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Integrating Marker Passing and Connectionism for
Handling Conceptual and Structural Ambiguities*

Ronald A. Sumida
Michael G. Dyer
Margot Flowers

Al Lab/Computer Science Dept.
University of California, Los Angeles, CA, 90024

Abstract

This paper discusses the problem of selecting the correct knowledge structures in parsing natural
language texts which are conceptually and structurally ambiguous and require dynamic rein-
terpretation. An approach to this problem is presented which represents all knowledge struc-
tures in a uniform manner and which uses a constrained marker passing mechanism augmented
with elements of connectionist models. This approach is shown to have the advantage of com-
pletely integrating all parsing processes, while maintaining a simple, domain-independent pro-
cessing mechanism.

1. Introduction

A major problem in parsing natural language texts is the selection of the correct knowledge structures from the
large number of inappropriate ones in memory. This problem is especially difficult in the case of texts which are
highly ambiguous and which require the reader to correct an initially mistaken interpretation, since structures
which are only potentially relevant must also be found. Consider, for example, the following sentence: S1. John
put the pot on the stove. This seems to indicate that John is preparing to use a container for cooking on a stove.
However, after reading the next sentence: S2. He picked it up and smoked it, it appears that John was actually
using the stove as a supporter (or lighter) for a marijuana cigarette (not a cooking pot). In addition note that S1 and
S2 are potentally ambiguous at the structural level, e.g. <X picked it up> could mean <X learned new informa-
tion>, while <X put object on> could mean <X wear object>.

Previous approaches to parsing natural language texts have largely been unsuccessful at handling ambiguous sen-
tences such as those presented above. These approaches can generally be divided into four groups: (1)
Expectation-based conceptual analyzers (CAs), such as [Dyer,1983], associate each word with one or more
knowledge structures, which have rules attached indicating how they can be connected to other structures. This
approach has been successful for parsing large pieces of connected text. However, the processing mechanism is
overly complex, since each type of knowledge structure generally requires its own set of rules. Parsing highly am-
biguous sentences such as S1 and S2 above is particularly problematic since sophisticated back-up and recovery
rules are needed. (2) PDP/Connectionist systems, examples of which include [Waltz and Pollack,1985], [Cottrell
and Small,1985], [McClelland and Kawamoto,1986], have emerged as an alternative to such rule-based ap-
proaches. These systems use only simple rules for spreading and combining activation (and in some cases inhibi-
tion). Since they are highly parallel and employ scalar activations, complicated backtracking rules are not needed.
Unfortunately, these models currently lack operations which are fundamental in higher level NLP systems,
specifically: variables, role bindings, instantiations, and inheritance. (3) Marker passing systems [Char-
niak,1986), [Granger et. al, 1986) and [Norvig, 1987], which find connections between concepts by propagating
markers over a local semantic network, are a similar approach which provides these high-level operations. Such
systems however, generate t0o many inappropriate connections and typically employ a filter mechanism with its
own set of inference rules to weed them out. The complexity of this mechanism negates the simplicity that is the

*This research is supported in part under a contract to the second two authors by the JTF program of the DoD,
monitored by JPL and by an ITA Foundation grant to the second author.
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advantage of the marker passing approach. (4) Definite Clause Grammars (DCGs), such as [McCord, 1982],
unlike the above approaches, focus primarily on the syntactic and structural features of natural language texts,
such as conjuncts, quantifiers and agreement. These systems view parsing as a two step process which first con-
structs a syntactic parse tree through unification and then performs semantic processing. The strength of these
systems is their ability to analyze complex linguistic constructs. However, they lack the conceptual information
necessary to analyze texts at deeper conceptual levels.

This paper presents CAIN (Conceptual Analyzer for multiple re-INterpretations), which parses highly ambiguous
texts while avoiding the problems of the above approaches. CAIN overcomes these problems by: (1) representing
all knowledge (both conceptual and structural) in a uniform manner in a local semantic network, (2) using con-
strained marker passing for all parsing processes, and (3) using link weights, activation values, and thresholds
from connectionist models for indicating relative strengths of activations between concepts. Representing all
knowledge at the symbolic level provides higher level symbolic operations and allows all parsing processes to be
integrated. The marker passing mechanism depends only upon knowledge of the different link and marker types
used, so the processing mechanism is simple and independent of the content of memory. Also, since only certain
types of marker intersections are considered important and since elements of connectionist models are employed,
the problem of spurious connections is avoided. CAIN is implemented in T [Slade, 1987], a Scheme-based dialect
of Lisp, and can parse sentences S1 and S2 above.

2. Parsing Using Constrained Marker Passing

The parsing process can be divided into 4 steps: (1) from the input, mark the lexical items and their associated
conceptualizations, (2) find the knowledge structures which connect the marked nodes together, (3) bind the roles
of these structures, and (4) refine them to be as specific as possible.

The following sections describe how memory is organized and how the above processes are realized using a con-
strained marker passing and activation mechanism.

2.1 Memory Organization

All knowledge in the system, whether conceptual or structural, is represented using a semantic network, such as
that shown in figure 1* below:

* Due o space limitations, the figures in this paper have been simplified and only show the small portion of the
network which is activated by parsing S1. ;
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This figure shows the representation for putting a cooking container on a stove and for lighting a marijuana
cigarette. Is-a links, which connect a node to its parents, are represented by the arrows in the figure, and has-a
links, which connect a node to its roles, are represented by straight lines. For example, to indicate that lighting a
marijuana cigarette is a sub-act of smoking, the node for SMOKE is connected by a has-a link to the node for
sub-act, and by an is-a link to the node representing the lighting action. Note that the components of a single act
are represented in the same manner. To indicate that the object of the transport action is a physical object,
TRANSPORT-OBIJECT is connected by a has-a link to its object role, which is in turn connected by an is-a link to
PHYS-OBJ. Structural information is represented in the same manner and using the same link types, as illustrated
in Figure 2*, which shows the representation for the phrase <person put OBJ1 on OBJ2>, used in parsing S1:

Figure 2

The arrows labeled M (for meaning) in the figure indicate the link between structural and conceptual information.
2.2 Marking the Input Concepts

As the input is read, the occurence of each word and its conceptualizations is indicated by placing an activation
marker (AM) on the appropriate node. For example, in figure 2, reading the word "pot" results in the placement of
AMs on the lexical node "pot" and on the nodes representing the concepts cook-container, plant-container and
marijuana. Marking the occurence of a concept also results in the marking of its ancestors, to indicate their impli-
cit occurence. The AM which is placed on COOK-CONTAINER, for example, is also placed on the nodes for
container and phys-obj. The rules for marking concepts from the input are therefore:

R-1: When a word is read, an AM is placed on its corresponding lexical node.
R-2: When a lexical or phrasal node receives an AM of sufficient strength, an
AM is passed across an M link to its associated conceptualizations.

R-3: When a node receives an AM, an AM is passed 1o its parents.

* This representation is based primarily upon [Gasser, 1988] and [Jacobs, 1985].

148



SUMIDA, DYER, FLOWERS

AMs which are passed to ancestor nodes contain information indicating the descendant that was the source of the
marker. In addition, AMs from lexical nodes also maintain information indicating their meaning(s). This infor-
mation will later be used to perform role bindings. The reason for the strength constraint on rule R-2 will become
clear in subsequent sections.

2.3 Connecting the Input Concepts

How can the cormrect knowledge structures, connecting the input concepts, be selected? Each node which was ac-
tivated (received an AM) from the input suggests potentially relevant structures based on the various roles that it
plays. This is true for both syntactic and semantic information. For example, since a stove plays the role of an in-
strument in the cooking schema, activating STOVE suggests that COOK may be applicable. Similiarly, activating
the node for determiner indicates that BASIC-NP may be appropriate. Search Markers (SMs) are used to indicate
knowledge structures which are suggested in this fashion. SMs are propagated according to the following rule:

R-4: SMs are passed from an activated node, down is-a links to all of its descendants
that are role nodes, and across has-a links to the owners of the roles.

Applying the above rule will result in the marking of the correct knowledge structures. However, a large number
of inappropriate structures will also receive SMs. For example, when the lexical node for "put” is activated in sen-
tence S1, the above rule will mark the nodes for other phrases involving "put", such as <person-put-up-with-
person> and <person-put-on-clothing>, in addition to marking the node for the desired put-phrase shown in figure
2. The solution to this problem is to utilize elements of connectionist models, specifically link weights, activation
values and thresholds. Each SM is assigned a strength value which depends upon the weights of the links over
which it is propagated. In general, nodes representing more specific concepts will pass stronger SMs than their
ancestors. Thus, the SM that COOK-CONTAINER passes to PTRANS-TO-STOVE in figure 1 will be much
stronger than the SM that PHYS-OBJ passes to TRANSPORT-OBJECT. When an SM is propagated to a node
representing a knowledge structure, its strength value is added to that of the other SMs on the node. If their com-
bined strengths exceed the node’s threshold level, then there is strong evidence that the structure is applicable, and
it therefore attempts to bind its roles. Using activation values and thresholds allows a large number of structures
to be suggested, while only a few are actively pursued.

2.4 Role Binding

Binding a role of a structure involves determining whether its filler is activated. If so, then the concept which ac-
tivated the filler is bound to the role. To bind the subject role of PUT-PHRASE in figure 2, for example, the NP
node is checked to determine whether it was previously activated. If it was, the descendant which activated it is
then bound to the subject role. The check for whether the filler has an AM is made using a Role marker (RM),
which is propagated according to the following rule:

R-5: When a node’s threshold is exceeded, RMs are passed across has-a links to
each of its roles, and up is-a links to the fillers of those roles

Note that RMs may be used to indicate roles which should already have been filled or which are expected to be-
come filled. In the latter sense, RMs are very similar to the prediction marker used in DMAP [Riesbeck and Mar-
tin, 1986]. Role binding is performed by the rule:

R-6: When an AM and an RM of sufficient strength intersect®,
an AM is placed on the role node

* If it is possible to bind more than one role of a structure to a single concept, then sequencing information,
indicating the order in which the roles normally occur, is used to determine which binding is appropriate.
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Since an AM maintains information indicating the descendant that was its source, merely placing it on the role has
the effect of binding it.

Our confidence in a structure’s relevance to the input increases as its roles are bound. For example, as sentence S1
is read and each component of the put-phrase in figure 2 is recognized, it becomes apparent that it correctly
represents the input. Thus, binding the subject role should activate the put-phrase node, binding the head role in-
creases its activation level, and similarly for the remaining roles. The amount of the increase depends upon how
important the role is to the structure. Role importance is reflected in the strength of the connection between the

structure and its roles and therefore in the strength of the RM which is passed by rule R-5. The rule for activating
a structure is:

R-7: When an RM and an AM intersect, activate the source of the RM
by placing on it a new AM if one (representing this instance) is not already present,
or by increasing the activation level of the AM which is already there

Syntactic information can be used to help bind roles in semantic structures using rule R-2. For example, when
PUT-PHRASE is sufficiently activated by rule R-7, the actor role of TRANSPORT-OBJECT receives an AM
(which has John as its meaning) from SUBJECT. Figure 3 shows the AMs which are placed on the structures
shown in figure 2, as a result of reading S1.

source: put-phrase
transport-object

AM AM AM AM AM AM
8 ng: 'S SOUFCE: NAME-NP source:"put”  source:basic -np source:
John 3 “pot"meaningy  slove meaning: John meaning: on-phrase
3 "pot” meanings  meanng:
sove
<>
AM AMI1 AM2 @
SouTCe: NAMe-Np source: basic-np  source: basc-np
¥ - = source: on-phrase
John 3 "pot” meanngs

meaning: swove

s & B = >

AM AMI
source; "John" source: “the” source: “the” source: “pot”  source: "siove” source: “on” source; basic-np
TEAmng meanung: meaning: stove neanng:
John 3 "pot” meanings swove
Figure 3

2.5 Concept Refinement

The most specific structures possible must be found in order for the input to be completely parsed. A node which
is activated by rules R-2 or R-7 may need to be refined to a more specific one using contextual information sup-
plied from the input. Refinement involves searching for a descendant whose equivalent roles have more specific,
activated fillers. For example, when the put-phrase is recognized and TRANSPORT-OBJECT is activated by R-2,
it can be refined to PTRANS-TO-STOVE as shown in figure 1. The search process is performed using a descen-
dant marker (DM) which is spread by the rule:

DM-1: When a node is sufficiently activated by rules R-2 or R-7, a DM is passed down
is-a links to each of its descendants
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How is a descendant with more specific fillers found? Recall that each concept which was activated from the in-
put supplies contextal information in the form of SMs, whose strengths are combined when they intersect. A
descendant whose fillers are more specific will have SMs with a stronger combined strength. For example,
PTRANS-TO-STOVE in figure 1 will receive SMs from HUMAN, COOK-CONTAINER, and STOVE while
TRANSPORT-OBJECT will receive SMs from ANIMATE, PHYS-OBJ, and PHYS-OBJ. Since the connection
from the roles of PTRANS-TO-STOVE will be much stronger than for TRANSPORT-OBJECT, the former will
have a much greater SM strength. Thus, TRANSPORT-OBJECT should be refined to PTRANS-TO-STOVE. The
rule which implements concept refinement, then, is:

DM-2: When a DM is placed on a node whose combined SM level is greater than that
of the source of the DM, then bind its roles using the procedure described
in section 2.4

Note that after reading S1, TRANSPORT-OBJECT in figure 1 can be refined to either PTRANS-TO-STOVE or
LIGHT, so both will be activated. However, since the concept stove suggests cooking much more strongly than
HEAT-SOURCE suggests lighting a marijuana cigarette, PTRANS-TO-STOVE will be much more strongly ac-
tivated. Therefore, it represents the result of the parse. When sentence S2 is read, however, it is recognized as
another sub-act of SMOKE. SMOKE will therefore be more strongly activated than COOK, since it receives SMs
from two of its sub-act roles, while COOK is unrelated to S2. This causes S1 to be reinterpreted as lighting a
marijuana cigarette.

2.6 Marker Removal

As with connectionist systems, markers are removed using a decay process. DMs decay very quickly since they do
not have to wait for other nodes to become activated and therefore do not need to remain between sentences. This
is not true for the other types of markers, so they decay much more slowly.

3. Related Work

The work presented here was inspired by direct memory access parsing, particularly DMAP [Riesbeck and Mar-
tin, 1986]. DMAP attempts to find the most specific knowledge structures that connect the input concepts, using a
marker passing algorithm based on recognizing concept sequences. Despite the similarity between DMAP’s
markers and ours, there are major operational differences. The biggest difference is that DMAP is only able to
recognize structures whose roles are encountered in the correct sequence, beginning with the first item. While this
works well for syntactic structures which are typically encountered in their entirety and in the correct order, it is
not well suited o recognizing higher level conceptual structures such as MOPs [Schank, 1982]. For example,
DMAP would not be able to recognize that the COOK context is appropriate after parsing sentence S1, since the
intial act, PTRANS-FOOD-TO-CONTAINER, was not encountered. Our work also extends direct memory ac-
cess parsing (1) to handle ambiguities, reinterpretations, and role bindings, (2) to include more information about
syntax, and (3) to represent relative strengths of activations between concepts.

We believe that learning (i.e. adding new nodes and links to the network) will be facilitated by the simplicity of
our memory representation. This contrasts to approaches which simplify the processing mechanism by adding ex-
tra link types to the network (for example, DMAP uses a special concept refinement link). Our approach is to use
only those link types which are necessary for the representation itself and add extra markers where necessary.
Since markers are dynamically created during processing-and decay with time, adding new ones has no effect on
the complexity of the learning mechanism. Similarly, link weights in our model only represent relative strengths
of connections between concepts and (unlike connectionist systems) are nof used to control processing.

This work also bears some similarity to SCISOR [Rau, 1987], a system for conceptual information retrieval. The
process presented in section 2.3 (for finding the correct structures in memory connected to input concepts) is simi-
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lar to the priming rules used in SCISOR. However, SCISOR only addresses the problem of finding episodes in
memory, and uses a separate module for parsing. In our work, parsing and memory search are completely in-
tegrated. Thus, the memory search process described here is more general since SMs can be used to retrieve dif-
ferent types of knowledge structures (such as syntactic information) in addition to retrieving episodes.

4. Conclusions

In this paper, we have presented an approach to parsing natural language texts which integrates a constrained
marker passing mechanism with properties of connectionist systems: link weights, activation values and thres-
holds. This approach is particularly attractive for three reasons. First, it is capable of parsing texts which have
proved to be difficult for previous parsing systems, specifically those which are highly ambiguous and require the
reader 1o correct an initially mistaken interpretation. Second, it uses a simple processing mechanism whose rules
are independent of the actual content of memory. Thus, new knowledge structures can be added without changing
the processing mechanism. Finally, it completely integrates all parsing processes, such as memory search, disam-
biguation and inferencing.
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