
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Conceptual Model of Self-Adaptive Systemsbased on Attribution Theory

Permalink
https://escholarship.org/uc/item/7q77h6g7

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors
Li, Nianyu
Chen, Zhengyin
Li, Zi-Long
et al.

Publication Date
2019

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7q77h6g7
https://escholarship.org/uc/item/7q77h6g7#author
https://escholarship.org
http://www.cdlib.org/

A Conceptual Model of Self-Adaptive Systems

based on Attribution Theory

Nianyu Li (li nianyu@pku.edu.cn)
Key Laboratory of High Confidence, Peking University, China

Zhengyin Chen (chenzy512@pku.edu.cn)
Key Laboratory of High Confidence, Peking University, China

Zi-Long Li (zl.li@imt-atlantique.net)
IMT Atlantique, France

Wenpin Jiao (jwp@pku.edu.cn)
School of Electrical Engineering and Computer Science, Peking University, China

Abstract

The development of self-adaptive systems has attracted lots of
attention as they can adapt themselves autonomously to en-
vironmental dynamics and maintain user satisfaction. How-
ever, there are still tremendous challenges remained. One ma-
jor challenge is to guarantee the reusability of the system and
extend the adaptability with the changing deployment environ-
ments. Another challenge is to ensure the adaptability coping
with the open and complex environments with the existence of
unknown. To solve these problems, we introduce a concep-
tual self-adaptive model, decoupling the environment with the
system. This model is a two-layer structure, based on internal
causes and external causes from attribution theory. The first
layer, determining how the internal causes affect the adapta-
tion behaviors, is independently designed and reusable; while
the second layer, mapping the relationship between external
causes with internal causes, is replaceable and dynamically
bound to different deployment environments.
Keywords: Self-Adaptation; Attribution Theory; Reusability

Introduction

Current society extensively relies on software systems to
achieve specific goals. However, achieving those required
goals is a tremendous challenge (Cheng, de Lemos, & et al.,
2009) since there are lots of uncertainties that developers have
not considered or cannot fully understand during design time,
and the changing environment leads to costly reconfiguration
and time-consuming maintenance tasks (de Lemos, Giese, &
et al., 2010). Therefore, there is a high demand for manag-
ing complexity reduction and achieving desired goals within
a reasonable cost and timely manner. Self-adaptation is gen-
erally considered as one of the most promising approaches to
manage the uncertainties of modern software systems since it
enables a system to adapt itself autonomously to user require-
ments or environmental dynamics to continuously achieve
system goals including performance, security, fault manage-
ment, etc (Sawyer, Bencomo, & et al., 2010).

In the existing literatures, most of the adaptation behav-
iors are triggered by events in the environment (Salehie &
Tahvildari, 2009; Shevtsov, Berekmeri, & et al., 2018; Fil-
ieri, D’Ippolito, & et al., 2017; Modoni, Trombetta, Veniero,
Sacco, & Mourtzis, 2019). That is to say, the main adaptabil-
ity of a self-adaptive software system is the internal response

to the changes in the external environmental factors. Accord-
ingly, the whole lifecycle of the adaptive system, including
design time and run-time, is always associated with the envi-
ronment where the system is deployed. In the design phase,
system environment, as well as the mechanisms of perceiv-
ing and effecting environment are modeled and implemented.
And the set of adaptation policies, tightly binding to this spe-
cific environment, are defined and customized. Then at run-
time, adaptation behaviors could be achieved by implement-
ing the activities of a well recognized feedback control loop
called MAPE-K (Monitoring, Analysis, Planning, and Exe-
cution with Knowledge).

One of the disadvantages of current method is that these
adaptation policies bound tightly to a specific environment
will inevitably limit the adaptivity of the system to various de-
ployment environments. Take a robot system as the example.
In a wood floor environment, there could be policies describ-
ing how fast the robot should move forward to reach its desti-
nation as soon and as safe as possible; or how many angles it
shall turn when encountering obstacles. However, the value
of speed and angles will be very different in a more slippery
tile floor or on a rough cement road. Therefore, for an adap-
tive system, in addition to being able to adapt in the specific
deployment environment, it should have a wide range of ap-
plications (i.e., being deployed in a variety of environments).
The other disadvantage is that current adaptive systems can-
not cope with the increasing complexity and openness of the
environment. It is basically impossible to pre customize a
complete environment model since the developer cannot fully
understand or have considered at design time. Inevitably, new
environmental factors might exist and appear at run-time and
the system is not reliable to recognize or predict those un-
foreseen. For example, when designing the adaptive strate-
gies for a robot avoiding obstacles, it is necessary to know in
advance what kind of obstacles it might encounter, and then
to specify how to deal with obstacle A, obstacle B, etc. Ob-
viously, obstacles in the environment could be infinite. New
and unexpected obstacles will emerge constantly in the prac-
tical environment, which leads to the inadequate capacity of
the existing system.

1

657

The fundamental reason for these disadvantages lies in the
tight bound between the specific environment and the system.
To deal with current challenges, this paper comes up with a
novel approach based on attribution theory. Philosophically,
the internal causes are the fundamental reasons for the change
or the development of things while the external causes are
merely the conditions and become operative through internal
causes. In other words, it is when the external causes lead to
the changes of internal causes that the adaptation behaviors
could be triggered. Therefore, the basic idea behind our ap-
proach is to decouple the environment with the system both
at two stages: independent design and run-time binding. In
the design stage, how the adaptation behaviors of the system
are determined by the internal causes is focused and empha-
sized, which makes the design and development of software
are independent of the practical environment. In the run-time
stage, the relationships between environmental factors (i.e.,
environmental events as external causes) and state of the sys-
tem (i.e., internal causes) are dynamically established, thus
binding the system to the specific application (i.e., deploy-
ment) and realizing the environmental-related adaptability.

The main contributions of our research is summarized as
follows:

• We propose a new conceptual model of designing adaptive
systems based on the attribution theory;

• We describe a two-layer structure in accordance with the
conceptual model. The first layer is the independent design
with decisive adaptation policies pertaining the relation be-
tween internal causes to adaptation behaviors; while the
second layer is the dynamic bound with influential adap-
tation policies connecting the external causes to internal
causes.

Approach Overview

So fundamental is the process of asking and answering “why”
questions – trying to figure out what caused something else
– that it has been characterized as a basic human activ-
ity, and a family of theories has been developed to illumine
how and why things happen as they do. This set of theo-
ries, collectively called Attribution Theory initiated by Fritz
Heider(Heider, 1958) and further advanced by Harold Kelley
and Bernard Weiner(Kelley, 1967), attempts to describe and
explain the processes involved in everyday explanations, most
typical explanations of individual behaviors and events. An
interesting example that someone is angry could be attached
to the causes of bad-tempered characteristics or something
bad happened.

There are a number of definitions for attributions, but a
common way to define attributions is as the internal and ex-
ternal process of interpreting and understanding what is be-
hind individual behaviors. External attribution, also called
situational attribution, refers to interpreting the causes of be-
haviors to the situational or environment features outside a

person’s control. Internal attribution is the process of assign-
ing the causes to some personality traits, rather than to outside
forces.

Data State

Preference

Goal

Internal Causes

Action

External Causes

Influential
adaptation policies

Function

Decisive
adaptation policies

First Layer
(Independent Design)

Second Layer
(Dynamic Binding)

Self-Adaptive System

Environmental
Factors Environment

User
Factors

Resource
Factors

Figure 1: Conceptual Model of Attribution-Based
Self-Adaptive System.

Similarly, adaptive behaviors of self-adaptive systems are
the reactions to the external causes, i.e., changes. It is im-
portant to identify the reason for an adaptation: why do we

have to adapt?. This is the central question influencing the
reaction. In general, the reasons for an adaptation could be
i)a change in the technical resources, e.g., the availability of
an alternative network connection; ii)a change in the envi-
ronmental variable, e.g., the workload for a website changed;
and iii)a change regarding the user, e.g., a change in the user
goal or the user preferences(Krupitzer, Roth, & et al., 2015).
Users and operative technical resources could be regarded as
a part of the environment and together with the environmental
factors form the periphery of adaptive systems (Jiao & Sun,
2016). They are the external conditions of the existences and
referred to as external causes.

Factors or events in the environment are not the necessary
conditions that systems could execute reactive behaviors. For
example, when the number of active users increases, some
of the websites may saturate while others may not. In fact,
whether an application deployed in the cloud is saturated and
then allocated with more resources depends on whether the
response latency (the time elapsed from sending the first byte
of the request to receiving the last byte of the response) is
long, and one will not do so if the latency is within a satis-
factory range even if this application is with a huge number
of users. In other words, the change of the user number does
not determine the adaptive behaviors on an allocation of the
resource; instead, the influence could take effect only when
the change affects system internal states, which further im-

658

pair system goals. On the contrary, internal changes on the
states of the system itself are the intrinsic reasons for adap-
tive behaviors.

Figure 1 provides a birds-eye view of our conceptual model
of self-adaptive systems. An adaptive system can be divided
into two layers, each corresponding to the internal and ex-
ternal attribution process. The first layer is composed of in-
ternal causes (including data state, function, preference, and
goal) and adaptation behaviors (i.e., actions). Decisive adap-
tation policies, how to cope with changes in internal causes,
determine the relations between internal causes and actions.
This layer is independently designed and fixed even with the
changing deployment or the extended environment. Note
that the changing deployment is the change from one spe-
cific environment to another; the extended environment is the
open environment with environmental factors from unknown
to known. In the second layer, the relationship between ex-
ternal causes and internal causes is denoted in the influential
adaptation policies. The second layer is a replaceable com-
ponent and dynamical bound when the running environment
is determined.

VictimUAV

Rescue
Center

Figure 2: Running Example

Running Example. As a motivating example showcasing
our approach, consider a disaster relief mission in adaptive
system domains (Li, Jiao, & et al., 2018). In such a scenario,
communication infrastructure is disabled in a city due to dis-
asters; parts of the city may be unsafe. Figure 2 visualizes a
possible configuration of a part of the city (i.e., a district). The
rescue center is the safe zone in charge of the district’s safety.
The district then is divided into several blocks. The victims
are spread in different blocks and have no idea of where the
rescue center is. The unmanned aerial vehicle(abbr. as UAV)
will be arranged to search and guide victims to the rescue
center. In the process of searching for the victims, the UAV
should not only guarantee the search and rescue task quick
and thorough (search and rescue all victims in an acceptable
time), but also ensure its own safety (no crash) and energy
storage (avoid battery depletion). Furthermore, we expect
that this UAV system can participate in missions in various
disaster environments, such as fire, floods, earthquakes etc.

Formal Definition of the Conceptual Model

Inspired by the attribution theory, external causes take effects
on the system through the internal causes, instead of directly
affecting or determining the behaviors of the system. To this
end, the conceptual model (M) of a self-adaptive system is
defined as a tuple M= (IC, DAP, IAP), where:

• IC are the internal causes (i.e., intrinsic reasons for adap-
tation behaviors) which can be further specified as a tuple
IC= (Data State, Goal, Preference, Function);

• DAP are the decisive adaptation policies, which define how
the internal causes of the system determine the adaptation
behaviors and are generally expressed as rules of “internal
causes – actions”;

• IAP are influential adaptation policies, denoting how
events in the environment affect the changes of internal
causes with the form of “external causes – internal causes”.

Internal Causes and System State

Data State The remembered information of the sys-
tem determined by a set of attribute values. Let
(Attr = a1, ...,an) be the attribute set of the system,
and (Dom = dom(a1), ...,dom(an)) be the set of domains
of these attributes. Then the data state of the system is the
mapping of these attributes to their values. In the motivation
example, UAV system needs to maintain certain data, such
as current location, residual power, flight height, searched
blocks, unsearched blocks, hazard blocks, status(i.e., cruise
or guidance). The data state of UAV is defined by the value
of these kinds of information.

Goal the data state that the system expects to achieve or
maintain. Generally, goals can be classified into three cate-
gories (Filieri et al., 2017). One type of goal is a reference
value, called setpoint, to track. In this case, the objective is
to keep a measurable quantity as close as possible to the set-
point. The second category of the goals is the variation of the
classic setpoint-based goal where the goal resides in a spe-
cific range of interest with confidence intervals. The third
category of goals concerns the minimization (or maximiza-
tion) of a measurable quantity of the system. In substance,
these goals can be regarded as functions of data states:

Goal= { g | g 2 2Data ^ eval(g) = 1}. (1)

In general, the system is considered completely achieving
a goal if it enters the target data state; however, in some
cases, the system can only (infinitely) get close to the target
but not reach. For example, it is impossible to require the
UAV’s flighting speed “to maintain exactly at 2 meters per
second”, then the system is said to be achieving the goal to
some extent. Therefore, a goal is usually associated with
an evaluation function which determines whether the goal
has been achieved or how far it has been achieved. For

659

instance, in this mission scenario, should all the blocks
had been searched and rescued, the evaluation result of
this goal is one. If it is not, the evaluation function is
eval(g) = num(searched blocks)÷num(total blocks),
and pertains that goal satisfaction is directly proportional to
the number of blocks cruised.

Preference The data state that the system is more interested
in. Contrary to the goals that the system must be achieved
or maintained, the preferences are not necessary must-to-do,
but the performance of the system would be better if they are
met. For example, the UAV is not only expected to com-
plete the search and rescue goal but also with economical
(less electricity consumption) and fast preference (all the vic-
tims should be searched as soon as possible). Similar to the
goal, the preferences are associated with the utility functions
that measure the satisfaction of preferences. For example,
a utility function is present: u= residual power ÷ total
energy storage, illustrating the tendencies of less energy
consuming.

Preference= { p | p 2 2Data ^ util(p) 2 [0,1]}. (2)

Function The means or methods of achieving the goals.
The functions are essentially changing or maintaining system
status through manipulating controllable variables. For ex-
ample, the UAV has the functions of take-off, flying, landing,
direction change, etc.

Function= {f | f : Data! Data}. (3)

System State The state of the system is determined by the
internal factors. In other words, data state, the available func-
tions, and the satisfaction of goals and preferences together
define the system state. Note that a function is not always
valid (sometimes not working); the valid data of the sys-
tem is the combination of attribute values and functions(i.e.,
Data= {s|s 2 (Attr⇥Dom)[2Function})

Adaptation Policies

In the complex and uncertain environment, many kinds of
environmental factors (discovered and to be discovered) ex-
ist, thus resulting in complicated influences on the internal
causes. It is not necessarily true that all the changes of envi-
ronmental factors will affect the system thereupon triggering
adaptation behaviors. Only those leading to the changes of
internal causes have an impact on the self-adaptive system.

Influential Adaptation Policies The IAP describe how the
external causes especially environmental factors affect the in-
ternal causes of the system. These external causes directly in-
fluence the data state, which will further affect the functions,
preferences and goals. In a fire scenario, the environmental
factors for the motivation example could be the magnitude

of the fire, which inevitably results in different data states
for the UAV system. For example, the detection of a seri-
ous situation (i.e., high magnitude) for a block would render
the UAV marking it as hazard and UAV will try to avoid this
block cruise in a certain amount of time for its own safety.
However, if in an earthquake scenario, the obstacles from the
ground would probably not affect the mark of the block which
is stored as an internal data since it is not a threat to high alti-
tude flying UAV.

IAP= {pi | pi : ExtFactors! Data State⇥
Function ⇥ Preference⇥Goal}.

(4)

Decisive Adaptation Policies The DAP characterize how
the internal causes determine the self-adaptive actions
of the system. An action is the operation of a function,
which means that taking an action is to perform a function.
Action= {a|f 2 Function, a = Do(f) }. The factors that
determine the adaptive actions may involve system states,
functions that the system possesses, preferences and goals.
For the current location of UAV as shown in Figure 2, without
detected victims to be guided to the rescue center, actions
of four direction changes (North, South, East, West) are
available if all corresponding blocks have not been cruised
before and no hazard mark for the time-being.

DAP= {pd | pd : Data State⇥Function ⇥
Preference⇥Goal! Action}.

(5)

Through this conceptual model with a tuple structure,
adaptation behaviors are achieved by explicitly defining in-
ternal causes and reasoning about the influences of external
events on internal causes via IAP, upon which reactive actions
are acquired by DAP. Concretely, for the motivation example,
the UAV can infer the influences of environmental factors on
its internal causes; and then the UAV can reason about its
DAP to decide its adaptation behaviors. With the two layer
structure, this conceptual model is supposed to be character-
istic with applicability and reusability. Applicability entails
the appropriateness of our attribution theory based concep-
tual model to design the self-adaptive systems and to cap-
ture dynamics of the environment, triggering IAP and DAP
while maintaining satisfaction on system goals. Reusabil-
ity describes usability of the DAP without modification, es-
pecially coordinating with various alterable dynamic binding
IAP to different deployment environments and extended en-
vironments allowing continuously gaining knowledge.

Implementation Model

This section provides an implementation model of our attribu-
tion based approach. Adaptation builds on adaptation policies
characterizing casual relationships between external and in-
ternal causes of a system, and between internal causes and ac-
tions in the knowledge. Adaptation behaviors are achieved by

660

implementing the activities of the MAPE (Monitoring, Anal-
ysis, Planning, Execution) loop (Kephart & Chess, 2003).
Analysis and Planning are responsible for identifying pos-
sible requirements violations and generating an adaptation
strategy, respectively, while Monitoring and Execution are re-
sponsible for enacting it at runtime.

Knowledge

To achieve self-adaptation, the system needs to be tailored,
mainly regarding to the adaptation policies in the knowledge.
This component Knowledge (K) is shared by all MAPE com-
ponents. Ideally, all of the knowledge should be reusable
across the same class of systems, i.e., these systems can adapt
to all kinds of deployments and achieve user goals. However,
the generality of this component comes at a cost:

• A significant amount of system-specific knowledge needs
to be specified and maintained to apply the system to dif-
ferent deployment environments.

• Should the need for changing the K arises with the gain of
information from the environment, the whole component
shall be revised separately and deployed to aid (correctly)
user expectation.

To support the extendability of new information and
reusability of adaptation policies across different sys-
tems, we separate system-specific knowledge from the
environment-specific part, echoing the two-layer structure in
the conceptual model. System-specific knowledge, denoted
as the DAP and instructing the behaviors to certain states of
the system, is fixed and reusable between systems in similar
functions. Meanwhile, environment-specific knowledge
for defining how events in the deployment environment
(external causes) affect system state in the form of IAP,
is alterable as the deployment changes or discovery of
additional environmental factors impacting system state.
This is faithful to the principle of separation of concerns –
the principle for separating a design into distinct sections,
such that each section addresses a separate concern (Dijkstra
& W, 1982).

MAPE Loop

For a specific deployment environment, adaptation behaviors
are achieved by following the widely adopted mechanism of
MAPE loop, which is shown in the implementation model in
Figure 3.

Monitor Events generated in the environment indicating
the execution of system actions or natural changes in the ex-
ternal factors are received. Component Monitor (M) gath-
ers or synthesizes particular data through probes (or sensors)
from the environment, and saves data in the knowledge in the
form of external causes. For our example, events can indicate
a serious fire detected by the cruising UAV.

Self-Adaptive System

Monitor Executor

Various Environments

...Env1 EnvNEnv2

Analyzer Planner

AdaSWDWLRQ�3ROLFLHV

Internal Causes ActionExternal Causes

Decisive Adaptation PoliciesInfluential Adaptation Policies

Second Layer — Alterable First Layer — Fixed

Knowledge

External |- Internal

External |- Internal

External |- Internal

Internal |- Action

Internal |- Action

Internal |- Action

Figure 3: Implementation Model of Attribution-Based
Self-Adaptive System.

Analyzer During speculative analysis, conditions of the en-
vironment representing violations of goals or better satisfac-
tion of goals which can arise when active entities perform
actions are identified. The component Analyzer (A), with the
input of external causes from the Monitor, performs analy-
sis by starting adaptation policies engine and reasoning about
IAP to acquire the data state of the system. On this basis,
analyzer further checks whether the goal is fulfilled; prefer-
ence is satisfied; an adaptation is required. A typical example
could be a new mark of hazard blocks resulted from the fire
situation which might endanger its own safety.

Planner Component Planner (P) composes a workflow of
adaptation actions aiming to counteract violations of system
goals or better achieving goals. It consists of one or a set
of actions to be enacted inferring from DAP in the adaptation
policies engine receiving internal causes as input. For each
situation, it identifies a policy if one exists, or prompts for a
change in the design of the system if the violation cannot be
handled and the system goal cannot be satisfied. Direction
changing or safe landing could be feasible actions for UAV
facing with a dangerous situation.

Executor During execution, the action from the DAP is en-
acted on the system by the component executor (E) through
effectors (or actuators). This activity receives as input the cur-
rent conditions of the environment from the monitoring activ-
ity, and identifies if a specific state in the adaptation policy is
reached. If that is the case, it enacts specific action indicated
in the adaptation strategy.

661

Discussion

Self-adaptation has been growing increasingly important.
Though numerous excellent research efforts have been put
into this area, self-adaptation as a field is still in its in-
fancy, and existing knowledge and approaches are not ad-
equate enough to address today’s ever-expanding and ever-
changing various environments. In this paper, we mainly fo-
cus on a novel conceptual model to design self-adaptive sys-
tems for various and open environments based on attribution
theory, offering reusability engineering by decoupling the en-
vironment with the system. Accordingly, the related work
will be classified into two categories. First, we look into the
mechanisms of reusability in adaptive systems, positioning
our work. Then, we discuss cross approaches among differ-
ent disciplines that play an important role in the construction
of self-adaptive systems.

Reusability has always been a concern in adaptive systems
field. Generally, research has focused on providing frame-
works for adaptation, such as rainbow (Garlan, Cheng, & et
al., 2004) monitoring the executing system in the system-
layer through an abstract model in the architecture layer
which interacts with system layer through a translation layer,
and Hogna, a platform for deploying self-managing web ap-
plications on cloud (Barna, Ghanbari, & et al., 2015), al-
lowing developers to customize each phase of the feedback
loop without having to implement the entire layer themselves.
Autonomic Software Product Lines (ASPL) is a strategy for
developing self-adaptive software systems with systematic
reuse by integrating a domain-independent managing sys-
tem into a domain-specific software product line (Abbas &
Nadeem, 2018). Besides, different patterns that can be reused
have been proposed facilitating the development of dynamic
adaptive systems (Ramirez & Cheng, 2010); other techniques
such as bidirectional transformations, a mechanism of syn-
chronization, have been applied to ensure the correctness of
reusability in adaptive systems (Colson, Dupuis, & et al.,
2016). Though our approach divides the system framework
into two levels like most of the reusable approaches, the ba-
sis for this division is the attribution to either environment
or system itself facilitating the reusability in various deploy-
ment environments, not the structure to be reused in different
systems with similar functions.

Adaptive system is an interdisciplinary research field. The
concept of self-adaptation, derived from biology, is the char-
acteristics of a creature changing its habits to adapt to a new
environment (Longman, 1994). Biological approaches in
computer science have emerged with the study of collective
behavior in natural multi-agent systems by Parunak (Parunak,
1997). Other mechanisms in biology, such as flocking, nest
building, molding (Mamei, Menezes, & et al., 2006) and hu-
man immune system (Hart, McEwan, & et al., 2011) has been
adopted in self-organizing systems and can be transferred to
self-adaptive systems. Besides that, it is important to learn
and borrow from other fields of knowledge that are working
or have been working in the development and study of similar

systems, or have already contributed solutions that fit for the
purpose of self-adaptive systems. Researches from chemical
have been gradually applied. Viroli et al. propose a coordina-
tion model for self-organizing systems based on biochemical
tuple spaces and chemical reactions (Viroli, Mirko, & et al.,
2009). In the physical field, Weyns et al. employ field-based
mechanisms for adaptive task assignment in multi-agent sys-
tems. Social area concentrates on market and auction mecha-
nisms and as an example, coordination in multi-agent systems
is based on social conventions (Salazar, Rodrı́guez-Aguilar,
& et al., 2010). To the end, our approach is inspired by the
research findings from psychology, emphasizing that the in-
fluence on adaptation behaviors comes from two aspects, the
external environment and the internal system. It decouples
the system with a specific environment and brings a new per-
spective in the construction of self-adaptive systems.

In our future research, we plan to further elaborate on the
work presented in this paper by applying the method to prac-
tical scenarios to strengthen the applicability. In addition,
the mapping relations between external factors and internal
causes are complicated and changeable due to open and vari-
ous environments. More efforts would be put into investigat-
ing the automatic acquisition of influential adaptation poli-
cies, such as machine learning in response to uncertain envi-
ronmental changes and reinforcement learning method con-
stantly adjusting to new environments.

Acknowledgments

We would like to thank the anonymous reviewers for
their valuable comments. This work is partially spon-
sored by the National Basic Research Program of China
(973) (2015CB352200), and the National Natural Science
Foundation of China (61620106007).

References

Abbas, & Nadeem. (2018). Designing self-adaptive software

systems with reuse. Unpublished doctoral dissertation, Lin-
naeus University Press.

Barna, C., Ghanbari, H., & et al. (2015). Hogna: A platform
for self-adaptive applications in cloud environments. In
10th IEEE/ACM international symposium on software en-

gineering for adaptive and self-managing systems, SEAMS

2015, florence, italy, may 18-19, 2015.

Cheng, B. H. C., de Lemos, R., & et al. (2009). Software en-
gineering for self-adaptive systems: A research roadmap.
In Software engineering for self-adaptive systems [outcome

of a dagstuhl seminar] (pp. 1–26).
Colson, K., Dupuis, R., & et al. (2016). Reusable self-

adaptation through bidirectional programming. In Pro-

ceedings of the 11th international symposium on soft-

ware engineering for adaptive and self-managing systems,

seams@icse 2016, austin, texas, usa, may 14-22, 2016.

de Lemos, R., Giese, H., & et al. (2010). Software engineer-
ing for self-adaptive systems: A second research roadmap.

662

In Software engineering for self-adaptive systems II - inter-

national seminar, dagstuhl castle, germany, october 24-29,

2010 revised selected and invited papers (pp. 1–32).
Dijkstra, & W, E. (1982). On the role of scientific thought.

In Selected writings on computing: a personal perspective

(pp. 60–66). Springer.
Filieri, A., D’Ippolito, N., & et al. (2017). Control strategies

for self-adaptive software systems. TAAS.
Garlan, D., Cheng, S., & et al. (2004). Rainbow:

Architecture-based self-adaptation with reusable infras-
tructure. IEEE Computer.

Hart, E., McEwan, C., & et al. (2011). Advances in artificial
immune systems. Evolutionary Intelligence.

Heider, F. (1958). The psychology of interpersonal relations.
New York: Wiley.

Jiao, W., & Sun, Y. (2016). Self-adaptation of multi-agent
systems in dynamic environments based on experience ex-
changes. Journal of Systems and Software.

Kelley, H. H. (1967). Attribution theory in social psychology.
Nebraska Symposium on Motivation, 15, 192-238.

Kephart, J. O., & Chess, D. M. (2003). The vision of auto-
nomic computing. IEEE Computer.

Krupitzer, C., Roth, F. M., & et al. (2015). A survey on en-
gineering approaches for self-adaptive systems. Pervasive

and Mobile Computing, 17, 184–206.
Li, N., Jiao, W., & et al. (2018). 2018 IEEE international con-

ference on software quality, reliability and security, QRS

2018, lisbon, portugal, july 16-20, 2018. IEEE.
Longman, A.-W. (1994). Adaptive control. In Publishing

co., inc. boston, ma, usa.

Mamei, M., Menezes, R., & et al. (2006). Case studies for
self-organization in computer science. Journal of Systems

Architecture.
Modoni, G. E., Trombetta, A., Veniero, M., Sacco,

M., & Mourtzis, D. (2019). An event-driven inte-
grative framework enabling information notification
among manufacturing resources. Int. J. Computer Inte-

grated Manufacturing, 32(3), 241–252. Retrieved from
https://doi.org/10.1080/0951192X.2019.1571232
doi: 10.1080/0951192X.2019.1571232

Parunak, H. V. D. (1997). ”go to the ant”: Engineering prin-
ciples from natural multi-agent systems. Annals OR.

Ramirez, A. J., & Cheng, B. H. C. (2010). Design patterns for
developing dynamically adaptive systems. In 2010 ICSE

workshop on software engineering for adaptive and self-

managing systems, SEAMS 2010, cape town, south africa,

may 3-4, 2010.

Salazar, N., Rodrı́guez-Aguilar, J. A., & et al. (2010). Robust
coordination in large convention spaces. AI Commun..

Salehie, M., & Tahvildari, L. (2009). Self-adaptive soft-
ware: Landscape and research challenges. TAAS, 4(2),
14:1–14:42.

Sawyer, P., Bencomo, N., & et al. (2010). Requirements-
aware systems: A research agenda for RE for self-adaptive
systems. In RE 2010, 18th IEEE international require-

ments engineering conference, sydney, new south wales,

australia, september 27 - october 1, 2010 (pp. 95–103).
Shevtsov, S., Berekmeri, M., & et al. (2018). Control-

theoretical software adaptation: A systematic literature re-
view. IEEE Trans. Software Eng., 44(8), 784–810.

Viroli, Mirko, & et al. (2009). Biochemical tuple spaces for
self-organising coordination. In Coordination models and

languages. Springer Berlin Heidelberg.

663

