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Abstract 

Temperatures as low as 42°C, maintained for a little as 25 minutes, inactivate 

=25% of HIV. Furthermore, human immunodeficiency virus (HIV)-infected T-cells 

are more sensitive to heat. than healthy lymphocytes and susceptibility increases 

when the cells are pre-sensitized by exposure to tumor necrosis factor. Thus, 

induction of a whole-body hyperthermia, or hyperthermia specifically limited to 

tissues .having a high viral load, are potential antiviral therapies for acquired 

immunodeficiency disease (AIDS). Accordingly, we incorporated therapeutic 

hyperthermia into an existing mathematical model which evaluates the interaction 

between HIV and CD4+ T cells. Given the assumptions and limitations of this 

model, the results indicate that a daily therapy, reducing the population of actively 

infected cells by 40% or infectious virus by 50%, would effE;!ctively reverse the . ~ 

depletion of T cells. In contrast, a daily reduction of 20% of either actively infected 

cells or infectious virus would have a marginal effect. However, reduction by 20% of 

both actively infected cells and infectious virus could restore T cell numbers, 

assuming that permanent damage had not been inflicted on the' thymus. Whole­

body ~yperthermia seems unlikely to be clinically useful, unless it can be induced 

non-invasively without general anesthesia. In contrast, heating directed_ specifically 

to areas of viral concentration may be effective and have a suitable risk/benefit ratio . 

• 
Key words: HIV, AIDS, Mathematical Model, Heat Inactivation. 
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Introduction 

In the ten years since its recognition, the human immunodeficiency virus 

(HIV) has infected more than 7 million people world-wide, and killed more than 

2.5 million of them. The infection rate continues to increase nearly exponentially, 

and by the end of this decade, between 38 and 110 million people will be infected.l 

There currently is no cure for immune deficiency syndrome (AIDS); unless one is 

rapidly developed, nearly all HIV-infected individuals will die.2 Furthermore, 

currently available treatments produce serious side-effects and only marginally 

impair progression of the syndrome.3 Consequently, a relatively safe therapeutic 

intervention retarding the course of this disease would be welcome. 

Temperatures near 60°C reliably inactivate HIV,4 and such temperatures have 

been used to prevent transmission of the virus by isolated clotting components 

administered to hemophiliacs. Unfortunately, temperatures in this range also 

inactivate platelets and white blood cells, making this degree of hyperthermia 

(i.e., using an extra-corporeal system) an unsuitable treatment for HIV infection. 

However, temperatures as low as 42°C, maintained for a little as 25 minutes, 

inactivate =25% of HIV.* ,s Furthermore, HIV-infected T-cells are more sensitive to 

heat than healthy lymphocytes and susceptibility increases when the cells are pre­

sensitized /by exposure to tumor necrosis factor.6 This temperature only slightly 

exceeds the core hyperthermia produced by infectious fevers7 and probably does not 

· irreversibly damage most tissues including blood.8 Thus, induction of whole-body 

hyperthermia is a potential antiviral therapy for AIDS. Moreover, HIV infection 

appears to be significantly concentrated in the lymphatic system,9,IO raising the 

• 
The authors thank Dr. Enok Tjotta for providing the raw data used in reference-S. 



Heat-Inactivation of HIV Pennypacker et al 4 

possibility that heating directed specifically at lymph nodes might also be effective, 

while perhaps substantially reducing the risks of whole-body hyperthermia. 

A critical question in determining the likely effectiveness of hyperthermia 

-or any antiviral therapy- is whether the induced reduction in virus load is 

sufficient to decrease the negative effects of the infection, if not to eliminate the 

infection altogether. The data needed to estimate the ability of in vivo hyperthermia 

to eliminate virus and infected cells remains incomplete. Still, it is possible with 

present knowledge to mathematically model the effects of in vivo hyperthermia on 

HIV and relevant cell populations. Alternatively, we can estimate the amount of 

anti-viral effect a proposed therapy (i.e., whole-body hyperthermia vs. specific 

heating of lymph nodes) must posses to eliminate virus and infected cells. 

Accordingly,. we here incorporate therapeutic hyperthermia into an existing model 

which evaluates the interaction between HIV and CD4+ T cells. 



Heat-Inactivation of HIV Pennypacker et al 5 

Methods 

We model HIV infection of T lymphocytes as follows: Let T denote the 

concentration of uninfected T4 cells and letT* and T** denote the concentrations of 

latently infected and actively infected T4 cells, respectively. The concentration of free 

infectious virus particles is V. We assume that the dynamics of the various T4 cell 

populations is governed by the following differential equations: 

(1) 

(2) 

(3) 

(4) 

The detailed derivation of these equations is described in Perelson, et al.11 We begin 

by describing T cell population dynamics in uninfected individuals. 

The first three terms in Eq. (1) represent the rates of production and 

destruction of T cells in uninfected individuals; s being the rate of supply of 

immunocompetent T cells from precursors in the thymus; J.lT represents the 

average per capita death rate ofT cells. We have chosen s to be a decreasing function 

of V so that as the viral burden increases, infection ofT cell precursors increases and 

the supply ofT cells decreases. Here we assume s(V) = Qs/(Q + V), where Q is a 

constant ~hat determines the viral load needed to decreases by a factor of two. In the 

. absence of HIV, s(V) = s = constant. The growth ofT cells is modeled by a logistic 

equation, with r being the per capita T-cell growth rate in the absence of population 

limitation. The last term in the equation, proportional to k1, represents T cell 

infection by HIV. In the absence of HIV, this equation describes the T cell population 
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level in blood. One can set the parameters, so that this level is maintained at 1000 

cells/mm3, as is typical in healthy people. 

Virus isolated from patients at the final stages of the disease is often more 

pathogenic than the strain isolated initially from seropositive patient,l2,l3 It may be 

that rapidly-replicating viruses (large N) are initially eliminated by an immune 

response, while slowly-replicating strains (small N) escape immune detection. A 

model exploring this view has been presented by Nelson and Perelson.14 However, 

as the disease progresses, slowly growing viral strains apparently are replaced by 

faster growing or more pathogenic ones: e.g., non-syncytium inducing strains may 

be replaced by syncytium inducing ones. Here we model this by replacing .the 

constant N in Eq. 4 by a gradually increasing function of time 

( 
at" ) N(t)=N0 1+ " " , 

q +I 
Eq.S 

where No, n, a, and q are constants. One could also model the evolution of viral 

strains by replacing the constant [k1] by a slowly increasing function of time, so that 

the infectivity increased as a function of time. 

The solutions to Eqs. (1)-(4) were computed numerically, using a Gear's 

method, stiff differential equation solver (ddrvb3, Los Alamos National Labor~tory 

Common Mathematical Software Library). Dependent variables and their initial 

values are shown in Table 1; the default or initial values for the parameters and 

constants are shown in Table 2. 

To model the effects of a daily hyperthermic treatment, which kills a certain 

percentage of HIV virions and/ or a percentage of actively infected T cells, the 

integration of Eqs. (1)-(4) was terminated at the end of each 24-h period, and then 

restarted with the appropriately reduced number of remaining infectious virions 
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and infected cells. For example, to evaluate a daily treatment which reduces the 

viral burden by 25%, we would integrate Eqs. (1)-(4) for one day, decrease V to 75% of 

its value at the end of that day, and then restart the integration. 
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Results 

We first examine the case of disease progression without heat treatment. The 

model, given by Eqs. (1)-(4), with N constant, has two steady states, an uninfected 

state in which V = 0, T =To= 1000, J"t = To• = 0, and an endemically infected state in 

which V > 0. We have shown that if N, the number of infectious virions produced 

per actively infected cell, is less than some critical value, Ncrit = 

k3(,Uv + k1To)/(k2k1To), then the infection will die out.ll Conversely, if N > Ncrit, 

then the infection will prosper, virus will survive and T-cell depletion will occur. 

When N < Ncrit, virus infects cells, but the cells that are infected die before 

producing enough offspring to sustain the infection. The same type of phenomenon 

is observed in epidemics. If on average, infected people infect more than one other 

person the disease spreads and causes an epidemic; in contrast, the epidemic dies if 

each. person on average infects fewer than one other person. 

Figure 1 illustrates the predictions of the model for N > Ncrit, where N is 

given by Eq. (5). Notice that initially, the amount of free virus declines as it infects 

cells, but it subsequently increases exponentially. While the virus level is low, T 

cells· are infected but the level of infection is so low that T cell depletion is not 

noticeable. But ultimately, the virus population is sufficiently augmented to 

decrease the T-cell population. This decrease occurs gradually over a period of about 

eight years. The actual time course of this decrease depends on N(t), and hence, the 

viral strain. The model predicts that the fraction of latently infected T cells and 

actively infected T cells increases as the disease progresses but are consistent with the 

low values typically observed in patients, e.g., on the order of 1 in a 100 T cells are 

latently infected15 and 1 in 10,000 actively infected.l6 
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Using this model, we now examine the effects of heat inactivation (or for that 

matter, any treatment that reduces the number of infectious virions and/or infected 

cells). In Figure 2, we show the predicted effects of a treatment that eliminates 0% 

(baseline), 20%, and 40% of the free infectious virus ln the blood each day. 

Treatment is started in year 5 and continues through year 9. As is apparent, 40% 

removal leads to substantial recovery in the T-cell level. If 50% of the free virus is 

removed daily, the T cells recover to their normal level (not shown). 

In Figure 3 we show the effects of a treatment given daily from years 5 

through 9, that reduces the number of actively infected cells by 0%, 20%, and 40%. 

With 40% reduction, the level of uninfected T cells returns to 1000/mm3 after a 

little more than one year of treatment. However, as in Figure 2, virus is not totally 

eliminated from the blood and once treatment is terminated, T-cell depletion 

continues so that by year 12, it is close to levels observed in untreated individuals. 

Thus, for improvement to continue, treatment at that level of efficacy may have to 

be sustained for the life of the patient. 

Treatments that kill both actively infected cells and free virions give 

synergistic results. In Figure 4, we show the predicted effects of a daily treatment that 

eliminates 0%, 10%, and 20% of both free virus and actively infected T cells. 

Removing 20% of both populations now leads to complete recovery of the T cell 

population. 
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Discussion 

HIV is an RNA virus that attaches to cells by interacting with CD4, a cell 

surface molecule,17,18 After HIV binds to a cell, it becomes internalized, and infects 

the cell. Thus, CD4+ T cells, as well as monocytes and macrophages which also 

express CD4, are targets of HIV infection. After HIV enters a cell, its RNA is "reverse 

transcribed" to produce a DNA copy of its genome, which may then integrate into 

the cells DNA. A cell containing the viral genome, called the provirus, but not 

producing new virus particles is considered latently infected. The provirus can 

remain latent, giving no sign of its presence for months or years.19 

When a latently infected lymphocyte is stimulated by an antigen or mitogen, 

virus production may be initiated, causing virus particles to bud from the surface of 

the infected cell. The budding can be rapid, leading to the lysis of the host cell (as 

appears typical in T4-cell infection), or it can be slow and spare the host cell (as 

appears typical in macrophage and monocyte infection). Thus, immune activation 

ofT cells, say by the T cells recognizing antigen, is required for converting a latently 

HIV infected cell into a proliferative state. Similar activation may also be required 

for integration of the HIV genome. 

The simpler form of the model ignores the complexity of viral mutation. It is 

known that HIV can rapidly mutate and thus that there are many strains of HIV. 

Different strains of virus have different properties, and in particular different 

abilities to grow in T cells. Thus, the parameter N is a characteristic of a particular 

stain. Strains· that are highly pathogenic might be envisioned as corresponding to 

high values of N. 

The importance of including the evolution of the virus from slowing­

replicating to rapidly-replicating strains in the model is illustrated by the differences 
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between Figures 1 and 2, and is consistent with recent data by Connor, et al.12 

showing that in some AIDS patients the T cell population declines precipitously 

over a period of one to two years, just as in our model. Furthermore, the period of 

T-cell decline in these patients correlates with a period of rapid increase in virus, as 

measured using the polymerase chain reaction. 

Not all patients evaluated by Connor, et al. followed this pattern. One patient, 

for example, has had a nearly constant number of uninfecte~ and latently infected T 

cells over a period of eight years. This patient may be generating an immune 

response preventing the virus from multiplying and/or becoming more pathogenic. 

In any event, our model, which does not incorporate an immune response to the 

virus, does not predict the relatively constant T cell and virus levels seen in this 

patient. Despite such occasional exceptions, this rather simple model of HIV 

infection ofT cells mimics many of the quantitative observations made in vivo. 

The model is based on quantitative data obtained in peripheral blood, and 

predicts observed values re~sonably well. Recent studies suggest that many HIV­

infected lymphocytes are sequestered in lymph nodes.9,10 To the extent that 
I 

peripheral blood T cell concentrations can be used to diagnose the stage and severity 

of the disease, our model may thus implicitly reflect the exchange between lymph 

nodes and blood, and hence the overall disease severity. In any event, the model is 

only indicative of the improvements in T cell numbers resulting from heat 

inactivation (or other therapies) that kill actively infected cells and/ or free virus. 

The model ignores the long-term destruction of the follicular dendritic cell network 

and hence the decreased ability of lymph nodes to filter virus and stimulate 

immune responses.9 Thus, it remains unlikely that full recovery of the immune 

system will occur, even if circulating T-cell counts are restored to normal. The 

model also ignores damage to the thymus, and thus optimistically assumes that 
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thymic function returns to normal if virus is cleared. Other models are currently 

under development in which this assumption is relaxed. Quantitative experiments 

certainly are needed to test our model and establish the effectiveness of heat 

treatment applied either to lymph nodes or to the entire body 

Treatment of HIV with whole-body hyperthermia to 42°C has been 
'-

attempted,20 but the efficacy of the treatment has yet to be adequately evaluated. -

Obviously, any treatment requiring prolonged general anesthesia can only be 

applied at intervals far exceeding the 24 hours used in our calculations. Our model 

suggests that such infrequent treatments are unlikely to be effective. The extent to 

which lesser degrees of hyperthermia, e.g., 39°C (which can easily be obtained by 

recreational immersion in a hot-tub21 or by forced-air warming22,23), might prove 

beneficial remains unknown. However, based on the data of Tjotta, et al.s, our 

model would predict an insignificant effect. 

General anesthesia has been used in most previous hyperthermia studies24 to 

avoid thermal discomfort and minimize active thermoregulatory vasodilation, 

which can increase cutaneous blood flow to as much as 7.5 liters/minute (equaling 

the entire resting cardiac output).25 This increase is mediated by decreased systemic 

vascular resistance and requires a substantial -and stressful- compensatory -

increase in cardiac output.26 However, it may be possible to avoid general anesthesia 

by administration of sedatives sufficient to raise the threshold for active 

vasodilation27 (core temperature triggering thermoregulatory vasodilation2B) to 

~42°C. Although propofol appears to inhibit thermoregulatory responses to 

hypothermia more than the volatile anesthetics,29,30 our (unpublished) data · 

suggests that it is less effective than other anesthetics31 for preventing sweating and 

active vasodilation. The thermoregulatory effects of other sedative/hypnotic agents 

\. 
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have not been specifically tested during core hyperthermia, but barbiturates appear 

useful in some clinical protocols. 32 

Even if the direct autonomic responses to whole-body hyperthermia can be 

prevented pharmacologically, other potential complications including bleeding 

diathesis (mediated by excessive fibrinolysis,33 decreased platelet number,34 and 

disseminated intravascular coagulation35), baroreceptor rnalfunction,36 and 

immune disturbances37,38 may limit application of thermal treatments. An 

alternative is to focus application of heat to body regions most. likely to benefit. In 

the case of HIV, the thoracic duct and major chain of lymph nodes surrounding the 

aorta might be appropriate targets. Such a system might include implanted heat 

exchangers or receivers for directed microwave radiation.39 Naturally, routine 

clinical treatment of HIV with hyperthermia will required not only demonstration 

of efficacy, but also of a favorable risk/benefit ratio. 

In summary, given the assumptions and limitations of this model, the results 

indicate that a daily therapy, reducing either the population of actively infected cells 

or infectious virus by 40%, would effectively reverse the depletion of T cells. In 

contrast, a daily reduction of either population by 20% would have a marginal effect. 

However, reduction of both populations by 20% daily would also reverse the 

depletion of T cells. Since all virus is not removed, therapy needs to be continued 

for the life of the patient. Because the quantitative predictions of this model depend 

on parameter values, one might expect variation from. patient to patient. Only 

experimental tests can ultimately determine the efficacy of thermal treatments. 

Whole-body hyperthermia seems unlikely to be clinically useful, unless it can be 

induced non-invasively without general anesthesia. In contrast, heating directed 

specifically to areas of viral concentration may be effective and have a suitable 

I 
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risk/benefit ratio. Even if heat-inactivation does not prove useful, the mathematical 

model presented here can be applied to other types of antiviral treatments. 
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Figure Legends 

Fig. 1. Predicted dynamics of 1-llV infection obtained by sqlving Eqs. (1)-(4) with parameters given in 

Table 2. Here N is an increasing function of time as given by Eq. (5), with No=250, a=3, n=3, and q=8 yr. 

Fig. 2. The predicted effect of a treatment given daily from years 5 through 9 that reduces the number 

of actively infected cells by 0% (baseline), 20%, and 40%. 

Fig. 3. The predicted effect of a treatment given daily from years 5 through 9 that reduces the number 

of free infectious virions by 0% (baseline), 20%, and 40%. 

Fig. 4. The predicted effects of a treatment given daily from years 5 through 9 that reduces both the 

number of actively infected cells and the number of free infectious virions by 0%, 10%, and 20%. 



a) Total CD4+ T cells 

1000 
I - - "'-/~ 

I \ 
800 

I \ 
........_ 

i 
"';;;-

600 

...... ...... 
(1) 
c..> 400 '-" 

r1 

20: r 
I I· I I I I I I I' I 

0 2 4 6 8 10 
years 

c) Fraction of cells latently infected 

10° 

10"2 

§ 
·~ 10-4 
g 
~ 

10-6 

10"8 

0 2 4 6 .8 10 
years 

I 
102 

I 

I i 100 
"';;;-

(1) 
........ 

c..> 
·~ 10"2 

~ 
0.. 
'-" 

> 

1 
10"4 

I 10"6 

12 

10° 

10"2 

~ 
10-4 

0 ....... .... 
c..> 
<a 

10"6 
~ 

10-8 

10·10 
12 

Figure 1 

b) Free HIV 

0 2 4 6 8 10 
years 

d) Fraction of cells actively infected 

0 2 4 6 8 10 
years 

12 

12 
N 
f-l 



10° 

1~ 

~ 
0 
~1~ u ro 
~ 

1~ 

10"8 

0 

c) Fraction of cells latently infected 

~ 

2 4 6 
years 

8 10 12 

10° 

1~ 

~ 
0 
~ 1~ 
~ 
~ 

1~ 

10"8 

Figure 2 

d) Fraction of cells actively· infected 

~~,-----.--,-----~ 

0 2 4 6 
years 

8 10 12 
N 
N 



a) Total CD4+ T ceJis 

1000 
I - ~~~ /" - . \ 

800 ~ qr~~ \ 
.-.. 
...J 600 :1. ..._ 

Cl) --Cl) 
(.) 

400 .._... 
cs 
~ 

20] 
I I I I I i I I I I 

0 2 4 6 8 10 
·years 

c) Fraction of cells latently infected 

10° 

10"2 

c:: 
0 
·a 10"4 

~ ..= 

10·6 

10"8 

0 2 4 6 8 10 
years 

I 
102 

l 
3 10° 
:1. ..._ 
Cl) 
Cl) 

u ·e 1o·2 

C'd 
c. 
'-" 

> 

J 
10·4 

I 10·6 
12 

10° 

10·2 

c 
10·4 

0 ·-.... g 
10"6 ..:: 

w·B 

10·10 
12 

Figure 3 

'' 

b) Free HIV 

0 2 4 6 8 10 
years 

d) Fraction of cells actively infected 

0 2 4 6 8 10 
years 

12 

12 

N 
tN 



a) Total CD4+ T ceiJs 

1000 

800 

......... 

....l 600 ::i ....... 
Cl) __, __, 
C1) 
u 400 .......... 

f-4:9 

200 

0 
0 2 4 6 8 10 

years 

c) Fraction of cells Jatently infected 

10° 

w·2 

c:: 
0 ·- 10·4 .... 
(.) 
ro 
.t: 

w·6 

10'8 

0 2 4 6 8 10 
years 

.· 

12 

12 

102 

3' 10° 
~ 
'1.) -u 
'E 10·2 

~ 
0. .......... 

> 
10'4 

10'6 

10° 

10·2 

c:: 
10'4 

0 ·-.... u 
c-::1 

10'6 .t: 

10'8 

10·10 

Figure 4 

0 

0 

2 

- b) Free HIV 

4 6 
years 

8 10 . 

d) Fraction of cells actively infected 

2 4 6 
years 

8 . 10 

12 

12 
N 
.j:::. 



. 
' 

.· 

Table 1. Dependent Variables. 

Dependent Variables 

T Uninfected CD4+ cell population size 

T* Latently infected CD4+ helper cell population 

T** Actively infected CD4+ helper cell population 

v HIV population size 

25 

Initial or Default Values 

lOOOmm-3 

0 

0 

lQ-3 mm-3 

,/ 



Table 2. Parameters and Constants. 

Parameters and constants 

s Rate of supply of CD4+ cells from precursors 

r Rate of growth of CD4+ cells 

Tmax Maximum CD4 cell population level 

JlT Death rate of uninfected and latently infected CD4 

cells 

Jlb Death rate of actively infected CD4 cells 

llv Death rate of free virus 

k1 Rate constant for CD4 cells becoming infected by 

free virus 

k2 Rate latently infected cells convert to activ.ely 

infected cells 

N Number of infectious virions produced by a CD4 cell 

Q Viral concentration needed to decreases to s/2 

Initial or Default Values 

10 day-l.mm-3 

0.03 day-1 

1500mm-3 

0.02 day-1 

0.24 day-1 

0.35 day-1 

2.4 X 1 o-5. day-1·mm3 

1.44 x 1Q-3·day-1 

varies 

1mm-3 
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