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THE INTEGRAL BASIS PROBLEM OF EICHLER

HARUZO HIDA

Abstract. For a quaternion algebra B over a totally real field F unramified
at every finite place and most ramified at infinite places of F , we prove that

the space of Z[ 1
E

]-integral Hilbert modular forms of weight 2 and of level

1 is spanned over Z[ 1
E

] by the theta series of the norm form of B. Here

E = 6d(F )
∏
ψ (the numerator of L(−1, ψ2)) where d(F ) is the discriminant

d(F ) of F and ψ runs over all unramified characters of Gal(F/F ).

The basis problem of Eichler is to find an explicit basis (over C) of an appropriate
space of elliptic modular forms by means of theta series of the norm forms of definite
quaternion algebras. He achieved this in the 1950s by comparing the traces of Hecke
operators acting on the space of automorphic forms on such quaternion algebras
and on elliptic modular forms (see [Ei]).

This basis problem has its origin in Jacobi’s celebrated formula (in “Fundamenta
Nova” Sections 40-42) of the number S4(n) of ways of expressing a given integer n
as a sum of four squares:

S4(n) = 8σ1(n) with σ1(n) =
∑

0<d|n

d for odd positive integers n.

This formula has the following heuristic meaning: We take the quaternion algebra
H = Q + Qi + Qj + Qk with i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj and
ki = −j = ik. Then the norm form on the order R2 = Z + Zi+ Zj+ Zk is given by
N (x) = xx = x2

1+x
2
2+x

2
3+x

2
4 for x = x1+x2i+x3j+x4k and x = x1−x2i−x3j−x4k

(quaternion conjugation). This order R2 is not maximal, and as Hurwitz proved
in [Hu], R = R2[1+i+j+k

2 ] is a maximal order of H. Since all right ideals of R are
principal (R is a non-commutative Euclidean domain) and [R : R2] = 2, as long
as n is odd, N (x) = n (for x ∈ R2) if and only if R2xxR2 = nR2 up to units in
R×

2 = {±1,±i,±j,±k}. The number of ways of making prime decomposition as
above of the two sided ideals pR for a prime p into a product of left and right ideal
factors is given therefore by the sum σ1(p) = 1 + p of divisors of p for odd p.

We can think of the same problem for M2(Q) in place of H. Then the norm on
M2(Z) is the determinant map:

det(x) = x1x4 − x2x3 for x = ( x1 x2
x3 x4 ),

which is an indefinite quadratic form. The number of integer matrices x with
p = det(x) for a prime p up to units in GL2(Z) is the number of left cosets of
GL2(Z) in the double coset GL2(Z)

(
1 0
0 p

)
GL2(Z):

GL2(Z)
(

1 0
0 p

)
GL2(Z)

= GL2(Z)
(
p 0
0 1

)⊔
GL2(Z)

(
1 0
0 p

) ⊔
GL2(Z)

(
1 1
0 p

) ⊔
· · ·

⊔
GL2(Z)

(
1 p−1
0 p

)

The author is partially supported by an NSF grant. DMS 0244401.

1



THE INTEGRAL BASIS PROBLEM OF EICHLER 2

by the theory of elementary divisors; so, it is given again by σ1(p). Basically, we
get the same formula for H and M2(F ). Define for a subring A of C

G2(p;A) =

{
f ∈ G2(Γ0(p))

∣∣∣∣∣f =
∞∑

n=0

a(n, f)qn with a(n, f) ∈ A if n ≥ 0

}

for Γ0(p) =
{(

a b
c d

) ∣∣c ≡ 0 mod p
}

for a prime p, where G2(Γ0(p)) is the space of
holomorphic modular forms on Γ0(p) of weight 2. The space G2(2; Z) of Z-integral
modular forms of weight 2 on Γ0(2) is spanned by an Eisenstein series

E(z) =
1
24

+
∞∑

n=1

σ
(2)
1 (n)qn (q = exp(2πiz)),

where σ(2)
1 (n) is the sum of odd positive divisors of n. At the same time, by the

theta series of the maximal order R ⊃ R2 of H:

θ(z) =
∑

α∈R

qαα ∈ G2(2; Z),

and what Jacobi (basically) proved is θ(z) = 24 · E(z) (because R× = R×
2 t

{±1±i±j±k
2 } with |R×| = 24; see [Hu] (5)). Thus G2(2; Z) is spanned by θ(z).

This shows that the integral structures on G2(Γ0(2)) coming from the q-expansion
and θ(z) are equal.

This type of identity of elliptic modular forms and quaternionic automorphic
forms are vastly generalized by Jacquet-Langlands, in terms of the identity of au-
tomorphic representations. The character (or trace) identity makes sense, because
H ⊗Q Qp = M2(Qp) for all odd primes p; so, for such primes, local factors of
automorphic representations of GL(2) and H× can be identified. However the
computation of traces only yields a noncanonical identity of representations.

What we would like to do is to normalize the Jacquet-Langlands correspondence
and explore when we have a canonical identity of the two integral structures coming
from theta series and q-expansions (comparing automorphic forms and modular
forms defined over smaller rings). Though Jacobi’s example gives the identity of
the two integral structures over Z (because of the nonexistence of cusp forms on
Γ0(2)), to achieve this for cusp forms, it would be necessary to invert the Eisenstein
ideal (and possibly the prime 2). So far, the integral basis problem has been studied
geometrically by using the fact that the definite quaternion algebra B different from
M2(Qp) only at a single prime p appears as endomorphism algebra of super-singular
elliptic curves over Fp. This type of research was carried out by Ohta and Oesterle
in the 1980s and yielded good Z(p)–basis of G2(p; Z(p)) (Z(p) = Q∩Zp) by means of
the theta series of maximal orders (and ideals) of B, and more recently, M. Emerton
determined the Z[1

2
]-span in G2(p; Z) of the theta series of the definite quaternion

algebra B by refining further the geometric means ([Em]). Since the method is a
bit too geometric, it might be difficult to carry it out for Hilbert modular forms
and for indefinite quaternion algebras, and the geometric proof for more general
quaternion algebras could be lengthy. We would like to present first a short proof of
a result (Theorem 3.1) slightly weaker than Emerton’s theorem ([Em] Theorem 0.3),
reducing the result to the original Eichler’s theorem and the method of Taylor-Wiles
(see [TW] and [D]), and then we will generalize the result to quaternion algebras
(unramified at all finite places) over totally real fields (Theorem 4.3), reducing it
to the Jacquet-Langlands correspondence and the generalization of the work of
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Taylor-Wiles by Fujiwara [F] to totally real fields. The solution of the integral
basis problem has an application towards a solution of the anticyclotomic main
conjecture for CM fields (see [H04]).

1. Duality and Hecke Algebras

Although our method works well over any totally real fields F (taking care of
holomorphic Hilbert modular forms of any weight k ≥ 2 and definite or indefinite
quaternion algebras over F ), all of the essential ideas show up in the elliptic modular
case; so, for simplicity, we assume, in the following three sections, that B is definite
ramified only at p and ∞, F = Q and k = 2. We describe the results in more
general cases at the end of the paper.

Let N be a square free integer. Then a cusp form of weight 2 on Γ0(N ) is a
holomorphic function f : H = {z ∈ C| Im(z) > 0} → C rapidly decreasing towards
cusps of Γ0(N ) which satisfies the functional equation

f(γ(z)) = f(z)J(γ, z) (γ(z) =
az + b

cz + d
and J(γ, z) = det(γ)−1(cz + d)2)

for all γ =
(
a b
c d

)
∈ Γ0(N ). For a prime `, decomposing

Γ0(N ) ( 1 0
0 ` ) Γ0(N ) =

⊔

α

Γ0(N )α,

we take average f |T (`)(z) =
∑

α f(α(z))J(α, z)−1 which is again a cusp form on
Γ0(N ). Thus we get the linear operator T (`) acting on the space S2(N ; C) :=
S2(Γ0(N )) of cusp forms on Γ0(N ). We can extend the definition of T (`) for
commuting operators T (n) indexed by integers n. By the explicit decomposition:
α = ( 1 u

0 ` ) or ( ` 0
0 1 ), for f =

∑∞
n=1 a(n, f)q

n, we find a celebrated formula of Hecke:

(1.1) a(m, f |T (n)) =
∑

0<d|m,d|n

d · a(
mn

d2
, f) (⇒ a(1, f |T (n)) = a(n, f)).

Thus, for any subring A ⊂ C, defining

S2(N ;A) = {f ∈ S2(N ; C)|a(n, f) ∈ A},
the operator T (n) preserves the A-module S2(N ;A). It is a theorem of Shimura
that S2(N ;A) = S2(N ; Z)⊗ZA; so, T (n) is an integral operator. Define H2(N ;A) ⊂
EndA(S2(N ;A)) by the A–subalgebra generated by T (n) for all n = 1, 2, . . . .

Theorem 1.1 (Duality). Define an A–bilinear pairing

( , ) : H2(N ;A) × S2(N ;A) → A by (h, f) = a(1, f |h).
Then ( , ) induces isomorphisms

HomA(S2(N ;A), A) ∼= H2(N ;A) and HomA(H2(N ;A), A) ∼= S2(N ;A),

and the latter isomorphism is given by φ 7→
∑∞

n=1 φ(T (n))qn.

Proof. Since S2(N ;A) = S2(N ; Z) ⊗Z A, we may assume that A = Z. Actually we
need to treat A = Q first. The space S2(N ; Q) is finite dimensional over Q; so,
we need to prove non-degeneracy of the pairing. By (1.1), a(1, f |T (n)) = a(n, f);
so, if (h, f) = 0 for all h, a(n, f) = (T (n), f) = 0 for all n, and hence f = 0. If
(h, f) = 0 for all f , then 0 = (h, f |T (n)) = a(1, f |T (n)h) = (T (n), f |h) = a(n, f |h);
so, f |h = 0 for all f , which implies h = 0. If φ ∈ HomZ(H2(N ; Z),Z), then we
find f ∈ S2(N ; Q) with (h, f) = φ(h), and a(n, f) = (T (n), f) = φ(T (n)) ∈ Z; so,
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f ∈ S2(N ; Z). This shows S2(N ; Z) = HomZ(H2(N ; Z),Z). Since Z is a PID, we
also have HomZ(S2(N ; Z),Z) ∼= H2(N ; Z). �

This tells us

Corollary 1.2. Let H = H2(N ;A). Let V and V ′ be H–modules free of finite rank
over A with an A–bilinear pairing 〈 , 〉 : V ×V ′ → A. Define a formal q–expansion
Θ(v ⊗ v′) =

∑∞
n=1〈v|T (n), v′〉qn. Then Θ gives an H–linear map of V ⊗A V ′ into

S2(N ;A) regarding V ⊗A V ′ as an H–module through V . If V is H–free of rank
1, HomA(V,A) ∼= V ′ by 〈 , 〉 and 〈hv, v′〉 = 〈v, hv′〉 for h ∈ H, Θ induces an
isomorphism V ⊗H V ′ ∼= S2(N ;A).

Proof. Just apply the theorem to Θ(v ⊗ v′) ∈ HomA(H,A) = S2(N ;A) given by
Θ(v ⊗ v′)(h) = 〈hv, v′〉. �

2. Jacquet-Langlands Correspondence

We take the definite quaternion algebra B/Q as above and fix a maximal order
R ⊂ B (an order of B is a subring which is a Z–lattice of B). We consider the set
I of all fractional right R–ideals of B

(that is a Z–lattice a of B with aR ⊂ a). We say two such ideals a and b
are equivalent if a = αb for α ∈ B×. Then I/ ∼= Cl is the ideal classes of
B, which are finite. Take a complete representative set {ai|i = 1, . . . , h} for Cl.
Then Ri = aiRa−1

i is another maximal order of B. We put ei = |R×
i |. Then ei

is divisible only by two primes 2 and 3. If one introduces the adele ring A, then
Cl ∼= B×\B×

A /R̂
×B×

∞ for BA = B ⊗Q A, B∞ = B ⊗Q R and R̂ =
∏
pRp for

Rp = R ⊗Z Zp. Suppose that 6 is invertible in A (so, e−1
i ∈ A). We consider the

space of functions

S(A) =

{
φ : Cl → A

∣∣∣
∑

i

e−1
i φ(ai) = 0

}
.

Thus f ∈ S(A) can be considered as a function f : B×\B×
A → A; similarly, a

modular form can be considered as a function on GL2(Q)\GL2(A). Thus S(A)
is a space of automorphic forms on the algebraic group B×. Assuming that 6 is
invertible in A (so, e−1

i ∈ A), we define a pairing 〈 , 〉 : S(A) × S(A) → A by
〈f, g〉 =

∑
i e

−1
i f(ai)g(ai). Then 〈·, ·〉 is a perfect pairing.

We can define an operator T (n) acting on S(A) for integer n > 0 as follows. If
a ⊂ R is a right integral ideal, we define N (a) by the index [R : a]. For any right
fractional ideal a and a right integral ideal b of norm n, we can define the product
ab = {

∑
j ajbj|aj ∈ a, bj ∈ b}, which is a right fractional ideal. Thus aib ∼ aj(i;b)

for a unique j(i; b), and we may define

f |T (n)(ai) =
∑

b:N(b)=n

f(aj(i;b))

for b running over all integral right R–ideals with norm n. By definition, we have
〈f |T (n), g〉 = 〈f, g|T (n)〉. For simplicity, we assume that R` ∼= M2(Z`) except for
one prime ` = p and write H(A) for H2(p;A).

Theorem 2.1 (Eichler, Jacquet-Langlands). We have S(C) ∼= S2(p; C) as modules
over H(C), where the action of T (n) is specified above.
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From this, by a descent argument, we find

Corollary 2.2. For any subring A of C, S(A) is a faithful H(A)–module, and if
A is a Q–algebra, S(A) is free of rank 1 over H(A).

It is easy to verify that Θ(f ⊗ g) =
∑

i,j
1

eiej
f(ai)g(aj)θ(aia−1

j ) for f, g ∈ S(A)

(see [Ei] II.6), where θ(aia−1
j ) =

∑
ξ∈aia−1

j
qN(ξ)/N(aia−1

j ). In [Ei] II.6, left ideals
are studied instead of right ideals here; so, all the formulas there are valid after
applying the involution a 7→ a−1 to left ideals a.

Let us describe the Jacquet-Langlands correspondence in a more general setting.
Take an open compact subgroup U in B×

A of the form U = U (p) ×R×
p , and consider

the finite set Y (U ) = B×\B×
A /UB

×
∞. The reduced norm map N : B → Q induces

N : Y (U ) → ClU = A×/Q×N (U )R×
+. Taking a complete representative set {ai}

for Y (U ), we define ei = |aiUa−1
i ∩B×|. Then ei is only divisible by primes 2 and

3, and if 6 is invertible in A, we have a pairing 〈φ, φ′〉 =
∑

i e
−1
i φ(ai)φ′(ai) on the

space of functions on Y (U ). Define S(U ;A) ⊂ {f : Y (U ) → A} by the orthogonal
complement of functions factoring through N : Y (U ) → ClU . Then decomposing
a double coset UxU =

⊔
y yU for x ∈ B×

A with x∞ = 1, we can define the Hecke
operator [UxU ] : S(U ;A) → S(U ;A) by f |[UxU ](a) =

∑
y f(ay). Identifying R̂(p)

with M2(Ẑ(p)) for R̂(p) =
∏

6̀=p R` and Ẑ(p) =
∏

6̀=p Z`, we may regard U (p) as a
subgroup of GL2(A(p∞)). We put

U0(p) = U (p) × {x ∈ GL2(Zp)|x ≡ ( ∗ ∗
0 ∗ ) mod pM2(Zp)} .

Then write X(U0(p)) for the compactified modular curve

GL2(Q)+\GL2(A)+/U0(p)Z(R)SO2(R) ∪ {cusps},
where GL2(R)+ is the identity connected component of GL2(R) and GL2(A)+ =
{x ∈ GL2(A)|x∞ ∈ GL2(R)+} and GL2(Q)+ = GL2(Q) ∩ GL2(A)+ in GL2(A).
We then define S2(U0(p); C) = H0(X(U0(p)),ΩX(U0(p))/C). For any double coset
U0(p)xU0(p) can be considered as an algebraic correspondence ofX(U0(p)), we have
a natural action of Hecke operators [U0(p)xU0(p)] acting on S2(U0(p); C). Then we
have the following result (e.g., [AAG] Theorem 10.5 or [PAF] Theorem 4.34):

Theorem 2.3 (Jacquet-Langlands). Let the notation and the assumption be as
above. Then we have a C-linear isomorphism i : S(U ; C) ∼= S2(U0(p); C) satisfying
i ◦ [UxU ] = [U0(p)xU0(p)] ◦ i for all x ∈ GL2(A(p∞)) = (B(p∞)

A )× and i ◦ [U$U ] =
[U0(p)

(
p 0
0 1

)
U0(p)] ◦ i for $ ∈ Rp with N ($) = p.

3. Integral Correspondence

Take a sufficiently large valuation ring W finite flat over Z` as a base ring. Wiles
proved the identify of a non-Eisenstein local ring T of H(W ) = H(Z) ⊗Z W with
an appropriate universal Galois deformation ring, using a limiting argument due
to Wiles and R. Taylor ([TW], see also [MFG] Theorem 3.35). To describe briefly
the limiting argument, fix a local ring T with maximal ideal m, and write t(q) for
the image of T (q) in T. The local ring T is called “Eisenstein” if there exists a
pair of Galois characters φ, ϕ : Gal(Q/Q) → T× unramified outside p` such that
t(q) ≡ φ(Frobq)+ϕ(Frobq) mod m for almost all primes q outside p`. Here Frobq
indicates the Frobenius element at q. We assume that T is not Eisenstein. The
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local ring T carries the associated Galois representation ρT : Gal(Q/Q) → GL2(T)
with Tr(ρT(Frobq)) = t(q) for all primes q outside p`. The residual representation
ρT = ρT mod m is absolutely irreducible (because T is not Eisenstein), and hence
the isomorphism class of ρT is unique by a result of Carayol-Serre (e.g., [MFG]
Proposition 2.13). Take a finite set Q of primes q outside p` with q ≡ 1 mod ` so
that ρT(Frobq) has two distinct eigenvalues. Fixing a choice of an eigenvalue αq of
ρT(Frobq) for q ∈ Q, we have a unique local component TQ (with maximal ideal
mQ) of the Hecke algebra (with coefficients in W ) on Γ(Q) = Γ0(p) ∩

⋂
q∈Q Γ1(q)

covering T with u(q) ≡ αq mod mQ for the image u(q) of the Hecke operator U (q).
This ring TQ is written as hQ in the middle of page 127 of [MFG]. The limiting
argument is done using faithful W -free modules MQ over TQ of level Γ(Q) and
taking a limit as |Q| → ∞. In particular, T is proven to be a local complete
intersection over W . As later pointed out by F. Diamond and K. Fujiwara (see
for example, [MFG] Theorem 3.35), their argument yields freeness over TQ of the
module MQ (including the starting module M∅). Wiles took T(H1(X0(p),W )) as
his starting module M∅ over T and MQ = TQ(H1(X(Q),W )) for each Q, where
X(Q) = X(U0(p)) for U = Γ̂(Q) ⊂ B×

A defined by

Γ̂0(Q) =
{

(x`) ∈ R̂×∣∣xq ≡ ( ∗ ∗
0 ∗ ) mod qR` for all q ∈ Q

}

Γ̂(Q) =
{

(x`) ∈ R̂×∣∣xq ≡ ( ∗ ∗
0 1 ) mod qR` for all q ∈ Q

}(3.1)

in B×
A . In [MFG] 3.2.7, the local ring itself TQ is taken to be MQ (using the fact

that TQ ∼= TQ(H1(X(Q),OX(Q))) ∼= HomW (TQ(H0(X(Q),ΩX(Q)/W ),W ) by the
Grothendieck-Serre duality). We can instead take T(S(W )) as M∅ and take MQ

to be the space TQ(S(Γ̂(Q);W )) for Γ̂(Q) in (3.1), because the Hecke algebra on
Γ(Q) ⊂ SL2(Z) over W acts on quaternionic automorphic forms in S(Γ̂(Q);W ) by
the Jacquet-Langlands correspondence. The result is

Theorem 3.1. Assume that p is an odd prime. Let ` be an odd prime outside
3(p−1). Then S(Z(`)) is free of rank 1 over H(Z(`)), and Θ induces an isomorphism
of H(Z(`))–modules:

S(Z(`)) ⊗H(Z(`) ) S(Z(`)) ∼= S2(p; Z(`)),

and H(Z(`)) is a local complete intersection, where Z(`) =
{
a
b

∣∣` - b
}
.

Since the linear map Θ : S(Z[ 1
3(p−1)

]) ⊗H(Z[ 1
3(p−1) ]) S(Z[ 1

3(p−1)
]) → S2(p; Z[ 1

3(p−1)
])

is an isomorphism after localization at each maximal ideal of Z[ 1
3(p−1) ], it is an

isomorphism over Z[ 1
3(p−1)

]. In other words, this solves Eichler’s basis problem
integrally over Z[ 1

3(p−1) ], and S2(p; Z[ 1
3(p−1) ]) is contained in the subspace generated

by the theta series θ(aia−1
j ) over Z[ 1

3(p−1)
].

Proof. By Corollary 1.2, we need to prove that S(Z(`)) is free of rank 1 overH(Z(`)).
Since the pairing 〈·, ·〉 is well defined only over the ring A in which 6 is invertible,
we are forced to assume that ` - 6. Since freeness over H(Z(`)) is unaffected by
scalar extension from Z(`) to a valuation ring W finite flat over Z`, we only need
to prove the freeness of M∅ over the given local ring T of the Hecke algebra H(W )
for sufficiently large valuation ring W . Thus we may assume that T and W share
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the same residue field. Then we show that S(W ) is free of rank 1 over H(W ) for
all ` prime to p− 1. Since S2(Γ0(p)) = 0 if p ≤ 7, we may assume that p ≥ 11.

We consider the space of automorphic forms SQ(A) = S(Γ̂(Q);A). A prime `
is called Eisenstein if there exists an Eisenstein local component of H(W ). If ` is
Eisenstein, we can find a normalized Hecke eigenform in S2(Γ0(p)) congruent mod-
ulo a prime above ` to the unique Eisenstein series on Γ0(p) and `|p− 1 (see [M]).
Thus by our assumption ` - p−1, there is no Eisenstein component. Thus we apply
the method of Taylor-Wiles component-by-component. Fix one such local compo-
nent T with associated Galois representation ρT and residual representation ρ. We
put MQ = TQ(S(Γ̂(Q);W )) on which the group Γ0(Q)/Γ̂(Q) ∼=

∏
q∈Q(Z/qZ)× acts

naturally. We write ∆Q for the `-Sylow subgroup of Γ0(Q)/Γ̂(Q). We therefore
need to verify

(1) The deformation problem attached to T is minimal (that is, either “Selmer,”
“strict” or “flat” at ` in the terminology of [Wi1] page 457 and in Cases
(A) or (B) at p in the terminology of [Wi1] page 458; see below);

(2) MQ is free of finite rank over W [∆Q] and MQ/aQMQ
∼= M∅ as TQ-modules,

where aQ is the augmentation ideal of W [∆Q] (the condition (tw5) in The-
orem 3.35 of [MFG]).

(3) ρ is irreducible over Gal(Q/Q[
√
`∗]) for `∗ = (−1)(`−1)/2`.

The condition (2) follows from a horizontal control theorem and is easier to verify
in our case than the cases dealt with in [TW] and [MFG] 3.2.7 because SQ(W ) =
H0(Y (Q),W ) for the finite set Y (Q) = B×\B×

A /Γ̂(Q)B×
∞ while the choice in [TW]

is TQ(H1(X(Q),W )) and the choice in [MFG] 3.2.7 is TQ itself. Since the proof
for our choice now is anyway similar to the argument in [MFG] proving Corollary
3.19 there, we only point out that the assertion (2) follows from the discussion of
control (or congruence) of automorphic forms on B×

A in [T] Section 1 (particularly
Lemma 4) and leave the verification of (2) to the reader (in any case, the work has
been done in [F] in the more general Hilbert modular case). Since the first three
conditions (tw1-3) of [MFG] Theorem 3.35 are independent of the choice of the
modules MQ, they are verified in [TW] (or in 3.2.8 of [MFG]) under the condition
(3). The condition (tw4) follows from the condition (tw5) which is the condition
(2) above.

We now verify the condition (1). First suppose p 6= `. Locally at p, since the
abelian variety associated to each Hecke eigenform f ∈ S(Γ0(p)) is of multiplicative
type, the Galois representation ρ restricted to the decomposition group Dp at p is
isomorphic to ( χ` ∗

0 1 ) up to twists by unramified characters. Here χ` is the `-
adic cyclotomic character. By the level-lowering argument of [Wi1] Chapters 2
and 3, we have to have a Hecke eigenform of level 1 which gives rise to ρ. Since
S2(SL2(Z)) = 0, this is impossible, and ρ has to be ramified, and hence we are in
Case (A) at p.

Now we study the structure at ` 6= p. Since ` 6= p, the Galois representation ρ is
associated to a finite flat group scheme, which is in the Selmer case if it is ordinary
(nonconnected) and in the flat case if it is connected.

Suppose ` = p. If ρ is not wildly ramified, it is flat, and again by level lowering
combined with S2(SL2(Z)) = 0, this does not happen. We are in the “strict” case.

In the above argument dealing with the local behaviour of ρ, we have found a
nontrivial unipotent element in the image of the inertia group at p under ρ, which
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prohibits ρ to be an induced representation from a character of Gal(Q/M ) of a
quadratic field M/Q. In particular, we conclude (3). �

4. Hilbert Modular Case

In this section, we study the integral basis problem for Hilbert modular forms.
We fix a totally real finite extension F 6= Q of Q of degree d. We write d(F ) for
the discriminant of F/Q and O for the integer ring of F .

Let us recall the definition of the adelic Hilbert modular forms of level 1 and of
weight 2. We write I for the set of all real embedding of F (identifying it with the
set of archimedean places of F ). We thus identify F ⊗F,σ R with R for σ ∈ I; so,
F∞ = F ⊗Q R = RI via ξ ⊗ x 7→ (σ(ξ)x)σ∈I ∈ RI . We consider the upper half
complex plane H = {z ∈ C| Im(z) > 0} and let g = (gσ) ∈ GL2(F∞) = GL2(R)I+
act on HI by component-wise linear fractional transformation. Here GL2(R)+ is
the identity connected component of the Lie group GL2(R). We write Z for the
center of the algebraic group GL(2)/F .

The automorphy factor J(g, z) of the weight 2 is given by

(4.1) J(g, z) =
∏

σ∈I

(
det(gσ)−1j(gσ , zσ)2

)

for g = (gσ) ∈ GL2(F∞) = GL2(R)I and z = (zσ) ∈ HI . Here we put j
((

a b
c d

)
, z

)
=

cz+d for z ∈ C. Then we define S2(C) to be the space of functions f : GL2(FA) → C
satisfying the following conditions (cf., [PAF] 4.3.1):

(A1) We have the following automorphy

f(αxuz) = f(x)J(u∞, i)−1

for all α ∈ GL2(F ), z ∈ Z(FA), and u ∈ GL2(Ô)Ci for the stabilizer Ci in
GL2(R)I+ of i = (

√
−1, . . . ,

√
−1) ∈ Z = HI ;

(A2) Choosing u ∈ GL2(R)I+ with u(i) = z for each z ∈ HI , define a function
fg : HI → C by fg(z) = f(gu∞)J(u∞, i) for each g ∈ GL2(F

(∞)
A ). Then fg

is a holomorphic function on HI for all g;
(A3) fg(z) is exponentially decreasing as Im(z) → ∞ for each g ∈ GL2(F

(∞)
A ).

Let eA : F\FA → C× be the standard continuous additive character with eA(x∞) =
exp(2πi

∑
σ∈I xσ). Each member f of S2(C) has a Fourier expansion of the following

form ([MFG] Theorem 3.10 and [H96] Sections 2.3–4),

(4.2) f ( y x0 1 ) = |y|A
∑

0�ξ∈F

a∞(ξy, f)eA(iξy∞)eA(ξx).

Here y 7→ a∞(y, f) is a function defined on y ∈ F×
A only depending on its finite part

y(∞), and
(
y∞ 0
0 1

)
7→ eA(iy∞) is the restriction of the canonical Whittaker function

of GL+
2 (R) to matrices of the form ( ∗ 0

0 1 ) (whose Mellin transform gives the optimal
Γ-factor of the standard L-function of f). The function a∞(y, f) is supported by
the set (Ô × F∞) ∩ F×

A of integral ideles. By (A1), f ∈ S2(C) is invariant under
f(x) 7→ f(xu) for a diagonal element u ∈ GL2(Ô), and therefore, a∞(y, f) only
depends on the ideal yO = yÔ ∩ F . In this sense, for a fractional ideal n, we take
y ∈ F×

A with n = yO and put a∞(n, f) = a∞(y, f). Then we have the following
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formula for the standard Hecke operator T (n) analogous to (1.1) (e.g., [PAF] (4.65)
and (4.77)):

(4.3) a∞(m, f |T (n)) =
∑

d⊃m+n

N (d) · a∞(
mn

d2
, f) (⇒ a∞(O, f |T (n)) = a∞(n, f)),

where d runs over common divisors of the ideals m and n.
By the q-expansion principle due to Rapoport valid over Z (e.g., [Ch]), for any

subalgebra A ⊂ C, the association A 7→ S2(A) = {f ∈ S2(C)|a∞(y, f) ∈ A}
gives rise to a well-defined integral structure of S2(C). For any ring (or even any
module) A (not necessarily in C), S2(A) = S2(Z) ⊗Z A is therefore well-defined.
Each element f ∈ S2(A) has its q-expansion coefficients a∞(y, f) ∈ A. By (4.3),
the Hecke operators T (n) acts on S2(A) preserving the integral structure.

We write H2(A) ⊂ EndA(S2(A)) for the A–subalgebra generated by T (n) for all
integral ideals n.

Theorem 4.1 (Duality). For a commutative ring A with identity, define an A–
bilinear pairing

( , ) : H2(A) × S2(A) → A by (h, f) = a∞(O, f |h).
Then ( , ) induces isomorphisms

HomA(S2(A), A) ∼= H2(A) and HomA(H2(A), A) ∼= S2(A),

and the latter isomorphism is given by φ 7→ f(φ) with a∞(y, f(φ)) = φ(T (yO)) for
all idele y ∈ F×

A .

The proof of this theorem is the same as the one for Theorem 1.1. We thus have

Corollary 4.2. Let H = H2(A). Let V and V ′ be H–modules free of finite rank
over A with an A–bilinear pairing 〈 , 〉 : V ×V ′ → A. Define a formal q–expansion
Θ(v⊗v′) by a∞(y,Θ(v⊗v′)) = 〈v|T (yO), v′〉 for integral ideles y. Then Θ gives an
H–linear map of V ⊗A V ′ into S2(A) regarding V ⊗A V ′ as an H–module through
V . If V is H–free of rank 1, HomA(V,A) ∼= V ′ by 〈 , 〉 and 〈hv, v′〉 = 〈v, hv′〉 for
h ∈ H, Θ induces an isomorphism V ⊗H V ′ ∼= S2(A).

We take a division quaternion algebra B over F unramified at every finite place.
We fix a maximal order R of B and identify R̂ with M2(Ô). Let H = H ⊗Q R (the
Hamilton quaternion algebra). Then B∞ = B⊗Q R is isomorphic to the product of
r copies of M2(R) and d− r copies of H. Then r ≡ d mod 2. For an open compact
subgroup U ⊂ B×

A (for BA = B ⊗Q A), we consider the automorphic manifold
Y (U ) = B×\B×

A /UF
×
A C and the class set Cl(U ) = B×\B×

A /UF
×
A B

×
∞+, where C is

a maximal compact subgroup of B×
∞ and B×

∞+ is the identity connected component
of B×

∞. Note that Cl(U ) = Y (U ) if r = 0. We write simply Cl for Cl(R̂×). Then
by the approximation theorem, Cl(U ) is a finite set. As is well known, Y (U ) is
a compact complex analytic space of dimension r, and if U is sufficiently small,
Y (U ) is a smooth compact complex manifold. To guarantee the W -freeness of
Hr(Y (U ),W ), we assume

(dm) r ≤ 1,
though our argument works well as long as we have W -freeness of the cohomology
groups Hr(Y (U ),W ) for all U appearing in this situation (which has been verified
for Hilbert modular varieties by [G] for quadratic F and by Dimitrov [Dm] for more
general Hilbert modular varieties under some restrictive assumptions).
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First suppose r = 1. Choosing a complete representative set inside finite ideles
of B for Cl(U ) (and writing it again as Cl(U ) by abusing notation), we have

H1(Y (U ), A) =
⊕

a∈Cl(U)

H1(Γa(U ), A)

for Γa(U ) = (aUa−1B×
∞) ∩ B×

+ . Here H1(Γa(U ), A) is the group cohomology for
the Γa(U )-module A with trivial action.

Take a sufficiently small U so that Y (U ) is smooth, we define

S(A) = H0(R̂×,H1(Y (U ), A)) (the coinvariant under the action of R̂×),

S∗(A) = H0(R̂×,H1(Y (U ), A)) (the invariant under the action of R̂×).

The module S(A) has Poincaré duality pairing

〈·, ·〉 : S(A) × S∗(A) → A,

which is a perfect alternating A-duality pairing (as long as S(A) is A-free and is
canonically isomorphic to S∗(A); see below). If A = Ẑ and W , writing A∗ for the
Pontryagin dual module of A, the above pairing 〈·, ·〉 induces a perfect Pontryagin
duality between S∗(A∗) and S(A) (here as before W is a valuation ring finite flat
over Z`). Let Γa(U ) = Γa(U )/(Γa(U ) ∩ Z(F )). By the Hochschild-Serre spectral
sequence applied to H1(Γa(U ), A∗) (for A = W and Ẑ) combined with the Poincaré
duality as above, if ` is prime to 6d(F ), we have

(4.4) S(W ) ∼=
⊕

a

H1(Γa(R̂×),W ) ∼=
⊕

a

H1(Γa(R̂×),W ) ∼= S∗(W ),

which is independent of the choice of U and is W -free of finite rank. Indeed,
if H1(Γa(U ),W ) is W -selfdual under the cup product pairing, we have S(W ) ∼=
S∗(W ) canonically. The self duality follows from the W -freeness of Hm(Γa(U ),W )
if m ≥ 2 (⇔ H2(Γa(U ),W ) ∼= W and Hm(Γa(U ),W ) = 0 if m > 2), which in turn
follows if Γa(U ) is `-torsionfree. By [H88] Lemma 7.1, Γa(R̂×) is `-torsionfree if `
is prime to 6d(F ). Similarly, the order of the torsion part of S∗(Q/Z) = S∗(Ẑ∗) is
supported by primes q which gives the torsion of Γa(R̂×); so, S(W ) is W -free if `
is prime to 6d(F ). Hereafter, assuming ` - 6d(F ), we identify S(W ) and S∗(W ).

By the Hilbert modular version of the Jacquet-Langlands correspondence (e.g.,
[PAF] Theorem 4.34 or [H88] Theorem 2.1) combined with the Eichler-Shimura
isomorphism (e.g., [PAF] Theorem 4.36), S(A) is naturally a module over H2(A)
and have 〈f |h, g〉 = 〈f, g|h〉 for f, g ∈ S(A) and h ∈ H2(A).

IdentifyingB∞ with M2(R)×Hd−1 , we can let B×
∞+ act on H by linear fractional

transformation through the component M2(R). Under this identification, we have
B×

∞+/C+F
×
∞

∼= H for the maximal compact subgroup C+ of B×
∞+ fixing

√
−1 ∈ H.

On the other hand, for the maximal compact subgroup C of B×
∞ containing C+,

C+ is a normal subgroup of index 2 inside C, and B×
∞/CF

×
∞

∼= B×
∞+/C+F

×
∞

∼= H.
Thus C/C+ acts on H, and its action is basically the complex conjugation (given
by z 7→ −z if we choose the embedding B ↪→ M2(R) suitably). Then C/C+ acts
on Y (R̂×) and hence on S(A). Hereafter suppose that 2 is invertible in A. Thus
we have S(A) = S+(A) ⊕ S−(A) for the ± eigenspace S±(A) of C/C+, and the
Poincare duality induces a perfect pairing 〈·, ·〉 : S+(A) × S−(A) → A. Since the
action of C/C+ commutes with Hecke operators (e.g., [H88] Theorem 2.2), S±(A)
is a module over H2(A).
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Now suppose r = 0. Decompose B×
A =

⊔
iB

×aiR̂
×F×

A B
×
∞, and write Ri =

B ∩ aiR̂a−1
i and ei = |R×

i /O
×| (which is a finite number). If 6d(F ) is invertible in

A, ei for all i is invertible in A. If we take a Haar measure dx on B×
A /F

×
A so that∫

R̂×/Ô× dx = 1 and the standard Haar measure on the discrete subgroup B×/F× ⊂
B×

A , we have the quotient measure on Cl still denoted by dx. Define a pairing
〈·, ·〉 : H0(Cl,A) × H0(Cl,A) → A by 〈f, g〉 =

∫
Cl
f(x)g(x)dx =

∑
j

1
ei
f(ai)g(ai)

for f, g ∈ H0(Cl,A). This pairing is the Poincaré duality on Cl and is perfect as
long as 6d(F ) is invertible in A.

Let ClF for the strict class group of F . Then the reduced norm map induces
a map N : Cl → ClF/Cl

2
F , which is surjective. The space H0(ClF /Cl2F , A) of

functions on ClF can be embedded intoH0(ClF/Cl2F , A) by the pull-back of N . We
then define S(A) ⊂ H0(Cl,A) by the orthogonal complement ofH0(ClF/Cl2F , A) ⊂
H0(Cl,A). The pairing 〈·, ·〉 on S(A) remains perfect. Again, by Jacquet-Langlands
correspondence, S(A) has a natural right action of H2(A) written as f 7→ f |h for
f ∈ S(A) and h ∈ H2(A), and we have 〈f |h, g〉 = 〈f, g|h〉 for all f, g ∈ S(A) and
h ∈ H2(A).

We then define Θ(v ⊗ v′) ∈ S2(A) by a∞(y,Θ(v ⊗ v′)) = 〈v|T (yO), v′〉 for v⊗ v′

in S(A) ⊗H2(A) S(A) when r = 0 and in S+(A) ⊗H2(A) S
−(A) when r = 1. As

shown in [H04] (7.9) when r = 0, Θ(f ⊗g) is the classical theta series of the definite
quaternion algebra B/F . In the indefinite case, by the analytic computation in
[Sh] II, Theorem 3.1, Θ(f ⊗ g) is the integral against Siegel’s indefinite theta series
(over the Shimura variety of the orthogonal group of the indefinite norm form of
B/F ) of f ⊗g regarded as an automorphic form on the orthogonal similitude group
(isogenous to B× × B×).

Theorem 4.3. Let the notation and the assumption be as above, and define a
positive integer E by E = 6d(F )

∏
ψ(the numerator of L(−1, ψ2)), where d(F ) is

the discriminant d(F ) of F and ψ runs over all unramified characters of Gal(F/F )
with values in C×. Then, for any Z[ 1

E ]-algebra A, S(A) when r = 0 and S±(A)
when r = 1 are free of rank 1 over H2(A), and Θ induces an isomorphism of
H2(A)–modules:

S2(A) ∼=

{
S(A) ⊗H2(A) S(A) if r = 0,
S+(A) ⊗H2(A) S

−(A) if r = 1,

and H2(Z[ 1
E

]) is a local complete intersection.

This theorem solves the integral basis problem over Z[ 1
E ] for S2(Z[ 1

E ]).

Proof. The proof is the same as the one given for Theorem 3.1, following [F] instead
of [Wi1]. We shall give a sketch of the proof giving the key points of the arguments
(since going through all the details of the Taylor-Wiles system argument as in
[MFG] Sections 3.2.6-8 for Hilbert modular forms would requires us to spend many
pages). A detailed proof of the result in [F] will be described in my forthcoming
book [HMI].

Let W be a sufficiently large valuation ring finite flat over Z` for primes ` - E.
We take a local component T of H2(W ). Then we have a Galois representation
ρT : Gal(F/F ) → GL2(T) for an algebraic closure F of F , which is unramified
outside primes of F over ` (e.g. [T]) and characterized by the fact ρT(Frobq) for
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primes of q outside ` is given by t(q) (the image of T (q) in T). The determinant
character det(ρT) is given by the `-adic cyclotomic character χ`.

For the maximal ideal m of T, we put ρ = ρT mod m, and call T Eisenstein if
ρ is not absolutely irreducible. By the solution of Iwasawa’s conjecture by Wiles
[Wi], if we have an Eisenstein component T, we claim that ` is irregular (with
respect to F ) if ` - 2d(F ). Thus if ` - E, T is not Eisenstein. Here is the proof
of the claim. Write ρss for the semi-simplification of ρ. Then ρss = ψ ⊕ ϕ for
two characters ψ, ϕ : Gal(F/F ) → k× for k = F`s unramified outside `. Write ψ
(resp. ϕ) for the Teichimüller lift of ψ (resp. ϕ). If [F : Q] is odd, we can find
an abelian variety factor A/F of the Jacobian of the level 1 Shimura curve Y (R̂×)
associated to B with real multiplication by the integer ring OE of a totally real
field E such that the semi-simplification of A[L] is isomorphic to ρss for a prime
ideal L|` of OE (by the Jacquet-Langlands correspondence and [H81] Theorems
4.12). If [F : Q] is even, by the level raising argument in [T], we can find a
quaternion algebra B′ with a maximal order R′ such that B′ ramifies only at one
finite place q - ` and at all but one infinite place whose Shimura curve of the

level group R̂′× has Jacobian containing a factor A/F as above. By Carayol [Ca],
the abelian variety A has good reduction at all places l of F dividing `. Thus
ψ (resp. ϕ) is associated to a finite locally free commutative group scheme Gψ
(resp. Gϕ) of rank `s over Ol whose generic fiber is a k-vector spaces of dimension
1 (this fact also follows from Corollary 2.13 in [Dm]). Then assuming that ` is
prime to 2d(F ) and writing κ for the composite of O/l = F`n and k = F`s , by
Proposition 4.4 (following this proof), ψ([u, Fl]) = Nκ/k(u)−ν for ν = 0, 1, where
[u, Fl] is the local Artin symbol of u ∈ O×

l and u = u mod l. Since ψϕ is the `-adic
Teichmüller character ω, we may assume Gψ ∼= Z/`Z and Gϕ ∼= µ`. In particular,
the component T is `-ordinary. Thus ψ is unramified everywhere, and ψϕ = ω (see
[Dm] 3.1 for an alternative argument showing the unramifiedness without using
Proposition 4.4). This is exactly the case which Wiles studied in [Wi], and the
order of the ψϕ−1-part of the class group of H(µ`) for the (strict) Hilbert class
field H/F is divisible by `. Since ψϕ = ω, we have ψϕ−1 = ψ2ω−1, and by the
F -version of the Kummer’s criterion (which follows from [Wi]), ` then divides the
numerator of L(−1, ψ2). Thus `|E, and ` is irregular if ` is prime to 2d(F ) and T is
Eisenstein. As pointed out by Dimitrov, there is an alternative geometric argument
to show `|the numerator of L(−1, ψ2) (for Eisenstein primes `) without recourse to
Wiles’ theorem. Here is a sketch of the argument of Dimitrov. The representation
ρss is unramified outside ` and crystalline at primes dividing ` of weights 0 and
1 (by Breuil and Fontaine-Laffaille; [Dm] Proposition 2.12). Therefore one of the
two characters ψ and ϕ, say ψ as before, is unramified (Corollary 2.13 in [Dm]).
Then the Eisenstein series associated to ψ and ϕ is congruent modulo m to a cusp
form (on which T acts non-trivially) in the sense that they have congruent Hecke
eigenvalues. By the q-expansion principle and Andreatta-Goren’s computation (see
[AG]) of the kernel of the q-expansion on the graded ring of all Hilbert Modular
forms, one deduces that ` divides also the constant term of the Eisenstein series
(which implies `|the numerator of L(−1, ψ2)).

Hereafter we assume that T is not Eisenstein. Let ρq be the restriction of ρ to
the decomposition group Dq in Gal(F/F ) at a prime q. As in [Wi1], we can classify
the local behaviour of ρ in the following cases: Let l be a prime factor of ` in O.
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(Selmer) ρl
∼=

(
εl ∗
0 δl

)
for characters ε and unramified δ of Dl and ρl is

associated to a finite flat group scheme over Ol;
(Flat) ρl is irreducible and is associated to a finite flat group scheme over
Ol.

Under the assumption ` - d(F ), εl is ramified at l; so, δl 6= εl.
By the result of [T1] Theorem 1.6, for non-Eisenstein T, ρl falls either in the

Selmer case or in the flat case. A Galois representation ρ : Gal(F/F ) → GL2(A)
for an artinian local W -algebra A with maximal ideal mA is called a minimal de-
formation of ρ if the following conditions are satisfied:

• ρ mod mA is isomorphic to ρ;
• ρ is unramified outside `;
• det(ρ) = ι ◦ χ` for the W -algebra structure morphism ι : W → A.

We call ρ flat at l if ρ is associated to a finite flat group scheme over Ol. We call
ρ Selmer at l if ρl = ρ|Dl

∼=
( εl ∗

0 δl

)
in GL2(A) for characters εl ≡ εl mod mA

and unramified δl ≡ δl mod mA. Imposing the unramifiedness outside ` and the
flatness or the Selmer condition at each prime factor l of l accordingly as ρ is flat
at l or Selmer at l, we have the universal p-profinite local ring R and a universal
minimal deformation ρ : Gal(F/F ) → GL2(R). Fujiwara proved the identity
R ∼= T by refining Wiles’ limiting method (taking the starting module M∅ to be
T(S(W )) if r = 0 and T(S±(W )) when r = 1). His proof yields the freeness of
M∅ over T. Since S(C) when r = 0 and S±(C) when r = 1 are free of rank 1
over H2(C) by the Jacquet-Langlands correspondence (e.g. [PAF] Theorem 4.34 or
[H88] Theorem 2.1) combined with the strong multiplicity one theorem for GL(2),
the rank of M∅ over T is equal to 1. Take a finite set Q of prime ideals q outside
` with N (q) ≡ 1 mod ` such that ρ(Frobq) has two distinct eigenvalues. Fixing a
choice of eigenvalues of ρ(Frobq) for each q ∈ Q, we can define the local ring TQ
of the Hecke algebra of level Γ̂(Q) covering T. Here, as before, identifying R̂ with
M2(Ô),

Γ̂0(Q) =
{
x ∈ GL2(Ô)

∣∣xq ≡ ( ∗ ∗
0 ∗ ) mod qRq for all q ∈ Q

}

Γ̂(Q) = Ô× ·
{
x ∈ GL2(Ô)

∣∣xq ≡ ( 1 ∗
0 1 ) mod qRq for all q ∈ Q

}
.

(4.5)

Then we choose MQ by TQ(H0(Y (Γ̂(Q)),W )) if r = 0 and TQ(H1(Y (Γ̂(Q)),W )±)
if r = 1, where H1(Y (Γ̂(Q)),W )± is the ±-eigenspace in H1(Y (Γ̂(Q)),W ) under
the action of C/C+.

As in the case of the proof of Theorem 3.1, we need to check the following three
points

(1) The deformation problem attached to T is minimal (that is, either “Selmer”
or “flat” at l|`);

(2) MQ is free of finite rank over W [∆Q] and MQ/aQMQ
∼= M∅ as TQ-modules,

where aQ is the augmentation ideal of W [∆Q] (the condition (tw5) in The-
orem 3.35 of[MFG]), where ∆Q is the `-Sylow subgroup of Γ̂0(Q)/Γ̂(Q) ∼=∏

q∈Q(O/q)×.
(3) ρ is irreducible over Gal(F/F [

√
`∗]). This condition is necessary to find an

infinite sequence of finite sets Q satisfying the properties fitting well into
the Taylor-Wiles system in [F] (see also [MFG] 3.2.6).
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In [F], Fujiwara actually assumes that ρ is irreducible over Gal(F/F [µ`]). Since
Gal(F [µ`]/F ) is cyclic for ` ≥ 3, by the Frobenius reciprocity, this condition is
equivalent to the irreduciblity of ρ over Gal(F/F [

√
`∗]) if ` is unramified in F/Q.

The condition (1) is already checked. The verification of (2) if r = 1 is the same as
in the case of F = Q (e.g. [TW]) resorting to the Hochschild-Serre spectral sequence
of H1(Γa(U ),W ) (identifying, as in (4.4), MQ with the ±-eigenspace under the
action of C/C+ in TQ(

⊕
aH1(Γa(U ),W )) for U = Γ̂(Q)), and the case where r = 0

is much easier. In any case, the work has been done in [F]. Thus we verify (3) for
primes ` - 6d(F ). Suppose ρ ∼= IndFM λ for a Galois character λ : Gal(F/M ) → F×

`s

for the quadratic extensionM = Q[
√
`∗]. Here we take `s with s as small as possible.

Fix a prime factor l of ` in F . We write V for the l-adic integer ring of the l-adic
completion Ml. Since ρ is flat or Selmer at l, λ gives the action of Gal(M l/Ml) on
a finite flat group scheme G/Vl

which is an F`s vector space of dimension 1. Write
`n for the order of O/l. Again by the proposition following this proof, if ` > 2 is
unramified in F/Q, writing m for the GCD of s and n and k for the subfield of κ of
order `m, λ([u,Ml]) = Nκ/k(u)−ν for ν = 0, 1, 2 and u = u mod mV , where [u,Ml]
is the local Artin symbol. We have

Nκ/k(u)−2ν = λ([u,Ml])λ([uσ,Ml])

= det(ρ)([u,Ml]) = χ`([u,Ml]) = NF`n/F`
(u)−1

for the generator σ ∈ Gal(M/F ). Writing κ0 = F`n ∩ k, we have Nκ/k(u) =
NF`n/κ0(u) for all u ∈ F`n , because F`n = V/mV and k is linearly disjoint over κ0.
Then the above identity implies that for all u ∈ F×

`n ,

NF`n/κ0 (u)
−2ν = NF`n/F`

(u)−1 = Nκ0/F`
(NF`n/κ0 (u))

−1.

Since NF`n/κ0 : F×
`n → κ×0 is surjective, rewriting x ∈ κ×0 for NF`n/κ0 (u), we have

x−2ν = Nκ0/F`
(x)−1 for all x ∈ κ×0 . Let `t = |κ0|. Since Nκ0/F`

(x) = x1+`+···+`t−1
,

we thus find 2ν ≡ 1+ `+ · · ·+ `t−1 mod `t−1. Since 0 ≤ ν ≤ 2, if ` ≥ 4 ≥ 2ν, this
is impossible. When ν = 2, we could have 2ν = 4 = 1+3 for ` = 3 and t = 2. Thus
we have verified (3) for ` ≥ 4. See [Dm] Lemma 3.4 for an alternative argument
proving (3) for primes ` different from 2k−1 for the weight k (so in our case, k = 2
and therefore for ` ≥ 4). �

The following proposition is based on the classification theory of commutative
finite flat group schemes due to Oort-Tate and Raynaud whose proof can be found
in [O] Proposition 1:

Proposition 4.4. Let V be a discrete valuation ring finite flat over Z` with residue
field F`n and quotient field K. Let G be a finite locally free group scheme of rank
`s over V on which k = F`s acts by V -endomorphisms. Let m be the GCD of n
and s, and regard k as the finite subfield of κ with `m elements. Then the action of
Gal(Kab/K) for the maximal abelian extension Kab/K on the generic fiber of G is
given by the character ϕ : Gal(Kab/K) → k× satisfying ϕ([u,K]) = Nκ/k(u)−ν ∈
k× (u = u mod mV ) for the local Artin symbol [u,K] for u ∈ V ×, where ν ≥ 0
is an integer satisfying ν `

s−1
`m−1 =

∑s−1
i=0 ci`

i for integers ci with 0 ≤ ci ≤ e for the
ramification index e of V/Z`.

In the circumstances of the proof of Theorem 4.3, this proposition is used in the
following two cases: (1) K = Fl with e = 1 and (2) K = Ml with e = 2. In Case
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(1), the only possibility of ν = 0, 1, and in Case (2), if ` ≥ 3, the only possibility of
ν is 0, 1, 2.

For the reader’s convenience, we recall (a sketch of) the proof by Ohta of this
proposition.

Proof. Let v : V → Z ∪ {∞} be the valuation normalized so that v($) = 1 if $
generates the maximal ideal m of V . First we deal with the case where s|n. We
consider the Teichmüller lift χ : k× = F×

q → V × of the fixed field inclusion k ↪→ κ.
Then by [R] Corollary 1.5.1, G is isomorphic to Spec(V [X1, . . . , Xs]/a), where a is
the ideal generated by X`

i − δiXi+1 (i ∈ Z/`Z, δi ∈ V and v(δi) ≤ e for all i). The
action of λ ∈ k× on the bialgebra is given by [λ]Xi = χ(λ)`

i

Xi. Writing ϕG = ϕ
for the character of Gal(K/K) giving the Galois action on the generic fiber of G,
the splitting field of ϕG is the splitting field of the equations Xq

i − aiXi = 0 for
ai = δ`

s−1

i δ`
s−2

i+1 · · ·δi+s−1. By the explicit formula of the tame norm residue symbol,
we find that

ϕG(t) = Nκ/k((−1)v(a0)v(t)a
v(t)
0 t−v(a0) mod m)

for all t ∈ K×. This shows the assertion if s|n.
In general, we put N = ns/m, and take the (unique) unramified extension K ′

inducing the residual extension κ′/κ for κ′ = F`N . Taking the valuation ring V ′ of
K ′ with normalized valuation v′ and maximal ideal m′, we apply the above argument
to G′ = G ⊗V V ′ over V ′. We write a′0 ∈ V ′ for the number a0 corresponding
to G′

/V ′ . By local class field theory, ϕG(u) = ϕG′(t) if u = NK′/K(t). Thus

by the first step of the proof, we get ϕG(u) = Nκ′/k(t mod m′)−v
′(a′0). Since

ϕG([u,K]) ∈ k = F`m for all u ∈ V ×, we find that v(a′0) is divisible by `s−1
`m−1 . Write

ν = v(a0)(`
m−1)

`s−1 ∈ Z. Since K ′/K is unramified, we have

ϕG(u) = Nκ′/k(t mod m′)−ν = Nκ/k(u)−ν

as desired. �

When we deal with a higher parallel weight k ≥ 2, we need to consider the
“crystalline” condition in place of the “flat” condition. Here we note that k is an
even integer. To have the universal crystalline deformation ring, we need to invert
also the primes less than the weight. Thus primes we have to avoid to get a result
similar to Theorem 4.3 for weight k ≥ 2 are

• prime factors of 6;
• primes less than k;
• prime factors of the numerator of L(1 − k, ψ2) for an unramified character
ψ of Gal(F/F ) into C×;

• 2k − 1 if 2k− 1 is a prime, ` = 2k− 1 is the prime for which the condition
(3) in the above proof could fail (for example, ` = 23 for k = 12 and F = Q;
see [Dm] Lemma 3.4).

For a general quaternion algebra B over a totally real field F satisfying (dm) but
ramifying at some finite places, we can define S(A) and S±(A) in the same manner
as above. Writing D for the product of ramified primes in B/F , we consider the
space of Hilbert modular new forms Snew2 (Γ̂0(D);A) on Γ̂0(D) with q-expansion
coefficients in A and with trivial central character. Let H(A) = H2(D;A) be the
A-subalgebra generated by Hecke operators T (n) in EndA(Snew2 (Γ̂0(D);A)). Then
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we have Θ : S(A)⊗H(A) S(A) → Snew2 (Γ̂0(D);A). In this general case, assuming to
have the exact level lowering result (Mazur’s principle) for ρ (which is not yet known
in full generality), we need to avoid the primes satisfying the following condition in
addition to the ones excluded already:

• prime factors outside ` of D for which ρ is unramified;
• prime factors ` > k of D for which ρ is crystalline;
• prime factors of

∏
l|D(ψ2(l)N (l)k−1−1) for an everywhere unramified char-

acter ψ of Gal(F/F ) into C×; (strictly speaking, we need to remove prime
factors of the numerator of L(D)(1 − k, ψ2) =

∏
l|D(1− ψ(l)N (l)k−1)L(1 −

k, ψ2)).
This point would be clear from our proof given above, because ρ in such a case is
associated to a primitive form of lower level than D.
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SMF 67, 1996

[H04] H. Hida, Anticyclotomic main conjectures, preprint, 2004 (downloadable at
www.math.ucla.edu/˜hida)
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