known, Feynman diagram techniques originate from the functional integral formalism

(a.k.a. path integral formalism) of the correlation functions,

〈φ (x1) · · ·φ (xn)〉 =

∫
DφeiS[φ]φ (x1) · · ·φ (xn)∫

DφeiS[φ]
. (2.1)

Therefore, one expects that there exists a functional method that is completely equivalent

to diagrammatic techniques. Such a functional method is encoded in the well known “one-

particle-irreducible (1PI) effective action”, Γ [φ], which is a generating functional of all 1PI

correlation functions:6

〈φ (x1) · · ·φ (xn)〉1PI = i
δnΓ [φ]

δφ (x1) · · · δφ (xn)
. (2.3)

6There is a small caveat of this formula at n = 2, where instead of generating the 1PI correlation

function, the right hand side gives the inverse of the full two-point correlation function. This is due to the

special role that the tree-level kinetic term plays — there is no 1PI two-point function for the tree-level

kinetic term. Apart from the tree-level, eq. (2.3) holds for n = 2 as well, namely that

〈φ (x1)φ (x2)〉loop
1PI = i

δ2Γloop [φ]

δφ (x1) δφ (x2)
. (2.2)
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Since the full correlation function 〈φ (x1) · · ·φ (xn)〉 is built from 1PI correlation func-

tions 〈φ (x1) · · ·φ (xn)〉1PI, we see that any quantity calculated with Feynman diagrams is

equivalently obtained through computing Γ [φ] and its functional derivatives. Therefore,

diagrammatic methods and functional methods are just two sides of the same coin; the

only matter is which one is simpler to use.

2.1.2 Functional methods to one-loop order

Computing the 1PI generating functional Γ [φ] is generically not an easy task. Fortu-

nately, however, it is simple enough up to one-loop order. For a weakly interacting QFT

characterized by the Lagrangian

S [φ] =

∫
d4xL (φ), (2.4)

the 1PI effective action to one-loop order is in general given by7

Γ [φ] = S [φ] +
i

2
log det

(
−δ

2S [φ]

δφ2

)
. (2.5)

Here we have used φ to collectively denote all the fields in the given QFT. We see that

the tree-level piece Γ(0) [φ] is trivially just the action of the theory S, while the one-loop

piece Γ(1) [φ] is obtained by evaluating a single functional determinant. For simplicity of

the expression we have put i/2 as the pre-factor of the functional determinant term above;

however, it is understood that this pre-factor needs to be tailored for each individual field

in φ, according to its statistics.

In order to demonstrate our argument in section 2.1.1 concretely, as well as to gain

some experience on the typical procedure of using functional methods, let us work out an

explicit example of using eq. (2.5) to compute a physical quantity. To demonstrate in the

simplest context, we consider the standard φ4 theory,

L (φ) =
1

2
φ
(
−∂2 −m2

)
φ− 1

4!
λφ4, (2.6)

and compute the physical pole mass m2
p in terms of the renormalized mass parameter m2

and λ defined in MS scheme.

At tree-level, the pole mass m2
p is just the renormalized mass parameter m2

p = m2. We

are interested in the one-loop order correction to this. This information is encoded in the

one-loop two-point 1PI correlation function 〈φ (x1)φ (x2)〉1-loop
1PI . In a Feynman diagram

calculation, this means we should look for all one-loop two-point 1PI diagrams (there is

only one for this simple case). In the functional approach, this corresponds to extracting

only the φ2 piece in Γ(1) [φ], as implied by eq. (2.3) (see also the discussion around eq. (2.2)).

7In computing the 1PI effective action there is an intermediate step where external sources Jφ are

linearly coupled to the fields. The path integral is then a functional of the sources, Z[Jφ] = eiE[Jφ] =∫
Dφei

∫
L[φ]+Jφφ. Γ[φ] is then obtained as a Legendre transform of E[Jφ]. To one-loop order, the end

result Γ(1)[φ] ∝ log det[−δ2S/δφ2] is simple enough because there is no explicit dependence on Jφ[φ]. At

higher loop-order, this is no longer true and more care is needed. See, for example, [36].
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To compute Γ(1) [φ], we first take the second functional derivative of the action S [φ]:

− δ2S [φ]

δφ2
= ∂2 +m2 +

1

2
λφ2. (2.7)

Then according to eq. (2.5), we have

Γ(1) [φ] =
i

2
log det

(
∂2 +m2 +

1

2
λφ2

)
=
i

2
Tr log

(
∂2 +m2 +

1

2
λφ2

)
⊃ i

2
Tr log

(
1− 1

−∂2 −m2

1

2
λφ2

)
⊃ i

2
Tr

(
− 1

−∂2 −m2

1

2
λφ2

)
. (2.8)

In the second line above, we have expanded the logarithm and kept only the φ2 piece. The

last step is to evaluate this functional trace:

Γ(1) [φ] = − iλ
4

∫
d4x

∫
d4k

(2π)4 〈k|
1

−∂2 −m2
|x〉 〈x|φ2|k〉

= − iλ
4

∫
d4xφ2 (x)

∫
d4k

(2π)4

1

k2 −m2

=

∫
d4x

1

(4π)2

λ

4
m2

(
log

µ2

m2
+ 1

)
φ2. (2.9)

The first line of the above is just the definition of the functional trace, with a further

insertion of unity, 1 =
∫
d4x |x〉 〈x|. Here |k〉 denotes the eigenstate of the derivative

operator ∂ in the functional space, i.e. 〈k| i∂µ = kµ 〈k|, while |x〉 denotes the eigenstate of

local operators, e.g. 〈x|φ2 = φ2(x) 〈x|. They have the inner product 〈x|k〉 = e−ikx. We

have made use of these to get the second line. The third line of eq. (2.9) is obtained by

evaluating the k-integral (the “loop” integral) in MS scheme.

Now using eq. (2.3), we take functional derivative of Γ(1) [φ] to get the two-point 1PI

function −iΣ(p2):

− iΣ
(
p2
)

=

∫
d4xeip(x1−x2)i

δ2Γ(1) [φ]

δφ (x1) δφ (x2)
=

i

(4π)2

λ

2
m2

(
log

µ2

m2
+ 1

)
. (2.10)

This is the exact same result as one would get by Feynman diagram calculation. The pole

mass follows from Σ(p2) as

m2
p = m2 + Σ

(
p2 = m2

)
= m2 − 1

(4π)2

λ

2
m2

(
log

µ2

m2
+ 1

)
. (2.11)

2.1.3 Utility of functional methods compared to Feynman diagrams

With the help of the demonstrating example above, let us now make a detailed comparison

between functional methods and diagrammatic methods. Overall, we see that the functional

procedure is the same as the Feynman diagram calculation. Both start with identifying

the relevant pieces for the correlation functions under concern, and then proceed with

evaluating these pieces, during which the same loop integral shows up, and hence the

same techniques for dealing with it (Feynman parameters, dimensional regularization, MS
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scheme, etc.) get utilized. This is not surprising at all: since Feynman diagrams originate

from the functional formalism, they are essentially just a diagrammatic representation of

the functional method. However, despite computing the same quantities, the two differ in

appearance, which results in a few advantages in using functional methods:

• To compute a specific correlation function with Feynman diagrams, one needs to

manually enumerate all diagrams interfering with each other, i.e. having the same

external legs but different internal structures. This enumeration can be exhausting if

one deals with a theory of complicated interactions. What makes things worse is that

these interfering diagrams sometimes have tricky minus signs relative to each other,

e.g. when there are identical external fermion legs. So it is easy to make a mistake

in this step by either missing a diagram or messing up the interference sign.

On the other hand, in the functional approach this enumeration step corresponds

to expanding the logarithm of the functional determinant (e.g. the second line of

eq. (2.8)) and collecting the same terms (φ2 terms in our demonstrating example).

In a theory with complicated interactions, the functional derivative matrix is big, so

expanding the logarithm is also tedious. But the point is a Taylor expansion is more

systematic and mindless compared with a diagram enumeration. In addition, the

correct interference sign will come out of the Taylor expansion automatically.

• In the diagrammatic approach, once the diagrams are enumerated, one composes

various Feynman rules to obtain a “diagram expression”. These include the rules

on vertices, propagators, external legs, loop momentum integrals, symmetry factors,

and so on. These rules come from breaking down the Taylor expanded functional

expression (eq. (2.1)) into components, such that we can have a diagrammatic repre-

sentation of the calculation. We then compose these components back together to get

the diagram expression. With functional methods, this composition step is avoided.

The “diagram expression” comes out as a whole from the definition of the functional

trace, e.g. see the second line of eq. (2.9). Therefore, with functional methods, one

need not remember or figure out any Feynman rules from a given Lagrangian.

• In Feynman diagram calculations, different correlation functions are computed by

different sets of diagrams separately. On the other hand, Γ [φ] is a generating func-

tional for all 1PI correlation functions. Thus, functional methods provides us with

a framework for dealing with different correlation functions together. This is es-

pecially important for gauge theories. Consider the SM as an example, where the

six different correlation functions,
〈
H†2H2

〉
,
〈
WH†2H2

〉
,
〈
W 2H†2H2

〉
,
〈
BH†2H2

〉
,〈

B2H†2H2
〉
, and

〈
WBH†2H2

〉
all originate from the gauge-invariant effective oper-

ator OHD =
∣∣H†DH∣∣2. This situation might be easily recognized in the functional

expression of Γ [φ], but would be very hard to see through individual sets of Feyn-

man diagrams.

Let us be clear that we believe Feynman diagrams to be incredibly useful, especially

for conceptual understanding. Moreover, when the desired correlation function is simple

– 11 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
3

enough, Feynman diagrams frequently provide a quicker route to the answer. However,

when the underlying theory is complicated or one is interested in many correlation func-

tions, functional methods can organize and ease the evaluation in a way that is very difficult

to see or do with diagrams.

2.2 What is a “covariant derivative expansion”?

Let us explain what is meant by a “covariant derivative expansion”, as lately there has

been some confusion about this term in the community.

In a gauge theory, the Lagrangian is built up by fields and the covariant derivative Dµ =

∂µ − igAµ. The essence of a “covariant derivative expansion” is really as straightforward

as its name suggests:

For an expression that involves the covariant derivative Dµ, if one expands

the expression in a power series of D while keeping Dµ intact (as opposed to

splitting it into the partial derivative ∂µ and the gauge fields Aµ), then this

expansion is called a “covariant derivative expansion” (CDE).

For example, consider the gauge-promoted propagator (−D2 −m2)−1. The expansion

1

−D2 −m2
=

1

−m2
+
D2

m4
+ · · · , (2.12)

qualifies as being called a CDE. Here is a practical example of using eq. (2.12). Suppose

that the tree-level 1PI effective action contains a piece

Γ(0) [H] ⊃ H† 1

−D2 −m2
H, (2.13)

then one can use eq. (2.12) to Taylor expand the above into gauge-invariant local operators:

Γ(0) [H] ⊃ H† 1

−D2 −m2
H =

1

−m2
H†H +

1

m4
H†D2H + · · · . (2.14)

In contrast to a CDE, sometimes in manipulating an expression, one might first split

Dµ into ∂µ− igAµ and then expand out the two pieces differently. For example, instead of

using eq. (2.12), one could also expand the gauge-promoted propagator as

1

−D2 −m2
=

1

−∂2 −m2 + igAµ∂µ + ig∂µAµ + g2A2

=
1

−∂2 −m2
− 1

−∂2 −m2

(
igAµ∂µ + ig∂µA

µ + g2A2
) 1

−∂2 −m2
+ · · · .

(2.15)

This expansion is clearly not a CDE.

One may wonder why someone would ever use eq. (2.15) instead of eq. (2.12). To

answer this question, let us consider calculating the 1PI effective action for a model with

two Higgs doublets, H and φ:

L ⊃ φ†
(
−D2 −m2

)
φ− λ

(
φ†H

)(
H†φ

)
. (2.16)
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From eq. (2.5), we know that the one-loop piece of the effective action would contain a

piece like following

Γ(1) [H] ⊃ i log det

(
−δ

2S [H,φ]

δφ†δφ

)
= i log det

(
D2 +m2 + λHH†

)
⊃ −iTr

(
1

−D2 −m2
λHH†

)
. (2.17)

To evaluate this functional trace, one would wish to follow the procedure in eq. (2.9).

However, there is a problem — |k〉 is not an eigenstate of D:

〈k
∣∣∣∣ 1

−D2 −m2
6= 1

k2 −m2
〈k| . (2.18)

The most straightforward work around to this problem is to expand the gauge-promoted

propagator as in eq. (2.15). This breaks down the functional trace of eq. (2.17) into many

pieces, each of which then can be evaluated following the procedure in eq. (2.9). In contrast

to a CDE, we refer to this way of evaluating functional traces (or functional determinants)

as a “partial derivative expansion” (PDE).

We want to emphasize that the PDE method works totally fine to evaluate any func-

tional determinant. It is even more straightforward to use compared with a CDE. Its only

drawback is that it is cumbersome. One can see that many terms are generated once we plug

eq. (2.15) into eq. (2.17), each of which would require multiple functional state insertions

to evaluate.8 On the other hand, since the functional trace we are computing in eq. (2.17)

is a gauge singlet, we know in the end we must arrive at a gauge-invariant expression, by

recombining the ∂µ’s and the Aµ’s. Therefore, this splitting of Dµ in a PDE is obviously

a detour. A CDE method throughout which Dµ is kept intact is obviously preferable.

2.2.1 Universal results for log det[D2 + m2 + U(x)]

While it is always straightforward to apply the PDE method to evaluate any particular

functional determinant or trace, it is often not immediately clear whether or not a CDE

method is available. In the next section and appendix A we show how a CDE can be done

on a wide class of functional traces. However, here we wish to include a few comments on

the special (but, frequently encountered) case of the elliptic operator

D2 +m2 + U (x) . (2.19)

The functional determinant of this operator can always be evaluated using a CDE method.

In [3], we showed how to do so, building on techniques introduced in [4, 5]. Due to the

advantage of CDE, we managed to obtain a universal result for log det[D2 + m2 + U(x)]

8These terms are actually in one-to-one correspondence with the relevant correlation functions that one

would have to compute separately in a Feynman diagram method.
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up to dimension-six level, which we reproduce here for later reference:

logdet
[
D2+m2+U (x)

]
=

∫
d4x

−i
(4π)2 tr

{

m4

[
−1

2

(
ln
m2

µ2 −
3

2

)]
+m2

[
−
(

ln
m2

µ2 −1

)
U

]
+m0

[
−1

2
ln
m2

µ2 U
2− 1

12

(
ln
m2

µ2 −1

)
G′

2
µν

]
+

1

m2

[
−1

6
U3+

1

12
(DU)2− 1

12
UG′

2
µν+

1

60
(DµG′µν)

2− 1

90
G′

ν
µG
′ρ
νG
′µ
ρ

]
+

1

m4

[
1

24
U4− 1

12
U(DU)2+

1

120
(D2U)

2
+

1

60
(DµU)(DνU)G′µν

+
1

40
U2G′

2
µν+

1

60
(UG′µν)

2
]

+
1

m6

[
− 1

60
U5+

1

20
U2(DU)2+

1

30
(UDU)2

]
+

1

m8

[
1

120
U6
]}
, (2.20)

where G′µν ≡ [Dµ, Dν ]. The above universal result assumes a single degenerate mass scale

m. A generalization to accommodate multiple mass scales is given in [6].

The reason the above is so useful is because of the ubiquity of such determinants in

one-loop calculations: the argument of log det(−δ2S/δΦ2) picks out quadratic terms in the

action, which are of the form D2 + m2 + U(x). Note that this is also true for fermions;

this is explained in [3], but we reproduce it here for future reference. While taking the

functional derivative with respect to fermionic fields, one typically obtains an operator of

the following form

− i /D +m+ F (x) , (2.21)

where /D ≡ γµDµ. As the determinant is invariant under flipping the sign of the γµ

matrices, we may write

log det
[
−i /D +m+ F (x)

]
= log det

[
i /D +m+ F (x)

]
=

1

2
log det

{[
−i /D +m+ F (x)

] [
i /D +m+ F (x)

]}
. (2.22)

The product gives(
−i /D +m+ F

) (
i /D +m+ F

)
= /D

2
+m2 − i /DF + {m,F}+ F 2

= D2 +m2 − i

2
σµνG′µν − i /DF + {m,F}+ F 2, (2.23)

where, by definition, /DF ≡ [ /D,F ], and we have used /D
2

= D2 − i
2σ

µνG′µν , with σµν ≡
i
2 [γµ, γν ] defined as usual. We see that this is now clearly in the form of eq. (2.19) with

Uferm (x) = − i
2
σµνG′µν − i /DF + {m,F}+ F 2. (2.24)
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2.3 “Traditional” matching with functional methods

Matching a UV theory onto an EFT is done by equating the 1LPI effective actions of the

two theories at the matching scale, eq. (1.9). In this subsection, we give explicit formulas

for carrying out the general procedure of [1, 2] through one-loop order using functional

methods. We refer to this procedure as “traditional” matching, and show how it allows

us to compute c
(0)
i (M), c

(1)
i,heavy(M), and c

(1)
i,mixed(M). As we will see, the contributions to

c
(1)
i,heavy and c

(1)
i,mixed are entangled in this approach; in the next section, we develop a new

procedure to isolate these components.

Following the notations in section 1.1, we consider a UV theory and an EFT

LUV (φ,Φ) = Lφ (φ) + LΦ (φ,Φ) , (2.25)

LEFT (φ) = Lφ (φ) +
∑
i

ci (µ)Oi (φ), (2.26)

with the corresponding actions SUV =
∫
d4xLUV and SEFT =

∫
d4xLEFT. The matching

criterion is requiring the 1LPI effective actions computed from the EFT and the UV theory

agree at RG scale µ = M :

ΓL,EFT [φ] (µ = M) = ΓL,UV [φ] (µ = M). (2.27)

Since matching can be done order-by-order in perturbation theory, eq. (2.27) implies that

Γ
(0)
L,EFT [φ] (µ = M) = Γ

(0)
L,UV [φ] (µ = M), (2.28a)

Γ
(1)
L,EFT [φ] (µ = M) = Γ

(1)
L,UV [φ] (µ = M). (2.28b)

Our task then is to solve eqs. (2.28a) and (2.28b).

Let us first look at the UV side. In section 2.1.2, we explained how to compute the

1PI effective action Γ to one-loop order. For the UV theory, this quantity is a functional

of both the light fields φ and the heavy field Φ: ΓUV [φ,Φ]. According to eq. (2.5), the

tree-level piece and the one-loop level piece are respectively

Γ
(0)
UV [φ,Φ] = SUV [φ,Φ] , (2.29)

Γ
(1)
UV [φ,Φ] =

i

2
log det

(
−δ

2SUV [φ,Φ]

δ(φ,Φ)2

)
. (2.30)

The only subtlety on the UV side is that the 1LPI effective action ΓL,UV, which is a

functional of the light fields φ only, is not the same as the 1PI effective action ΓUV, which

depends on both φ and Φ. However, it is very easy to get ΓL,UV from ΓUV — simply plug

in the solution of the equations of motion of Φc [φ]:9

ΓL,UV [φ] = ΓUV [φ,Φc [φ]] . (2.31)

9Here, eq. (2.31) is a bit sloppy, to quickly convey the idea. The exact expression for the one-loop piece,

as we will see in the next few equations, is to plug in Φc [φ] after taking the functional derivative but before

evaluating the functional determinant.
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We therefore obtain

Γ
(0)
L,UV [φ] = SUV [φ,Φc [φ]] =

∫
d4x [Lφ (φ) + LΦ (φ,Φc [φ])], (2.32a)

Γ
(1)
L,UV [φ] =

i

2
log det

(
−δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φ=Φc[φ]

)
. (2.32b)

Now let us move on to the EFT side. For the EFT, the 1LPI effective action is the

1PI effective action, ΓL,EFT [φ] = ΓEFT [φ], as there is no heavy field. However, the loop

order counting is a bit subtle for the EFT side, as the Lagrangian contains one-loop sized

Wilson coefficients,10 i.e. SEFT [φ] = S
(0)
EFT [φ] + S

(1)
EFT [φ], with

S
(0)
EFT [φ] =

∫
d4x

[
Lφ (φ) +

∑
i

c
(0)
i (M)Oi (φ)

]
, (2.33)

S
(1)
EFT [φ] =

∫
d4x

{∑
i

[
c

(1)
i,heavy (M) + c

(1)
i,mixed (M)

]
Oi (φ)

}
. (2.34)

After rearranging pieces according to the UV loop-order counting, we get

Γ
(0)
L,EFT [φ] =S

(0)
EFT [φ] =

∫
d4x

[
Lφ (φ)+

∑
i

c
(0)
i (M)Oi (φ)

]
, (2.35a)

Γ
(1)
L,EFT [φ] =S

(1)
EFT [φ]+

i

2
logdet

(
−
δ2S

(0)
EFT [φ]

δφ2

)

=

∫
d4x

{∑
i

[
c

(1)
i,heavy (M)+c

(1)
i,mixed (M)

]
Oi (φ)

}
+
i

2
logdet

(
−
δ2S

(0)
EFT [φ]

δφ2

)
.

(2.35b)

Using eqs. (2.32) and (2.35) in eq. (2.28), we arrive at the matching results:∑
i

c
(0)
i (M)Oi (φ) = LΦ (φ,Φc [φ]) , (2.36)

∫
d4x

{∑
i

[
c

(1)
i,heavy (M) + c

(1)
i,mixed (M)

]
Oi (φ)

}

=
i

2
log det

(
−δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φ=Φc[φ]

)
− i

2
log det

(
−
δ2S

(0)
EFT [φ]

δφ2

)
. (2.37)

The tree-level matching result eq. (2.36) is very easy to calculate for any given UV theory.

The one-loop result eq. (2.37) looks a bit complicated, but it is actually very intuitive to

understand: after determining c
(0)
i (M) (and hence S

(0)
EFT[φ]) by tree-level matching, if one

were to calculate the one-loop 1LPI using S
(0)
EFT[φ], it does not fully agree with the 1LPI

calculated using the UV action SUV. The mismatch between the two dictates the need of

c
(1)
i,heavy(M) and c

(1)
i,mixed(M).

10The loop order counting is defined in terms of the couplings of the UV theory.

– 16 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
3

3 Direct computation of c
(1)
i,mixed(M) and a new CDE technique

In the previous section we showed how to perform the matching analysis through one-

loop order with functional methods. However, the one-loop matching result in eq. (2.37)

is somewhat unsatisfactory because the results for c
(1)
i,heavy(M) and c

(1)
i,mixed(M) are entan-

gled; namely, one has to compute them together. Ideally, we could obtain a disentangled

result for each separate piece of c
(1)
i (M). Upon isolating c

(1)
i,heavy(M) and c

(1)
i,mixed(M), it

is additionally desirable that the functional determinants involved can be evaluated with

a CDE.

This section is devoted to the above tasks. In section 3.1 we first derive the disentangled

results for c
(1)
i,heavy(M) and c

(1)
i,mixed(M). Then we show how to systematically evaluate the

functional determinants involved by a new CDE technique. This new CDE technique is

capable of evaluating functional determinants of a much wider class of operators beyond

the elliptic operators that [3–6] are limited to. We show how to use these techniques in

practice by considering two examples: a toy model with a heavy and a light singlet scalar

in section 3.2, and a more phenomenological example in section 3.3 — the Standard Model

with a heavy electroweak triplet scalar.

3.1 General formalism for a direct computation of c
(1)
i,mixed(M)

3.1.1 Integrating out the heavy field Φ

In order to resolve c
(1)
i,heavy(M) and c

(1)
i,mixed(M) in the one-loop matching result eq. (2.37),

let us take a closer look at the first functional determinant:

log det

(
− δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φ=Φc[φ]

)
. (3.1)

The problem with this determinant is that it involves functional derivatives with respect

to both φ and Φ. This makes the boundary between contributions to c
(1)
i,heavy(M) and

c
(1)
i,mixed(M) unclear. However, we can cast the above determinant into a resolved form

where there are no “mixed” functional derivatives:

logdet

(
− δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φc

)
= logdet

(
− δ

2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)
+logdet

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
.

(3.2)

A derivation of this formula is given in appendix B. Note the difference in the functional

dependence of SUV in the two determinants above. As in eq. (3.1), in the first we vary

the UV action with respect to Φ and then evaluate on the classical solution Φc[φ]. In

the second determinant we first plug in the classical solution Φc[φ] (which is a non-local

functional of φ) and then vary with respect to φ.

Eq. (3.2) looks a bit abstract, but it actually has a very intuitive physical understand-

ing: integrating out the heavy field Φ. To see this, let us recall from eq. (2.32) that the

UV 1LPI effective action ΓL,UV [φ] is given by

ΓL,UV [φ] = SUV [φ,Φc [φ]] +
i

2
log det

(
−δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φc

)
. (3.3)
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Using eq. (3.2) in this expression, we get

ΓL,UV [φ] =SUV [φ,Φc [φ]]+
i

2
logdet

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
+
i

2
logdet

(
− δ

2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)
.

(3.4)

To recognize what this result implies, let us imagine integrating out the heavy field Φ in

the path integral,

eiSeff [φ] =

∫
DΦeiSUV[φ,Φ]. (3.5)

The above serves as a definition of Seff[φ]. It is an inherently non-local object. To one-loop

order, Seff[φ] is obtained by a saddle-point approximation of the path integral,

Seff [φ] = SUV [φ,Φc [φ]] +
i

2
log det

(
− δ

2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)
. (3.6)

If we use this Seff[φ] to compute the corresponding 1PI effective action Γeff[φ], following

the general prescription in eq. (2.5), we obtain exactly the same expression as in eq. (3.4),

namely that

ΓL,UV [φ] = Γeff [φ] . (3.7)

Physically, eq. (3.7) means that the theory Seff[φ] as defined in eq. (3.5) is equivalent to the

UV theory SUV[φ,Φ] with regard to the physics of the light fields φ. This is a well-known

statement (e.g. [1, 2, 37]). In the path integral formalism, eq. (2.1), this statement is almost

trivially true by the definition of Seff[φ]:

〈φ (x1) · · ·φ (xn)〉UV =

∫
DφDΦeiSUV[φ,Φ]φ (x1) · · ·φ (xn)∫

DφDΦeiSUV[φ,Φ]

=

∫
DφeiSeff [φ]φ (x1) · · ·φ (xn)∫

DφeiSeff [φ]
= 〈φ (x1) · · ·φ (xn)〉eff . (3.8)

With the help of this integrating out picture, it is hopefully easier to understand and

remember eq. (3.2).

3.1.2 Resolved matching results

With the functional derivatives with respect to φ and Φ disentangled, it is easy to separately

identify the pieces c
(1)
i,heavy(M) and c

(1)
i,mixed(M). Combining eqs. (2.37) and (3.2), we arrive

at our resolved matching results:∫
d4x

∑
i

c
(1)
i,heavy (M)Oi (φ) =

i

2
logdet

(
− δ

2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)
, (3.9)

∫
d4x

∑
i

c
(1)
i,mixed (M)Oi (φ) =

i

2
logdet

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
− i

2
logdet

(
−
δ2S

(0)
EFT [φ]

δφ2

)
.

(3.10)

We see that our matching result for c
(1)
i,heavy(M) has reproduced eq. (1.6). The func-

tional derivative matrix in eq. (3.9) is always of the form D2 +M2 + U(x), so the universal
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results of [3, 6] are immediately available. As the piece c
(1)
i,heavy(M) has been intensively

studied in [3, 6], our focus in this paper will be on the other one, c
(1)
i,mixed(M).

One might wonder why eq. (3.10) does not vanish, since the tree-level matching result

(eq. (2.36)) states that L(0)
EFT(φ) = LUV (φ,Φc[φ]). The answer is that these two La-

grangians are actually different. LUV (φ,Φc[φ]) is an inherently non-local object, because

of the non-local nature of Φc[φ]. On the other hand, L(0)
EFT(φ) is by definition a sum of

local operators. Therefore, the true meaning of the tree-level matching result in eq. (2.36)

is that L(0)
EFT(φ) should be a local expansion of the non-local LUV (φ,Φc[φ]).

In fact, it is exactly this local vs. non-local difference between L(0)
EFT(φ) and

LUV (φ,Φc[φ]) that leads to nonzero c
(1)
i,mixed(M). Using the local L(0)

EFT(φ) in the functional

determinant will give a result that mismatches with that obtained using the non-local

LUV (φ,Φc[φ]) [38, 39], and hence dictates the need for c
(1)
i,mixed.11 The fact that the origin

of c
(1)
i,mixed being from this local vs. non-local difference is also elaborated in [37].

Let us see a concrete example of this local vs. non-local difference. Consider a UV

theory with a heavy complex scalar field Φ:

LUV (φ,Φ) ⊃ Φ†
[
−D2 −M2 − U (φ)

]
Φ +

[
Φ†B (φ) + c.c.

]
. (3.12)

The solution to the equation of motion of Φ is

Φc [φ] = − 1

−D2 −M2 − U (φ)
B (φ) . (3.13)

We see that Φc[φ] is NOT a local operator that only depends on the spacetime coordinate

x, because the covariant derivative D shows up in the denominator. Plugging this Φc[φ]

back into the UV Lagrangian, we get

LUV (φ,Φc [φ]) = −B† (φ)
1

−D2 −M2 − U (φ)
B (φ) , (3.14)

which is also non-local. On the other hand, when matching the above UV theory with an

EFT at tree-level, we solve the Wilson coefficients according to the matching equation

L(0)
EFT (φ) =

∑
i

c
(0)
i (M)Oi (φ) = LUV (φ,Φc [φ]) . (3.15)

11Mathematically, this mismatch is due to the illegitimate expansion of propagator inside the momentum

integral under dimensional regularization:∫
d4p

(2π)4

1

−M2

(
1 +

p2

M2
+

p4

M4
+ · · ·

)
6=
∫

d4p

(2π)4

1

p2 −M2
. (3.11)

In dimensional regularization, the result of the right hand side (the UV theory) generically has a fractional

power of M2. However, the left hand side (the EFT) clearly can only yield integer powers of M2, as M2,

M4, etc. participate only as overall factors of the integrals. This mismatch can be avoided by using other

regularization scheme, such as a sharp cutoff of the momentum integral. In that case c
(1)
i,mixed = 0. This is

consistent with our understanding that c
(1)
i,mixed is not physical by itself. More details on using a different

regularization scheme are explained in appendix C.
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This solving step amounts to an inverse mass expansion of eq. (3.14) into a sum of local

operators:

L(0)
EFT (φ) = −B† 1

M2
B −B† 1

M2

(
−D2 − U

) 1

M2
B + · · · . (3.16)

We see that L(0)
EFT (φ) is local.12

Now we understand that the two functional determinants in eq. (3.10) are very close to

each other — they only differ by this local vs. non-local difference. This actually provides

us a way of using this formula more efficiently. In particular, the second term in eq. (3.10)

is always contained in the first term. As we are only interested in their difference, instead of

computing both terms separately and subtracting them in the end, one can compute only

the first term and then drop the pieces corresponding to the second term. This procedure is

kind of similar with the usual loop diagram calculation in renormalized perturbation theory

under MS scheme, where in principle one has contributions from both the renormalized

coupling and the counterterm, but in practice one just computes the renormalized coupling

part and then drops the 1/ε− γ + log(4π).13

So, in actual calculations, we will only compute the first term in eq. (3.10), coming

from the non-local Lagrangian LUV (φ,Φc[φ]), and then we drop its “local counterpart”

coming from the local Lagrangian L(0)
EFT[φ] that was matched with LUV (φ,Φc[φ]). With

this strategy, we abbreviate eq. (3.10) as∫
d4x

∑
i

c
(1)
i,mixed (M)Oi (φ) =

i

2
log det

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
d

, (3.17)

where the subscript “d” is short for “drop” which reminds us to drop the “local counter-

part”.

To identify which pieces are the “local counterparts” to drop, we make the crucial

observation that going from LUV (φ,Φc[φ]) (e.g. eq. (3.14)) to L(0)
EFT(φ) (e.g. eq. (3.16)),

one just truncates the inverse mass expansion of the heavy propagator:

1

−D2 −M2
= − 1

M2
− −D

2

M4
+ · · · =

(
1

−D2 −M2

)
truncated

+

(
1

−D2 −M2

)
rest

. (3.18)

For example, if the expansion is truncated at −1/M2, then we rewrite the propagator as

1

−D2 −M2
= − 1

M2
+

1

M2

−D2

−D2 −M2
,

and identify the first and second pieces with (−D2 −M2)−1
truncated and (−D2 −M2)−1

rest,

respectively.

12It is worth noting that the non-local character of LUV (φ,Φc[φ]) is due to the derivatives being in the

denominator. As long as one does not expand out these derivatives, this character is not changed. For

example, while using eq. (3.14) in eq. (3.10), it is legitimate to do the expansion

LUV (φ,Φc [φ]) = B† (φ)
1

−D2 −M2
B (φ) +B† (φ)

1

−D2 −M2
U (φ)

1

−D2 −M2
B (φ) + · · · .

13This analogy is not purely mathematical, as the subtraction in eq. (3.10) does have the physical meaning

of removing IR divergences.
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If one splits the heavy propagator into the “truncated piece” and the “rest piece”, then

term where all heavy propagators in eq. (3.17) take the truncated piece must correspond

to the second term in eq. (3.10). Hence, these are the “local counterparts” to drop. So

the main task is just to identify the “truncated piece”
(

1
−D2−M2

)
truncated

by examining

how we went from LUV (φ,Φc[φ]) to L(0)
EFT(φ). After posting this preprint, we became

aware that this method — splitting the propagator and identifying the first piece as the

contribution from S
(0)
EFT — was actually utilized long ago [37]. The work [37] illustrates the

same physical concept, although it was not proposed as a general technique14 and it was

only used in a diagrammatic approach of computing c
(1)
i,mixed.

3.1.3 Trace evaluation

Eq. (3.17) is our master formula in this paper, with which one can calculate the piece

c
(1)
i,mixed(M) directly. To evaluate the functional determinant in eq. (3.17) one can, of

course, use the PDE method described in section 2.2. However, it would be desirable to

have a CDE method, which makes the evaluation more efficient.

As explained in section 2.2.1, the functional determinant of the elliptic operator can

be evaluated by a CDE method. The method is intensively discussed in [3–6], with a

universal result of degenerate mass case represented in eq. (2.20). Unfortunately, the

functional derivative matrix in eq. (3.17) is typically not an elliptic operator, due to the

non-local nature of LUV (φ,Φc[φ]). Instead, its typical form is (as we shall see later in the

examples)

−δ
2SUV [φ,Φc [φ]]

δφ2
=D2+m2+

∑
n

An1 (x)

[
n∏
i=2

1

−D2−M2
Ani (x)

]
(3.19)

=D2+m2+

{
A11 (x)+A21 (x)

1

−D2−M2
A22 (x)

+A31 (x)
1

−D2−M2
A32 (x)

1

−D2−M2
A33 (x)+· · ·

}
,

where m2 is an IR scale, typically the mass of the light field φ.15 Therefore, we cannot make

use of the universal result in eq. (2.20). Nevertheless, this kind of functional determinants

can still be evaluated by a CDE method. The first step is to expand out the logarithm and

convert it into a sum of functional traces

log det

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
= Tr log

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
(3.20)

= Tr log

[
D2 +m2 +A11 (x) +A21 (x)

1

−D2 −M2
A22 (x) + · · ·

]
⊃ Tr log

[
1− 1

−D2 −m2
A11 (x)− 1

−D2 −m2
A21 (x)

1

−D2 −M2
A22 (x) + · · ·

]
= −

∞∑
n=1

1

n
Tr

{[
1

−D2 −m2
A11 (x)− 1

−D2 −m2
A21 (x)

1

−D2 −M2
A22 (x) + · · ·

]n}
.

14In [37], this splitting was only used for terms involving just one heavy propagator.
15If the light field φ is massless, m2 can be viewed as an IR regulator introduced for the calculation, and

can be taken to zero in the end, as the end result is always free of IR divergence.
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The next step is to evaluate each of the functional traces in the last line above. These

functional traces can be all captured by the following general form:

Tr

[ (
−D2

)k1

−D2 −m2
1

A1 (x)

(
−D2

)k2

−D2 −m2
2

A2 (x) · · ·
(
−D2

)k3

−D2 −m2
n

An (x)

]
, (3.21)

where ki are integers. In appendix A, we present a systematic CDE method, which allows

one to evaluate any functional trace of this form.16

3.2 Demonstrating example: a toy scalar model

In order to demonstrate the methodology described in section 3.1 in the simplest context,

let us consider a toy model with a light real scalar field φ and a heavy real scalar field Φ,

both of which are gauge singlets. The UV Lagrangian is

LUV (φ,Φ) =
1

2
Φ
(
−∂2 −M2

)
Φ− λ

3!
Φφ3 +

1

2
φ
(
−∂2 −m2

)
φ− κ

4!
φ4. (3.22)

For clarity of discussion, we ignore possible self-interactions of the heavy field Φ. We would

like to match this theory on an EFT of φ alone, LEFT (φ).

Let us focus on the dimension-four operator O4 ≡ φ4 and the dimension-six operator

O6 ≡ φ6 with the Wilson coefficients c4, c6 normalized as LEFT (φ) ⊃ c4φ
4 + c6φ

6. Specifi-

cally, we want to compute the piece c
(1)
4,mixed and c

(1)
6,mixed, the contribution to which should

involve the UV coupling λ.

Following the procedure described in section 3.1, we first compute the non-local La-

grangian LUV (φ,Φc [φ]):

Φc [φ] =
1

−∂2 −M2

λ

6
φ3, (3.23)

LUV (φ,Φc [φ]) =
1

2
φ
(
−∂2 −m2

)
φ− κ

4!
φ4 − λ2

72
φ3 1

−∂2 −M2
φ3. (3.24)

Then we take its second variation with respect to the light field φ

− δ
2SUV [φ,Φc [φ]]

δφ2
= ∂2+m2+

κ

2
φ2+

λ2

36

[
9φ2 1

−∂2−M2
φ2+6φ

(
1

−∂2−M2
φ3

)
x

]
. (3.25)

Note that here we have used a subscript “x” to mark a “local” term, i.e. the state |x〉 in

the functional space is an eigenstate of the expression inside the parentheses:(
1

−∂2 −M2
φ3

)
x

|x〉 = |x〉
(

1

−∂2 −M2
φ3

)
= |x〉

[
− 1

M2
φ3 +

1

M4
∂2
(
φ3
)
− 1

M6
∂4
(
φ3
)

+ · · ·
]
. (3.26)

16Note that in the third line of deriving eq. (3.20), we have dropped a term Tr log
(
D2 +m2

)
. This piece

is not of our interest for the current scope, as it will always get dropped as the “local counterpart” later

anyway, and hence does not contribute to c
(1)
i,mixed. However, if one actually wants to evaluate this piece,

one can use the universal formula of eq. (2.20) with U = 0. This is also discussed in appendix A.
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The practical understanding of the notation (. . . )x is that derivatives act only within the

parentheses. Now using eq. (3.17), we get

S
(1)
EFT,mixed [φ] =

i

2
log det

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
d

⊃ i

2
Tr log

{
1− 1

−∂2 −m2

{
κ

2
φ2 +

λ2

36

[
9φ2 1

−∂2 −M2
φ2 + 6φ

(
1

−∂2 −M2
φ3

)
x

]}}
d

⊃ − i

144
Tr

 2λ2 1
−∂2−m2

[
9φ2 1

−∂2−M2φ
2 + 6φ

(
1

−∂2−M2φ
3
)
x

]
+λ2κ 1

−∂2−m2φ
2 1
−∂2−m2

[
9φ2 1

−∂2−M2φ
2 + 6φ

(
1

−∂2−M2φ
3
)
x

]
d

, (3.27)

where we have expanded the log and kept only the pieces that contain φ4, φ6 and involve λ.17

Our next step is to identify and drop the “local counterpart”. We see from eq. (3.24)

that if one were to compute L(0)
EFT (φ) up to mass dimension six, one would have arrived at

L(0)
EFT (φ) ⊃ λ2

72M2
φ6, (3.28)

which amounts to taking (
1

−∂2 −M2

)
truncated

= − 1

M2
. (3.29)

Therefore, we should split the heavy propagators in eq. (3.27) as

1

−∂2 −M2
=

(
1

−∂2 −M2

)
truncated

+
1

M2

−∂2

−∂2 −M2
, (3.30)

and then drop the term with all heavy propagators taking the first piece in the above. For

example, for the first term in eq. (3.27), the procedure is as following

Tr

{
1

−∂2 −m2
9φ2 1

−∂2 −M2
φ2

}
d

= Tr

{
1

−∂2 −m2
9φ2

[(
1

−∂2 −M2

)
truncated

+
1

M2

−∂2

−∂2 −M2

]
φ2

}
d

= Tr

{
1

−∂2 −m2
9φ2

[
1

M2

−∂2

−∂2 −M2

]
φ2

}
, (3.31)

where in the second line we have split the heavy propagator according to eqs. (3.29)

and (3.30), and in the third line we have dropped its truncated piece. We reiterate that

we need to drop the term with all (instead of any) heavy propagators taking the trun-

cated piece.

After dropping all the “local counterparts”, we get

S
(1)
EFT,mixed [φ] = − i

144
Tr


2λ2

M2
1

−∂2−m2

[
9φ2 −∂2

−∂2−M2φ
2 + 6φ

(
−∂2

−∂2−M2φ
3
)
x

]
+λ2κ
M2

1
−∂2−m2φ

2 1
−∂2−m2

[
9φ2 −∂2

−∂2−M2φ
2 + 6φ

(
−∂2

−∂2−M2φ
3
)
x

]
⊃ − i

16
Tr

{
2λ2

M2
1

−∂2−m2φ
2 −∂2

−∂2−M2φ
2

+λ2κ
M2

1
−∂2−m2φ

2 1
−∂2−m2φ

2 −∂2

−∂2−M2φ
2

}
, (3.32)

17The pieces that do not involve UV couplings will always be cancelled by the “local counterparts”.

– 23 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
3

where in the second line we have dropped the “x” pieces, because they start with two

derivatives on φ3 (the “x” piece is evaluated similar to eq. (3.26)), which would not con-

tribute to O4 = φ4 or O6 = φ6 in S
(1)
EFT,mixed [φ].

The rest of the calculation is just to evaluate the functional traces in eq. (3.32), which

can be done by a CDE method, as we explain in appendix A. The end results are

Tr

(
1

−∂2 −m2
φ2 −∂2

−∂2 −M2
φ2

)
⊃ i

(4π)2

∫
d4xM2φ4 (3.33)

Tr

(
1

−∂2 −m2
φ2 1

−∂2 −m2
φ2 −∂2

−∂2 −M2
φ2

)
⊃ i

(4π)2

∫
d4xφ6. (3.34)

Therefore we get the one-loop mixed piece of the Wilson coefficient as

S
(1)
EFT,mixed [φ] ⊃

∫
d4x

1

(4π)2

(
λ2

8
φ4 +

λ2κ

16M2
φ6

)
, (3.35)

c
(1)
4,mixed (µ = M) =

1

(4π)2

λ2

8
, (3.36)

c
(1)
6,mixed (µ = M) =

1

(4π)2

λ2κ

16M2
. (3.37)

3.3 Example: the Standard Model with a heavy electroweak triplet scalar

Now let us work out a model that is of some phenomenological relevance — the Standard

Model with a heavy electroweak triplet scalar Φa. The UV Lagrangian is

LUV = LSM (φ) +
1

2
Φa
(
−D2 −M2

)
Φa + 2κH†taHΦa − η|H|2ΦaΦa, (3.38)

where ta = σa/2 is the SU(2)W generator in the fundamental representation, and we have

used “φ” to collectively denote all the SM fields. As in the previous example, we ignore

the self-interactions of the heavy field Φa for simplicity. The Higgs sector of the SM is

LSM (φ) ⊃ H†
(
−D2 −m2

)
H − λ

4
|H|4, (3.39)

where m2 is just an IR regulator. We will take m2 → 0 at the end of the calculation. We

are interested in the dimension-six operators OH ≡ 1
2

(
Dµ|H|2

)2
, OHD ≡

∣∣H†DH∣∣2, and

OR ≡ |H|2|DµH|2, with their Wilson coefficients cH , cHD, and cR normalized as

LEFT (φ) ⊃ cHOH + cHDOHD + cROR. (3.40)

These effective operators all have four powers of the Higgs field and two powers of the

covariant derivative. We are specifically interested in the one-loop mixed pieces c
(1)
H,mixed,

c
(1)
HD,mixed, and c

(1)
R,mixed.18

18The c
(1)
i,heavy(M) can be obtained with the universal formula (2.20); this example is shown explicitly

in [3].
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Again following the procedure described in section 3.1, we first compute the non-local

Lagrangian LUV (φ,Φa
c [φ])

Φa
c [φ] = − 1

−D2 −M2 − 2η|H|2
2κH†taH, (3.41)

LUV (φ,Φa
c [φ]) = LSM (φ)− 2κ2H†taH

1

−D2 −M2 − 2η|H|2
H†taH

=

[
LSM (φ)− 2κ2H†taH 1

−D2−M2H
†taH

−4κ2ηH†taH 1
−D2−M2 |H|2 1

−D2−M2H
†taH

]
+O

(
H8
)
. (3.42)

Here we have thrown away the terms with more than six powers in H, because upon

second variation, such terms would give effective operators with more than four powers in

H, which cannot contribute to OH , OHD, orOR. It is easy to work out the tree-level Wilson

coefficients from here. They are given by expanding LUV (φ,Φa
c [φ]) into local operators:

LUV (φ,Φa
c [φ]) ⊃ −2κ2H†taH

1

−D2 −M2
H†taH

⊃ −2κ2H†taH

(
− 1

M2
− −D

2

M4

)
H†taH

⊃ 2κ2

M4
H†taH

(
−D2

)
H†taH =

2κ2

M4

[
D
(
H†taH

)]2

=
2κ2

M4

[(
DH†

)
taH +H†ta (DH)

]2

=
2κ2

M4

[
1

4

(
Dµ|H|2

)2
−
∣∣∣H†DµH

∣∣∣2 + |H|2|DµH|2
]
, (3.43)

from which we can identify

c
(0)
H =

2κ2

M4

1

2
, c

(0)
HD = −2κ2

M4
, c

(0)
R =

2κ2

M4
. (3.44)

To continue with computing the one-loop mixed pieces, the next step is to take the

second variation of the action SUV [φ,Φa
c [φ]] with respect to all the light fields φ in SM,

which includes the Higgs doublet, the gauge bosons, as well as the Fermions. This will

give us a big functional matrix, and we need to evaluate its determinant. This evaluation

is a big task to do. However, we know in the end, we will only extract the terms that

contain OH , OHD, and OR with coefficient involving the UV couplings, i.e. κ or η. This

will greatly simplify the task. Furthermore, if one ignores the pieces in c
(1)
H,mixed, c

(1)
HD,mixed,

and c
(1)
R,mixed that involves the SM gauge couplings, then taking only the sub-matrix from

the Higgs field variation is sufficient. For purpose of simplicity, we will only evaluate the

functional determinant of this sub-matrix, and compute the terms in Wilson coefficients

that do not involve the SM gauge couplings. From eq. (3.42), we get this sub-matrix as

δ2LUV [φ,Φa
c [φ]] =

1

2

(
δH† δHT

)

−D2 −m2 − λ

2

(
a1 b1
b∗1 a

T
1

)

−4κ2

(
a2 b2
b∗2 a

T
2

)
− 8κ2η

(
a3 b3
b∗3 a

T
3

)

(
δH

δH∗

)
,
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so that

−δ
2SUV [φ,Φa

c [φ]]

δφ2
⊃ D2 +m2 +

λ

2

(
a1 b1
b∗1 a

T
1

)
+ 4κ2

(
a2 b2
b∗2 a

T
2

)
+ 8κ2η

(
a3 b3
b∗3 a

T
3

)
.

where a1, b1, a2, b2, a3, and b3 are all functionals as well as 2 × 2 matrices in the SU(2)W
space. Their detailed expressions are

a1 = |H|2+HH†,

b1 =HHT ,

a2 = ta
(

1

−D2−M2
H†taH

)
x

+taH
1

−D2−M2
H†ta,

b2 = taH
1

−D2−M2
HT ta∗,

a3 =


ta
(

1
−D2−M2 |H|2 1

−D2−M2H
†taH

)
x
+taH 1

−D2−M2 |H|2 1
−D2−M2H

†ta

+taH 1
−D2−M2H

†
(

1
−D2−M2H

†taH
)
x
+
(

1
−D2−M2H

†taH
)
x
H 1
−D2−M2H

†ta

+1
2

(
1

−D2−M2H
†taH

)
x

(
1

−D2−M2H
†taH

)
x

 ,
b3 = taH

1

−D2−M2
|H|2 1

−D2−M2
HT ta∗+2taH

1

−D2−M2
HT

(
1

−D2−M2
H†taH

)
x

.

Now using eq. (3.17), we get

S
(1)
EFT,mixed [φ] =

i

2
logdet

[
D2+m2+

λ

2

(
a1 b1
b∗1 a

T
1

)
+4κ2

(
a2 b2
b∗2 a

T
2

)
+8κ2η

(
a3 b3
b∗3 a

T
3

)]
d

⊃ i

2
Trlog

{
1− 1

−D2−m2

[
λ

2

(
a1 b1
b∗1 a

T
1

)
+4κ2

(
a2 b2
b∗2 a

T
2

)
+8κ2η

(
a3 b3
b∗3 a

T
3

)]}
d

,

(3.45)

Next we would like to expand out and truncate the log. We notice that a1, b1, a2, b2 ∼ H2

and a3, b3 ∼ H4, and we want to keep terms with four powers in H, and also involve κ or

η. This restricts us to three terms

S
(1)
EFT,mixed [φ] ⊃ i

2
Tr



−2λκ2 1
−D2−m2

(
a1 b1
b∗1 a

T
1

)
1

−D2−m2

(
a2 b2
b∗2 a

T
2

)

−8κ4 1
−D2−m2

(
a2 b2
b∗2 a

T
2

)
1

−D2−m2

(
a2 b2
b∗2 a

T
2

)

− 8κ2η
−D2−m2

(
a3 b3
b∗3 a

T
3

)


d

= S1 + S2 + S3,

(3.46)

with S1, S2, and S3 defined as

S1 ≡
i

2
Tr

[
−2λκ2 1

−D2 −m2

(
a1 b1
b∗1 a

T
1

)
1

−D2 −m2

(
a2 b2
b∗2 a

T
2

)]
d

, (3.47a)
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S2 ≡
i

2
Tr

[
−8κ4 1

−D2 −m2

(
a2 b2
b∗2 a

T
2

)
1

−D2 −m2

(
a2 b2
b∗2 a

T
2

)]
d

, (3.47b)

S3 ≡
i

2
Tr

[
− 8κ2η

−D2 −m2

(
a3 b3
b∗3 a

T
3

)]
d

. (3.47c)

Our next step is to identify and drop the “local counterparts”, and then evaluate these

functional traces using the CDE method described in appendix A. To identify the “local

counterparts”, we notice that computing c
(0)
HD from eq. (3.42) amounts to taking(

1

−D2 −M2

)
truncated

= − 1

M2
− −D

2

M4
. (3.48)

So we should split the heavy propagator as

1

−D2 −M2
=

(
1

−D2 −M2

)
truncated

+
1

M4

D4

−D2 −M2
, (3.49)

and all heavy propagators taking the first term in this splitting should be the “local coun-

terpart” to drop. We leave the details of evaluating S1, S2, and S3 to appendix D. The

end results are (see eqs. (D.7)–(D.9))

S1 ⊃
1

(4π)2

λκ2

M4

∫
d4x

[
13

8

(
Dµ|H|2

)2
− 3

2

∣∣∣H†DµH
∣∣∣2 +

25

4
|H|2|DµH|2

]
, (3.50)

S2 ⊃
1

(4π)2

κ4

M6

∫
d4x

[
−2
(
Dµ|H|2

)2
−
∣∣∣H†DµH

∣∣∣2 − 21

2
|H|2|DµH|2

]
, (3.51)

S3 ⊃
1

(4π)2

κ2η

M4

∫
d4x

[
−7
(
Dµ|H|2

)2
+ 16

∣∣∣H†DµH
∣∣∣2 − 21|H|2|DµH|2

]
. (3.52)

Combining the above, we get

c
(1)
H,mixed (µ = M) =

1

(4π)2

κ2

M4

(
13

4
λ− 14η − 4

κ2

M2

)
, (3.53)

c
(1)
HD,mixed (µ = M) =

1

(4π)2

κ2

M4

(
−3

2
λ+ 16η − κ2

M2

)
, (3.54)

c
(1)
R,mixed (µ = M) =

1

(4π)2

κ2

M4

(
25

4
λ− 21η − 21

2

κ2

M2

)
. (3.55)

The result of c
(1)
HD,mixed(µ = M) agrees with that in the literature, e.g. eq. (31) in [12].

In some literatures, the wavefunction correction effect is also included in the one-loop

Wilson coefficients. This piece is also easily computed with our method. One just needs

to compute the Wilson coefficient cK of the kinetic operator OK ≡ |DH|2. To one-loop

order, the only contribution to cK comes from c
(1)
K,mixed. To compute this contribution, we

just go back to eq. (3.45) and keep the terms with two powers in H while expanding and
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truncating the log. This gives

S
(1)
EFT,mixed [φ]⊃ i

2
Trlog

{
1− 1

−D2−m2

[
λ

2

(
a1 b1
b∗1 a

T
1

)
+4κ2

(
a2 b2
b∗2 a

T
2

)
+8κ2η

(
a3 b3
b∗3 a

T
3

)]}
d

⊃−2iκ2Tr

[
1

−D2−m2

(
a2 b2
b∗2 a

T
2

)]
d

≡SK . (3.56)

As before, one proceeds with first dropping the “local counterparts” and then evalu-

ating the functional trace using CDE. We give the details of evaluating SK in appendix D.

The end result is (see eq. (D.10))

SK ⊃
1

(4π)2

κ2

M2

∫
d4x

[
3

2
|DH|2

]
, (3.57)

which gives

LEFT (φ) ⊃ 1

(4π)2

3

2

κ2

M2
|DH|2. (3.58)

This result agrees with that in the literature, e.g. eq. (32) in [12]. As explained in [12],

sometimes people rescale the field H to absorb this correction of the kinetic term, in order

to make the kinetic term canonical:

H →
[
1− 1

(4π)2

3

4

κ2

M2

]
H. (3.59)

Rescaling H will also rescale OH , OHD, and OR; hence, the one-loop pieces of their Wilson

coefficients are modified:

{OH ,OHD,OR}→
[
1− 1

(4π)2 3
κ2

M2

]
{OH ,OHD,OR} ,{

c
(1)
H,mixed, c

(1)
HD,mixed, c

(1)
R,mixed

}
→
{
c

(1)
H,mixed, c

(1)
HD,mixed, c

(1)
R,mixed

}
− 1

(4π)2 3
κ2

M2

{
c

(0)
H , c

(0)
HD, c

(0)
R

}
.

Using the tree-level matching results in eq. (3.44), we get

c
(1)
H,mixed (µ = M)→ 1

(4π)2

κ2

M4

(
13

4
λ− 14η − 7

κ2

M2

)
, (3.60)

c
(1)
HD,mixed (µ = M)→ 1

(4π)2

κ2

M4

(
−3

2
λ+ 16η + 5

κ2

M2

)
, (3.61)

c
(1)
R,mixed (µ = M)→ 1

(4π)2

κ2

M4

(
25

4
λ− 21η − 33

2

κ2

M2

)
. (3.62)

Eq. (3.61) agrees with [40], upon neglecting the SM gauge coupling piece. We see that func-

tional method has the strength to compute different Wilson coefficients at the same time.
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4 Full example for matching: Yukawa theory with a heavy scalar

To highlight aspects of the general discussions on matching from the previous sections, here

we consider a simple example of matching a Yukawa theory with a heavy scalar Φ onto

a low energy EFT containing the four-fermion interaction OS = (ψψ)2/2. We will show

how to do the matching in both the “traditional” procedure of section 2.3 as well as the

“direct” approach of section 3.

The UV Lagrangian is given by

LUV(Φ, ψ) =
1

2
Φ
(
− ∂2 −M2

)
Φ + ψ

(
i/∂ −m)ψ − λΦψψ, (4.1)

with the hierarchy M � m. For simplicity, in this discussion we will ignore the Φ4 self-

interaction of the heavy scalar. At the scale M , we match it onto the EFT given by

LEFT(ψ) = ψ
(
i/∂ −m)ψ +

cS
2

(
ψψ
)2

+ . . . , (4.2)

where the dots indicate other higher-dimensional operators.

We give some detail to the explicit computations to provide a full-picture of the pro-

cedure. So as not to lose the physics in the math, let us summarize the computations:

• In the “traditional” approach, we first compute the 1LPI effective actions of the

UV theory and the EFT and then equate them to obtain the Wilson coefficients.

Subsection 4.1 is devoted to the computation of the 1LPI effective actions.

• In subsection 4.2 we apply the matching condition, eq. (2.27), to determine the Wilson

coefficients.

• In subsection 4.3 we show the direct computation of the Wilson coefficient c
(1)
S,mixed

using the non-local action SUV (ψ,Φc[ψ]), following the general procedure described

in section 3.

Finally, we mention that the lecture notes [41] analyze this Yukawa model in detail using

diagrammatic methods, and serve as a complementary text to this section.

4.1 Computing the 1LPI effective actions

In this subsection we compute the 1LPI effective actions ΓL,UV and ΓL,EFT at tree and

one-loop level. In obtaining the effective actions we will expand in powers of m2/M2 and

keep only the leading order in this expansion. For loop calculations we work in the MS

renormalization scheme.

4.1.1 Tree-level

As discussed around eq. (2.32a), the tree-level 1LPI effective action of the UV theory is

simply obtained by solving δSUV/δΦ = 0 to obtain

Φc [ψ] =
1

−∂2 −M2
λψ̄ψ, (4.3)

– 29 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
3

Figure 1. One-loop diagrams contributing to the 1LPI effective action in the UV theory. Solid

lines represent fermions, dashed lines scalars.

and then plugging this back into the Lagrangian,

Γ
(0)
L,UV [ψ] = SUV [ψ,Φc [ψ]] =

∫
d4x

[
ψ̄
(
i/∂ −m

)
ψ − 1

2
λ2ψ̄ψ

1

−∂2 −M2
ψ̄ψ

]
. (4.4)

For the EFT, the 1LPI effective action is simply the tree-level piece of the EFT action

(eq. (2.35a)):

Γ
(0)
L,EFT [ψ] = S

(0)
EFT [ψ] =

∫
d4x

[
ψ̄
(
i/∂ −m

)
ψ +

1

2
c

(0)
S

(
ψ̄ψ
)2]

. (4.5)

4.1.2 One-loop in the UV theory

The one-loop 1LPI in the UV theory contains diagrams with both heavy and light fields,

see figure 1. In the functional approach, following the discussion of section 2.3, to obtain

Γ
(1)
L,UV[ψ] we take the second variation of LUV (ψ,Φ)

δ2LUV (ψ,Φ) =
1

2

(
δΦ δψT δψ̄

)
A Γ̄ −ΓT

−Γ̄T 0 −BT

Γ B 0




δΦ

δψ

δψ̄T

 , (4.6)

where

A = −∂2 −M2, B = i/∂ −m− λΦc, Γ = −λψ, Γ = −λψ. (4.7)

This is the first time in this paper that we take functional derivatives with respect to

fields of mixed statistics. So let us procede slowly for clarity. From eq. (2.32b), we know

that the one-loop 1LPI effective action Γ
(1)
L,UV should be proportional to the determinant

of the above matrix. However, what should be the proper pre-factor? We know that the

“i/2” in eq. (2.32b) needs to be appropriately tailored for each field. But in eq. (4.6) there

are both the scalar field Φ and the fermionic fields
(
ψ, ψ̄T

)
.

If the functional derivative matrix were block diagonal, i.e. Γ = Γ̄ = 0, it would be

straightforward to obtain the appropriate expression of eq. (2.32b). In this case, the scalar

block and the fermionic block would decouple, and we would obtain

Γ
(1)
L,UV [ψ] =

i

2
log det (−A)− i

2
log det

[
−

(
0 −BT

B 0

)]
. (4.8)

Note that we have −i/2 here for the second term, instead of the usual −i. This is because

in the way of taking the functional derivative in eq. (4.6), we have paired the two degrees
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of freedom ψ and ψ̄ into one, bigger vector:

χ =

(
δψ

δψ̄T

)
, (4.9)

which means we are reinterpreting the path integral from two integrals into one integral:∫
Dψ̄Dψ exp

[
iδψ̄

(
δ2S

δψ̄δψ

)
δψ

]
=

∫
Dχ exp

[
i
1

2
δχT

(
δ2S

δχ2

)
δχ

]
, (4.10)

and hence the factor 1/2.

Eq. (4.8) would have been nice, but the reality in eq. (4.6) is that Γ 6= 0. However, we

can first make the functional matrix in eq. (4.6) block diagonal by changing basis, which

amounts to a Gaussian elimination operation on the matrix:19 A Γ̄ −ΓT

−Γ̄T 0 −BT

Γ B 0

→
A−Γ̄B−1Γ 0 −ΓT

−Γ̄T 0 −BT

Γ B 0

→
A−Γ̄B−1Γ+ΓTBT−1Γ̄T 0 0

−Γ̄T 0 −BT

Γ B 0

 .
(4.11)

Now we can make use of eq. (4.8). This is the general way we proceed with for functional

determinants of mixed statistics.20

Using eq. (4.8) on the matrix in eq. (4.11), we get

Γ
(1)
L,UV [ψ] =

i

2
logdet

(
−A+Γ̄B−1Γ−ΓTBT−1Γ̄T

)
− i

2
logdet

[
−

(
0 −BT

B 0

)]
(4.12)

=
i

2
logdet[−A]︸ ︷︷ ︸

(i)

−i logdet[−B]︸ ︷︷ ︸
(ii)

+
i

2
logdet[1−A−1ΓB−1Γ+A−1ΓTB−1TΓT ]︸ ︷︷ ︸

(iii)

.

Let us briefly examine these three terms. The first term, log det[−A] = Tr log[∂2+M2],

is trivial and only affects the normalization of the path integral. The last two terms contain

non-trivial contributions to the effective action. Figure 2 shows how the Feynman diagrams

in the full theory are reinterpreted in the functional calculation. The first diagram of

figure 2 lies within term (ii), while the diagrams involving both heavy and light propagators

lie in term (iii).

19This is equivalent to completing the square on the fermionic fields then performing a linear shift. This

shift matrix diagnolizes (4.6).
20This prescription can be more elegantly summarized into a definition of a new determinant, called “su-

perdeterminant” (e.g. [42]), where one stipulates different statistics for different blocks of the “supermatrix”.

With this new definition, our 1LPI effective action can be written as [42]:

Γ
(1)
L,UV [ψ] ∝ log Sdet

 A Γ̄ −ΓT

−Γ̄T 0 −BT

Γ B 0

 = STr log

 A Γ̄ −ΓT

−Γ̄T 0 −BT

Γ B 0

 ,

where “Sdet” is the superdeterminant, “STr” is the supertrace. The functional trace can be written in a

form STr log(D̃2 + Y ) where D̃µ = Dµ − iXµ with Xµ and Y supermatrices. It would be interesting (and

likely straightforward) to generalize the CDE procedure for evaluating the determinant of elliptic operators

to evaluating superdeterminants of “super elliptic operators”.
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Figure 2. How the diagrams of figure 1 appear in the functional evaluation of Γ
(1)
L,UV[ψ]. Here,

external fermion lines correspond to ψ, ψ̄, internal fermions to δψ, δψ̄, dashed lines to δΦ, while the

cross denotes an insertion of Φc.

Evaluating term (ii)

(ii) : −i log det[−B] = −iTr log[−i/∂ +m+ λΦc(x)] (4.13)

The evaluation of this determinant is fairly simple because it can be converted into the

functional determinant of an elliptic operator of the sort in subsection 2.2.1. This allows

us to apply the universal results in eq. (2.20).

From eq. (2.24), we have Uferm = −i/∂F + 2mF + F 2 with F = λΦc ≈ −λ2ψψ/M2,

which we then plug into the universal formula. (ψψ)2 is clearly only contained in the

trUferm and trU2
ferm terms of eq. (2.20). It is apparent that to leading order in m2/M2,

these terms vanish. Hence,

Γ
(1)
L,UV,(ii) = 0. (4.14)

Evaluating term (iii). To compute term (iii) we expand the logarithm and then evaluate

the functional traces:

i

2
logdet[1−A−1ΓB−1Γ+A−1ΓTB−1TΓT ] =− i

2

∞∑
n=1

1

n
Tr
[
(A−1ΓB−1Γ−A−1ΓTB−1TΓT )n

]
.

(4.15)

As Γ ∝ ψ, keeping the first two terms is sufficient for our purposes:

(iiia): − iTr
[
A−1ΓB−1Γ

]
, (4.16)

(iiib): − i

2
Tr
[
(A−1ΓB−1Γ)2 −A−1ΓB−1ΓA−1ΓTB−1TΓT

]
, (4.17)

where we have used transposition and cyclic properties of the trace (keeping appropriate

track of signs when exchanging fermions) and A−1T = A−1.

Term (iiia). We can evaluate the trace in term (iiia) by using the techniques of ap-

pendix A. To bring it to traces of the sort in eq. (A.7), we expand the fermion propagator,

1

i/∂ −m− λΦc
=

1

i/∂ −m
+

1

i/∂ −m
λΦc

1

i/∂ −m
+ . . . ,

so that the trace contains

Tr

[
1

−∂2 −M2
Γ

i/∂ +m

−∂2 −m2
Γ +

1

−∂2 −M2
Γ

i/∂ +m

−∂2 −m2
λΦc

i/∂ +m

−∂2 −m2

]
. (4.18)
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We evaluate these traces following the general prescription of eq. (A.1), doing the

derivative expansion, and then evaluating the momentum integrals. For the first trace in

the above equation, this procedure gives:∫
d4x

d4p

(2π)4

1

(i∂ − p)2 −M2
Γ

(i/∂ − /p) +m

(i∂ − p)2 −m2
Γ

⊃
∫
d4x

d4p

(2π)4

1

p2 −M2
Γ

1

p2 −m2

(
1 +

2ip · ∂
p2 −m2

)(
i/∂ − /p+m

)
Γ

=

∫
d4x

d4p

(2π)4

(
mΓΓ + Γi/∂Γ

(p2 −M2)(p2 −m2)
−

2pµpν
(
Γiγµ∂νΓ

)
(p2 −M2)(p2 −m2)2

)

=
i

(4π)2

∫
d4x

(
− log

M2

µ2
+ 1

)
mΓΓ +

1

2

(
− log

M2

µ2
+

1

2

)
· Γi/∂Γ.

In the derivative expansion of the second line, we kept only linear order in derivatives and

dropped total derivatives. In evaluating the momentum integrals in the last line we kept

only the leading order terms in m2/M2.

The evaluation of the second trace in eq. (4.18) proceeds similarly:∫
d4x

d4p

(2π)4

1

(i∂ − p)2 −M2
Γ

(i/∂ − /p) +m

(i∂ − p)2 −m2
λΦcΓ

(i/∂ − /p) +m

(i∂ − p)2 −m2

⊃
∫
d4x

d4p

(2π)4

(p2 +m2)λΦcΓΓ

(p2 −M2)(p2 −m2)2

=
i

(4π)2

∫
d4x

(
− log

M2

µ2
+ 1

)
λΦcΓΓ.

Again, we have kept only the leading term in m2/M2 expansion (note that this allows us

in the second line to drop the term proportional to m2, which saves some work).

Plugging in Φc ≈ −λψψ/M2, Γ = −λψ, Γ = −λψ, we find in the end

Γ
(1)
L,UV,(iiia) ⊃

∫
d4x

{
1

(4π)2

λ2

2

(
− log

M2

µ2
+

1

2

)(
ψ̄i/∂ψ

)
+

λ2

(4π)2

(
− log

M2

µ2
+ 1

)(
mψ̄ψ

)
+

2

(4π)2

λ4

M2

(
log

M2

µ2
− 1

)
1

2

(
ψ̄ψ
)2}

. (4.19)

Term (iiib). Evaluating (iiib) proceeds very similarly to the previous evaluation of

Tr(A−1ΓB−1Γ). However, since the present term is already order (ΓΓ)2 ∝ (ψψ)2, we

can take 1/(i/∂−m−λΦc) ≈ 1/(i/∂−m) for the calculation. For the first term of eq. (4.17),

− i
2

Tr
[
(A−1ΓB−1Γ)2

]
≈ − i

2

∫
d4x

d4p

(2π)4

1

p2 −M2

Γ(−/p+m)Γ

p2 −m2

1

p2 −M2

Γ(−/p+m)Γ

p2 −m2

= − i
2

∫
d4x

d4p

(2π)4

m2(ΓΓ)2 + pµpν(ΓγµΓ)(ΓγνΓ)

(p2 −M2)2(p2 −m2)2
. (4.20)

In the first line, we followed the prescription of eq. (A.1) and then took the zeroth order

in the derivative expansion since the above is already proportional to (ΓΓ)2 ∝ (ψψ)2.
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Figure 3. How the diagrams of figure 1 appear in the functional evaluation of Γ
(1)
L,EFT[ψ]. In order

to follow the flow of fermion number, the four-fermion vertices intentionally do not touch.

Similarly for the second term of eq. (4.17)

i

2
Tr
[
A−1ΓB−1ΓA−1ΓTB−1TΓT

]
≈ i

2

∫
d4x

d4p

(2π)4

1

p2 −M2

Γ(−/p+m)Γ

p2 −m2

1

p2 −M2

ΓT (/pT +m)ΓT

p2 −m2

= − i
2

∫
d4x

d4p

(2π)4

m2(ΓΓ)2 − pµpν(ΓγµΓ)(ΓγνΓ)

(p2 −M2)2(p2 −m2)2
, (4.21)

where we have used (i∂µ)T = −i∂µ in the first line and ΓTΓT = −ΓΓ, ΓTγµTΓT = −ΓγµΓ

in the second line. Adding eqs. (4.20) and (4.21) we see the operator (ψγµψ)2 cancels —

as expected, since the heavy field Φ is a scalar — and we have

(iiib) = −i
∫
d4x

d4p

(2π)4

m2(ΓΓ)2

(p2 −M2)2(p2 −m2)2
.

This term vanishes at leading order of m2/M2, hence

Γ
(1)
L,UV,(iiib) = 0. (4.22)

Combining terms (i)–(iii). Gathering the results from eqs. (4.14), (4.19), and (4.22)

we have

Γ
(1)
L,UV[ψ] =

∫
d4x

{
ψi/∂ψ · 1

(4π)2

λ2

2

[
− log

M2

µ2
+

1

2

]
+mψψ · λ2

(4π)2

[
− log

M2

µ2
+ 1

]

+
1

2
(ψψ)2 · 2

(4π)2

λ4

M2

[
log

M2

µ2
− 1

]}
. (4.23)

4.1.3 One-loop in the EFT

We now turn to computing Γ
(1)
L,EFT[ψ]. The diagrams relevant to determining (ψψ)2 are

shown in figure 3—they are simply the shrinking of the scalar propagators in figure 1.

Following the functional approach in section 2.3, specifically eq. (2.35b), we see that there

are two pieces in Γ
(1)
L,EFT[ψ]. The first piece is simply

Γ
(1)
L,EFT [ψ] ⊃ S(1)

EFT [ψ] =

∫
d4x

[
1

2
c

(1)
S

(
ψ̄ψ
)2]

. (4.24)

To compute the second piece, we take the second variation of L(0)
EFT(ψ)

δ2L(0)
EFT (ψ) =

1

2

(
δψ̄ δψT

)[( i/∂ −m 0

0 −
(
i/∂ −m

)T
)
− F

](
δψ

δψ̄T

)
, (4.25)
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where

F ≡ c(0)
S

(
−(ψψ)− ψψ ψψT

ψTψ (ψψ)− ψTψT

)
. (4.26)

Then following eq. (2.32b), we obtain

Γ
(1)
L,EFT [ψ] ⊃ − i

2
log det

[(
i/∂ 0

0 −(i/∂)T

)
−mσ3 − F

]
,

where σ3 is the Pauli matrix. As before (see the discussion around eq. (4.8)), the proper pre-

factor is −i/2 instead of −i. This determinant can again be converted into the functional

determinant of an elliptic operator, which allows us to immediately apply the universal

results in eq. (2.20). Although it is straightforward, let us show how to do this conversion

for purpose of pedagogy.

The trace is invariant under flipping the sign of γµ matrices, so we may write

Γ
(1)
L,EFT [ψ] =− i

4

{
logdet

[(
−i/∂ 0

0 (i/∂)T

)
−mσ3−F

]
+logdet

[(
i/∂ 0

0 −(i/∂)T

)
−mσ3−F

]}

=− i
4

logdet

[(
/∂

2
0

0 /∂
T 2

)
+

(
m2 0

0 m2

)
+U

]
,

with

U ≡ m{σ3, F}+ F 2 +

[(
i/∂ 0

0 −(i/∂)T

)
, F

]
. (4.27)

Here, /∂
2

= /∂
T 2

= ∂2.21

Now we are in a position to immediately apply the universal formula eq. (2.20). Up

to dimension-six, we have

Γ
(1)
L,EFT [ψ] ⊃ − 1

(4π)2

1

4

[
−
(

log
m2

µ2
− 1

)
m2trU −

(
log

m2

µ2

)
1

2
trU2

]
. (4.28)

Up to dimension-six operators we can ignore the [/∂, F ] and take U = m{σ3, F}+ F 2. The

traces are easy to evaluate,22

m2trU = 8m2c2
S ·

1

2
(ψψ)2,

1

2
trU2 ⊃ m2

2
tr{σ3, F}2 = 8m2c2

S ·
1

2
(ψψ)2,

21More generally, for a covariant derivative Dµ = ∂µ − igAµ, the /D
2

would contain a piece proportional

to [Dµ, Dν ], which would be added to the definition of U as in eq. (2.24).
22For example, {σ3, F} = 2cS

(
−(ψψ)−ψψ 0

0 (ψψ)−ψTψT

)
so that

tr{σ3, F}2 = 4c2Str

(
(ψψ)2 + 3(ψψ)ψψ 0

0 (ψψ)2 − 3(ψψ)ψTψT

)
= 4c2S

[
(ψψ)2(4− 3) + (ψψ)2(4− 3)

]
= 8c2S(ψψ)2,

where we used identities such as trψψ = −(ψψ) and (ψTψT ) = −(ψψ).
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and we obtain

Γ
(1)
L,EFT[ψ] ⊃ 1

2
(ψψ)2 · 2

(4π)2
m2c2

S

(
2 log

m2

µ2
− 1

)
. (4.29)

We see that this term vanishes at leading order of m2/M2. So the one-loop 1LPI is purely

given by eq. (4.24):

Γ
(1)
L,EFT[ψ] =

∫
d4x

[
1

2
c

(1)
S

(
ψ̄ψ
)2]

. (4.30)

4.2 Matching

To match the UV theory onto the EFT we use the matching condition (i.e. eq. (2.27)),

ΓL,EFT[ψ](c, µ = M) = ΓL,UV[ψ](λ, µ = M),

to determine the Wilson coefficients. At tree-level this is very easy and the result is:

c
(0)
S =

λ2

M2
, (4.31)

At one-loop we equalize Γ
(1)
L,UV and Γ

(1)
L,EFT given in eqs. (4.23) and (4.30). Let us focus

on the dimension-six operator OS = (ψψ)2/2. Using c
(0)
S = λ2/M2, Γ

(1)
L,EFT = Γ

(1)
L,UV gives

c
(1)
S = − 2

(4π)2

λ4

M2
. (4.32)

In summary, we find that the Wilson coefficient up to one-loop order is

cS =
λ2

M2

(
1− λ2

8π2

)
. (4.33)

This result is in agreement with the calculation in [41]. As is seen from figure 1, there is no

one-loop contribution to cS with only heavy fields as the propagators. So the components

of our cS should be c
(0)
S = λ2

M2 , c
(1)
S,heavy = 0, and c

(1)
S,mixed = − 2

(4π)2
λ4

M2 .

4.3 Directly computing c
(1)
S,mixed

In this subsection, we make use of the technique described in section 3.1 to directly compute

c
(1)
S,mixed. This is the same routine we did in sections 3.2 and 3.3. We first compute the

non-local Lagrangian LUV (ψ,Φc [ψ]):

Φc [ψ] =
1

−∂2 −M2
λψ̄ψ,

LUV (ψ,Φc [ψ]) = ψ̄
(
i/∂ −m

)
ψ − 1

2
λ2ψ̄ψ

1

−∂2 −M2
ψ̄ψ,

and then take its second functional variation:

δ2LUV (ψ,Φc [ψ]) =
1

2

(
δψT δψ̄

)(
λ2a −

(
i/∂ −m+ λ2b

)T
i/∂ −m+ λ2b λ2c

)(
δψ

δψ̄T

)
, (4.34)
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where

a ≡ ψ̄T 1

−∂2 −M2
ψ̄,

b ≡ −
(

1

−∂2 −M2
ψ̄ψ

)
x

− ψ 1

−∂2 −M2
ψT ,

c ≡ ψ 1

−∂2 −M2
ψT .

We remind the reader that the notation (. . . )x means the quantity is an eigenstate of |x〉,
which means in practice that the derivatives only act within the parentheses — see the

discussion around eq. (3.26). According to our master result eq. (3.17), we have

S
(1)
EFT,mixed [ψ] = − i

2
log det

(
λ2a −

(
i/∂ −m+ λ2b

)T
i/∂ −m+ λ2b λ2c

)
d

⊃ i

2
λ4Tr


1
M4

1
i/∂−m ψ̄ψ

1
i/∂−m ψ̄ψ + 2

M2
1

−∂2−M2 ψ̄
1

i/∂−m ψ̄ψ
1

i/∂−mψ

− 1
−∂2−M2 ψ̄

1
i/∂−mψ

1
−∂2−M2 ψ̄

1
i/∂−mψ

+ 1
−∂2−M2 ψ̄

1
i/∂−mψ

1
−∂2−M2ψ

T
(

1
i/∂−m

)T
ψ̄T


d

=
i

2

λ4

M4
Tr



2 −∂2

−∂2−M2 ψ̄
1

i/∂−m ψ̄ψ
1

i/∂−mψ

+2 −∂2

−∂2−M2 ψ̄
1

i/∂−mψψ̄
1

i/∂−mψ

−2 −∂2

−∂2−M2 ψ̄
1

i/∂−mψψ
T
(

1
i/∂−m

)T
ψ̄T

− −∂2

−∂2−M2 ψ̄
1

i/∂−mψ
−∂2

−∂2−M2 ψ̄
1

i/∂−mψ

+ −∂2

−∂2−M2 ψ̄
1

i/∂−mψ
−∂2

−∂2−M2ψ
T
(

1
i/∂−m

)T
ψ̄T


. (4.35)

After evaluating all of these functional traces using the CDE techniques of appendix A,

we get

S
(1)
EFT,mixed [ψ] =

∫
d4x

[
1

(4π)2

−λ4

M2

(
ψ̄ψ
)2]

, (4.36)

which gives

c
(1)
S,mixed =

1

(4π)2

−2λ4

M2
. (4.37)

This agrees with our result in section 4.2.

5 RG running by functional methods

While all of the previous sections have focused on how to use functional methods to match

a UV theory onto an EFT, in this section we will discuss a slightly different — but closely

related — topic: how to do running analysis for an EFT with functional methods. RG

evolution is very important for an EFT since, by definition, an EFT is intended for studying

low-energy physics. After obtaining the EFT at the matching scale M , one uses it to

study physics processes at a much lower scale v � M . To do so, the Wilson coefficients

ci(µ = M) need to be evolved down to the scale µ = v using the renormalization group

equation (RGE).
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Suppose we have an EFT

LEFT (φ) = Lφ (φ) +
∑
i

ci (µ)Oi (φ), (5.1)

where Lφ denotes the renormalizable part, while Oi are higher dimensional operators.

In this case, the Wilson coefficients ci have negative mass dimension, meaning they are

suppressed by certain powers of M viewed from low energy scale v. Then to the leading

order of v/M , the one-loop RGE has the generic linear form

µ
d

dµ
ci(µ) =

1

(4π)2

∑
j

γijcj . (5.2)

This equation is governed by the anomalous dimension matrix γij which, by simple dimen-

sional analysis, is only a function of the marginal couplings of Lφ. Solving this RGE, the

relation between ci(µ = v) and ci(µ = M) is

ci(v) = ci(M) +
1

(4π)2

∑
j

γijcj(M) log
v

M
.

In this section, we will show how to obtain the RGE by functional methods, as well

as how to use it to obtain ci(µ = v). We first describe in subsection 5.1 how to obtain

one-loop RGE by functional methods for general theories. This applies broadly to QFT,

and is not limited to EFT. We then give two explicit examples in subsections 5.2 and 5.3 of

computing the RGE in the scalar EFT and the four-fermion EFT considered earlier in this

work. Finally, in subsection 5.4, we show how to obtain the low-energy Wilson coefficients

of the electroweak triplet scalar model by using the (known) anomalous dimension matrix

of the SM EFT.

5.1 One-loop running with functional methods

Suppose we are interested in the coefficient (coupling) λ of an operatorOλ in the Lagrangian

L (φ) ⊃ OK (φ) + λOλ (φ) , (5.3)

where φ collectively denotes all the fields as before and OK collectively denotes all the

kinetic terms, canonically normalized. The procedure of deriving the one-loop RGE of λ

with functional methods is very simple. One first computes the 1PI effective action Γ[φ]

to one-loop order, from the result of which one can identify the coefficients of the kinetic

terms aK and that of the operator of interest aλ:

Γ [φ] ⊃
∫
d4x [ak (µ)OK (φ) + aλ (µ)Oλ (φ)]. (5.4)

Next, one canonically normalizes all kinetic terms by appropriate rescalings of the fields,

Γ [φ]→
[
OK (φ) + a′λ (µ)Oλ (φ)

]
. (5.5)
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Then, the one-loop RGE of λ is simply given by

µ
d

dµ
a′λ (µ) = 0. (5.6)

The above procedure is rather general, and can be used to compute the RGE for any

perturbative QFT. When specifically applied to a linearly realized EFT, such as the SM

EFT, we pick λ(µ) = ci(µ) and the typical form of a′λ in eq. (5.5) is

a′λ(µ) = ci(µ)− 1

2

1

(4π)2

∑
j

γijc
(0)
j log

µ2

m2
. (5.7)

Here the first term comes from the action piece SEFT[φ], and the second term comes from

the functional determinant i
2 log det

(
− δ2S

(0)
EFT[φ]

δφ2

)
,23 with m2 collectively denoting the IR

scales in the EFT. Note that the contributions to a′λ due to the rescaling from eq. (5.4)

to eq. (5.5) are also absorbed into the second term above. One can do this because ak(µ)

in eq. (5.4) differs from 1 only by a one-loop sized quantity. Now applying eq. (5.6) on

eq. (5.7), we obtain the generic linear mixing form of the RGE in an EFT:

µ
d

dµ
ci(µ) =

1

(4π)2

∑
j

γijc
(0)
j . (5.8)

5.2 Toy scalar model

Let us take the toy scalar model of section 3.2 as our first example. In this model, the

EFT that we match onto is of the form

LEFT (φ) =
1

2
φ
(
−∂2 −m2

)
φ− κ

4!
φ4 + c6φ

6. (5.9)

We want the RGE for the Wilson coefficient c6. Following the prescription outlined above,

we need to compute the one-loop 1PI effective action,

ΓEFT [φ] = SEFT [φ] +
i

2
log det

(
−δ

2SEFT [φ]

δφ2

)
.

The first term is trivial. For the second term, we take the functional derivative and get

i

2
log det

(
−δ

2SEFT [φ]

δφ2

)
=
i

2
log det

(
∂2 +m2 +

κ

2
φ2 − 30c6φ

4
)

(5.10a)

⊃ i

2
Tr log

(
1− 1

−∂2 −m2

κ

2
φ2 +

1

−∂2 −m2
30c6φ

4

)
. (5.10b)

As the functional determinant is over an elliptic operator of the form ∂2 + m2 + U(x),

we can use the universal results in eq. (2.20) with U = κφ2/2 − 30c6φ
4. For this specific

example, this is the fastest route to obtaining the RGE.24 To showcase methods that apply

23See eq. (2.5) for the general structure of the effective action Γ[φ], and eq. (2.35) for a more concrete

expression of ΓEFT[φ] = ΓL,EFT[φ] in the case of an EFT.
24The relevant piece for the RGE in this case is the φ6 piece contained in the trU2 term of eq. (2.20).
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more generally, however, we factor the logarithm as in the second line above and evaluate

the trace using the CDE techniques described in appendix A.

Expanding the logarithm in eq. (5.10b) will generate a lot of terms. However, according

to section 5.1, we only need two operators: the kinetic term OK = 1
2φ
(
−∂2

)
φ and O6 = φ6.

These correspond to keeping terms with two powers and six powers of φ, respectively. For

the terms with two powers of φ, there is only one candidate:

Tr

(
− 1

−∂2 −m2

κ

2
φ2

)
.

We have actually evaluated this functional trace in section 2.1.2, specifically in eqs. (2.8)

and (2.9). We see that the result does not contain the kinetic operator OK = 1
2φ
(
−∂2

)
φ.

Therefore, we can drop this piece of functional trace.

Moving on to the terms with six powers of φ, we find two candidates

Tr

(
−1

3

1

−∂2 −m2

κ

2
φ2 1

−∂2 −m2

κ

2
φ2 1

−∂2 −m2

κ

2
φ2

)
,

Tr

(
1

−∂2 −m2

κ

2
φ2 1

−∂2 −m2
30c6φ

4

)
.

The first term in the above is finite; namely, it does not depend on the RG scale µ explicitly

and therefore does not contribute to the RGE. So we can drop this piece. Then the only

piece left is the second line above. This functional trace is easily evaluated to find

Tr

(
1

−∂2 −m2

κ

2
φ2 1

−∂2 −m2
30c6φ

4

)
⊃
∫
d4x

{[
i

(4π)2 15κc6 log
µ2

m2

]
φ6

}
.

Gathering the pieces, the 1PI effective action up to one-loop order is

ΓEFT [φ] ⊃
∫
d4x

{
1

2
φ
(
−∂2 −m2

)
φ− κ

4!
φ4 +

[
c6 +

1

(4π)2

−15κc6

2
log

µ2

m2

]
φ6

}
. (5.11)

We derive the RGE of c6 by requiring

µ
d

dµ

[
c6 +

1

(4π)2

−15κc6

2
log

µ2

m2

]
= 0,

which gives

µ
d

dµ
c6 =

1

(4π)2 15κc6. (5.12)

We identity the anomalous dimension matrix element γ66 = 15κ.

5.3 Yukawa model

As a second example, we study the running of the Wilson coefficient cS in the EFT for the

Yukawa model discussed in section 4. To make the running more interesting, we supplement

it by a light scalar φ, which we assume to be degenerate with ψ for simplicity. The EFT

Lagrangian is

LEFT (ψ, φ) = ψ̄
(
i/∂ −m

)
ψ +

1

2
cS
(
ψ̄ψ
)2

+
1

2
φ
(
−∂2 −m2

)
φ− yφψ̄ψ. (5.13)

As before, we ignore other interactions for purpose of pedagogy.

– 40 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
3

To one-loop, the 1PI effective action is ΓEFT = SEFT + i
2 log det

(
− δ2SEFT/δ(ψ, φ)2

)
.

To compute the loop contribution, we take the functional variation of the Lagrangian,

δ2LEFT (ψ, φ) =
1

2

(
δφ δψT δψ̄

)
−∂2 −m2 −yψ̄ yψT

yψ̄T 0 −BT

−yψ B 0

− F

 δφ

δψ

δψ̄T

 , (5.14)

where,

B ≡ i/∂ −m− yφ, (5.15)

F ≡ cS

 0 0 0

0 ψ̄T ψ̄ ψ̄ψ − ψ̄TψT

0 −ψ̄ψ − ψψ̄ ψψT

 . (5.16)

We see that this functional derivative matrix is very similar to the one in eq. (4.6). We

follow the same procedure described around eq. (4.6) to evaluate its functional determinant,

and keep only the fermion kinetic operator ψ̄i/∂ψ and the operator OS ≡ 1
2

(
ψ̄ψ
)2

. These

calculations are very similar to others contained in this work, so we omit the detailed steps.

The end result for the 1PI effective action is

ΓEFT [ψ, φ] ⊃
∫
d4x

{
ψi/∂ψ

(
1− 1

(4π)2

y2

2
log

m2

µ2

)
(5.17)

+
1

2
(ψψ)2

[
cS +

1

(4π)2

(
2y2cS log

m2

µ2
+ 4m2c2

S log
m2

µ2
+ . . .

)]}
,

where the dots indicate one-loop finite terms, which cannot contribute to the RGE.

To get the RGE, we need to canonically normalize the kinetic term by rescaling ψ,

ψ → 1√
1− 1

(4π)2
y2

2 log m2

µ2

ψ ≈
[
1 +

1

(4π)2

y2

4
log

m2

µ2

]
ψ, (5.18)

which rescales OS as

1

2

(
ψ̄ψ
)2 → [

1 +
1

(4π)2 y
2 log

m2

µ2

]
1

2

(
ψ̄ψ
)2
, (5.19)

and shifts the second line of eq. (5.17) into

1

2
(ψψ)2

[
cS +

1

(4π)2

(
3y2cS log

m2

µ2
+ 4m2c2

S log
m2

µ2

)]
. (5.20)

The one-loop RGE of cS is found by requiring that the term in brackets vanish upon taking

the derivative d
d log µ . This gives

µ
d

dµ
cS =

1

(4π)2

(
6y2cS + 8m2c2

S

)
. (5.21)
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Let us make a few brief physics comments. The second term is suppressed relative to

the first by a factor m2cS ∼ m2/M2 � 1, and therefore is higher-order from the EFT

point of view. From the leading order, i.e. the first term, we get the anomalous dimension

matrix element

γSS = 6y2, (5.22)

in agreement with the calculation of [41].

5.4 Electroweak triplet scalar model

The anomalous dimension matrix for dimension-six operators in the SM EFT has been

intensively studied [29–35]. In this section, we take the triplet scalar model discussed in

section 3.3 and compute the Wilson coefficient cHD(µ = v) at a scale v < M using the

known γij .

As we have computed in section 3.3, cHD at the matching scale M is25 (see eqs. (3.44)

and (3.61))

cHD (M) = −2κ2

M4
+

1

(4π)2

κ2

M4

(
−3

2
λ+ 16η + 5

κ4

M2

)
. (5.23)

Upon integrating the RGE, the Wilson coefficient at µ = v at leading order is given by

cHD (v) = cHD (M) +
1

(4π)2

∑
j

γijc
(0)
j (M) log

v

M
. (5.24)

In the triplet scalar model, the relevant nonzero c
(0)
j are given in eq. (3.44), which we

reproduce here

c
(0)
H =

2κ2

M4

1

2
, c

(0)
HD = −2κ2

M4
, c

(0)
R =

2κ2

M4
. (5.25)

Therefore, to compute cHD (v) using eq. (5.24), we only need to know three elements of the

anomalous dimension matrix: γH→HD, γHD→HD, and γR→HD. These can be extracted

from [35] (table 7) upon doing an operator basis transformation from (OH ,OT ,OR) to

(OH ,OHD,OR), with OT defined as

OT ≡
1

2

[
H† (DµH)−

(
DµH

†
)
H
]2

= OH − 2OHD. (5.26)

Performing this basis transformation, we obtain

γH→HD = −3g2
1, (5.27)

γHD→HD = 3λ− 3

2
g2

1 +
9

2
g2

2 + 12y2
t , (5.28)

γR→HD = 3g2
1. (5.29)

25Here we take the kinetic term rescaled version of c
(1)
HD,mixed.
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In the above, SM Yukawa couplings other than top Yukawa yt are neglected. Using these

in eq. (5.24), we obtain

cHD (v) = −2κ2

M4
+

1

(4π)2

κ2

M4

(
−3

2
λ+ 16η + 5

κ2

M2

)
− 1

(4π)2

2κ2

M4

(
3λ− 3g2

1 +
9

2
g2

2 + 12y2
t

)
log

v

M
. (5.30)

This result is in agreement with [40] upon neglecting the gauge coupling term in the one-

loop finite piece, and any Yukawa couplings other than yt.
26

6 Summary of results

One-loop matching and running analyses are crucial steps in an EFT approach of studying

low energy physics. In this paper, we discussed how to perform these analyses more effi-

ciently using functional methods in a manifestly gauge-covariant fashion. We clarified a few

basic concepts, developed some new computational techniques, and showed a number of

explicit examples for demonstration. In this section, we provide a summary of the central

results in this paper.

In the introduction section, we reviewed the standard matching condition between the

UV theory and the EFT — 1LPI diagrams to agree at the matching scale. Up to one-loop

order, the Wilson coefficients at the matching scale can be decomposed into three pieces:

ci (M) = c
(0)
i (M) + c

(1)
i,heavy (M) + c

(1)
i,mixed (M) . (6.1)

The tree-level piece c
(0)
i (M) and the one-loop heavy piece c

(1)
i,heavy(M) have been discussed

intensively elsewhere [3]. Our focus in this paper is hence on the one-loop mixed piece

c
(1)
i,mixed(M), resulting from the exchange of both heavy and light fields.

Our main purpose in section 2 was to explain how to do a “traditional” matching

analysis with functional methods. We derived in subsection 2.3 the matching results∑
i

c
(0)
i (M)Oi (φ) = LΦ (φ,Φc [φ]) , (6.2)

∫
d4x

{∑
i

[
c

(1)
i,heavy (M) + c

(1)
i,mixed (M)

]
Oi (φ)

}

=
i

2
log det

(
−δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φ=Φc[φ]

)
− i

2
log det

(
−
δ2S

(0)
EFT [φ]

δφ2

)
, (6.3)

where the tree-level piece is isolated, but the two one-loop level pieces, c
(1)
i,heavy(M) and

c
(1)
i,mixed(M) are entangled.

26The disagreement on the y2
t term is due to a typo in [40].
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In section 3, we resolved these two pieces by using a non-local Lagrangian, and arrived

at the isolated matching results∫
d4x

∑
i

c
(1)
i,heavy (M)Oi (φ) =

i

2
logdet

(
− δ

2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)
, (6.4)

∫
d4x

∑
i

c
(1)
i,mixed (M)Oi (φ) =

i

2
logdet

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
− i

2
logdet

(
−
δ2S

(0)
EFT [φ]

δφ2

)
.

(6.5)

We also showed how to systematically evaluate the functional determinants involved by a

new CDE technique, which is capable of evaluating a much wider class of traces than pre-

vious methods. This new CDE technique is detailed in appendix A. Our resolved matching

formula using non-local Lagrangian, as well as our new CDE technique of evaluating func-

tional traces are demonstrated by two examples — a toy scalar model in subsection 3.2, and

the heavy triplet scalar extension of the SM in subsection 3.3. In the triplet scalar exam-

ple, we computated three different Wilson coefficients at the same time, demonstrating one

advantage of using functional methods; namely, the ability of functional methods to easily

handle and organize information that is encoded in many different correlation functions.

To give a full picture of all aspects of matching, we focused on a toy Yukawa model

in section 4, showing how to obtain the Wilson coefficients using both the “traditional”

procedure of section 2 as well as the “direct” procedure of section 3.

In section 5 we discussed the process of renormalization group running in EFTs. We

showed how functional methods easily allow us to derive the RG equation for the Wilson

coefficients. Since the relevant functional can be evaluated with a CDE, this provides

an improved computational technique for obtaining the anomalous dimension matrix of

an EFT.
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A Functional trace evaluation with a CDE

Evaluating functional traces is the major task in using functional methods at one-loop

order. In this appendix, we explain how to perform this task efficiently with a covariant

derivative expansion. Before getting started, however, we emphasize that a CDE is not the

only way of evaluating functional traces. The task can be done by other methods, such as
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a partial derivative expansion (PDE).27 But, for obvious reasons, a CDE greatly simplifies

the calculation compared with a PDE.

Let us consider a generic functional that depends on the position and momentum

operators, f (x̂, p̂).28 To evaluate its trace over the functional space by using a derivative

expansion procedure (either a CDE or PDE), the general initial steps are as follows:

Tr [f (x̂, p̂)] =

∫
dp 〈p| f(x̂, p̂) |p〉 (A.1a)

=

∫
dx dp 〈p|x〉 〈x| f(x̂, p̂) |p〉 (A.1b)

=

∫
dx dp eipxf (x, i∂x) e−ipx (A.1c)

=

∫
dx dp f (x, i∂x − p). (A.1d)

Let us explain these steps one by one. Eq. (A.1a) is just the definition of the trace over the

functional space. In eq. (A.1b), we inserted unity: 1 =
∫
dx |x〉 〈x|. To obtain eq. (A.1c),

we have used the identity

〈x |f (x̂, p̂)| p〉 = f (x, i∂x) 〈x | p〉 = f (x, i∂x) e−ipx, (A.2)

where the i∂x inside f is understood to act on the rest that follows, i.e. e−ipx in this case.

To get eq. (A.1d), we have used the Baker-Campbell-Hausdorff formula

eipxi∂xe
−ipx = i∂x + p, (A.3)

and made a sign flip for later convenience: p → −p. Note that this Baker-Campbell-

Hausdorff shift of i∂x holds for the case of a covariant derivative Dµ = ∂µ − igAµ(x) as

well, i.e. eipxiDe−ipx = iD + p. Upon arriving at eq. (A.1d), one can expand out the

derivative i∂x (or iD in the covariant derivative case), and evaluate the integral over p.

To see this more concretely, consider the frequently encountered functional29

f (x̂, p̂) =
1

−D2 −M2
B (x̂) . (A.4)

Making use of the general prescription from eq. (A.1a) to eq. (A.1d), we get

Tr

[
1

−D2 −M2
B (x)

]
=

∫
d4x

∫
d4p

(2π)4 tr

[
1

(iD − p)2 −M2
B (x)

]
, (A.5)

where we have followed the notation in [3] of using “Tr” to denote a trace over both the

functional space and any internal indices (gauge, spin, flavor, etc), and “tr” to denote

27The essence to the methods of CDE and PDE are described in section 2.2.
28The hats remind us that the arguments are operators whose representation depends on what represen-

tation we pick to trace over the functional. See [3], section 2.2.
29In this and similar expressions iD technically should be understood symbolically as iD = p̂ + gA(x̂),

whose position representation is 〈x|
(
p̂+ gA(x̂)

)
=
(
i∂x + gA(x)

)
〈x|. A perhaps better notation would use

iD̂. As we will always pick a position representation in this work, there is no possibility of confusion and

so we drop the hats for the rest of this appendix and in the main text.
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a trace over the internal indices only. We can now expand out the covariant derivatives

relative to the leading term p2 −M2 to obtain an expansion in powers of D and the “free

propagator” (p2 −M2)−1:

1

(iD − p)2 −M2
B (x) =

1

p2 −M2 − 2ipµDµ −D2
B (x)

=
1

(p2 −M2)
[
1− 1

p2−M2 (2ipµDµ +D2)
]B (x)

=

∞∑
n=0

[
1

p2 −M2

(
2ipµDµ +D2

)]n 1

p2 −M2
B (x) . (A.6)

Here the covariant derivatives act on the operator B(x) to form local operators. Plugging

this expression back into eq. (A.5) and performing the integral over p, one will arrive at

a result with a spacetime integral over a local operator, which is clearly in the form of an

effective action. We see that throughout this procedure, Dµ is kept intact. Therefore, by

definition, this is a CDE procedure.

The prescription described above works well for evaluating any functional trace in the

form of eq. (3.21), which we reproduce here:

Tr

[ (
−D2

)k1

−D2 −m2
1

A1 (x)

(
−D2

)k2

−D2 −m2
2

A2 (x) · · ·
(
−D2

)k3

−D2 −m2
n

An (x)

]
, (A.7)

Later in this appendix, we show a few explicit examples.

An important note to make here is that although the prescription we just described

works on a wide class of functionals, it actually fails to be a CDE in the special case that

B(x) is a constant, i.e. for evaluating the trace

Tr

(
1

−D2 −M2

)
. (A.8)

When B(x) is a constant, ∂µB(x) = 0, we have(
2ipµDµ +D2

)
B (x) = 2gpµAµ (x)− igDµAµ (x) . (A.9)

We see that Dµ is broken into components with the gauge field Aµ showing up explicitly.

There is no problem with plugging eq. (A.9) back into eq. (A.5) and evaluating the trace.

It works, but it is a PDE instead of a CDE — after evaluating the p integrals, one would

need to recombine the Dµ and Aµ into field strengths to form a gauge invariant expression.

There is a very nice trick, introduced in [4], to keep Dµ intact while evaluating this

trace. This is to make a further insertion of e
iD ∂

∂p and e
−iD ∂

∂p :

Tr

(
1

−D2 −M2

)
=

∫
d4x

∫
d4p

(2π)4 tr

[
1

(iD − p)2 −M2

]
=

∫
d4x

∫
d4p

(2π)4

{
e
iD ∂

∂p tr

[
1

(iD − p)2 −M2

]
e
−iD ∂

∂p

}
. (A.10)
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Using the Baker-Campbell-Hausdorff formula will then convert every Dµ into commutators

with itself (for details, see [3–6]). The problem shown in eq. (A.9) is gone after this

conversion, because for constant B(x)

[Dµ, Dν ]B (x) = [Dµ, Dν ] . (A.11)

We see that the Dµ’s do not get broken down. This is “the CDE” method of [3–5].

A.1 Variations on a theme

A natural generalization of the term in eq. (A.5) that is frequently encountered is

1

−D2 −M2 −U(x)
B(x). (A.12)

Such pieces arise when the propagators are functions of background fields, i.e. L ⊃ Φ
(
−

D2 −M2 −U(x)
)
Φ.

To handle terms like eq. (A.12) there are basically two options. One option is to first

expand (−D2 −M2 − U)−1 is a power series of U ,

1

−D2 −M2 − U
B =

∞∑
n=0

[
1

−D2 −M2
U

]n 1

−D2 −M2
B, (A.13)

which just produces a specific case of eq. (A.7). From here, a covariant derivative expansion

along the lines of eq. (A.6) and the examples of the next subsection can be done. This

is the approach taken for the triplet scalar and Yukawa models of sections 3.3 and 4,

respectively. The other option is to do the expansion of U together with the covariant

derivative expansion. Analogous to eq. (A.6), we have

1

(iD − p)2 −M2 − U
B =

∞∑
n=0

[
1

p2 −M2

(
2ipµDµ +D2 + U

)]n 1

p2 −M2
B. (A.14)

Which option to take is just a matter of preference.

Let us make a, perhaps obvious, comment that applies to the expansions in eqs. (A.6)

and (A.14). In general Dµ, M , and U(x) are matrix valued. Therefore, if [M,U ] 6= 0, then

the ordering in these expansions is important as (p2 −M2)−1 will not commute through

(2ip · D + D2 + U). If all the matrices commute, then eq. (A.6) can more compactly be

expressed by
∑

n=0
1

(p2−M2)n+1 (2ip ·D +D2)nB and similarly for eq. (A.14).

For completeness, let us briefly address the case of fermion propagators, [i /D −M −
F (x)]−1. We can either first expand in a power series of F ,

1

i /D −M − F (x)
=

i /D +M

−D2 −M2
+

i /D +M

−D2 −M2
F (x)

i /D +M

−D2 −M2
+ . . . , (A.15)

and then develop a CDE following the prescription of eq. (A.1) and the steps done for the

bosonic propagator. Alternatively, we may first write

1

i /D −M − F (x)
=

i /D +M + F (x)

−D2 −M2 − Uferm(x)
, (A.16)

with Uferm(x) given in eq. (2.24), and then develop a CDE.
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A.2 Example trace evaluations

To show how to use the CDE technique explained above, we now consider three example

traces of the form in eq. (A.7). Each of these traces are encountered in the main text.

A.2.1 Trace evaluation example 1: T

Let us first consider an example case of eq. (A.7) of the form

T (A1, A2) ≡ Tr

[
1

−D2 −m2
A1 (x)

1

−D2 −M2
A2 (x)

]
. (A.17)

Following the prescription of eq. (A.1) we get

T =

∫
d4x

∫
d4p

(2π)4 tr

[
1

(iD − p)2 −m2
A1

1

(iD − p)2 −M2
A2

]
. (A.18)

Now we do the “CDE step”, i.e. expand out the covariant derivatives as in eq. (A.6). For

demonstration purposes, we only keep up to two powers of Dµ, in which case we have

1

(iD − p)2 −m2
=

1

p2 −m2
+

1

(p2 −m2)2 2ipµDµ +
(1− 4/d) p2 −m2

(p2 −m2)3 D2, (A.19)

1

(iD − p)2 −M2
=

1

p2 −M2
+

1

(p2 −M2)2 2ipµDµ +
(1− 4/d) p2 −M2

(p2 −M2)3 D2, (A.20)

As this is the key step in our method, we would like to make a few comments on it.

• To determine up to which power of D to truncate this CDE step, one simply sums

over the mass dimensions of A1, A2, and compares it with the mass dimension of the

effective operators under consideration. For example, suppose A1 = A2 = φ2, which

sums up to φ4, and we want effective operators up to dimension-six. Then we should

keep up to two powers of D. For all the examples discussed in this paper, we never

need to do this CDE step beyond the second power of D.

• Because all calculations in this paper require at most two powers of D, we have made

the symmetrization pµpν → 1
dg

µνp2 in eqs. (A.19) and (A.20). Here d = 4 − 2ε, as

usual in dimensional regularization. Terms proportional to 1−4/d can give a nonzero

contribution if the momentum integral has a divergence.

Now using eqs. (A.19) and (A.20) in eq. (A.18) and keeping only up to two powers of

D, we get

T ⊃
∫
d4x

∫
d4p

(2π)4 tr


[

1
p2−m2 + 1

(p2−m2)2 2ipD + (1−4/d)p2−m2

(p2−m2)3 D2
]
A1

×
[

1
p2−M2 + 1

(p2−M2)2 2ipD + (1−4/d)p2−M2

(p2−M2)3 D2
]
A2


=

∫
d4x

∫
d4p

(2π)4 tr

{
1

p2 −m2
A1

[
1

p2 −M2
+

(1− 4/d) p2 −M2

(p2 −M2)3 D2

]
A2

}
=

∫
d4x

{[∫
d4p

(2π)4

1

(p2 −M2) (p2 −m2)

]
tr (A1A2)

+

[∫
d4p

(2π)4

(1− 4/d) p2 −M2

(p2 −M2)3 (p2 −m2)

]
tr
(
A1D

2A2

)}
. (A.21)
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In going from the first to the second line we have used the fact that total derivatives vanish

under the position integral, so that we can replace the entry from eq. (A.19) by 1/(p2−m2).

The momentum integrals above can be worked out easily

I1≡
∫

d4p

(2π)4

1

(p2−M2)(p2−m2)
=

i

(4π)2

(
ln
µ2

M2
+

m2

M2−m2
ln
m2

M2
+1

)
, (A.22)

I2≡
∫

d4p

(2π)4

(1−4/d)p2−M2

(p2−M2)3 (p2−m2)
=

i

(4π)2

−M2

(M2−m2)2

(
m2

M2−m2
ln
m2

M2
+
M2+m2

2M2

)
,

(A.23)

where we have used dimensional regularization in the MS renormalization scheme. In

practical calculations, we only keep operators in the EFT up to some give mass dimension.

This requires us to expand I1,2 in m2/M2 and truncate at some order consistent with the

operator dimensions kept in the EFT. If we take zeroth order in m2/M2, we get

I1 =
i

(4π)2

(
ln

µ2

M2
+ 1

)
, (A.24)

I2 =
i

(4π)2

1

M2

−1

2
. (A.25)

Plugging these back into eq. (A.21), the functional trace T evaluated at the matching scale

µ = M is given by

T (A1, A2, µ = M) ⊃ i

(4π)2

∫
d4xtr

[
(A1A2) +

1

M2

1

2
(DA1) (DA2)

]
. (A.26)

A.2.2 Trace evaluation example 2: T0

As a second example, consider the functional trace T0 defined as

T0 (A1, A2, A3) ≡ Tr

(
1

−D2 −m2
A1

1

−D2 −m2
A2

−D2

−D2 −M2
A3

)
. (A.27)

Again, we first follow the prescription of eq. (A.1) to get

T0 =

∫
d4x

∫
d4p

(2π)4 tr

[
1

(iD−p)2−m2
A1

1

(iD−p)2−m2
A2

(iD−p)2

(iD−p)2−M2
A3

]
. (A.28)

Next is the “CDE step”:

(iD − p)2

(iD − p)2 −M2
=

p2

p2 −M2
+

M2

(p2 −M2)2 2ipµDµ +
(1− 4/d)M2p2 −M4

(p2 −M2)3 D2. (A.29)

Now using eqs. (A.19) and (A.29) in eq. (A.28) and keeping only zeroth power in D, we get

T0 (A1, A2, A3) ⊃
∫
d4x · tr (A1A2A3)

∫
d4p

(2π)4

p2

(p2 −M2) (p2 −m2)2 . (A.30)
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The momentum integral is

I ≡
∫

d4p

(2π)4

p2

(p2 −M2) (p2 −m2)2 =
i

(4π)2

[
ln
µ2

m2
+

M2

M2 −m2

(
M2

M2 −m2
ln
m2

M2
+ 1

)]
,

(A.31)

Taking the limit m2/M2 → 0

I =
i

(4π)2

(
ln
µ2

m2
+ ln

m2

M2
+ 1

)
=

i

(4π)2

(
ln

µ2

M2
+ 1

)
. (A.32)

Plugging this into eq. (A.30), the functional trace T0 evaluated at µ = M is given by

T0 (A1, A2, A3, µ = M) ⊃ i

(4π)2

∫
d4x · tr (A1A2A3). (A.33)

A.2.3 Trace evaluation example 3: T1

As a final example, we evaluate the functional trace T1 defined as

T1 (A1, A2) ≡ 1

M2
Tr

(
1

−D2 −m2
A1

D4

−D2 −M2
A2

)
. (A.34)

This time let us put all the steps together and move more smoothly. The entire evaluation is:

T1 =
1

M2
Tr

(
1

−D2−m2
A1

D4

−D2−M2
A2

)
=

1

M2

∫
d4x

∫
d4p

(2π)4 tr

[
1

(iD−p)2−m2
A1

(iD−p)4

(iD−p)2−M2
A2

]

⊃ 1

M2

∫
d4x

∫
d4p

(2π)4 tr


[

1
p2−m2 + 1

(p2−m2)2 2ipD+ (1−4/d)p2−m2

(p2−m2)3 D2
]
A1

×
[

p4

p2−M2 +−p
4+2M2p2

(p2−M2)2 2ipD+−p
6+3M2p4−(2+4/d)M4p2

(p2−M2)3 D2
]
A2


⊃ 1

M2

∫
d4x

∫
d4p

(2π)4 tr

 p4

(p2−M2)(p2−m2)
A1A2

+p6−3M2p4+3M4p2

(p2−M2)3(p2−m2)
(DA1)(DA2)


=

∫
d4x·tr

[
I3M

2 (A1A2)+I4 (DA1)(DA2)
]

=
i

(4π)2

∫
d4x·tr

[
M2 (A1A2)+

1

2
(DA1)(DA2)

]
. (A.35)

In the above, we have kept terms up to D2 in the “CDE step”. We have also used the fact

that under the limit m2/M2 → 0, the momentum integrals I3 and I4 are

I3 ≡
1

M4

∫
d4p

(2π)4

p4

(p2 −M2) (p2 −m2)
=

i

(4π)2 , (A.36)

I4 ≡
1

M2

∫
d4p

(2π)4

p6 − 3M2p4 + 3M4p2

(p2 −M2)3 (p2 −m2)
=

i

(4π)2

1

2
. (A.37)

We hope that the general evaluation technique is clear from the three examples above.

This is a systematic prescription that one can use to work out any functional trace in the

form of eq. (A.7).
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B Derivation of the resolved functional determinant, eq. (3.2)

In this appendix, we give the derivation of taking the functional determinant

log det

(
− δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φ=Φc[φ]

)
, (B.1)

and bringing it to the form of eq. (3.2). The basic idea is to break down this big functional

determinant into smaller ones and then apply some straightforward manipulations of the

functional derivative.

The functional derivative matrix in eq. (3.1) has the following 2× 2 form

− δ2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φ=Φc[φ]

=

 − δ2SUV[φ,Φ]
δφ2

∣∣∣
Φc
− δ2SUV[φ,Φ]

δφδΦ

∣∣∣
Φc

− δ2SUV[φ,Φ]
δφδΦ

∣∣∣
Φc
− δ2SUV[φ,Φ]

δΦ2

∣∣∣
Φc

 ≡ ( a b
c d

)
, (B.2)

whose determinant should then follow as

det

(
a b

c d

)
= det

(
a− bd−1c 0

c d

)
= det (d) det

(
a− bd−1c

)
. (B.3)

We make the identifications that

d = − δ
2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

, (B.4)

a− bd−1c = −δ
2SUV [φ,Φ]

δφ2

∣∣∣∣
Φc

+
δ2SUV [φ,Φ]

δφδΦ

∣∣∣∣
Φc

(
δ2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)−1
δ2SUV [φ,Φ]

δφδΦ

∣∣∣∣
Φc

.

(B.5)

Our task is to simplify eq. (B.5). Making use of the definition of Φc[φ],

0 =
δSUV [φ,Φ]

δΦ

∣∣∣∣
Φc

, (B.6)

and the chain rule,
δ

δφ
=

δ

δφ

∣∣∣∣
Φc

+
δΦc [φ]

δφ

δ

δΦc [φ]
, (B.7)

we get

0 =
δ

δφ

(
δSUV [φ,Φ]

δΦ

∣∣∣∣
Φc

)
=
δ2SUV [φ,Φ]

δφδΦ

∣∣∣∣
Φc

+
δΦc [φ]

δφ

δ2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

, (B.8)

which gives

δΦc [φ]

δφ
= − δ

2SUV [φ,Φ]

δφδΦ

∣∣∣∣
Φc

(
δ2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)−1

. (B.9)

This expression is nothing but the usual formula for “the derivative of an implicit function”.

However, it helps us a lot because using it in eq. (B.5) we get

a− bd−1c = −δ
2SUV [φ,Φ]

δφ2

∣∣∣∣
Φc

− δΦc [φ]

δφ

δ2SUV [φ,Φ]

δφδΦ

∣∣∣∣
Φc

= −δ
2SUV [φ,Φc [φ]]

δφ2
. (B.10)
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Now using eq. (B.3), we obtain a resolved form of eq. (B.1):

logdet

(
− δ

2SUV [φ,Φ]

δ(φ,Φ)2

∣∣∣∣
Φc

)
= logdet

(
− δ

2SUV [φ,Φ]

δΦ2

∣∣∣∣
Φc

)
+logdet

(
−δ

2SUV [φ,Φc [φ]]

δφ2

)
.

(B.11)

which is nothing but eq. (3.2).

C Local vs. non-local difference and the Wilsonian effective action

In this appendix, we elaborate more on the local vs. non-local mismatch discussed in sec-

tion 3.1. We learned in section 3.1 that the non-local action Seff[φ] obtained by integrating

out the heavy field Φ in the path integral

eiSeff [φ] =

∫
DΦeiSUV[φ,Φ], (C.1)

is completely equivalent to the UV theory in regarding to the low energy physics of φ,

namely that

Γeff [φ] = ΓL,UV [φ] . (C.2)

On the other hand, the “local counterpart” to Seff[φ], which is simply an expansion of it into

a sum of local operators, would not give the same 1PI effective action. To better distinguish

the non-local Seff[φ] and its local counterpart, if we use the notation Seff, non-local[φ] ≡ Seff[φ],

and Seff, local[φ] for the local counterpart of Seff, non-local[φ], then this local vs. non-local

difference can be expressed as

Γeff, local [φ] 6= Γeff, non-local [φ] = ΓL,UV [φ] . (C.3)

It is exactly due to this mismatch that the mixed one-loop piece of matching, i.e. c
(1)
i,mixed,

is nonzero.

On the other hand, we also learned that this mismatch Γeff, local[φ] 6= Γeff, non-local[φ]

is a result of using dimensional regularization. Specifically, using Γeff, local[φ] amounts to

expanding the propagator 1
p2−M2 inside the momentum integral (see the discussion around

eq. (3.11)), which is illegitimate under dimensional regularization. However, this mismatch

can be avoided by using other regularization scheme, such as a hard cutoff p2 < Λ2
0 in the

Euclidean space:∫ Λ0

0
DφDΦe−SUV(φ,Φ;Λ0) =

∫ Λ1

0

∫ Λ0

Λ1

DφDΦe−SUV(φ,Φ;Λ0)

=

∫ Λ1

0
DφDΦe−SUV(φ,Φ;Λ1)

=

∫ Λ1

0
Dφe−Seff(φ;Λ1) . (C.4)

In the very last step, we merely integrate out the heavy field Φ of mass M , given that the

cutoff Λ1 < M at this stage. Then Seff(φ; Λ1) should make the same physical predictions
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as the UV theory, even after it is expanded into a sum of local operators. This Seff(φ; Λ1)

defined with a hard cutoff regularization scheme is the Wilsonian effective action. We

demonstrate this point in this appendix.

Let us come back to the example model considered in section 3.2,

LUV (φ,Φ) =
1

2
Φ
(
−∂2 −M2

)
Φ− λ

3!
Φφ3 +

1

2
φ
(
−∂2 −m2

)
φ− κ

4!
φ4. (C.5)

Here, φ is the light field of mass m, while Φ is the heavy field of mass M � m. We assume

κ ≈ λ2

(4π)2 (similar to the assumption κ ≈ e2

(4π)2 in the Coleman-Weiberg theory). This

assumption is not necessary, but is there only for the purpose of ignoring κ2 correction

to κ. Our main consideration is the interplay between the heavy-light loop at O(λ2) that

renormalizes κ after Φ is integrated out.

Let us first look at the computation in the UV theory. When the momentum slices

Λ1 < p < Λ0 are integrated out, the coupling κ needs to be changed as

κ(Λ1) = κ(Λ0)− 3λ2

∫ Λ0

Λ1

d4p

(2π)4

1

p2 +M2

1

p2 +m2

= κ(Λ0)− 3λ2

(4π)2

1

M2 −m2

(
M2 log

Λ2
0 +M2

Λ2
1 +M2

−m2 log
Λ2

0 +m2

Λ2
1 +m2

)
. (C.6)

In particular when M,m� Λ1,Λ0, it reduces to the usual logarithmic running

κ(Λ1) = κ(Λ0)− 3λ2

(4π)2
log

Λ2
0

Λ2
1

. (C.7)

Yet our main interest is when the all the momenta above M are integrated out so that

Λ1 < M .

We can further integrate out momentum slices to go to even lower Λ2 < Λ1 < M . The

change in the coupling is obviously

κ(Λ2) = κ(Λ1)− 3λ2

(4π)2

1

M2 −m2

(
M2 log

Λ2
1 +M2

Λ2
2 +M2

−m2 log
Λ2

1 +m2

Λ2
2 +m2

)
. (C.8)

Note that this expression allows for a Taylor expansion in
Λ2

1,2

M2 within the radius of conver-

gence Λ2
1,2 < M2.

The question is whether this result can be reproduced by the IR theory with the local

Lagrangian Leff, local(φ) after Φ is integrated out. The answer is yes as long as Λ1 < M .

Integrating out Φ results in the Leff, local(φ) with the effective local operators

Leff, local(φ) =
1

2
φ(−∂2 −m2)φ− κ

4!
φ4 +

∞∑
n=0

λ2

72M2
φ3

(
−∂2

M2

)n
φ3. (C.9)
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Contracting a φ before the derivative and another φ after the derivative in the effective

operators results in the renormalization of κ in the IR theory,30

κ(Λ2) = κ(Λ1)− 3λ2

∫ Λ1

Λ2

d4p

(2π)4

1

M2

∞∑
n=0

(
−p2

M2

)n
1

p2 +m2

= κ(Λ1)− 3λ2 1

(4π)2

∫ Λ1

Λ2

dp2

(2π)4

∞∑
n=0

1

M2n+2

(−1)n(p2)n+1

p2 +m2

= κ(Λ1)− 3λ2

(4π)2

∞∑
n=0

m2n+2

M2n+2
(B−Λ2

1/m
2(n+ 2, 0)−B−Λ2

2/m
2(n+ 2, 0)). (C.10)

Here Bz(p, q) is the incomplete Beta function Bz(p, q) =
∫ z

0 t
p−1(1 − t)q−1dt (not to be

confused with the beta function of the running coupling constant). For large n,

B−Λ2/m2(n+ 2, 0) ≈ −1

n+ 1

(
−Λ2

m2

)n+1

, (C.11)

and hence the sum over n converges for Λ1,2 < M . Therefore, one can interchange the

order of the sum over n and the integration over p2. We see that the IR theory with Φ

integrated out reproduces the correct result in the cutoff-dependence of the coupling κ.

However, this is not the case in the MS scheme. As a function of the renormalization

scale µ in d = 4− 2ε dimensions, the UV theory gives

κ(µ1) = κ(µ0)− 3λ2(µ2ε
0 − µ2ε

1 )

(4π)2

Γ(ε)

1− ε
1

M2 −m2
((M2)1−ε − (m2)1−ε), (C.12)

which obviously describes the same running as in eq. (C.8). But the IR theory does not

reproduce this result,

κ(µ1)− κ(µ0) = −3λ2(µ2ε
0 − µ2ε

1 )

∫
ddp

(2π)d
1

M2

∞∑
n=0

(
−p2

M2

)n
1

p2 +m2

= −3λ2(µ2ε
0 − µ2ε

1 )

∫
πd/2

Γ(d/2)

(p2)1−εdp2

(2π)d
1

M2

∞∑
n=0

(
−p2

M2

)n
1

p2 +m2

= − 3λ2(µ2ε
0 − µ2ε

1 )

(4π)2−εΓ(2− ε)
1

M2

∞∑
n=0

1

M2n

∫
dp2 (−1)n(p2)n+1−ε

p2 +m2

= − 3λ2(µ2ε
0 − µ2ε

1 )

(4π)2−εΓ(2− ε)
1

M2

∞∑
n=0

(−1)n
(m2)n+1−ε

M2n

Γ(n+ 2− ε)Γ(−n− 1 + ε)

Γ(1)

= − 3λ2(µ2ε
0 − µ2ε

1 )

(4π)2−εΓ(2− ε)
(m2)1−ε

M2

∞∑
n=0

(
m2

M2

)n
(−1)nπ

sin(2− ε+ n)π

= − 3λ2(µ2ε
0 − µ2ε

1 )

(4π)2−εΓ(2− ε)
(m2)1−ε

M2

∞∑
n=0

(
m2

M2

)n −π
sin επ

= − 3λ2(µ2ε
0 − µ2ε

1 )

(4π)2−εΓ(2− ε)
(m2)1−ε

M2

1

1− m2

M2

Γ(−1 + ε)Γ(2− ε)

=
3λ2(µ2ε

0 − µ2ε
1 )

(4π)2−ε
(m2)1−ε

M2 −m2

Γ(ε)

1− ε
. (C.13)

30Other contractions result in different operators such as φ∂2φ3, not of our interest here.
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Compared with eq. (C.12), we see that the piece proportional to (M2)1−ε is not reproduced.

The reason is very simple. In the IR theory, the dependence on M2 is always in integer

powers because it comes from the local operators after the expansion in the inverse power of

M2. The momentum integral no longer knows anything about M2. Therefore, it can never

reproduce a fractional power (M2)1−ε in the MS scheme. This missing piece is the c
(1)
i,mixed.

Note that we defined the Wilsonian effective action using a hard cutoff regularization

scheme, but one can also define it using the Gaussian cutoff. In this case, however, the

loop integral involves momenta above the cutoff even though its contribution is supposed

to be Gaussian-suppressed. This causes the IR theory to be an asymptotic expansion in

1/M , which does not converge, but provides a good approximation for Λ1 � M . Again

one can confirm that the IR theory reproduces the result in the UV theory, not as a Taylor

expansion but rather as an asymptotic expansion.

D Details about the triplet scalar model

This appendix contains some supplementary calculation details for our Triplet Scalar Model

example discussed in section 3.3. Specifically, we encounter four functional traces S1, S2,

S3, and SK in eqs. (3.47) and (3.56), but did not show the details of evaluating them. Let

us list out some of the steps here. Before the actual evaluating steps, it is useful to prepare

a list of functional traces that are involved. These functional traces were evaluated using

the CDE technique described in appendix A.

T1 (A1,A2)≡ 1

M2
Tr

(
1

−D2−m2
A1

D4

−D2−M2
A2

)
⊃ i

(4π)2

∫
d4x·tr

[
M2 (A1A2)+

1

2
(DA1)(DA2)

]
(D.1)

T2 (A1,A2,A3)≡Tr

(
1

−D2−m2
A1

1

−D2−m2
A2

D4

−D2−M2
A3

)
⊃ i

(4π)2

∫
d4x·tr

[
M2 (A1A2A3)+ 1

2 (DA1)(DA2)A3

+1
2 (DA1)A2 (DA3)+ 5

2A1 (DA2)(DA3)

]
(D.2)

T3 (A1,A2,A3)≡Tr

(
1

−D2−m2
A1

1

−D2−M2
A2

D4

−D2−M2
A3

)
⊃ i

(4π)2

∫
d4x·tr

[
1
6 (DA1)(DA2)A3+ 1

2 (DA1)A2 (DA3)

+2
3A1 (DA2)(DA3)

]
(D.3)

T4 (A1,A2,A3)≡ 1

M4
Tr

(
1

−D2−m2
A1

D4

−D2−M2
A2

D4

−D2−M2
A3

)
⊃ i

(4π)2

∫
d4x·tr

[
7
6 (DA1)(DA2)A3+ 3

2 (DA1)A2 (DA3)

+7
6A1 (DA2)(DA3)

]
(D.4)

T5 (A1,A2,A3,A4)≡Tr

(
1

−D2−m2
A1

−D2

−D2−M2
A2

1

−D2−m2
A3

D4

−D2−M2
A4

)

⊃ i

(4π)2

∫
d4x·tr

 1
6 (DA1)(DA2)A3A4+ 1

6 (DA1)A2 (DA3)A4

+1
2 (DA1)A2A3 (DA4)+ 1

2A1 (DA2)(DA3)A4

+1
6A1 (DA2)A3 (DA4)+ 2

3A1A2 (DA3)(DA4)


(D.5)

– 55 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
3

T6 (A1,A2,A3,A4)≡ 1

M2
Tr

(
1

−D2−m2
A1

D4

−D2−M2
A2

1

−D2−m2
A3

D4

−D2−M2
A4

)

⊃ i

(4π)2

∫
d4x·tr

 7
6 (DA1)(DA2)A3A4+ 1

6 (DA1)A2 (DA3)A4

+(DA1)A2A3 (DA4)+A1 (DA2)(DA3)A4

+1
6A1 (DA2)A3 (DA4)+ 7

6A1A2 (DA3)(DA4)


(D.6)

Now let us start with S1. The procedure goes as follows:

S1 ≡
i

2
Tr

[
−2λκ2 1

−D2 −m2

(
a1 b1
b∗1 a

T
1

)
1

−D2 −m2

(
a2 b2
b∗2 a

T
2

)]
d

= −iλκ2Tr

[
1

−D2 −m2
a1

1

−D2 −m2
a2 +

1

−D2 −m2
b1

1

−D2 −m2
b∗2 + c.c.

]
d

= −iλκ2Tr


1

−D2−m2

(
|H|2 +HH†

)
1

−D2−m2

[
ta
(

1
−D2−M2H

†taH
)
x

+taH 1
−D2−M2H

†ta

]
+ c.c.

+ 1
−D2−m2HH

T 1
−D2−m2 t

a∗H∗ 1
−D2−M2H

†ta + c.c.


d

=
−iλκ2

M4
Tr

[
1

−D2−m2

(
|H|2 +HH†

)
1

−D2−m2 (taH) D4

−D2−M2

(
H†ta

)
+ c.c.

+ 1
−D2−m2

(
HHT

)
1

−D2−m2 (ta∗H∗) D4

−D2−M2

(
H†ta

)
+ c.c.

]

=
−iλκ2

M4

[
T2

(
|H|2 +HH†, taH,H†ta

)
+ T2

(
HHT , ta∗H∗, H†ta

)
+ c.c.

]
=
λκ2

M4

1

(4π)2

∫
d4x

[
13

8

(
Dµ|H|2

)2
− 3

2

∣∣∣H†DµH
∣∣∣2 +

25

4
|H|2|DµH|2

]
. (D.7)

Let us describe what we have done in the above six lines. We started with the definition

of S1 (i.e. eq. (3.47a)) in the first line, and multiplied the matrices out to obtain the

second line. In the third line, we plugged in the expression of a1, b1, a2, and b2. Then

we identified and dropped the “local counterparts” in the fourth line, according to the

splitting in eqs. (3.49). In the fifth line, the result is written in terms of the functional

traces defined in eqs. (D.1)–(D.6). In the last line, we used the prepared list of evaluated

functional traces to write the result in terms of effective operators. Clearly, S2, S3, and

SK can be evaluated with the same procedure. The detailed steps are given below.

S2 ≡
i

2
Tr

[
−8κ4 1

−D2 −m2

(
a2 b2
b∗2 a

T
2

)
1

−D2 −m2

(
a2 b2
b∗2 a

T
2

)]
d

= −4iκ4Tr

[
1

−D2 −m2
a2

1

−D2 −m2
a2 +

1

−D2 −m2
b2

1

−D2 −m2
b∗2 + c.c.

]
d

= −4iκ4Tr


1

−D2−m2 t
a
(

1
−D2−M2H

†taH
)
x

1
−D2−m2 t

b
(

1
−D2−M2H

†tbH
)
x

+ c.c.

+2 1
−D2−m2 t

a
(

1
−D2−M2H

†taH
)
x

1
−D2−m2 t

bH 1
−D2−M2H

†tb + c.c.

+ 1
−D2−m2 t

aH 1
−D2−M2H

†ta 1
−D2−m2 t

bH 1
−D2−M2H

†tb + c.c.

+ 1
−D2−m2 t

aH 1
−D2−M2H

T ta∗ 1
−D2−m2 t

b∗H∗ 1
−D2−M2H

†tb + c.c.


d
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=
−4iκ4

M6
Tr



−2 1
−D2−m2

[
taH†taH + taHH†ta

− 1
M2 t

a
(
D2H†taH

)
x

]
1

−D2−m2 t
bH D4

−D2−M2H
†tb + c.c.

+2 1
−D2−m2 t

aH −D2

−D2−M2H
†ta 1
−D2−m2 t

bH D4

−D2−M2H
†tb + c.c.

− 1
M2

1
−D2−m2 t

aH D4

−D2−M2H
†ta 1
−D2−m2 t

bH D4

−D2−M2H
†tb + c.c.

−2
[

1
−D2−m2 t

aHHT ta∗ 1
−D2−m2 t

b∗H∗ D4

−D2−M2H
†tb + c.c.

]
+2
[

1
−D2−m2 t

aH −D2

−D2−M2H
T ta∗ 1

−D2−m2 t
b∗H∗ D4

−D2−M2H
†tb + c.c.

]
− 1
M2

1
−D2−m2 t

aH D4

−D2−M2H
T ta∗ 1

−D2−m2 t
b∗H∗ D4

−D2−M2H
†tb + c.c.



=
−4iκ4

M6



−2T2

(
taH†taH + taHH†ta − 1

M2 t
aD2

(
H†taH

)
, tbH,H†tb

)
+ c.c.

+2T5

(
taH,H†ta, tbH,H†tb

)
− T6

(
taH,H†ta, tbH,H†tb

)
+ c.c.

−2
[
T2

(
taHHT ta∗, tb∗H∗, H†tb

)
+ c.c.

]
+2
[
T5

(
taH,HT ta∗, tb∗H∗, H†tb

)
+ c.c.

]
−T6

(
taH,HT ta∗, tb∗H∗, H†tb

)
+ c.c.


=

κ4

M6

1

(4π)2

∫
d4x

[
−2
(
Dµ|H|2

)2
−
∣∣∣H†DµH

∣∣∣2 − 21

2
|H|2|DµH|2

]
. (D.8)

S3 ≡
i

2
Tr

[
− 8κ2η

−D2 −m2

(
a3 b3
b∗3 a

T
3

)]
d

= −8iκ2ηTr

[
1

−D2 −m2
a3

]
r

= −8iκ2ηTr



1
−D2−m2 t

a
(

1
−D2−M2 |H|2 1

−D2−M2H
†taH

)
x

+1
2

1
−D2−m2

(
1

−D2−M2H
†taH

)
x

(
1

−D2−M2H
†taH

)
x

+
[

1
−D2−m2 t

aH 1
−D2−M2H

†
(

1
−D2−M2H

†taH
)
x

+ c.c.
]

+ 1
−D2−m2 t

aH 1
−D2−M2 |H|2 1

−D2−M2H
†ta


d

=
−8iκ2η

M4
Tr


1

−D2−m2 t
aH D4

−D2−M2H
† [− 1

M2H
†taH + 1

M4

(
D2H†taH

)
x

]
+ c.c.

+ 1
−D2−m2 t

aH 1
−D2−M2 |H|2 D4

−D2−M2H
†ta + c.c.

− 1
M4

1
−D2−m2 t

aH D4

−D2−M2 |H|2 D4

−D2−M2H
†ta


=
−8iκ2η

M4

{ [
T1

(
taH,H†

[
−H†taH + 1

M2D
2
(
H†taH

)])
+ c.c.

]
+
[
T3

(
taH, |H|2, H†ta

)
+ c.c.

]
− T4

(
taH, |H|2, H†ta

)}

=
κ2η

M4

1

(4π)2

∫
d4x

[
−7
(
Dµ|H|2

)2
+ 16

∣∣∣H†DµH
∣∣∣2 − 21|H|2|DµH|2

]
. (D.9)

SK ≡ −2iκ2Tr

[
1

−D2 −m2

(
a2 b2
b∗2 a

T
2

)]
d

= −4iκ2Tr

[
1

−D2 −m2
a2

]
d

= −4iκ2Tr

[
1

−D2 −m2
ta
(

1

−D2 −M2
H†taH

)
x

+
1

−D2 −m2
taH

1

−D2 −M2
H†ta

]
d

= −4iκ2

M4
Tr

[
1

−D2 −m2
taH

D4

−D2 −M2
H†ta

]

– 57 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
3

= −4iκ2

M2
T1

(
taH,H†ta

)
=

κ2

M2

1

(4π)2

∫
d4x

[
3

2
|DH|2

]
. (D.10)
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