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Photorespiration	and	nitrate	assimilation:	a	
major	intersection	between	plant	carbon	

and	nitrogen	

Abstract	
C3 carbon fixation has a bad reputation, primarily because it is associated with photorespiration, a 
biochemical pathway thought to waste a substantial amount of the carbohydrate produced in a plant. This 
review presents evidence collected over nearly a century that (1) Rubisco when associated with Mn2+ 
generates additional reductant during photorespiration, (2) this reductant participates in the assimilation of 
nitrate into protein, and (3) this nitrate assimilation facilitates the use of a nitrogen source that other 
organisms tend to avoid. This phenomenon explains the continued dominance of C3 plants during the past 23 
million years of low CO2 atmospheres as well as the decline in plant protein concentrations as atmospheric 
CO2 rises. 
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Premise	
Plants, by most accounts, convert less than 6% of the incoming solar energy into useable chemical 
energy (Hall et al. 1999; Zhu et al. 2008). Efforts to improve this conversion rate have focused on the light-
independent reactions of photosynthesis (e.g., Parry et al. 2013; Studer et al. 2014; Whitney et al. 2011; Zhu et 
al. 2010). “The light reactions are highly efficient, converting as much as 40% – 50% of the captured solar 
energy into energy carriers. The dark reactions are not developed for energy efficiency and it is here the 
energy is…lost” (Swedish Energy Agency 2003). In particular, Rubisco (ribulose-1,5-bisphosphate 
carboxylase/oxygenase; EC 4.1.1.39), the enzyme which catalyzes the first reaction of the C3 pathway and 
constitutes about half of the protein in leaves (Parry et al. 2003), has been identified as a target of opportunity. 

Competing	Reactions	
Rubisco exhibits opposing tendencies in that it catalyzes two different chemical reactions: one reaction 
combines a five-carbon sugar RuBP (ribulose-1,5-bisphosphate) with CO2 (carboxylation), and the other 
reaction combines this same sugar with O2 (oxygenation). 

 The carboxylation reaction of RuBP produces a six-carbon compound that quickly divides into two 
molecules of a three-carbon compound, PGA (3-phosphoglycerate), hence the name C3 carbon fixation. Six 
of these PGA molecules pass through an elaborate pathway that expends the energy of 18 ATP and 12 
NADPH molecules, forms one molecule of fructose-6-phosphate, a six-carbon sugar, and regenerates six 
molecules of RuBP. 

 The oxygenation reaction splits the RuBP into one molecule of a three-carbon PGA and one molecule of a 
two-carbon PG (2-phosphoglycolate), hence the name C2 pathway or, more commonly, 
photorespiration (Foyer et al. 2009). In total, photorespiration consumes 3.5 ATP and 2 NADPH per RuBP 
oxygenated and regenerated, but does not result in any net production of sugar (Bauwe et al. 2010; 
Tolbert 1994). Thus photorespiration seems to be largely a superfluous process, one thought to dissipate 
76.3 kcal mol–1 as waste heat (Frank et al. 2000). 

The balance between C3 carbon fixation and photorespiration depends on the relative amounts of CO2 and 
O2 entering the active site of Rubisco and the specificity of the enzyme for each gas. Atmospheric 
concentrations of CO2 and O2 are currently 0.04% and 20.94%, respectively, yielding a CO2:O2 ratio of 0.0019. 
Gaseous CO2, however, is much more soluble in water than O2, and so the CO2:O2 ratio near the chloroplast, 
the part of a cell where these reactions occur, is about 0.026 at 25°C. Rubisco has about a 50-fold 
(cyanobacteria) to 100-fold (higher plants) greater specificity for CO2 than O2 (Galmes et al. 2005). Together, 
because of the relative concentrations of and specificity for CO2 over O2, Rubisco catalyzes about two to three 
cycles of C3 carbon fixation for every cycle of photorespiration under current atmospheres (Sharkey 1988). 
Conditions that inhibit photorespiration—namely, high CO2, or low O2 atmospheric concentrations—stimulate 
carbon fixation in the short term by about 35%. 

Temperature influences the balance between C3 carbon fixation and photorespiration in two ways. First, as 
temperature rises, the solubility of CO2 in water decreases more than the solubility of O2, resulting in a lower 
CO2:O2 ratio. Second, the enzymatic properties of Rubisco shift with increasing temperature, stimulating the 
reaction with O2 to a greater degree than the one with CO2. Warmer temperatures, therefore, favor 
photorespiration over C3 carbon fixation, and photosynthetic conversion of absorbed light into sugars 
becomes less efficient (Ehleringer et al. 1997). Based on the temperature response of Rubisco carboxylation 
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and oxygenation, C4 plants should be more competitive in regions where the mean monthly air temperature 
exceeds 22°C (Collatz et al. 1998). 

Overall, Rubisco seems a vestige of the high CO2 and low O2 atmospheres under which plants first 
evolved (Wingler et al. 2000). To compensate for the shortcomings of Rubisco, some plants employ CO2 
pumping mechanisms such as C4 carbon fixation that elevate CO2 concentrations at the active site of the 
enzyme. The C4 pathway is one of the most convergent evolutionary adaptations in life with at least 66 
independent origins (Sage et al. 2012). Extensive efforts are underway to emulate Mother Nature and transfer 
the C4 pathway into rice and other C3 crops (von Caemmerer et al. 2012). 

Several observations, however, are inconsistent with the presumption that Rubisco is poorly suited to 
modern times. 

 Earth’s atmosphere has contained relatively low CO2 concentrations (lower than 0.04%) for the past 23 
million years (Figure 1). During this period, the plant kingdom experienced major changes including the 
diversification of modern graminoids, especially grasses and sedges, and the appearance of many new C4 
species, especially when CO2 concentrations fell below 0.02%, (Sage et al. 2012). In a relatively short 
period of time (6 or 7 million years) (Osborne and Beerling 2006), the kinetics of Rubisco diverged 
between C3 and C4 plants (Studer et al. 2014). Rubisco in C4 plants operates under elevated CO2 
conditions, and so the C4 enzyme has traded a lower specificity for CO2 relative to O2 (Sc/o) for a higher 
catalytic efficiency (kcat

c)  (Galmes et al. 2005; Sage 2002). Surprisingly, the kinetic properties of Rubisco do 
not differ greatly among higher C3 plants (Kane et al. 1994; Tcherkez et al. 2006). Thus, the kinetic 
properties of Rubisco were able to change when a species adopted the C4 pathway, but such changes 
were not warranted in C3 plants because Rubisco may already be “nearly perfectly optimized” for C3 
carbon fixation (Tcherkez et al. 2006). 

 Despite 23 million years of low atmospheric CO2 concentrations, 96% of plant species depend solely on 
the C3 carbon fixation pathway (Sage et al. 1999). C3 species account for over 94% of the Earth’s 
biomass (Still et al. 2003). Species using other carbon fixation pathways are dominant only in hot and dry 
environments. 

 The response of C3 species to elevated CO2 atmospheres is highly variable and often depends on plant N 
status (Cavagnaro et al. 2011; Duval et al. 2012; Finzi et al. 2007; Norby et al. 2010; Reich et al. 2006). 
Initially, elevated CO2 stimulates biomass accumulation by about 35% (Figure 2). This stimulation, 
however, tends to abate upon longer exposures in conjunction with a decline in plant protein 
concentrations (Cotrufo et al. 1998; Long et al. 2004). 

Explanations for the decline in plant protein concentrations at elevated CO2 include: (a) plants under elevated 
CO2 grow larger, diluting the protein within their tissues (Ellsworth et al. 2004; Taub and Wang 2008); (b) 
carbohydrates accumulate within leaves, down-regulating the amount of the most prevalent protein 
Rubisco (Long et al. 2004); (c) carbon enrichment of the rhizosphere leads to progressively greater limitations 
in the soil N available to plants (Reich et al. 2006); and (d) elevated CO2 directly inhibits plant N metabolism, 
especially the assimilation of NO3

– into proteins in shoots of C3 plants (Bloom et al. 2012b). Recently, several 
independent meta-analyses conclude that this last explanation is the one most consistent with observations 
from hundreds of studies (Cheng et al. 2012; Myers et al. 2014; Pleijel and Uddling 2012). 
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CO2	inhibits	NO3–	Assimilation	
Many independent methods for estimating NO3

– assimilation confirm that elevated CO2 inhibits shoot NO3
– 

assimilation in C3 plants. These methods include: 

1. 15N-labeling. Plants grown on NO3
– containing N isotopes at natural abundance levels (≈ 0.366% 15N) 

were exposed to a pulse of NO3
– that was heavily enriched in 15N. The difference between the 15N 

enrichment of total N and that of free NO3
– provided an estimate of 15N-NO3

– assimilation, which 
decreased under CO2 enrichment (Bloom et al. 2010). 

2. 14N-labeling. Plants grown on 99.9% enriched 15N-NO3
– were exposed to a pulse of NO3

– containing N 
isotopes at natural abundance levels (≈ 0.366% 15N); the difference between the 14N enrichment of total N 
and that of free NO3

– provided an estimate of 14N-NO3
– assimilation, which decreased under CO2 

enrichment (Bloom et al. 2010). 

3. Organic N accumulation. Accumulation of organic N was followed in plants receiving NO3
– as a sole N 

source, and this accumulation decreased under CO2 enrichment (Aranjuelo et al. 2013; Bloom et al. 2010; 
Lekshmy et al. 2013; Pleijel and Uddling 2012; Rachmilevitch et al. 2004). 

4. NO3

– depletion from a medium. The decline of NO3
– concentrations in a nutrient solution was 

monitored to calculate net plant NO3
– absorption. The difference between this NO3

– absorption and the 
accumulation of free NO3

– within plant tissues estimated plant NO3
– assimilation, which decreased under 

CO2 enrichment (Bloom et al. 2010; Rachmilevitch et al. 2004). 

5. Plant growth. C3 species received either NO3
– or NH4

+ as their sole N source. CO2 enrichment decreased 
growth of plants receiving NO3

– (Figure 3) but increased growth of those receiving NH4
+ (Bloom et al. 

2012b; Bloom et al. 2002; Carlisle et al. 2012). 

Fig. 1  A reconstruction of atmospheric CO2 
concentrations based on boron isotope ratios of ancient 
planktonic foraminifer shells. (Data from Pearson and 
Palmer 2000) 

Fig. 2  Differences in biomass between elevated ( 567 ppm) 

and ambient ( 365 ppm) atmospheric CO2 after years of 
treatment. Shown are the data from seven different studies 
using the designated types of plants. (Data from Dukes et al. 
2005; Kimball et al. 2007; Korner 2006; Norby et al. 2010; 
Rasse et al. 2005; Talhelm et al. 2014). 
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6. Isotopic discrimination by NO3

– reductase. Plants were grown under NO3
– containing N isotopes at 

natural abundance levels (≈ 0.366% 15N). Under CO2 enrichment, plant tissues became less enriched in 
15N-organic N compounds presumably because (a) CO2 inhibited shoot NO3

– assimilation, (b) NO3
– 

availability became less limiting to assimilation, (c) NO3
– reductase discriminated more against 15N-NO3

–, 
and (d) shoots assimilated relatively less 15N-NO3

– (Bloom et al. 2010; Bloom et al. 2014). 

7. ∆AQ. Assimilatory quotient (AQ), the ratio of net CO2 consumption to net O2 evolution from shoots was 
measured in a plant receiving NH4

+ or NO3
– as its sole N source (Figure 4); AQ decreased as NO3

– 
assimilation increased because additional electrons generated from the light-dependent reactions of 
photosynthesis were transferred first to NO3

– and then to NO2
–. This stimulated net O2 evolution, but had 

 
Fig. 3  Relative growth rate in g g-1 d-1 of (a) loblolly pine Pinus taeda and (b) sweet gum Liquidambar styraciflua 
receiving NO3

– nutrition in controlled environment chambers at subambient CO2 (310 µmol mol-1, the level of about 50 
years ago), ambient CO2 (400 µmol mol-1, current level), or elevated CO2 (720 µmol mol–1, the level anticipated in about 
50 years). CO2 concentration had no significant effect on the growth of plants receiving NH4

+ nutrition (data not shown). 
Time is in days after transplanting to a hydroponic solution. Shown are the predicted values and standard errors from 
mixed linear models with repeated measures on 6 to 10 individual plants. (Bloom et al. 2012b) 

Fig. 4  Shoot AQ (net CO2 consumed/net O2 evolved) as a 
function of internal CO2 concentrations (Ci) for the 9 C3 
species in Figure 4 when they received NH4

+ or NO3
– as a 

sole N source (mean ± SE; solid ± shaded area).  (Bloom, 
unpublished data) 

Fig. 5  Shoot NO3
–
 assimilation as a function of shoot 

internal CO2 concentration (Ci) for 9 C3 species. Shoot 
NO3

–
 assimilation is assessed by ∆AQ (change in the ratio 

of shoot CO2 consumption to O2 evolution with a shift from 
NO3

–
 to NH4

+ nutrition). (Bloom et al. 2012b; Searles and 
Bloom 2003) 
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little effect on CO2 consumption; therefore, the change in AQ when a plant received NH4
+ instead of NO3

– 
(∆AQ) provided an estimate of shoot NO3

– assimilation (Bloom et al. 1989; Bloom et al. 2002; Cen et al. 
2001; Cramer and Myers 1948; Rachmilevitch et al. 2004; Van Niel et al. 1953; Warburg and Negelein 
1920). In nine taxonomically diverse C3 species, ∆AQ decreased as shoot internal CO2 increased (Figure 
5). 

8. O2 consumption. Shoot O2 consumption in the light was estimated from the difference between gross O2 
evolution via chlorophyll fluorescence and net O2 evolution via an O2 analyzer (Figure 6). At ambient 
CO2, O2 consumption was lower when wheat plants received NO3

– rather than NH4
+ because NO3

– and 
NO2

– were serving as electron acceptors. At elevated CO2, O2 consumption was not significantly different 
under the two N sources presumably because NO3

– assimilation was negligible. 

9. Altered NO3

– reductase capacity. Shoot CO2 and O2 fluxes at ambient and elevated CO2 were contrasted 
between stages of plant development or genotypes that have greatly different NO3

– reductase activities 
in situ. In particular, we contrasted 36- vs. 48-d old wild-type Arabidopsis, Arabidopsis NO3

– reductase 
knockout mutants vs. transgenic Arabidopsis overexpressing NO3

– reductase (Figure 7), and NO3
– 

reductase-deficient barley mutants vs. wild-type barley. ∆AQ (change in the ratio of net CO2 
consumption to net O2 evolution when a plant received NH4

+ instead of NO3
–) differed between these 

stages of development and genotypes under ambient CO2, but not under elevated CO2 (Figure 8).This 
indicates that none of the stages of development or genotypes were assimilating NO3

– under elevated 
CO2 (Bloom et al. 1989; Rachmilevitch et al. 2004). 

Fig. 6  Shoot O2 consumption in the light (gross O2 – net 
O2) as a function of Ci for wheat receiving NH4

+ or NO3
– as 

a sole N source. Shown are the means ± SE for 5–7 
replicates per treatment.(Cousins and Bloom 2004) 

Fig. 7  NO3
– reductase activity (µmol of NO2

– generated per 
g fresh mass per min) as a function of plant age (d) in 
leaves of a wild-type A. thaliana cv. Columbia (WT), a 
transgenic line harboring the chimeric gene 
Lhch1*3::Nia1*2 (OE), and a genotype (nia1 nia2) with 
mutations in both structural genes for NO3

– reductase 
(Mut). Because NO3

– reductase is regulated through 
phosphorylation, leaf tissue was assayed under conditions 
that either dephosphorylated the enzyme (fully activated) or 
did not change its phosphorylation (in vivo). Shown are the 
mean ± SE (n = 5–8 plants). (Rachmilevitch et al. 2004) 
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10. NO3

– reductase activity. Maximum in vitro NO3
– reductase activity generally declined under CO2 

enrichment (Lekshmy et al. 2013; Matt et al. 2001). Presumably, this reflected slower NO3
– assimilation 

under CO2 enrichment. 

Physiological	Mechanisms	
Three physiological mechanisms may be responsible for CO2 inhibition of shoot NO3

– assimilation (Bloom et 
al. 2010). 

 One mechanism is that elevated CO2 inhibits nitrite (NO2
–) transport into chloroplasts (Figure 9). A 

chloroplast NO2
– transporter from higher plants has only recently been identified (Maeda et al. 2014), and 

so the nature of this inhibition has yet to be determined. Nevertheless, this mechanism can be 
independent of photosynthesis and, thus, is probably responsible for CO2 inhibition of shoot NO3

– 
assimilation in Arabidopsis and wheat during the nighttime (Rubio-Asensio, Rachmilevitch, and Bloom, 
unpublished data). 

Fig. 8  Changes in assimilatory quotient with the shift from NO3
– to NH4

+ (AQ) as a function of photosynthetic PFD 

(photon flux density) from shoots of A. thaliana cv. Columbia. (A) 36-day-old wild-type plants, (B) 48-d-old wild-type plants 
(C), genotype with null mutations, and (D) overexpressing line. The plants were grown under ambient CO2 (360 µmol mol–
1) and measured under ambient CO2 and O2 (360 µmol mol–1 CO2 and 21% O2; circles), elevated CO2 (720 µmol mol–1 
CO2 and 21% O2; triangles), or low O2 (360 µmol mol–1 CO2 and 2% O2; squares). Shown are the mean ± SE, n = 5 – 8 
plants. (Rachmilevitch et al. 2004) 

Fig. 9  Net NO2
– uptake (µmol mg–1 chlorophyll min–1) by 

isolated chloroplasts as a function of NO2
– concentration 

when the medium contained 0 (light symbols) or 0.3 (dark 
symbols) µM HCO3

–. Shown are the mean ± SE (n = 3) for 
wheat (circles) and pea (inverted triangles). (Bloom et al. 
2002) 

 
 

0 4002000 4002000 4002000 400

PFD (µmol m-2 s-1)

∆
A

Q

-0.2

0.0

0.2

200

A. Young B. Old C. Mutant D. Overexpressor

360 µmol mol -1 CO2, 21% O2

720 µmol mol -1 CO2, 21% O2

360 µmol mol -1 CO2, 21% O2

720 µmol mol -1 CO2, 21% O2

360 µmol mol -1 CO2,  2% O2

360 µmol mol -1 CO2, 21% O2

720 µmol mol -1 CO2, 21% O2

360 µmol mol -1 CO2, 21% O2

720 µmol mol -1 CO2, 21% O2

360 µmol mol -1 CO2,  2% O2

NO
2
– concentration (µM)

100 150 200 250
0

4

8

Chloroplast NO
2
– absorption

Wheat: 0 µM HCO
3
–

Wheat: 300 µM HCO
3
–

Pea: 0 µM HCO
3
–

Pea: 300 µM HCO
3
–

N
e

t 
N

O
2–  

u
p

ta
ke

 (
µ

m
o

l m
g–1

 C
h

l m
in

–1
)



Bloom  PR & NA 8 

 Another mechanism is that processes in the chloroplast stroma compete for reduced ferredoxin (Fdr). 
FNR (ferredoxin-NADP reductase) has a higher affinity for Fdr than NiR (nitrite reductase) (Knaff 1996), 
and so NO3

– assimilation proceeds only if the availability of Fdr exceeds that needed for NADPH 
formation (Backhausen et al. 2000; Robinson 1987). For most plants, this occurs when CO2 availability 
limits C3 carbon fixation (Bloom et al. 2010). 

 A third mechanism involves photorespiration. Multiple lines of evidence link photorespiration with 
shoot NO3

– assimilation in C3 plants. (a) Photorespiration stimulates the export of malate from 
chloroplasts (Backhausen et al. 1998; Taniguchi and Miyake 2012; Voss et al. 2013); this malate in the 
cytoplasm generates NADH (Igamberdiev et al. 2001; Taniguchi and Miyake 2012) that powers the first 
step of NO3

– assimilation, the reduction of NO3
– to NO2

– (Quesada et al. 2000; Rathnam 1978; Robinson 
1987). (b) Conditions that decrease photorespiration—namely, elevated CO2 and low O2—decrease shoot 
NO3

– reduction (Bloom et al. 2010; Rachmilevitch et al. 2004). (c) Mutants that alter malate transport or 
metabolism also alter both photorespiration and NO3

– assimilation (Dutilleul et al. 2005; Schneidereit et al. 
2006). 

The first carboxylation reaction in the C4 carbon fixation pathway, by contrast, generates ample amounts of 
malate and NADH in the cytoplasm of mesophyll cells. This explains the CO2 independence of shoot NO3

– 
assimilation in C4 plants (Bloom et al. 2010; Bloom et al. 2012b). 

The	Rubisco	Complex	
Information about the biochemistry of RuBP oxygenation is limited. The stroma of the chloroplast contains 
similar amounts of Mg2+ (2 mM, Ishijima et al. 2003) and Mn2+ (2 mM, Burnell 1988; Robinson and Gibbs 1982). 
Rubisco may form a complex with either Mg2+ or Mn2+ (Pierce and Reddy 1986) , but the affinity of Rubisco for 
Mn2+ is more than five time greater than that for Mg2+ (Christeller 1981). The stoichiometry of CO2 trapping 
(Miziorko and Sealy 1980) and 31P and 13C NMR measurements (Pierce and Reddy 1986) indicate that Mn2+ 
and Mg2+ share a common binding site in the large subunit of Rubisco. Nearly all of the biochemistry of 
Rubisco has been conducted in the presence of Mg2+ and in the absence of Mn2+ because Rubisco when 
associated with Mn2+ strongly favors RuBP oxygenation, whereas Rubisco when associated with Mg2+ favors 
RuBP carboxylation (Chen and Spreitzer 1992; Christeller and Laing 1979; Houtz et al. 1988; Jordan and 
Ogren 1981; Raghavendra et al. 1981; Wildner and Henkel 1979). 

Mg2+ has a pair of electrons in its outer shell, whereas Mn2+ has up to five unpaired electrons and thus 
participates more readily in redox reactions. In specific, Mn2+ participates in the catalytic process of RuBP 
oxygenation (Miziorko and Sealy 1984) during which it becomes excited and transfers an electron with every 
turnover (Lilley et al. 2003). One possibility is that Mn2+ transfers electrons to NADP+ (Figure 11). The 
resultant NADPH activates Rubisco (Laing and Christeller 1976) and then converts OAA to malate for export 
to the cytoplasm. This malate in the cytoplasm generates NADH to convert NO3

– to NO2
–. 

Several additional observations are consistent with this hypothesis. RuBP oxygenation releases 76.3 kcal 
mol–1 (Frank et al. 2000), substantially more than the 52 kcal mol–1 required to reduce NADP+ to NADPH (Taiz 
and Zeiger 2010). NADPH complexes strongly with Rubisco and activates the enzyme, but only when CO2 
and Mg2+ are present in suboptimal concentrations (Chollet and Anderson 1976; Chu and Bassham 1974; 
Matsumura et al. 2012; McCurry et al. 1981). NADPH binds to the catalytic site of Rubisco through metal-
coordinated water molecules (Matsumura et al. 2012). 

If Rubisco generates NADPH during RuBP oxygenation, C3 carbon fixation is more efficient than 
previously thought, and both C3 and C4 carbon fixation at moderate temperatures will expend the equivalent 
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of about 11 ATPs per CO2 fixed. Indeed, the quantum yield of photosynthesis in an ambient CO2 and O2 
atmosphere does not differ significantly between C3 and C4 species at temperatures between 25° and 30°C 
(Skillman 2008). Only under hotter and drier conditions does C4 carbon fixation become more efficient than C3 
fixation. Therefore, C3 species continue to dominate in most locations. 

Why	is	photorespiration	still	prevalent?	
Several phenomena are responsible for the persistence of photorespiration through 23 million years of low 
atmospheric CO2 concentrations. 

 Rubisco oxygenation is inseparable from Rubisco carboxylation (Moroney et al. 2013; Tcherkez et al. 
2006). Rubisco catalyzes the carboxylation reaction through stabilizing the formation of the enediol 
conformation of RuBP (Figure 10). This conformation, however, can react with either CO2 or O2. The 
specificity of Rubisco for CO2 over O2 derives from stabilizing the six carbon intermediate before it is 
cleaved to form two molecules of PGA. Consequently, any mutation that increases the specificity of 
Rubisco for CO2 over O2 slows the carboxylation reaction. 

 Photorespiration maintains redox homeostasis within plant cells (Scheibe and Dietz 2012). Photosynthesis 
generates highly reactive compounds as it captures solar energy and converts it into energy-rich, but 
stable compounds such as carbohydrates. Metabolic pathways, especially under stressful conditions, may 
become unbalanced, and dangerous compounds such as reactive oxygen species (ROS) may accumulate 
(Voss et al. 2013). Photorespiration can dissipate many of these potentially dangerous compounds. 

 Photorespiration produces H2O2 in the peroxisome and thus serves as a mechanism for rapidly 
transferring a signal of photosynthesis to the entire plant cell (Foyer et al. 2009). This signal is involved in 
photoperiod detection and pathogen defense as well as responses to abiotic stress. 

 Photorespiration serves as a mechanism for plants to use NO3
– as a nitrogen source without diverting 

energy from CO2 fixation. The following provides details about this phenomenon. 

Fig. 10  One possible scenario for the intermediates formed during RuBP oxygenation (Chen and Spreitzer 1992; Cleland 
et al. 1998; Lilley et al. 2003; Oliva et al. 2001; Tapia and Andrés 1992; Tcherkez et al. 2006) 
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Nitrate	as	a	nitrogen	source	
The element nitrogen is a constituent of many organic compounds including all amino acids and nucleic 
acids. As such, plants require a greater amount of nitrogen than any other mineral element, and its 
availability generally limits the productivity of natural and agricultural ecosystems (Epstein and Bloom 2005). 
Conversions among various nitrogen compounds are among the most energy-intensive reactions in life. 
Consider that plants are generally between 1 and 2% organic nitrogen on a percentage dry weight basis, but 
that the conversion of NO3

– into organic nitrogen expends about 25% of the total energy in shoots (Bloom et 
al. 1989) and roots (Bloom et al. 1992). These processes expend the energy equivalent of 12 ATP per NO3

–

assimilated, whereas most biochemical reactions expend the energy equivalent of one or perhaps two ATP. 

Most organisms prefer higher energy forms of nitrogen such as NH4
+ or amino acids. 

Phytoplankton (Dortch 1990), fungi (Hodge et al. 2010), cyanobacteria (Ohashi et al. 2011), and 

bacteria (Luque‑Almagro et al. 2011) absorb and assimilate NO3
– only in the absence of NH4

+. In many soils, 
microorganisms quickly absorb NH4

+ and either assimilate it into amino acids or nitrify it to NO3
–. NH4

+ also 
becomes adsorbed on the soil cation exchange matrix. Because soil microorganisms often ignore NO3

– and 
because NO3

– as an anion moves relatively freely through the soil, NO3
– is often the predominant form of 

nitrogen available to plants (Epstein and Bloom 2005). 

Nitrogen nutrition, NH4
+ vs. NO3

–, neither influences net CO2 consumption (Figure 11) nor cyclic electron 
flow around photosystem I at low light levels  (Walker et al. 2014). This is consistent with the lack of 
competition for reductant between CO2 fixation and NO3

– assimilation (Robinson 1988) because, as discussed 
previously, FNR has a higher affinity for Fdr than NiR. At high light levels and ambient CO2 and O2 
concentrations, net O2 evolution is faster (Figures 11 and 12) and cyclic electron flow around photosystem I is 
higher (Walker et al. 2014) when plants receive NO3

– rather than NH4
+ as a nitrogen source. Presumably, 

plants use reductant generated from the light dependent reactions rather than mitochondrial respiration to 
assimilate NO3

– when CO2 concentration limits CO2 fixation. 

When factors other than CO2 limit CO2 fixation, plants may delay assimilating the NO3
– that they have 

absorbed. Free NO3
– may comprise as much as 60% of the total nitrogen in a plant (Maynard et al. 1976). This 

NO3
– serves as a metabolically benign osmoticant that balances other ions such as potassium in plant tissues 

and helps to maintain a favorable cellular water status (Bloom et al. 2012a; Burns et al. 2010; Hanson and Hitz 
1983; McIntyre 1997; Veen and Kleinendorst 1986). 

In summary, the linkage between photorespiration and NO3
– assimilation provides higher plants with a 

relatively abundant nitrogen source that other organisms cannot afford to use, but that C3 plants can use with 
little additional cost. Yes, photorespiration may sacrifice 20% to 35% of CO2 fixation, but plants that are 
dependent on NO3

– as a nitrogen source are spared the expense of either devoting 25% of their photosynthate 
to NO3

– assimilation or suffering protein deprivation. Apparently, over the last 23 million years, 96% of higher 
plant species have adapted to this tradeoff. 
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Fig. 11  Response of net CO2 consumption (left panels) and net O2 
evolution (right panels) to photosynthetic photon flux density (PPFD) in 
wheat (upper panels) and tomato (lower panels) leaves when the plants 
received NH4

+ (blue) or NO3
– (red) nutrition and were exposed to an 

atmosphere containing 720 (dark colors) or 360 (light colors) µmol mol–1 
CO2. Shown are the means ± SE for 6 wheat plants and 6 to 9 tomato 
plants per treatment. Notice that in both species, CO2 fluxes do not differ 
with N source, and that O2 fluxes are faster under NO3

– nutrition than 
NH4

+ nutrition, but only at higher light levels and 360 µmol mol–1 
CO2. (Cousins and Bloom 2004; Searles and Bloom 2003) 

Fig. 12  Responses of wheat shoots (mean 
± SE, n = 6) to photosynthetic photon flux 
density (PPFD). (A) Changes in assimilatory 
quotient (AQ = net CO2 consumed / net O2 
evolved) with the shift from NO3

– to NH4
+ as 

a N source. (B) Changes in the gross O2 
consumed (gross O2 evolved minus net O2 
evolved) with the shift from NO3

– to NH4
+ as 

a N source. As light levels increased and 
360 µmol mol–1 CO2 limited carbon fixation, 
exposure to NO3

– stimulated the light 
dependent reactions of photosynthesis to 
split water, evolve oxygen, and transfer 
electrons to NO3

– and NO2
– rather than to 

CO2, and decreased gross O2 
consumption (Cousins and Bloom 2004). 
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