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The transverse electromagnetic coupling of bunches of particles 

with each other 18 investIgated theoretically, and shown to Incorporate 

the pOB8iblllty (due to the effect of nonperfectly conducting vacuum 

chamber walls) of coherent instability even when the longitudinal 

distance between bunches is much larger than the transverse dimensions 

of the vacuum tank. The modes of oscillation In which the bunches 

move rigidly are Investigated; criteria for stability, and expressions 

for the small amplitude growth rates under unstable conditions are 

presented. The case of a single bunch is considered in detail and 

demonstrated to be stable (even In the absence of Landau damping) 

provided V lies between an integer and the next higher half-integer, 

where V is the number of transverse free betatron oscillations 

* 
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occurring in one revolution; for many bunches which are sensibly 

different in intensity (a criterion for this i8 presented), all modes 

are stable provided V satisfies the same restriction. For equally 

spaced bunches of equal numbers of particle8, approximately half the 

modes are unstable vjthout Landau damping. Numerical examples are 

presented covering some intermediate situations. 
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I. INTBODUCTION 

The possible instability of coherent transverse oscillations 

of an azimuthall.y uniform beam of particles circulating in a metallic 

vacuum chamber has been studied by Laslett, Nell, and Sessler 1  (LNS), 

who showed that under certain circumstances the finite resistivity of 

the vacuum walls could causegrowing oscillations. In most accelerators, 

the rf acceleration mechanism generates azimuthal non-uniformity of 

particle density, and consequently the work of LNS is not applicable 

tothe analysis of transverse instabilities of the beam. In this work 

we treat a complementary idealization to that of U1S--namely, a beam 

consisting of a number of bunches which are assumed to have no coherent 

motion of the internal degrees of freedom. 

We have not, in this paper, studied coherent modes within a 

bunch. We expect that in the absence of Landau damping some of these 

modes will be unstable, but we also expect that the synchrotron motion 

will. introduce considerable Landau damping and that- - in practice--these 

modes will not impose a restraint upon beam intensity. 

The physical concepts which form the basis of resistive 

instabilities have been expounded in U4S; there is no need to repeat 

the discussion here. However, the physics for bunches of particles is, 

perhaps, somewhat more transparent than that for a uniform beam, and 

consequently we present it in Section II. Section III contains the body 

of the analysis, culminating in a dispersion relation involving the 
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solution of a set of homogeneous equations. The consequences of the 

dispersion relation are explored in Section IV, first for a single bunch, 

secondly for bunches which have different numbers of particles, thirdly 

for equally spaced bunches of equal numbers, fourthly (numerically) for 

intermediate canes, and finally for unequal. bunch spacings. An 

Appendix is devoted to analysis  of a function--the Bunch Function--

which plays a fundamental role in the theory. 

The reader interested only in results may turn directly to 

Section IV, readers not interested in mathematics but want1n to 

"understand" the phenomena may find Sections II and IV adequate. 

A report on part of this work was presented at the Particle 

Accelerator Conference in March 1965;2  a preliminary report and abstract 

of this work appears in the Summary Report of the SLAC Summer Study on 

InstabilitIes In Stored Particle Beams. 3  

II. PHYSICAL CONSIDERATIONS 

In this section we limit our attention to the case of a single 

bunch having no internal degrees of freedom. The analysis could readily 

be extended to include many bunches, and also to include spreads in 

particle revolution frequency (and hence Landau damping), but the 

resulting analysis would then become more cumbersome than that employed 

in Section III where the completely general problem is considered. 

The simplified problem of this section has already been treated 

In the literature; 415 we repeat the discussion because (i) it in so 

relevant to an appreciation of the contents of this paper, (ii) it is 
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much more transparent than previous discussions (Ref.1) or the analysis 

of Section III, and (iii) it is rather brief. 

The physical basis of the instability Is that In a resistive 

vacuum tank, fields due to a particle decay only very slowly in time 

after the particle has left. The decay can be so slow that when a bunch 

returns after one (or more) revolutions it Is subject to its own residual 

field which--depending upon its phase relative to the wake field--can 

lead to damped or undamped tranverse motion. We need, as a first 

ingredient, the solution to the electromagnetic problem and this has 

5, ,7, been given by a number of authors. 	From Ref. 0 we know that a 

particle of charge Ne passing the point z = 0 at time t = 0 while 

traveling with speed 13c down a straight pipe of circular cross section 

and radius b and oscillating transversely with displacement t exp(+iwt) 

will exert a force on .a particle of charge .e having speed Oc and 

passing the point z at time t given by 

2 	2 	LOZ/C 

F 	
e N 	

e+1 	
, for 	z < Oct 	 (2.1) 

(1?) 	b5Iz - 3ctI 

where 	= it 13 a/c and a is the conductivity of the pipe walls. 

For z > Oct, the force Is negligible in comparison with that of Eq. (2.1). 

We can, with this force, immediately write an equation for the 

transverse displacement y of the bunch, namely: 

2 
7m 	= F+e 	 Y, 	 (2.2) 

dt 2 1 	 ZT1 yO 
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where ym0  is the mass of, and F is the force on, one particle of 

rest mass m0  in the bunch. In Eq. (2.2) we have neglected any local 

fields of a bunch upon itself; these fields are generally less important 

than the wake field and, in any case, of such a sign as to cause damping. 

The last termin Eq. (2.2) is the force due to the external field which 

determines the transverse oscillation frequency v0u 0  of the unperturbed 

•bunch, in terms of which Eq. (2.2) may be written as 

	

d2y 	2 2 	F 
+ V0 Uk Y = 	

(2 3) 

with the particle circulation frequency 	c/R 	The force F must 

be evaluated as a sum over contributions from all previous turns, 

(z = -2nRn), and assuming that y varies harmonically (as it does), 

we see that Eq. (2.3) becomes 

	

d2 	2 2 	
+1w0t 	ep2 e+1%Ot 	 e1''rn 

+ v0 	
() 	b 3  R (n), 

(2.ii) 

where we have replaced w with wo • The sum is conveniently expres8ed 
A 

in terms of a function--the Bunch Function--and by Eq. (A9)  of the 

Appendix, Eq. (2J1) yields 

	

2 	2 	4Ne20 G(2t,V) 
V0  -v 	 2 	

(2.5) 
(n) 2 b3 im0 Rw0  2n 

with solution 
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- 	2 2  Ne 	G2i,v 	
2 T ' 	 ( 2.6) 

b Tho 	o V0 

where the positive sign is required to be consistent with the force 

assumed in Eq. (2.1). Instability occurs for Im V < 0 and thus is 

confined to those regions In which Tm G(2,c,V) > 0.. It is shown in 

the Appendix (discussion following Eq. (A5))  that Im G(2n,V) > 0 

when I - < V < I where I is any Integer. (This result is 

consistent with that derived with only the first term In G ; i.e., the 

residual field from only the last revolution. 

The physical basis of the Instability Is thus clear; more 

bunches will simply cause mathematical complications, whereas allowing 

frequency spread of the particles in the bunch will give possible 

stability from Landau damping in the range of Instability disclosed 

by the present analysis. In the absence of Landau damping, Eq. (2.6) 

gives a growth time r , for I - < V < I 

/ it 7 V 	f b3 	( 
itafl 	 1 	

(27) 
N 	Rr0c 	\ Ic 	urn G(21r,v0 )I 

\ 
where r0  e 

2 	2 
/m0c is the classical particle radius. 

III. DERIVATION OF THE DISPERSION RELATION 

We proceed directly, now, to the analysis of the general M-bunch 

problem, inc1udIng the dispersion of particle frequencies and hence 

Landau damping. We first consider the electromagnetic problem, then 

particle dynamics. 



UC}L- 16751 

A. Fields 

• 	 We obtain the requisite field expressions by employing the 

• results of LNS, whose treatment is confined to a continuous beam, of 

azimuthally constant density and dimensions, oscillating coherently 

in such a mode that its transverse electric dipole moment per unit 

• length Is of the form 

p(e,t) 	f y p(r,e,z,t)dr dz = 	
n e19t) 	

(, ) 

where p is the charge density of the beam per unit volume. We employ 

• cylindrical coordinates r, 9, z ; y is the direction of transverse 

oscillations, and we have ignored effects associated with the major 

• 

	

	radius of the beam. From IRS Eq. (2.25), the average force per unit charge 

acting on the beam is 

() 

= P[u + 	
)1/2 ] 

ei0)t) , 	 (3.2) 

where U and W depend on the geometry of the beam and the vacuum 

• 

	

	èháinber. • For a circular beam (radius a) in a circular vacuum chamber 

(radius b) they obtain, approximately, 

u 2 	 l"\ 
- 	2 t a2  b2) 

\ 	 (3.3) 

2 	-1/2 	 ,• 

w 	C3 (J) 
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• 	 where a is the conductivity of the wall material, expressed in 

• Gaussian units (dimension T) and Oc is the velocity of the 

particles in the beam. The expressions of Eq. (3.3) are vafldif 

a >> w a >> c2/d2W (d = thickness of vacuum chamber wall >> skin 

• depth), H/n >> b (wave length of oscillation >> transverse dimension 

of chamber). For other geometries the expressions for U and W are 

different, but subject to the above conditions, they still possess the 

following characteristics: (a) U and W are independent of w and 

of the. mode number n ; (b) U contains the factor 1/72 , w does not; 

	

• S 	 (c) U is sensitive to the beam dimensions, W is not; (d) W is 

-1/2 
proportional to a 	. 

The resistive (W) term in Eq,(3.2)  arises from the skin 

effect in the chamber wall. The derivation of this effect shows that 

the sign of the square root misttedsen, regardless of the sign of w 

, /2 	_ _ pa__ in such a way that (ifa) 	hasa positive real rt, corresponding 

to an attenuated wave in the metal. 

For a non-uniform beam with arbitrary time dependence, we may 

write P(e,t) as a periodic function of 9 and a Fourier integral 

in t: 	 S  

p(e,t) 	100 

Q(9,) e 

	

(3.) 

By Eq. (3.2)  the Fourier transform of F is then 

I 	l/2 	 . 
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Inverting the Fourier transform and noting that U and W are 

independent of w , we obtain 

rt 
F 	 ' 1 	 ' 1 (e,t) = u P(e,t) + W 
	 P' 

' ' 	' 	dt' . 	(. 6) 
e 	 22 J 	(t - 

To find the fields associated with bunches of arbitrary shape, 

we use the somewhat indirect (but transparent) method of first finding 

the field due to a single particle at the position of another single 

particle, and then superimposing the results. Consider, therefOre, a 

• 	single particle--the rth particle--circulating with angular velocity 

coo o  and oscillating transversely with angular frequency v , and 

amplitude 	' (we assume that all particles have the same angular 

velocity w0 ). 

The dipole moment per unit length due to this particle is 

i(Ø +vcn0 t) 
p(e,t) = 	

r e 
	r 	 p(9 - er - 	t) 	(.r) 

where e is the charge of the particle, b is the periodic delta 

function, 0r Is 
the tran8verae phase, and 9r 

 is the aztinuthal 

location of the particle at t = 0 . Substituting Eq. (3.7) In 

Eq. (3.6), we find 

F• 	
W e r 
	

i(Ø + vczt) 

	

(e,t) = U p(e,t) + 
	 e 	r 	G(a,v) , 

0 	 (3.8) 	- 

where a = 0 - 	- cot , and we have introduced .the function G(cx,V). 
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The "Bunch Function" G(a,v) is defined as 

• 	 co 	-lv(a+2itk) 

G(cr,v) 	2i 	\) 	e 	 (3.9) 
(a + 

k=0 

for 0 <a < 2ff , and is defined to be perlodicin cx with period 

2ff for other values of a [equivalent to starting the summation over 

k , in Eq. (3.9), with the smallest integer greater than -a/2n ]. 

The Appendix is devoted to a study of the properties of this function; 

It eontains alternative representations, approximate formulas, numerIcal 

values, and some general theorems which will be employed subsequently. 

B. Particle Dynamics 

From Eq. (3.8) the force per unit charge on a particle moving 

with velocity Oc , due to the oscillation and longitudinal motion of 

the rth particle, Is: 

e 

() = •
U P(o,t) + - 	jç G(cx,v) exp[(Ør + w 0t)I] 

0 	 (3.10) 

where P Is given by Eq. (3.7), and a = 9r + a 0t - 9 • Consider the 

motion of a particle--the sth particle, subject to the force of Eq. (3.10) 

(evaluated at 9 = (o0t + s) as well as the restoring force of the 

external focusing field. Its equation of transverse motion Is 

We2  
m0y(5.Kn 2  V 2  y5 ) 	e U P(e4w0t,t) + 	_! exp[i(Ø+wt)J G(er _ 86,v) 
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We study the normal modes of oscillation of an arbitrary collection of 

particles by assuming they all oscillate coherently, with transverse 

angular frequency W . Thus the motion of the sth particle is 

described by: 

m0 w02(v52  - v2 ) 8 
 exp[IL(Ø + w 0t)j = e U p(e + w0t,t) 

7 .  

2 + 	We 	
r exP[i(Ør + w 0t)] G(e - e,v) 

(3.12) 

where vw0  is the frequency of free oscillation of the sth particle 

To proceed further, we assume that the particles are bunched 

tigbt].y into N bunches, each of length L ,. the rnth having N 

particles. The particles have various amplitudes of oscillation E, 

phases 0 , azimuthal location e , and betatron frequencies v 5w0  

We describe this situation with a distribution function 	, taken of 

the form 	. 

4r(e,g,Ø,v) 	N (fl) D(,Ø) f(v 5 ) 

for e in the range (L/2nF), and zero elsewhere. The functions D 

and f are normalized to unity. The dipole mbment of a bunch, Q , 

is given by 

QM 
= e f $r(e,t,O,v 8 ) t e 0  d t dØ dS  

whereas the dipole moment per unit length p(e,t) %/L . 
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We obtain an equation for % by multiplying Eq. (3.12) by 

e* , dividing by (v 52  - v2 ), and then integrating , 0, @, and V 8  

over the rtth bunch. We also replace the-summation.over r by 

summation over bunches and integration within the bunches: 

• 	
( ) f de, 	 (3.15) 

(particles) 

to obtain 

2 	1 f(v 5 )dv 6 	e2UN% 

0 	J (v 82  - v2) 	L 

-- - 	. 	 L/2,R 

+ \\ (2R 2 	 f f 	d8 d8 c(e - 

(3.16) 

In the summation over m we mu8t treat the nth bunch specially; for all 

other bunches the bunch function may be treated as a constant and removed 

from the integral. Within the nth bunch we use Eqs. (Al2) and (A13) 

toobtain 	 r 

f f(v )dv 	e U N 	We2N

m7 	
= 	(v - 2) 	

+ 	
[ / 	

G(e - e,v) 

	

L/2nR 	
QM 

+ Q 	 dern 	dO 2(e 	exp(_i(f3m en fl 

+ Q G(2it,V)  

.••----_.•___& . ---•.•-------.-- 
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Letting 

2 

f(v 9 )dv 8  

122 
iv 	-v 
, 	 S 

and expanding the exponential in the Integral of Eq. (3.17),  valid for 

vL/2nR << 1 , we obtain 

e2 UN% 	
We2 N = 	 +%G(e_e,v) 

+ % [G(2v) + 

(Higher order terms in vL/2*R can easily be generated, If needed.) 

Finally, we may write Eq. (3.19) In the compact form 

(N U' -  x)Q± + N w' 	 G 	= 0 , 	 (3.20) 

where 

= G(9m - e,v) , 	 ( 3.21) 

= G(2ir,v) - § 	
() 	v i 	 ( 3.22)17  

and 
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= 	e2 W 	, 	
( 3.23) 

2,rw0  

+ 	( 	) 	wt . 

In the next section we shall discuss the solution of Eqs. (3.20); the 

equations are valid for the coherent motion of short bunches. 

IV. CONSEQUENCES OF TIlE DISPEBSION RElATION 

We will, in this section, study the set of homogeneous linear 

equations (Eq. (3.20)] for the dipole moments Q . These equations 

are of the form of a standard elgenvalue problem: The elgenvalue X must 

be determined in such a way that the determinant of the coefficients of 

the Q vanishes. Then, from Eq. (3.18), one solves for V which gives 

imn,ediately--by Eq. (5.7)--thetime  development of the coherent motion. 

Clearly the motion is unstable if the imaginary part of V is negative, 

stable if the imaginary part Is positive. 

The case of bunches with no spread In betatron frequencies, and 

hence no Landau damping, Is simplest to consider. From Eq. (3.18), with 

V0  the common betatron tune, 

2  
V 
2 	

V0 - 	2 
 

m0 7w0  

and hence 

7'. 
V 	V0 - 	 2 

2m07V0c50 
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since V must have the sign of V0  . Thus the motion is unstable if 

and only if ImX > 0 

With Landau damping Included, the motion Is always stable If the 

Im X < 0 ; with Im X > 0 the motion can still be stable, with the 

stability depending upon the Re X and the distribution function f(v 8 ) 

This point is discussed at some length In US, and all the analysis 

given there Is applicable here. The new feature, of this paper, Is the 

expression for X in terms of the properties of the accelerator and 

the nature. of the particle beam. We shall concentrate upon this aspect 

of the problem, treating a number of different cases. 

A. One Bunch 

For one bunch of N particles Eq. (3.20) becomes 

X = NEU' + W' G] . 	. 	 (43) 

InsertingEq. (.3) into Eq. (.l)--correspondingto no Landau damping-- 

	

and using Eqs. (3.22), (3.23), and (3.24) yields: 	. 

-= mo7Nwo2 	
+ 	

[ 	
) + G(2,v) - 	( 	) vi}.

15  

If we drop the terms which are purely real--as they won't affect the 

stability analysis (to lowest order)--and employ Eq. (3.3), we have 

22r 	 L 8
15  V02 

 V 2,
kNe 	[G(,v) - 	

() 
vi 	

, 

b3  , m1 	
2 

V 
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where i 	11 1tt30/c . Compare this result with Eq. (2.5), which was 

derived employing wake fields. It agrees with the simple analysis 

except for the addition of the local-field term [which had its source 

in G(ø,v) for 0 < 0 << 2k). For a short bunch the local field is 

negligible compared to the residual field from previous turns, and the 

analysis of Section II is valid The motion Is stable if and only If V 

lies above an Integer; namely I < v < I + 	, for shy integer I • 

(Derivation of this result and further discussion may be found in 

Section II, following Eq (2 6) ) 

In the more general case, where local fIeldB are Important, one 

can employ Eq. If Landau damping is to be considered also, then 

one must resort to Eqs. (.3) and (5.18). 

It is Interesting to cOnsider the case of a very Large accelerator 

--that is, a particle moving down a long straight resistive pipe. Is 

It stable or unstable with respect to transverse oucil)tlons? To 

study this case, we take the limit of Eq. (4,4) as 	 Introducing 

in place of v , the distance, X , that the particle, travels during 

one transverse oscillation period [duration 	J , we observe that 

V = 	-. co. Consequently the local-field term In Eq. (4.4) dominates9  

G(2n,v) --in agreement with Eq. (A9)  of the Appendix which shows that 

G(2,,v) consists only of contributions from previous turns. The 

remaining term yields Im V > 0 , and hence the motion Is atable. 	We 

may readily pursue the problem furthei and compute the damping rate, 

' which is a factor of exp[-(Im v)v0 ) In each transverse oscillatio,n 
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period. From Eq. (*.l), the damping factor per period, f , is: 

8 	(rX\ 	
/ 

f = exp 	
b3' 	

' 	 (4.5) 

where r0  = e2/m0c2  is the classical particle radius, the bunch of 

length L has N particles and travels down a resistive tube of 

radius b while oscillating with transverse wave length X 	 The
13 

quantity 6?' is a akin depth, and Eq. (I.5)  Is valid for 

B. Many Nonequal Bunches 

If the number of particles, N , in the various bunches are 

unequal, then the set of equations for the Q (Eq. (3.20)) has non-

degenerate eigenvalues in the limit that W' -. 0 • In this case, and 

for small W' , the elgenvalues, X(n) , are given to first order in 

W' only by the diagonal terms of the matrix: 

NEU' + W' 	= 1, 	M 	 (li . 6) 

The M elgenvalues of Eq. (.6) are the same as one would obtain for 

M independent bunchea. Ju8t as for one bunch, for many bunches we are 

assured of stability if Tm X < 0.; that can be accomplished by choosing 

I<v<I+, foranyintegerl 

The result obtained is easily uni lerstood since for bunches of 

unequal number N , the natural frequency of each bunch Is different 

from that of any other bunch. Thus most of the influence of one bunch 
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on another averages out to a large extent (to be precise, it is removed 

from first order), and hence the bunch notion is dominated by the 

Inf1uence of one bunch upon itself. The natural frequencies of the 

bunches are almost equal, however, since the frequency difference is 

due only to the effect of image terms. Quantitatively, the bunches 

will act independentlY when the interbunch contribution to the coherent 

frequency is small compared with the difference in bunch frequency: 

For all in and n , IN n W' Ginn 	n I << (N - N m )Iu'I . Since W'. 

involves the resistivity and U' does not, U' is often much larger 

than W' and this condition Is satisfied with only modest differences 

in the bunch numbers. In the extreme relativistic limit,, however, U' 

vanishes since the electric and maetiC Images tend to cancel. 

Dielectric loading and other similar devices,Cafl be used to keep 

U' >> W', as has been discussed In the literature 	for a smooth 

vacuum tank the cr1terIonfOrifldePendet bunch motion Is, from 

Eqs. (3.2), (3.24)', (3.3), and (A9) (taking a = 

()2 M. 	' 	( 4.7)' 
N , 	 b(R(i) 

where N Is the number of particles In one of the M bunches--each 

of length L --and LN is the required difference in number between 

bunches. More generally, the requirement on 6N for independent 

bunch motion Is: 

±1 , I  

>>.(2N)I-rI 
	 (14.8) 
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In the case of independent bunch motion, and when V is below 

an integer, the motion is unstable except for Landau damping. The 

extensive discussion of TIS may now be applied, with X (n) gIven by 

Eq. (4.6): For Iu'I >> JW'GI the threshold particle intensity 

for an Instability is approximately proportional to U' and almost 

Independent of W' • From Eq. (3.2 4 ) 
it is seen that the threshold 

intensity depends upon the tightness of bunching [IJ' cc L 1  ] , 

whereas from Eq. (3.23) it Is seen that the growth rate (when above :  

threshold) is Independent of the degree of bunching !  

C. Equally Spaced Bunches of Equal Intensity 

In some circumstances--usuallY for beams of extremely 

relativistic particles--the inequalities for Independent bunch motion 

are strongly violated. It Is then possible that a different approximation 

becomes valid; namely, that all the bunches are sensibly equal In 

intensity. The case of equally spaced bunches of equal intensity Is 

one for which the solution of Eq. (3.20) is immediate. 

Taking N 	N, and 9m 	
mft , we observe that Eq. (3.20) 

can be written in the form 

I NU' + NW 'G 	- X 	+ NW 	) 	G 	 ' 	 (' .9)
nn 	

nY1n 

	

where G = G( (m_n),) and 	is Efrom Eq. (3.22)1 independent 

of n i 1elabe11ing the sum, we obtain 
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+ TJ'G 	- 	+ NWI
\) 	

G( 	, = 	0 , 

• 	i1 (14.10) 

• 	in which all the coefficients are independ4?nt of 	n . 	The matrix is 

cyclic and the solution well-known. 	In particular, let 

-2cmi44 
• 	 a 	e 

(m) 
(14.11) 

•be the mth of the 	M 	roots of unity. 	Then clearly an rnth solution of 

the set of equations is 

a() 	, (14.12) 

withassociated elgenvalue: 

(m) 	
1W' + NW'G 	+ NW' 	G (21' 	 , 

nn 
v) a() 	(14.13) 

This may be rr1tten, from Eq 	(3.22), in the form 

-Cmri/M 
NU' - NW' 	( 	) 	vi + NW' 

) 	
G 
(, 	) 

(14.iIi) 

By Eq. (A18) of the Appendix, the 	M 	eigeflvalues are 

MJ 	NW' 	
G (, 	

i) - ( 	) vi + 

(14.i) 
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If we ignore the self-field term then, by Eq. (A5), the 

imaginary part is positive when (v + m)14i lies between an Integer 

and the next lower half-integer, and negative in the other half-

interval. Therefore; If M is even, half the elgenvalues have 

positive and half have negative imaginary parts; if M is odd, one 

more has a positive Imaginary part than a negative one (or vice versa). 

The only case where there Is no elgenvalue with a positive imaginary 

part occurs when there is only one bunch and v lies in the proper 

range. 

The self-field term Is stabilizing, of course, and could improve 

the situation, but it appears unlikely that machine parameters would be 

such as to have this term important. Also, finally, Landau damping can 

make some (or all) of the modes with Im ). > 0 stable. 

D. Numerical Calculations 

A computer program has been prepared which obtains the elgen-

values and elgenvectors of Eqs. (3.20) [with the second term in 

Eq. (3.22) omitted] for given values of the ratio W'/U' and given 

distributions of bunch populations N , and for uniform spacing of the 

bunches. As is expected, it is found that if w',ti << tIIN and 

w',4P >> £i/, respectively, the results behave as described in 

Secs. IV.B and IV.C. 

In the Intermediate case, for .M = 12 bunches and V = 8.85 

(corresponding to the Brookhaven AGS), the real parts of the normalized 
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• 	 eigenvaluee are plotted as functions of w'/ti' in Fig. 1, for the case 

that the re].ative bunch populations vary in steps of 10 from 1.000 to 

0989. The largest value of W'/%i' for which all modes have positive 

imaginary parts Is 1.5.10, which just about corresponds to 

replacing the inequality in Eq. (14.8) with an equality. For w',ti' 

four times as large, or larger, slx.modes have negative imaginary parts, 

as In the limit where all bunchesare equally populated. 

Note that, for W'/tT' greater than the "threshold" value 

(1.5 	10 	in this case), the real part of the highest elgenvalue 

increases rapidly with w',ti' while the lower ones change much less. 

Examination of the corresponding eigenvectors disc)oses that this mode 

Is a "collective" mode in which all bunches participate In the motion, 

• 	 with relative phases corresponding to that integral wave number which 

lies closest to v (in this case, 9). In all the other modes some of 

the bunches participate far less, than others, especially for relatively 

small w',tJ'. For example, with W54J' = 5 x 10 	, the amplitudes of 

oscillations of the various bunches vary from 1.0 to 0.5 8  In the 

"collective" mode, from'l.O to 0.068 in the next highest mode, and 

from 1.0 to 1.3 x 10' In the mode whose elgenvalue has the smallest 

real part. 	 . 

A more detailed study of these regularities lies beyond the 

scope of the present paper and will have to be left to future investiga-

tions. 	 ' 	 ' 
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E. UneQual Spacin 

For the case where the bunches are not equally spaced, we have 

not succeeded in deriving any general theorem about the behavior of 

the solutions. Numerical studies show that with just two equally 

populated bunches there is always one stable and one unstable mode, 

no matter how close the two bunches are; when two of many bunches have 

the same population there is always at least one stable and one unstable 

mode. Whenthere are just two bunches this property can be shown to 

be equivalent to the statement that 

Im G(2,v)I < 	lIm [G(e,v) G(2n - e, v)] I , 

a relation which can be inferred for small 9 from the approximations 

(Al2) and (A13), but which we have not yet demonstrated for all 9 

This result Indicates that, with bunches of finite length, 

there will always be unstable modes corresponding to relative motion 

within a bunch. We believe, however, that these modes will, In practice, 

be stabilized by Landau damping, as stated in the Introduction. 



uCRL- 16751 

-23- 

ACKNcM LEDGMEWIS 

Much of this work was performed during the Stanford Storage 

Ring Summer Study (1.965) during which the authors enjoyed the hospitality 

of the Stanford Linear Accelerator Center. We would like to thank our 

hosts, and acknowledge many Illuminating discussions with the various 

other participants. We also profited from conversations, with colleagues 

from many lands, held during the conference on storage rings in 

Novosibirek., U.S.S.R. (March, 1965). 	. 



UCRL-16771 

APPENDIX 

In this Appendix we analyze the Bunch Function G(e,v), which 

is defined by: 

. 	 -iv(9+2k) 

G(e,v) 	
e 	 (Al) 

id 	
(9+2nk)* 

where k ranges over nonnegative integers, V in nonintegral, and 

0 < 8 < 2n 	Outside this range of 8 , 
G(9,v) in defined by the 

periodic continuation of Eq. (Al). There is evidently no difficulty in 

paasing to the limit 9 - 2% , and we define G(9,V) by Eq. (Al) also 

for 9 = 

1. Alternative representations. 

Because of the general formula for the Gaussian integral 

CO 

f e< 	(Re a 	0) , 

we may rewrite Eq. (Al) in the form 

. -(y+iv)(9+2nk) 

G(8,v) 
=1 2 

) 	

e 	 dy/y* . 	 (A3) 10 
Interchanging suiimatiofl and integration, we have a convenient integral 

repreaentatiofl 

00 	 -(y+iv)e 

G(9,V) 	2 f 	 , 0 <9 ~ 2it . (0) 
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The sign of the imaginary part of the Bunch Function plays a 

crucial role in stability analysis. From Eq. (A 14) it is clear that, 

for 8=2t, 

	

00 
( 	 - 2,ty 

Im G(,v) 	-2 sin 2itv J 	dy e 	
(A5) 

	

o 	
y ii - e" 2 

and fromthe positive definite character of the integrand, the 

Im G(2ic,V) is negative for I <V < I + 	and positive for I - < v < I 

for anyinteger I.. Since G is, by definition,' periodic, it may be 

expanded in a Fourier series 

G(e,v) 	 g e 9  

with 

gn 

f 
	G(ø,V) eihlø  d 	 (A6) 

Uaixg Eq. (An) we find 

a, 
dy 

gn 	
(y + i(:- n))y 

a, f 	dz 

z2 +i(v-n) 

(Equation A7 continued) 
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Ei/(n- 	 n > v 

(A7) 
..i/(v 	n)) 	 n <y 

with the sign of the root chosen so as to make the real part of gn 

positive in all cases. 

Therefore.an alternate form for G is 

G(8,v) 	 J 	(A8) 

with the sign or (i/n - 	chosen so that its real part Is positive. 

2. Summation formulas and approximations. 

For computational purposes It is convenient to compute the sum 

(Al) over a finite number of terms and to estimate the remainder. We 

need only carry out the procedure leading to Eq. (Au) with the sum 

from k = M to oo converted to an Integral: 

. 	 -Iv(Q+2itm) 
G(e,v) = 	2 

	

4w, 	
e 

(e+2,tm1 

	

+ 2 

OD 

jye 	
(A9) 

-2,t(y+iv) 
y[l-e 	) 

For large M , the integral in Eq. (A9) becomes very small and 

may be approximated by an asymptotic formula. Writing 
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1 	 1 	 1) 1 
e11 	efhV) 

(Alo) 

we can easily generate such a fornrula. In particular, the first two 

terms yield 

2 	
dy e 0 M) 1%9) 	2n 	e_tM)I 

J (1 - 
-2n(y+IV) 	e_1')(8 + 

r 
-2giv 

_ ne 
-2niV 

(1-e 	)(e+2nM) 

(All) 

From Eq. (A9) we can readily obtain limiting values of the 

Bunch Function Thus for 0 < e . 2,t , 

	

-1VQ 	
-1v(9+2im) 

e 	 e G(e,v) 	 +  

-.j 	Ee+2nm] 

and for e << 2n we can neglect 9 in the sum to obtain 

G($,v) 	2(n/9)e 	 + G(2,,V), 	for,  9 << 2n 	(Al2) 

For 9 < 0 , 	G(-IQI,V) = G(20 - Iej,v), and since G(9,v) varies 

slowly for 0 -, 2n , we have: 
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< 2t . 	 (A13) 

Numerical vaiues L2  of r,(e,v) , obtained employing Eq. (A9), 

are displayed in FIgs. 2 and 3. Values of the Bunch Function outside 

the rangP displayed can be obtained from the relation 

G(e +m,y - n) 	 G(9,v) , 	 (AU) 

valid for all integers m and n , which follows inmiediately fromthe 

definition of G(8,v) Isee Eq. 

3. Addition theorem. 

We wish to evaluate the sum S defined as 

s 	e1h1M G( 	! , v) , 	 ( A15) 

where m,r, and M are integers. Employing the representation of 

Eq. (AL), and interchanging the finite summation and the integration 

yields 

-

00 

S = 2 

JO 	

dy 	 emn/ 

y3  [1 - 	 r= 

(A16) 

The summation is Immediate and yields 
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In the limiting process we must observe the condition VL/2nR << 1 

required to obtain Eq. (3.19). This condition is satisfied If 

L << 2,X0 . 

The result for rectilinear motion has been obtained in a somewhat 

• 	
. 	roundabout manner; the reader may welcome the following more 

•.straightforward.argument. For a single particle In a straight 

pipe the Bunch Function, as defined by Eq. (3.9), becomes modified 

In an obvious way; namely, the periodic delta function of Eq.(3.7) 

Is replaced with an ordinary delta function with the result that 

(see Eq. (A8)) 

co r 
G(8,v) -. G9 	(9,v) 	J 	dk 	k - 	) 	e 

The Straight Pipe Bunch Function may readily be evaluated by contour 

Integration with the result 

	

e 	. 
2(w) 	e.

-ly 	, 	8>0 

G8 (ev) = 

0 	 , 	Q<O. 

This Is seen to be exactly.the same as the m = 0 term in Eq. (A9); 

dynamical analysis will consequently lead:to a result analogous to 

Eq. 	but with the term G(2,i,V) absent. 

The argument Just given is not, however, immune to criticism: In 

th?lntegratlon over k there is a range where k Is near V and 
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one of the criteria for valid field expressions, namely w >> c 2/d2 , 

is not 8atisfied. One can answer the criticism by replacing the 

field expressions of Eq. (3.3) with more generally valid expressions, 

given inBef. 8, and then evaluating G(9,v) . This is a very 

tedious calculation--which has not been performed--but, because 

the range of invalidity of Eq. (3.3) is exceedingly narrow one 

expects only very small corrections to G(9,v). 
Sp 

Note that the derlvntion given In the body of the paper is 

not subject to criticism, since for any large (but not fantastically 

large) R , the sum employed in the definition of G(e,v) completely 

avoids contributions from the small region where the skin depth 

exceeds the vacuum chamber wall thickness. 

A. M. Sessler, in STAC-49, Aug. 1965 (see Ref. 3), p. 8. 

M. Allen, M. Lee, and J. Rees, in SIAC-49, Aug. 1965  (see Ref. 3), 

p. 49. We wish to thank tse authors for supplying usvith the 

numerical results presented here. 
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FIGURE CAPTIONS 

FIg. 1. Real parts of the eigenval.ues of the matrix defined by Eq. (3.20) 

as a function of W'/IJ' for M 12 bunches, V = 8.85, and 

bunch populations ranging from l.Wto 0.939  in steps of 0.001. 

The dots are cases in which the imaginary part of the eigenvalues 

are positive; crosses correspond to negative Imaginary parts. 

Fig. 2. Values of the real part of the Bunch Function G(9,v) for 

O < Q < 2ic and V 0.1, 0.9 (0.2). The function Is defined 

by Eq. (Al). 	(See Fig. 2a and Fig. 2b) 

Fig. 3. Values of the imaginary part of the Bunch Function G(9,v) for 

0 < 9 < 2,c and V = 0.1, 0.9 (0.2). The function is defined 

by Eq. (Al). 	(See Fig. 3a and Fig. 3b) 

S 
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