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Equilibrium and Media of Exchange in a

Convex Trading Post Economy with

Transaction Costs

Ross M. Starr∗

August 4, 2005; University of California, San Diego

PRELIMINARY: NOT FOR QUOTATION

”[An] important and difficult question...[is] not answered by the approach

taken here: the integration of money in the theory of value...”
—— Gerard Debreu, Theory of Value (1959)

Abstract

General equilibrium is investigated with N commodities traded
at N(N − 1)/2 commodity-pairwise trading posts. Bid and ask
prices are quoted as commodity rates of exchange. Trade is a
resource-using activity undertaken by firms recovering transaction

costs through the spread between bid (wholesale) and ask (retail)
prices. Budget constraints are enforced at each trading post sepa-
rately; there is demand for a carrier of value between trading posts,
commodity money. Existence of general equilibrium follows from

convexity and continuity conditions and technical assumptions as-
suring boundedness of price ratios. Trade in media of exchange
(commodity money) is the difference between gross and net trades.

∗rstarr@ucsd.edu, Economics Dept. 0508, University of California, San Diego, 9500
Gilman Dr., La Jolla, CA 92093-0508, USA
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1 Introduction

It is well-known that the Arrow-Debreu model of Walrasian general equilibrium
cannot account for money. Professor Hahn (1982) writes

”The most serious challenge that the existence of money poses to the the-
orist is this: the best developed model of the economy cannot find room for
it. The best developed model is, of course, the Arrow-Debreu version of a
Walrasian general equilibrium. A first, and...difficult...task is to find an alter-

native construction without...sacrificing the clarity and logical coherence ... of
Arrow-Debreu.”

This paper pursues development of foundations for a theory of money based
on elaborating the detail structure of an Arrow-Debreu model. The elementary

first step is to create a general equilibrium where there is a well defined demand
for a medium of exchange — a carrier of value between transactions. This is
arranged by replacing the single budget constraint of the Arrow-Debreu model
with the requirement that the typical household or firm pays for its purchases

at each of many separate transactions. Transactions take place at commodity-
pairwise trading posts. Then a well-defined demand for media of exchange
(not necessarily unique) arises endogenously as an outcome of the market

equilibrium. Media of exchange (commodity monies) are characterized as the
carrier of value between transactions (not fulfilling final demands or input
requirements themselves), the difference between gross and net trades.

1.1 Structure of the Model

Trade takes place at commodity pairwise trading posts with budget constraints
(you pay for what you get in commodity terms) enforced at each post. Prices —
bid (wholesale) and ask (retail) — are quoted as commodity rates of exchange.
Trade across trading posts is arranged by firms, typically buying at bid prices

and selling at ask prices, incurring transaction costs (resources used up in the
transaction process) and recouping them through the bid/ask spread. Market
equilibrium occurs when bid and ask prices at each trading post have adjusted

so that all trading posts clear.
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1.2 Structure of the Proof

The structure of the proof of existence of general equilibrium follows the ap-
proach of Arrow and Debreu (1954), Debreu (1959), and Starr (1997). The
usual assumptions of continuity, convexity (traditional but by no means in-

nocuous in this context), and no free lunch/irreversibility are used. There is
one additional (objectionable) family of assumptions, strong substitutability
between goods and the existence of a linear backup transactions technology for
all goods so that the equilibrium price ratios are necessarily bounded, allowing

characterization of the price space as a compact convex set (a cube interior
to the positive quadrant in RN(N−1)). Then the attainable set of trading post
transactions is compact and prices may be confined to a compact set. As in

Debreu(1959), an intermediate step in the proof considers transaction plans
of firms and households artificially bounded in a compact set including the
attainable set as a proper subset. Price adjustment to a fixed point with mar-
ket clearing leads to equilibrium of the artificially bounded economy. But the

artificial bounds are not a binding constraint in equilibrium. The equilibrium
of the artificially bounded economy is as well an equilibrium of the original
economy.

1.3 Conclusion: The medium(a) of exchange

The general equilibrium specifies each household and firm’s trading plan in-
cluding the choice of trading posts and the volume of goods traded there. At
the conclusion of trade, each firm and household has achieved a net trade.
Gross trades include trading activity that goes to paying for acquisitions and

accepting payment for sales rather than directly implementing desired net
trades. It’s easy to calculate gross trades and net trades at equilibrium. For
households, the difference — gross trades minus net trades — represents trad-

ing activity in carriers of value between trades, media of exchange. Since
firms perform a market-making function, identification of media of exchange
used by firms is not so straightforward. In some examples (see Starr (2003A,
2003B))the medium of exchange may be a single specialized commodity (the

common medium of exchange).
The approach of this model is intended to provide the start of a Walrasian

general equilibrium alternative to the overlapping generations, Wallace (1980),
and search theory, Kiyotaki and Wright (1989), models of the foundations of

monetary theory. The present model is sufficiently general to include both a
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single common medium of exchange and many goods simultaneously acting

as media of exchange. There is nothing in the present model designed to
encourage concentration of trade on a single common medium of exchange.

2 Trading Posts

There are N tradeable goods denoted 1, 2, ..., N. They are traded for one

another pairwise at trading posts. {i, j} (or equivalently {j,i}) denotes the
trading post where goods i and j are traded for one another. There are N(N −
1)/2 distinct trading posts.

3 Prices

Goods are traded directly for one another without distinguishing any single

good as ’money’. Prices are then quoted as rates of exchange between goods.
We distinguish between bid (selling or wholesale) prices and ask (buying or
retail) prices. Thus the ask price of a hamburger might be 5.0 chocolate bars
and the bid price 3.0 chocolate bars. Note that the ask price of a chocolate

bar then is the inverse of the bid price of a hamburger. That is, the ask price
of a chocolate bar is 0.333 hamburger and the bid price of a chocolate bar is
0.2 hamburger.

More formally, denote the bid price of i at trading post {i,j} as q
{i,j}
i ex-

pressed in units of j. Then the ask price of j at {i,j} expressed in units of i

is p
{i,j}
j = [q

{i,j}
i ]−1 . Thus with N commodities, there are N(N − 1) distinct

prices, the bid price of each of N goods versus (N-1) counterparts. The array

of prices is then an N(N − 1) -dimensional vector , q in R
N(N−1)
+ .

Once q is specified, showing all bid prices q
{i,j}
i for all 1 ≤ i, j ≤ N, i 6= j,

that implies as well all the resulting ask prices p
{i,j}
j = [q

{i,j}
i ]−1 . In principle,

any nonnegative value of q
{i,j}
i is possible, though a value of nil implies an

undefined value of p
{i,j}
j = [q

{i,j}
i ]−1. Bounding prices and requiring them to

be strictly positive makes the analysis more manageable.
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4 Budget Constraints and Trading Opportu-

nities

The budget constraint is simply that at each pairwise trading post, at prevail-
ing prices, in each transaction, payment is given for goods received. That is,
at trading post {i, j}, a bid price for i is quoted q

{i,j}
i in terms of j and a bid

price of j is quoted, q
{i,j}
j in terms of i. Suppose a typical firm or household is

considering a trading plan (y, x) ∈ R2N(N−1). That plan specifies the following

transactions at trading post {i,j}: y
{i,j}
i (at ask prices — retail) in i, y

{i,j}
j (at

ask prices — retail) in j, x
{i,j}
i (at bid prices — wholesale) in i, x

{i,j}
j (at bid

prices — wholesale) in j. Positive values of these transactions are purchases.
Negative values are sales. At each trading post (of two goods) there are four

quantities to specify in a trading plan. Then value delivered must equal value
received. That is

0 ≥ [q
{i,j}
j ]−1y

{i,j}
i + y

{i,j}
j + q

{i,j}
i x

{i,j}
i + x

{i,j}
j (B)

(B) says — evaluating all trades in terms of good j — that trades in i and
j at retail and wholesale at the {i,j} trading post must sum to a nonpositive
quantity of j.

Given a price vector q ∈ R
N(N−1)
+ the array of trades fulfilling (B) is the

set of trades fulfilling the N(N − 1)/2 local budget constraints at the trading
posts. Denote this set

M(q) ≡ {(y, x) ∈ R2N(N−1)|(y, x) fulfills (B) at q for all i, j = 1, ..., N, i 6= j}

5 Firms

The heavy lifting in this model is done by firms. They perform the market-

making function, incurring transaction costs. The population of firms is a
finite set denoted F , with typical element f ∈ F . Thus, firm f ’s technology
set may specify that f ’s purchase of labor (wholesale) in exchange for i on
the {i, labor} market and purchase of i and j wholesale on the {i,j} market

allows f to sell i and j (retail) on the {i, j} market. That’s how f can become
a market maker. If there is a sufficient difference between bid and ask prices
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so that f can cover the cost of its purchase of inputs of labor, of i and of j

with a surplus left over, that surplus becomes f ’s profits, to be rebated to f ’s
shareholders.

5.1 Technology Set

Firm f ’s technology set is Y f . We assume
P.0 Y f ⊂ R2N(N−1)

The typical element of Y f is (yf , xf), a pair of N(N − 1)-dimensional vec-
tors. The N(N − 1)-dimensional vector yf represents f’s transactions at ask

(retail) prices; the N(N − 1)-dimensional vector xf represents f’s transactions
at bid (wholesale) prices. The 2-dimensional vector yf{i,j} represents f’s trans-
actions at ask (retail) prices at trading post {i,j}; the 2-dimensional vector
xf{i,j} represents f’s transactions at bid (wholesale) prices at trading post {i,j}.
The typical co-ordinates y

f{i,j}
i , x

f{i,j}
i are f’s action with respect to good i at

the {i,j} trading post. Since f may act as a wholesaler/retailer/market maker,
entries anywhere in (yf{i,j}, xf{i,j}) may be positive or negative — subject of
course to constraints of technology Y f and prices M(q). This distinguishes
the firm from the typical household. The typical household can only sell at

bid prices and buy at ask prices.
The entry y

f{i,j}
i , represents f’s actions at ask prices with regard to good i

at trading post {i,j}. y
f{i,j}
i > 0 represents a purchase of i at the {i,j} trading

post (at the ask price). y
f{i,j}
i < 0 represents a sale of i at the ask price.

The entry x
f{i,j}
i , represents f’s actions at bid prices with regard to good i

at trading post {i,j}. x
f{i,j}
i > 0 represents a purchase of i at the trading post

(at the bid price). x
f{i,j}
i < 0 represents a sale of i at the bid price.

A firm that is an active market-maker at {i,j} will typically buy at the bid
price and sell at the ask price. A firm that is not a market-maker may have
to pay retail — like the rest of us — selling at the bid price and buying at the
ask price.

In addition to indicating the transaction possibilities, Y f includes the usual
production possibilities. The usual assumptions on production technology
apply. For each f ∈ F , assume

P.I Y f is convex.
P.II 0 ∈ Y f , where 0 indicates the zero vector in R2N(N−1).
P.III Y f is closed.
The aggregate technology set is the sum of individual firm technology sets.
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Y ≡ ∑
f∈F Y f . It fulfills the familiar no free lunch and irreversibility condi-

tions.
P.IV [(a)] if (y, x) ∈ Y and (y, x) 6= 0, then y

{i,j}
i + x

{i,j}
i > 0 for some

i, j.
[(b)] if (y, x) ∈ Y and (y, x) 6= 0, then −(y, x) 6∈ Y .

Denote the initial resource endowment of the economy as r ∈ RN . Then
we define the attainable production plans of the economy as

Ŷ ≡ {(y, x) ∈ Y |ri ≥
∑

j(y
{i,j}
i + x

{i,j}
i )}

Lemma 5.1: Assume P.0 - P.IV. Then Ŷ is closed, convex, and bounded.

Attainable production plans for firm f can then be described as
Ŷ f ≡ {(yf , xf) ∈ Y f | there is (yk, xk) ∈ Y k for each k ∈ F, k 6= f , so that

[
∑

k∈F,k 6=f (yk, xk) + (yf , xf)] ∈ Ŷ }

5.2 Firm Maximand and Transactions Function

The firm formulates a production plan and a trading plan. The firm’s op-
portunity set for net yields after transactions fulfilling budget is Ef (q) ≡
[M(q) − Y f ] ∩ R

2N(N−1)
+ . That is, consider the firm’s production, purchase,

and sale possibilities, net after paying for them, and what’s left is the net
yield. Using the sign conventions we’ve adopted — purchases are positive co-
ordinates, sales are negative co-ordinates — the net yield is then the negative
co-ordinates (supplies) in a trading plan that are not absorbed by payments

due. These surpluses enter Ef (q) as positive co-ordinates.
A typical element of these surplus supplies is denoted (y′, x′) ∈ Ef (q) .

Note that in the notation (y′, x′), y′ and x′ are dummies, not actual marketed
supplies and demands.

Now consider (y′, x′) ∈ Ef(q) . In each good i, the net surplus available

in good i is wf
i ≡ ∑N

j=1(y
′{i,j}
i + x

′{i,j}
i ) and firm f’s surplus is the vector wf of

these co-ordinates.
In the absence of a single family of well-defined prices, it is difficult to

characterize optimizing behavior for the firm. Fautes de mieux we’ll give the

firm a scalar maximand with arguments q, y′, x′. Firm f is assumed to have
a real-valued continuous maximand vf(q, y′, x′). We take vf to be strictly
concave and strictly monotone in y′, x′.
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The firm’s (unconstrained) market behavior then is described by

Sf (q) ≡ {(y, x)|(y, x) = (yo, xo)−(y′, x′), where (y′, x′) maximizes vf(q, y′, x′)
subject to (y′, x′) ∈ Ef (q) and (yo, xo) ∈ Y f and (y, x) ∈ M(q)}

The logic of this definition is that (y′, x′) ≥ 0 is the surplus left over after
the firm f has performed the marketed transaction (y, x) according to its

technology and subject to prevailing prices.
It is possible that Sf (q) is not well defined, since the opportunity set may

be unbounded. In the light of Lemma 5.1, there is a constant c > 0 sufficiently
large so that for all f ∈ F , Ŷ f is strictly contained in a closed ball, denoted Bc

of radius c centered at the origin of R2N(N−1). Constrained market behavior
for the firm will consist of limiting its production choices to Y f ∩ Bc. This
leads to the constrained surplus

Ẽf (q) ≡ [M(q) − [Y f ∩ Bc]] ∩ R
2N(N−1)
+

Lemma 5.2: Assume P.0 - P.IV and q > 0 (the inequality applies co-
ordinatewise). Then Ẽf (q) is nonempty, upper and lower hemicontinuous.

Proof: Upper hemicontinuity and convexity follow from closedness and
convexity of the underlying sets. 0 ∈ Ẽf (q) always, so nonemptiness is fulfilled.

Lower hemicontinuity requires some work.
Let qν → qo, (yo, xo) ∈ Ẽf(qo). We seek (yν, xν) ∈ Ẽf (qν) so that

(yν, xν) → (yo, xo). If (yo, xo) = 0, lower hemicontinuity is trivially satisfied.

Suppose instead (yo, xo) ≥ 0 (the inequality applies co-ordinatewise). Then in
an ε-neighborhood of (yo, xo), for ν sufficiently large, there is (yν, xν) ∈ Ẽ(qν).
(yν, xν) is the required sequence.

The firm’s constrained market behavior then is defined as

S̃f (q) ≡ {(y, x)|(y, x) = (yo, xo)−(y′, x′), where (y′, x′) maximizes vf(q, y′, x′)
subject to (y′, x′) ∈ Ẽf (q) and (yo, xo) ∈ Y f ∩ Bc and (y, x) ∈ M(q)}

Lemma 5.3: Assume P.0 - P.IV and q > 0. Then S̃f(q) is well defined,

non-empty, upper hemi-continuous, and convex-valued for all q ∈ R
N(N−1)
+ .

Proof: Theorem of the Maximum.

5.3 Profits

When (constrained) firm f supplies S̃f(q) to the market, it retains as surplus
π̃f(q) ≡ arg max vf(y, x, q) ∈ Ẽf (q). Under strict concavity of vf , π̃f (q) is
point-valued and well-defined. When (unconstrained) firm f supplies Sf (q) to

the market, it retains as surplus πf(q) ≡ arg max vf(y, x, q) ∈ Ef (q).
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Note that S̃f (q) + π̃f(q) is the set of gross production activity planned

(subject to length constraint) by firm f at prices q. When it is well defined
Sf (q)+πf(q) is the corresponding gross activity plan without length constraint.

Lemma 5.4: Assume P.0 - P.IV and q > 0. Then π̃f(q) is point-valued and

continuous for all q ∈ R
2N(N−1)
+ .

Proof: Continuity and strict concavity of vf , Theorem of the Maximum.

5.4 Inclusion of constrained supply in unconstrained

supply

Lemma 5.5: Let q ∈ R
N(N−1)
+ such that [S̃f(q) + π̃f(q)] ⊆ Ŷ f . Then πf(q)

and Sf (q) are well defined and nonempty. Further πf(q) = π̃f (q) and Sf (q) =
S̃f (q) .

Proof: Recall that Bc strictly includes Ŷ f . Then the result follows from

convexity of Y f and Ŷ f and concavity of vf(y, x, q) .

6 Bounding the Price Space

Though it is logically possible for any q ∈ R
N(N−1)
+ to be the array of bid prices,

this leads to conceptual and mathematical difficulties. A price [q
{i,j}
i ] = 0

leads to p
{i,j}
j ≡ [q

{i,j}
i ]−1 undefined. A price space as large as R

N(N−1)
+ is

unbounded, not compact, and hence lacks the fixed point property. In order
to avoid these difficulties (which are far from the focus of this study) we
will introduce sufficient conditions so that the space of equilibrium prices is

necessarily bounded. Then, without loss of generality, we an confine the price
space to a bounded set.

This calls for a special assumption.

P.V (Backstop Technologies) Let i, j be integers, i 6= j,N ≥ i, j ≥ 1.
(a) Let Υijk ⊂ R2N(N−1),Υijk ≡ {(y, x)|y{n,m}

n = 0, for n,m 6= i;x{n,m}
n =

0, for n,m 6= j; y
{i,j}
i < 0, x

{i,j}
j > 0; k|x{i,j}

j | ≥ |y{i,j}
i |}. For all i, j = 1, 2,

..., N, i 6= j, there is k > 0 and f ∈ F so that Υijk ⊂ Y f and vf(q, y′, x′) =

y
′{i,j}
i + x

′{i,j}
i .
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(b) Let Ψijk ⊂ R2N(N−1),Ψijk ≡ {(y, x)|y{n,m}
n = 0, for n,m 6= i;x{n,m}

n =

0, for n,m 6= j; y
{i,j}
i > 0, x

{i,j}
j < 0, k|y{i,j}

i | ≥ |x{i,j}
j |}. For all i, j = 1, 2,

..., N, i 6= j, there is k > 0 and f ∈ F so that Ψijk ⊂ Y f and vf(q, y′, x′) =

y
′{i,j}
j + x

′{i,j}
j .

P.V says that there is a backup technology for transforming every good

purchased wholesale into every good sold retail. Similarly there is a backup
technology for transforming any good acquired retail into any good delivered
wholesale. The backup technology may be terribly inefficient — using a con-
version ratio of k, where k may be very large (or very small) and positive.

Nevertheless, under P.V, it follows from simple arbitrage (and strict mono-

tonicity of vf) that equilibrium prices [q
{i,j}
j ] are bounded above and below by

k and (1/k). Then take the maximum, K, of the values k and 1/k in P.V(a)
and P.V(b). The price space can then be confined to the rectangular prism

Q⊂ RN(N−1), Q ≡ {q ∈ RN(N−1)|K ≥ q
{i,j}
i ≥ (1/K)}

Q is a compact convex subset of R
N(N−1)
+ . This is the price space where we

can confine the search for an equilibrium price vector, under assumption P.V.

An assumption on the household side, C.II, corresponding to P.V, is intro-
duced below, to assure that Q is the largest price space we need.

7 Households

There is a finite set of households, H with typical element h.

7.1 Endowment and Consumption Set

h ∈ H has a possible consumption set, taken for simplicity to be the nonneg-
ative quadrant of RN , RN

+ . h ∈ H is endowed with rh >> 0 assumed to be
strictly positive to avoid boundary problems. h ∈ H has a share αhf ≥ 0 of

firm f , so that
∑

h∈H αhf = 1.

7.2 Trades and Payment Constraint

h ∈ H chooses (yh, xh) ∈ R2N(N−1) subject to the following restrictions. A

household always balances its budget, sells wholesale and buys retail:
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(i) 0 ≥ x
h{i,j}
i for all i, j.

(ii) y
h{i,j}
i ≥ 0 for all i, j.

(iii) (yh, xh) ∈ M(q)

7.3 Maximand and Demand

Household h’s share of profits from firm f , αhf πf(q), is part of h’s endowment
and enters directly into consumption. When the profits of all firms πf (q) are
well defined h’s consumption of good i is

(iv) ch
i ≡ rh

i + [
∑

f∈F αhf πf(q)]i +
∑N

j=1 x
h{i,j}
i +

∑N
j=1 y

h{i,j}
i

However, prices q may be such that πf(q) is not well defined for some f .
Then we may wish to discuss the constrained version of (iv),

(iv′) ch
i ≡ rh

i + [
∑

f∈F αhf π̃f (q)]i +
∑N

j=1 x
h{i,j}
i +

∑N
j=1 y

h{i,j}
i

In addition, h’s consumption must be nonnegative.

(v) ch ≥ 0. The inequality applies co-ordinatewise.
C.I For all h ∈ H, h’s maximand is the continuous, concave, real-valued,

strictly monotone, utility function uh(ch).
C.II For all h ∈ H, whenever ch

i and ch
j are > 0, MRSij is well defined

(either as a point value or a range in R+) and K > MRSij > (1/K) .
Assumption C.II says that indifference curves do not become very steep

or very flat. Hence extremely high price ratios result in zero household net
purchase transactions for the high-price good. Since the bounding parameter,

K, is the same one that characterizes bounds on the technology side, the same
bounded price space, Q, will fully encompass relevant prices.

h’s demand/supply function is defined as Dh:Q→ R2N(N−1).

Dh(q) ≡ {(yh, xh) ∈ R2N(N−1)|(yh, xh) maximizes uh(ch), subject to (i),
(ii), (iii), (iv) and (v) } . However, Dh(q) may not be well defined for q
such that πf(q) is not well defined for some f . To treat this issue, we define
D̃h:Q→ R2N(N−1).

D̃h(q) ≡ {(yh, xh) ∈ R2N(N−1)|(yh, xh) maximizes uh(ch), subject to (i),
(ii), (iii), (iv′) and (v) } .

Lemma 7.1: Assume P.0 - P.IV, C.I, C.II. Then D̃h(q) is nonempty, upper
hemi-continuous and convex-valued, for all q ∈ Q. The range of D̃h(q) is

compact. For q such that π̃f(q) = πf(q) for all f ∈ F , D̃h(q) = Dh(q) .
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8 Excess Demand

Let q ∈ Q. Constrained excess demand at q is defined as
Z̃(q) ≡ ∑

f∈F{y + x|(y, x) ∈ S̃f (q)}+
∑

h∈H{y + x|(y, x) ∈ D̃h(q)} .

Lemma 8.1: Assume P.0 - P.IV, C.I and C.II. Z̃ : Q → RN(N−1). The
range of Z̃ is bounded. Z̃ is upper hemi-continuous and convex-valued for all
q ∈ Q.

Let Ξ denote a closed convex subset of RN(N−1) including the range of Z̃.

9 Equilibrium

Define ρ : Ξ × Q → Q
ρ(z, q) ≡ {qo ∈ Q | q

o{i,j}
i = med[K, q

{i,j}
i + z

{i,j}
i , 1/K]} where ”med”

denotes median .
Lemma 9.1: ρ is upper hemi-continuous and convex-valued for all (z, q) ∈

Ξ ×Q.
Define Γ : Q × Ξ → Q × Ξ

Γ(q, z) ≡ ρ(z, q)× Z̃(q)
Lemma 9.2: Assume P.0 - P.IV, C.I and C.II. Then Γ is upper hemi-

continuous and convex-valued on Q × Ξ . Γ has a fixed point (q∗, z∗) and
0 = z∗ .

Proof: Upper hemicontinuity and convexity are established in lemmas 8.1
and 9.1. Existence of the fixed point (q∗, z∗) then follows from the Kakutani
fixed point theorem. To demonstrate that z∗ = 0 use a proof by contradiction.
Suppose not. Then z

∗{i,j}
i > 0 for some i, j. Then q

∗{i,j}
i = K. By P.V and

C.II it follows that z
∗{i,j}
i < 0, a contradiction. QED

Definition: q∗ ∈ Q is said to be an equilibrium if
0 ∈ ∑

f∈F{y + x|(y, x) ∈ Sf(q∗)} +
∑

h∈H{y + x|(y, x) ∈ Dh(q∗)}.
Theorem 9.1: Assume P.0 - P.V, C.I and C.II. Then there is an equilib-

rium q∗ ∈ Q.
Proof: Lemmas 5.5, 7.1, 9.2.
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10 Media of Exchange

Firms perform a market-making function, both buying and selling the same
good in x and y co-ordinates. Hence distinguishing between firms’ medium

of exchange transactions and directly productive transactions is problematic.
However, the situation is simpler for households. Let (yh, xh) ∈ Dh(q) be
household h’s 2N(N − 1)-dimensional transaction vector. The x co-ordinates
are typically sales (negative sign) at bid prices; the y co-ordinates are typically

purchases (positive sign) at ask prices. Then we can characterize h’s gross
transactions in good i as∑

j y
h{i,j}
i − ∑

j x
h{i,j}
i ≡ γh

i .
Further, the absolute value of h’s net transactions in good i, is

|∑j y
h{i,j}
i +

∑
j x

h{i,j}
i | ≡ νh

i .
The N -dimensional vector γh with typical element γh

i is h’s gross trade.
The N -dimensional vector νh with typical element νh

i is h’s net trade vector
(in absolute value). µh ≡ γh − νh is h’s flow of goods as media of exchange.

The total flow of media of exchange among households is then
∑

h∈H µh

Thus the trading post equilibrium establishes a well-defined household de-
mand for media of exchange as an outcome of the market equilibrium. Media

of exchange (commodity monies) are characterized as goods flows acting as the
carrier of value between transactions (not fulfilling final demands or delivering
excess supplies themselves), the difference between gross and net trades.
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