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Abstract Simple criteria for the existence of rational rotation-minimizing
frames (RRMFs) on quintic space curves are determined, in terms of both the
quaternion and Hopf map representations for Pythagorean-hodograph (PH)
curves in R

3. In both cases, these criteria amount to satisfaction of three scalar
constraints that are quadratic in the curve coefficients, and are thus much
simpler than previous criteria. In quaternion form, RRMF quintics can be
characterized by just a single quadratic (vector) constraint on the three quater-
nion coefficients. In the Hopf map form, the characterization is in terms of one
real and one complex quadratic constraint on the six complex coefficients. The
identification of these constraints is based on introducing a “canonical form”
for spatial PH curves and judicious transformations between the quaternion
and Hopf map descriptions. The simplicity of these new characterizations for
the RRMF quintics should help facilitate the development of algorithms for
their construction, analysis, and practical use in applications such as animation,
spatial motion planning, and swept surface constructions.

Keywords Rotation-minimizing frames · Pythagorean-hodograph curves ·
Angular velocity · Hopf map · Complex polynomials · Quaternions

Mathematics Subject Classifications (2000) 12Y05 · 14H45 · 14H50 · 14Q05 ·
53A04 · 68U05 · 68U07

Communicated by Helmut Pottmann.

R. T. Farouki (B)
Department of Mechanical and Aeronautical Engineering,
University of California, Davis, CA 95616, USA
e-mail: farouki@ucdavis.edu



332 R.T. Farouki

1 Introduction

In motion planning, computer animation, geometric design, and robotics, it
is often necessary to specify the variation of an orthonormal frame (f1, f2, f3)

along a given space curve r(t), that describes the orientation of a rigid body
along the given path. The so-called adapted frames on space curves, in which
the curve tangent t = r′/|r′| is chosen as the frame vector f1, are commonly
invoked in such contexts. These frames have one residual freedom, controlling
the orientation of the frame vectors f2, f3 in the curve normal plane.

The Frenet frame (t, n, b)—a well–known adapted frame [20]—is often
unsuitable for practical applications, since it incurs “unnecessary” rotation
of the normal-plane basis vectors n, b to ensure that the principal normal n
points towards the center of curvature. As observed by Bishop [1], however,
there are infinitely many adapted frames on a given space curve. Klok [19]
identified the rotation-minimizing frames (RMFs) as the best suited to swept
surface constructions, and he characterized them as solutions of first-order
differential equations. Guggenheimer [14] subsequently showed that the RMF
normal-plane vectors have an angular orientation relative to the Frenet frame
defined, modulo a constant, by the integral of the curve torsion with respect
to arc length (which does not ordinarily admit a closed-form reduction). See
[14, 16, 19, 23–25] for further details on the applications of RMFs.

The variation of any adapted frame (f1, f2, f3) with f1 = t along a curve r(t)
is specified in terms of its vector angular velocity ω(t) as1

f ′
1 = ω × f1 , f ′

2 = ω × f2 , f ′
3 = ω × f3 .

The instantaneous angular speed and rotation axis of the frame (f1, f2, f3) are
specified by the magnitude ω = |ω| and direction a = ω/|ω| of the angular
velocity. The distinctive property of a rotation-minimizing adapted frame is
that its angular velocity has no component along f1 = t—i.e., ω · t ≡ 0. In other
words, there is no instantaneous rotation of f2 and f3 about f1 = t.

Since polynomial and rational space curves do not ordinarily admit exact
rational RMF representation, many authors [12, 16–18, 24] have proposed
approximation schemes for them. It was noted in [4] that the Pythagorean-
hodograph (PH) curves [5] admit exact RMF computation by integrating a
rational function, but in general this incurs transcendental terms. Recently,
greater interest in constructing polynomial curves that possess exact rational
rotation-minimizing frames (or RRMF curves) has emerged. Such curves are
necessarily PH curves, since only the PH curves have rational unit tangents,
so the problem is to identify constraints on the coefficients of PH curves that
are sufficient and necessary for a rational RMF. Rational forms are always
preferable, on account of the exact and efficient computations they permit.

1In these relations, the curve parameter t is identified with time.
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Choi and Han [2] defined a rational adapted frame on spatial PH curves,
the so-called Euler–Rodrigues frame (ERF). The ERF is not a geometrically
intrinsic frame, since it depends on the chosen coordinate axes. However, it is
a more useful reference than the Frenet frame for identifying rational RMFs,
on account of its inherently rational nature and its non-singular behavior at
inflection points. In [2] the conditions under which the ERF of a PH curve can
be an RMF were investigated, and it was shown that: (a) for PH cubics, the
ERF and the Frenet frame are equivalent; (b) for PH quintics, the ERF can be
an RMF only in the degenerate case of planar curves; and (c) PH curves for
which the ERF can be an RMF are of minimum degree 7. Subsequently, Han
[15] identified an algebraic criterion characterizing RRMF curves of any (odd)
degree, and showed that RRMF cubics are degenerate, i.e., they are either
planar PH curves, or PH curves with non-primitive hodographs.

The existence of non-degenerate RRMF quintics was first constructively
demonstrated in [9], using the Hopf map representation of spatial PH curves,
rather than the more commonly-used quaternion form. The RRMF quintics
were characterized by one real and one complex constraint on the six complex
coefficients that define the Hopf map form of spatial PH quintics. However,
these constraints—of degree 6 and 4 in the coefficients—lack an expected
symmetry, and do not easily translate to the quaternion representation.

The goal of the present paper is to remedy these apparent shortcomings of
the original characterization of RRMF quintics, presented in [9]. By adopting
a special “canonical form” for spatial PH curves, and a sequence of strategic
transformations between the Hopf map and quaternion forms, we determine
sufficient-and-necessary conditions on the coefficients of spatial PH quintics
for the existence of a rational RMF, that are much simpler and more elegant
than those determined in [9]. In the Hopf map model, they amount to one
real and one complex quadratic constraint; in the quaternion model, a single
quadratic (vector) quaternion constraint suffices. In each case, the constraints
clearly embody a symmetry that expresses invariance of the RRMF property
under the parameter transformation t → 1 − t applied to r(t).

The plan for the paper is as follows. After reviewing some basic concepts
concerning the quaternion and Hopf map models for spatial PH curves, and
their behavior under scaling/rotation transformations in Section 2, a critique
of the previous Hopf map form of RRMF conditions [9] is given in Section 3.
A “canonical form” for the spatial PH curves is then introduced in Section 4,
that greatly simplifies the Hopf map form of the RRMF constraints, and an
explicit parameterization of the pairs of complex polynomials satisfying these
constraints is identified. Section 5 translates these results into the quaternion
model, allowing an elementary relaxation of the canonical-form assumption
through the usual interpretation of quaternions as scaling/rotation operators.
The general RRMF conditions are translated back into the Hopf map model
in Section 6, noting their simplicity and symmetry as compared to the earlier
conditions [9]. Finally, Section 7 presents some illustrative examples, while
Section 8 summarizes the key results of the paper and identifies interesting
avenues for further investigation.
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2 Quaternion and Hopf map forms

A polynomial space curve r(t) = (x(t), y(t), z(t)) is a Pythagorean-hodograph
(PH) curve if its derivative satisfies

∣
∣r′(t)

∣
∣ =

√

x′2(t) + y′2(t) + z′2(t) = σ(t) (1)

for some polynomial σ(t). Two alternative (equivalent) characterizations for
spatial hodographs r′(t) satisfying (1) were introduced by Choi et al. [3]. In
the quaternion representation, a Pythagorean hodograph is generated from a
quaternion polynomial A(t) = u(t) + v(t) i + p(t) j + q(t) k by the expression

r′(t) = A(t) iA∗(t) , (2)

A∗(t) = u(t) − v(t) i − p(t) j − q(t) k being the quaternion conjugate of A(t)—
note that the expression on the right is a quaternion with zero real (scalar)
part, regarded as a vector in R

3. The Hopf map representation, on the other
hand, generates spatial Pythagorean hodographs from complex polynomials2

α(t) = u(t) + i v(t), β(t) = q(t) + i p(t) by the expression

r′(t) =
(

|α(t)|2 − |β(t)|2, 2 Re
(

α(t)β(t)
)

, 2 Im
(

α(t)β(t)
))

. (3)

The equivalence of (2) and (3) may be seen by setting A(t) = α(t) + k β(t),
where the imaginary unit i is identified with the quaternion element i.

A working knowledge of the two representations (2) and (3)—and of
the algebra of quaternions, in particular—is necessary to properly appreciate
the arguments presented below. For brevity, we shall not re-capitulate here the
basic properties, manipulations, and interpretation of quaternion operations.
A comprehensive treatment may be found in [3, 5] and earlier relevant papers
[2, 4, 6–13, 15, 21]. As a matter of notational convention, we use calligraphic
characters to denote quaternions, and often invoke their scalar-vector form
[22], denoting these two components of a given quaternion A by scal(A) and
vect(A). In expressions where pure scalars or pure vectors are juxtaposed with
quaternions, the quaternion product is imputed.

There is an intimate connection between the spatial PH curves and curves
with rational rotation-minimizing frames (RRMF curves). Since satisfaction
of (1) is necessary for a rational unit tangent, all RRMF curves must be PH
curves. Using the quaternion representation, Han [15] has derived a sufficient
and necessary condition for a PH curve to possess a rational RMF. Namely,
the hodograph (2) defines an RRMF curve if and only if two relatively prime
polynomials a(t), b(t) exist, such that the components u(t), v(t), p(t), q(t) of
A(t) satisfy

uv′ − u′v − pq′ + p′q
u2 + v2 + p2 + q2 = ab ′ − a′b

a2 + b 2 . (4)

2Bold font symbols are used to denote both complex numbers and vectors in R
3—the meaning

should be clear from the context.
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Note that the numerator and denominator of the expression on the left can be
concisely expressed in terms of A(t) as scal(A(t) iA′∗(t)) and |A(t)|2.

In terms of the Hopf map representation, condition (4) can be interpreted
[9] as requiring the existence of a complex polynomial w(t) = a(t) + i b(t),
satisfying gcd(a(t), b(t)) = constant, such that

αα′ − α′α + ββ ′ − β
′
β

|α|2 + |β|2 = ww′ − w′w
|w|2 . (5)

In the quaternion representation, a scaling/rotation of the hodograph (2) is
effected by the pre- and post- multiplication of r′(t) with a quaternion S and its
conjugate S∗ to obtain S r′(t)S∗. This corresponds to the substitution

A(t) → SA(t) (6)

in (2). Writing S = |S| (cos 1
2ϑ + a sin 1

2ϑ) where a is a unit vector, the effect is
to scale r′(t) by the factor |S|2 and to rotate it through angle ϑ about the vector
a. Such transformations can likewise be specified in terms of the Hopf map
model (3). Writing A(t) = α(t) + k β(t) and S = ρ + k σ for suitable complex
numbers ρ, σ one can verify that the substitution

[

α(t)
β(t)

]

→
[

ρ(t) − σ (t)
σ (t) ρ(t)

] [

α(t)
β(t)

]

, (7)

in the Hopf map model is equivalent to (6) in the quaternion model: it incurs a
scaling of the hodograph (3) by the factor |S|2 = |ρ|2 + |σ |2 and a rotation by
angle ϑ about an axis vector a such that

cos ϑ = Re(ρ)
√|ρ|2 + |σ |2 , sin ϑ a = Im(ρ) i + Im(σ ) j + Re(σ ) k

√|ρ|2 + |σ |2 .

Note that a scaling/rotation transformation of the hodograph does not affect
satisfaction of (4) or (5). In the case of (4), the numerator and denominator
of scal(A(t) iA′∗(t)) / |A(t)|2 are both multiplied by |S|2 under the map (6). In
the case of (5), the numerator and denominator of the left-hand side are both
multiplied by |ρ|2 + |σ |2 under the map (7).

Remark 1 In this paper we consider satisfaction of (5) by quintic PH curves
defined by quadratic complex polynomials α(t), β(t) only when w(t) is also
quadratic (or, equivalently, satisfaction of (4) with deg(u(t), v(t), p(t), q(t)) = 2
when deg(a(t), b(t)) = 2). This fact should be kept in mind in the context of
Propositions 1–4 below. The existence of PH quintics satisfying (4) or (5) when
w(t) = a(t) + i b(t) is of higher degree than 2 remains undecided [9].
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3 Hopf map RRMF conditions

Consider spatial PH quintics specified in the Hopf map representation (3) by
quadratic complex polynomials α(t), β(t) given in Bernstein form as

α(t) = α0 (1 − t)2 + α1 2(1 − t)t + α2 t2 ,

β(t) = β0 (1 − t)2 + β1 2(1 − t)t + β2 t2 . (8)

Assuming (see Remark 1) that the polynomial w(t) in (5) is also quadratic, and
written as

w(t) = w0 (1 − t)2 + w1 2(1 − t)t + w2 t2 ,

it was shown in [9] that, for some real number γ , we must have

|α0|2 + |β0|2 = γ |w0|2 ,

α0α1 + β0β1 = γ w0w1 ,

α0α2 + β0β2 + 2
(|α1|2 + |β1|2

) = γ
(

w0w2 + 2 |w1|2
)

,

α1α2 + β1β2 = γ w1w2 ,

|α2|2 + |β2|2 = γ |w2|2 , (9)

in order to satisfy (5). Proposition 2 in [9] established that these equations are
consistent if and only if the coefficients of α(t), β(t) satisfy the constraints

(∣
∣α0

∣
∣
2 + ∣

∣β0

∣
∣
2
) ∣

∣
∣α1α2 + β1β2

∣
∣
∣

2 =
(∣
∣α2

∣
∣
2 + ∣

∣β2

∣
∣
2
) ∣

∣
∣α0α1 + β0β1

∣
∣
∣

2
, (10)

and
(∣
∣α0

∣
∣
2 + ∣

∣β0

∣
∣
2
) (

α0β2 − α2β0
) = 2

(

α0α1 + β0β1

) (

α0β1 − α1β0
)

, (11)

assuming α0β1 − α1β0 �= 0, i.e., the curve is not merely a straight line—see [9].
Since condition (10) is real and (11) is complex, these equations amount to
three scalar constraints on the coefficients of α(t), β(t).

To facilitate derivation of the RRMF conditions (10)–(11), it was observed
in Lemma 1 of [9] that, without loss of generality, one may assume w0 = 1 in
(9). However, this assumption incurs an asymmetry in the RRMF conditions.
Swapping the 0 and 2 subscripts on the coefficients of α(t), β(t) should not
alter the RRMF nature of a curve, since this corresponds merely to the re-
parameterization t → 1 − t. While condition (10) is clearly invariant under
such a swap, condition (11) is not. Taking w2 = 1 rather than w0 = 1 in (9),
we again deduce condition (10), but in lieu of (11) we obtain

(∣
∣α2

∣
∣
2 + ∣

∣β2

∣
∣
2
) (

α0β2 − α2β0
) = 2

(

α2α1 + β2β1

) (

α1β2 − α2β1
)

. (12)
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Note that (12) cannot be deduced from (10) and (11); nor can (11) be deduced
from (10) and (12). Equations (11) and (12) together imply that

(

α0α1 + β0β1

) (

α0β1 − α1β0
)

∣
∣α0

∣
∣
2 + ∣

∣β0

∣
∣
2 =

(

α2α1 + β2β1

) (

α1β2 − α2β1
)

∣
∣α2

∣
∣
2 + ∣

∣β2

∣
∣
2 , (13)

and comparing this with (10) then gives
(

α0α1 + β0β1

) (

α1β2 − α2β1
) =

(

α2α1 + β2β1

) (

α0β1 − α1β0
)

. (14)

In order to deduce (12), we need (14) in addition to (10) and (11). Conversely,
we require (14) to deduce (11), given (10) and (12). This rather cumbersome
and asymmetric structure seems unsatisfactory. In Section 6 we shall derive a
much simpler Hopf map characterization for the RRMF quintics that is not
only inherently symmetric, but also of much lower degree in the coefficients
of α(t), β(t) than conditions (10)–(12) and (14). Ironically, although we start
and end with Hopf map characterizations, the key to identifying this simpler
structure involves a detour into the quaternion representation.

4 Canonical form of spatial PH curves

The Hopf map characterization of quintic RRMF curves derived in [9] is not
very intuitive, and its asymmetric nature seems unfortunate. It was stated in
Remark 8 of [9] that the quaternion form, as compared to the Hopf map form,
does not seem amenable to deriving “simple” sufficient-and-necessary RRMF
conditions. We shall see in Section 5 that this remark was premature, although
the Hopf map representation proves instrumental in identifying the quaternion
RRMF condition presented below. The other key ingredient is to begin by
adopting a certain “canonical form” for the curves under study.

Definition 1 A spatial PH curve r(t) = (x(t), y(t), z(t)) is in canonical form
when a coordinate system is chosen such that r′(0) = (1, 0, 0).

Clearly, any curve in R
3 can be mapped to canonical form by means of an

appropriate scaling/rotation transformation, as described in Section 2. Note
that the polynomials a(t), b(t) satisfying (4)—or, equivalently, the real and
imaginary parts of w(t) in (5)—are invariant under these scaling/rotation
transformations. This fact is important, since a(t), b(t) are used to determine
the rational RMF from the ERF by a rational rotation—see [9, 15].

Remark 2 Since r′(0) = (|α0|2 − |β0|2, 2 Re(α0β0), 2 Im(α0β0)) we see that
|α0| = 1 and β0 = 0 for a PH curve in canonical form. Moreover, since (3)
is unchanged on multiplying α(t), β(t) by any unit-modulus complex number
exp(i φ), we can take α0 = 1 without loss of generality.
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The assumption of canonical form leads to a significant simplification of
the characterization of RRMF quintics in the Hopf map representation (3).
It becomes possible to identify explicit forms for the quadratic polynomials
α(t), β(t), w(t) satisfying (5), in terms of certain free parameters, that are
more convenient than the system of “implicit” constraints on their coefficients
derived in [9]. These forms will subsequently be used in Section 5 to derive a
remarkably simple quaternion characterization of RRMF quintics.

Proposition 1 A canonical-form spatial PH quintic has a rational RMF if and
only if the Bernstein coefficients of the quadratic polynomials α(t), β(t) in
the Hopf map representation (3) can be expressed in terms of two complex
parameters ζ , η and one real parameter ξ in the form

(

α0, α1, α2
) =

(

1, ζ ,
∣
∣ζ

∣
∣
2 − ∣

∣η
∣
∣
2 + i ξ

)

,
(

β0, β1, β2
) = (

0, η, 2 ζη
)

. (15)

The Bernstein coefficients of the quadratic polynomial w(t) in (5) are then
(

w0, w1, w2
) =

(

1, ζ ,
∣
∣ζ

∣
∣
2 + ∣

∣η
∣
∣
2 + i ξ

)

. (16)

Proof By Remark 2, we have α0 = 1, β0 = 0 for a PH quintic in canonical
form. Moreover, we can take w0 = 1 by Lemma 1 in [9]. On setting α1 = ζ ,
β1 = η equations (9) reduce to

1 = γ ,

ζ = γ w1 ,

α2 + 2
(∣
∣ζ

∣
∣
2 + ∣

∣η
∣
∣
2
)

= γ
(

w2 + 2
∣
∣w1

∣
∣
2
)

, (17)

ζ α2 + η β2 = γ w1w2 ,

∣
∣α2

∣
∣
2 + ∣

∣β2

∣
∣
2 = γ

∣
∣w2

∣
∣
2
.

Consider the generic case in which ζ , η are both non-zero.3 We have

γ = 1 , w0 = 1 , w1 = ζ , w2 = ζα2 + η β2

ζ
, (18)

the expressions for w1 and w2 coming from the second and fourth equations in
(17). Now these values must be consistent with the third and fifth equations in
(17). Substituting for γ , w1, w2 into the third equation gives

α2 + 2
(∣
∣ζ

∣
∣
2 + ∣

∣η
∣
∣
2
)

= ζ α2 + η β2

ζ
+ 2

∣
∣ζ

∣
∣
2
,

and by simplification this yields

β2 = 2 ζ η . (19)

3See Remark 3 below for the treatment of these special cases.
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Substituting for γ , β2, w2 into the fifth equation then gives

∣
∣α2

∣
∣
2 + 4

∣
∣ζ

∣
∣
2∣
∣η

∣
∣
2 =

∣
∣ ζ α2 + 2 ζ

∣
∣η

∣
∣
2 ∣
∣
2

∣
∣ζ

∣
∣
2 .

Multiplying through by |ζ |2 and expanding the right-hand side yields

∣
∣ζ

∣
∣
2∣
∣α2

∣
∣
2 + 4

∣
∣ζ

∣
∣
4∣
∣η

∣
∣
2 = ∣

∣ζ
∣
∣
2∣
∣α2

∣
∣
2 + 4

∣
∣ζ

∣
∣
2∣
∣η

∣
∣
4 + 4

∣
∣ζ

∣
∣
2∣
∣η

∣
∣
2 Re

(

α2
)

,

and hence we deduce that

α2 = ∣
∣ζ

∣
∣
2 − ∣

∣η
∣
∣
2 + i ξ , (20)

where ξ = Im(α2) is arbitrary. Finally, substituting from (19) and (20) into
expression (18) for w2, we obtain

w2 =
ζ

(∣
∣ζ

∣
∣
2 − ∣

∣η
∣
∣
2 + i ξ

)

+ 2 ζ
∣
∣η

∣
∣
2

ζ
= ∣

∣ζ
∣
∣
2 + ∣

∣η
∣
∣
2 + i ξ .

Hence, the Bernstein coefficients of quadratic polynomials α(t), β(t), w(t) that
satisfy (5) are of the form given in (15) and (16). ��

Remark 3 It was shown in [9] that RRMF quintics degenerate to straight
lines when α0β1 − α1β0 = 0. In terms of the coefficients (15), this reduces
to η = 0, and (17) then yield (β0, β1, β2) = (0, 0, 0) so β(t) vanishes and
(3) defines a straight line. Furthermore, the condition for degeneration of
RRMF quintics to planar curves was identified in [9] as Im(α0α1 + β0β1) =
Im(α1α2 + β1β2) = 0. In terms of the coefficients (15), this gives Im(ζ ) =
Re(ζ ) ξ − (|ζ |2 + |η|2) Im(ζ ) = 0, so either ζ = 0 or Im(ζ ) = ξ = 0.

For quadratic polynomials α(t), β(t), w(t) with the Bernstein coefficients
(15) and (16) one can check that α(t)α′(t) − α′(t)α(t) + β(t)β ′(t) − β

′
(t)β(t) ≡

w(t)w′(t) − w′(t)w(t) by computing Bernstein coefficients of the quadratics on
the left and right as

α0α1 − α1α0 + β0β1 − β1β0 = w0w1 − w1w0 = 2 Im
(

ζ
)

i ,

α0α2 − α2α0 + β0β2 − β2β0 = w0w2 − w2w0 = 2 ξ i ,

α1α2 − α2α1 + β1β2 − β2β1 = w1w2 − w2w1

= 2 Re
(

ζ
)

ξ i − 2
(∣
∣ζ

∣
∣
2 + ∣

∣η
∣
∣
2
)

Im
(

ζ
)

i .
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Similarly, |α(t)|2 + |β(t)|2 ≡ |w(t)|2 is verified by computing the Bernstein
coefficients of the quartics on the left and right as

∣
∣α0

∣
∣
2 + ∣

∣β0

∣
∣
2 = ∣

∣w0
∣
∣
2 = 1 ,

α0α1 + α1α0 + β0β1 + β1β0 = w0w1 + w1w0 = 2 Re
(

ζ
)

,

α0α2 + α2α0 + β0β2 + β2β0 + 4
(∣
∣α1

∣
∣
2 + ∣

∣β1

∣
∣
2
)

= w0w2 + w2w0 + 4
∣
∣w1

∣
∣
2 = 6

∣
∣ζ

∣
∣
2 + 2

∣
∣η

∣
∣
2
,

α1α2 + α2α1 + β1β2 + β2β1 = w1w2 + w2w1

= 2
(∣
∣ζ

∣
∣
2 + ∣

∣η
∣
∣
2
)

Re
(

ζ
) + 2 Im

(

ζ
)

ξ ,

∣
∣α2

∣
∣
2 + ∣

∣β2

∣
∣
2 = ∣

∣w2
∣
∣
2 =

(∣
∣ζ

∣
∣
2 + ∣

∣η
∣
∣
2
)2 + ξ 2 .

5 Quaternion RRMF condition

We now translate canonical-form RRMF quintics, specified in the Hopf map
representation, to the quaternion representation. Straightforward arguments
then lead to a simple, elegant quaternion characterization of general RRMF
quintics. Since prior attempts to determine such a condition using only the
quaternion form have failed, these arguments highlight the value of retaining
both the forms (2) and (3), and judiciously swapping between them.

In the quaternion representation, a spatial PH quintic is defined through (2)
by a quadratic polynomial

A(t) = A0(1 − t)2 + A12(1 − t)t + A2t2 , (21)

equivalent to the pair of complex quadratic polynomials (8) used in the Hopf
map representation, through the relation A(t) = α(t) + k β(t).

Proposition 2 In terms of the quaternion representation, a canonical-form spa-
tial PH quintic specified by coefficients A0 = 1 and Ar = αr + k βr for r = 1, 2
in (2) and (21) has a rational RMF if and only if A2 can be expressed in terms
of A1 and an arbitrary real number ξ as

A2 = (

ξ − A1 iA∗
1

)

i . (22)

Proof In canonical form, we have α0 = 1 and β0 = 0, so A0 = 1. Writing α1 =
ζ = u1 + i v1 and β1 = η = q1 + i p1 gives A1 = u1 + v1 i + p1 j + q1 k. From
(15) we then have

A2 = α2 + k β2 = ∣
∣ζ

∣
∣
2 − ∣

∣η
∣
∣
2 + ξ i + k 2 ζη

= (

u2
1 + v2

1 − p2
1 − q2

1

) + ξ i + 2
(

u1 p1 − v1q1
)

j + 2
(

u1q1 + v1 p1
)

k .
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Noting that A1 iA∗
1 = (u2

1+v2
1 − p2

1−q2
1) i + 2 (u1q1+v1 p1) j + 2 (v1q1−u1 p1) k,

one can verify that (22) is equivalent to the above expression for A2. ��

Thus, the 1, i, j, k components of A2 are related to those of A1 iA∗
1 and ξ by

(

A2
)

1 = (

A1 iA∗
1

)

i ,
(

A2
)

i = ξ ,
(

A2
)

j = − (

A1 iA∗
1

)

k ,
(

A2
)

k = (

A1 iA∗
1

)

j .

To verify that a canonical-form PH quintic in the quaternion representation
obeys (4) when its coefficients satisfy (22), we write

A0 = 1 , A1 = u1 + v1 i + p1 j + q1 k ,

A2 = u2
1 + v2

1 − p2
1 − q2

1 + ξ i + 2
(

u1 p1 − v1q1
)

j + 2
(

u1q1 + v1 p1
)

k ,

for such a curve. Hence, the quaternion polynomial A(t) has components of
the form

u(t) = (1 − t)2 + u1 2(1 − t)t + (

u2
1 + v2

1 − p2
1 − q2

1

)

t2 ,

v(t) = v1 2(1 − t)t + ξ t2 ,

p(t) = p1 2(1 − t)t + 2
(

u1 p1 − v1q1
)

t2 ,

q(t) = q1 2(1 − t)t + 2
(

u1q1 + v1 p1
)

t2 . (23)

Also, from (16) with ζ = u1 + i v1 and η = q1 + i p1 so that A1 = ζ + k η, we
deduce that a(t) = Re(w(t)) and b(t) = Im(w(t)) are given by

a(t) = (1 − t)2 + u1 2(1 − t)t + ∣
∣A1

∣
∣
2

t2 , b(t) = v1 2(1 − t)t + ξ t2 , (24)

where |A1|2 = u2
1 + v2

1 + p2
1 + q2

1. Hence, we have

u(t)v′(t) − u′(t)v(t) − p(t)q′(t) + p′(t)q(t) = a(t)b ′(t) − a′(t)b(t)

= 2v1 (1 − t)2 + ξ 2(1 − t)t + 2
(

u1ξ − ∣
∣A1

∣
∣
2
v1

)

t2 ,

and

u2(t) + v2(t) + p2(t) + q2(t) = a2(t) + b 2(t)

= (1 − t)4 + u1 4(1 − t)3t + [

u2
1 + v2

1 + 1
3

(

p2
1 + q2

1

)]

6(1 − t)2t2

+ (

u1
∣
∣A1

∣
∣
2 + v1 ξ

)

4(1 − t)t3 + (∣
∣A1

∣
∣
4 + ξ 2) t4 .

In the quaternion representation, the reduction to canonical form of any
spatial PH quintic specified through (2) by the quadratic polynomial (21) may
be accomplished by pre-multiplying this polynomial with A∗

0/|A0|2, to obtain a
quadratic polynomial with coefficients 1,A∗

0A1/|A0|2, A∗
0A2/|A0|2. This maps

the initial curve derivative r′(0) = A0 iA∗
0 into the unit vector i through a

spatial scaling/rotation, and the property of having a rational RMF is clearly
invariant under such transformations. This fact can be used to find a simple
constraint on the quaternion coefficients A0,A1,A2 of spatial PH quintics (in
general position) identifying those curves with rational RMFs.
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Proposition 3 A general spatial PH quintic specified by (2) and (21) has a
rational RMF if and only if the quaternion coefficients A0,A1,A2 satisfy

vect
(

A2 iA∗
0

) = A1 iA∗
1 . (25)

Proof In the canonical-form condition (22) for RRMF quintics, we imagine
the coefficients A1, A2 to be derived through a scaling/rotation, defined by
multiplication with A∗

0/|A0|2, that transforms a PH quintic to canonical form.
Substituting A∗

0A1/|A0|2 and A∗
0A2/|A0|2 for A1 and A2 in (22), we obtain

A∗
0A2

∣
∣A0

∣
∣
2 =

[

ξ −
(

A∗
0A1

)

∣
∣A0

∣
∣
2 i

(

A∗
0A1

)∗
∣
∣A0

∣
∣
2

]

i ,

where the coefficients A0, A1, A2 now refer to a general (non-canonical) PH
quintic. Clearing denominators, simplifying, and multiplying both sides on the
right with i then gives

∣
∣A0

∣
∣
2A∗

0A2 i = A∗
0A1 iA∗

1A0 − ∣
∣A0

∣
∣
4
ξ .

Multiplying this equation on the left and right by A0 and A∗
0, and cancelling a

common factor |A0|4, we obtain

∣
∣A0

∣
∣
2
ξ = A1 iA∗

1 − A2 iA∗
0 .

Since the expression on the left is a pure scalar of arbitrary value—ξ is a
free parameter—and A1 iA∗

1 is always a pure vector, this equation is evidently
equivalent to the stated condition (25). ��

Remark 4 Unlike the Hopf map characterization of RRMF quintics in [9], the
quaternion condition (25) is symmetric, i.e., it is invariant under swapping the 0
and 2 subscripts, corresponding to the re-parameterization t → 1 − t. Namely,
since (A2 iA∗

0)
∗ = −A0 iA∗

2, we have vect(A2 iA∗
0) = vect(A0 iA∗

2).

6 Symmetric Hopf map RRMF conditions

In Section 3, we remarked that the Hopf map form of the RRMF conditions
derived in [9] do not have the desired property of invariance upon exchanging
the 0 and 2 subscripts on the coefficients of the polynomials (8). In Section 4,
a “canonical form” was invoked to determine an explicit parameterization for
the set of polynomials (8) satisfying these RRMF conditions. This result was
then invoked in Section 5 to identify a simple and symmetric characterization
of RRMF quintics in the quaternion representation. Returning to our point
of departure, we now use this quaternion condition to identify the symmetric
Hopf map RRMF conditions that eluded us in Section 3.
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Proposition 4 A spatial PH quintic specified by the Hopf map form (3) has a
rational RMF if and only if the coefficients of the polynomials (8) satisfy

Re
(

α0α2 − β0β2

)

= ∣
∣α1

∣
∣
2 − ∣

∣β1

∣
∣
2
, α0β2 + α2β0 = 2 α1β1 . (26)

Proof Writing Ar = ur + vr i + pr j + qr k for r = 0, 1, 2 the quaternion RRMF
condition (25) is equivalent to the three scalar conditions

u0u2 + v0v2 − p0 p2 − q0q2 = u2
1 + v2

1 − p2
1 − q2

1 ,

u0q2 + u2q0 + v0 p2 + v2 p0 = 2
(

u1q1 + v1 p1
)

,

v0q2 + v2q0 − u0 p2 − u2 p0 = 2
(

v1q1 − u1 p1
)

,

and by setting αr = ur + i vr and βr = qr + i pr for r = 0, 1, 2 one can easily
verify that these conditions are exactly equivalent to (26). ��

The Hopf map characterization (26) of the quintic RRMF curves is clearly
much simpler and more attractive than the conditions (10)–(11) originally
derived in [9]. Unlike the latter, conditions (26) have the desirable property
(see Section 3) of invariance if the subscripts 0 and 2 are swapped. Moreover,
conditions (26) are quadratic in the coefficients of α(t), β(t) while conditions
(10) and (11) are degree 6 and 4. Finally, conditions (26) may be interpreted as
fixing the middle coefficients α1, β1 of an RRMF quintic, in terms of the outer
coefficients α0, β0, α2, β2 and a free (real) parameter, as follows.

Substituting for α1 or β1 from the second of (26) into the first equation, and
writing

P = Re
(

α0α2 − β0β2

)

, Q = ∣
∣α0β2 + α2β0

∣
∣ ,

one can deduce that
∣
∣α1

∣
∣
2 = 1

2

(√

P2 + Q2 + P
)

,
∣
∣β1

∣
∣
2 = 1

2

(√

P2 + Q2 − P
)

. (27)

The second of (26) then gives

arg
(

α1
) − arg

(

β1
) = arg

(

α0β2 + α2β0
)

. (28)

Thus, we may freely assign the argument of α1 or β1, and they are then
both determined by (27)–(28). This property will prove advantageous in the
construction of RRMF quintics by Hermite interpolation.

It is fairly easy to show that condition (14) follows from (26). First, one can
verify that

2
[

α1β1α
2
1 −

(∣
∣α1

∣
∣
2 − ∣

∣β1

∣
∣
2
)

α1β1 − α1β1β
2
1

]

= 0 .

Substituting from (26) for α1β1, |α1|2 − |β1|2, α1β1 into the above gives
(

α0β2 + α2β0
)

α2
1 − 2 Re

(

α0α2 − β0β2

)

α1β1 −
(

α0β2 + α2β0

)

β2
1 = 0 ,

and this is simply the result of expanding and re-arranging (14).



344 R.T. Farouki

The fact that conditions (10)–(12) also follow directly from (26) is not so
obvious. Consider condition (10) first—by expanding, we obtain

∣
∣
∣α1α2 + β1β2

∣
∣
∣

2

∣
∣
∣α0α1 + β0β1

∣
∣
∣

2 =
∣
∣α1

∣
∣
2∣
∣α2

∣
∣
2 + ∣

∣β1

∣
∣
2∣
∣β2

∣
∣
2 + 2 Re

(

α1α2β1β2

)

∣
∣α0

∣
∣
2∣
∣α1

∣
∣
2 + ∣

∣β0

∣
∣
2∣
∣β1

∣
∣
2 + 2 Re

(

α0α1β0β1

) .

Substituting from (27) for |α1|2, |β1|2 and α1β1 = 1
2 (α0β2 + α2β0) from the

second of equations (26), and simplifying, this ratio becomes
[√

P2 + Q2 + P + 2 Re
(

β0β2

)] ∣
∣α2

∣
∣
2 +

[√

P2 + Q2 − P + 2 Re
(

α0α2
)] ∣

∣β2

∣
∣
2

[√

P2 + Q2 + P + 2 Re
(

β0β2
)] ∣

∣α0
∣
∣
2 +

[√

P2 + Q2 − P + 2 Re
(

α0α2
)] ∣

∣β0

∣
∣
2

and by further substituting P = Re(α0α2 − β0β2), this reduces to
[√

P2 + Q2 + Re
(

α0α2 + β0β2

)] (∣
∣α2

∣
∣
2 + ∣

∣β2

∣
∣
2
)

[√

P2 + Q2 + Re
(

α0α2 + β0β2

)] (∣
∣α0

∣
∣
2 + ∣

∣β0

∣
∣
2
) =

∣
∣α2

∣
∣
2 + ∣

∣β2

∣
∣
2

∣
∣α0

∣
∣
2 + ∣

∣β0

∣
∣
2 .

Hence, condition (10) follows from conditions (26).
Consider now condition (11). Expanding the right-hand side gives

2
(

α0α1+β0β1

) (

α0β1−α1β0
)=2

[

α2
0α1β1−β2

0α1β1−
(∣
∣α1

∣
∣
2−∣

∣β1

∣
∣
2
)

α0β0

]

and substituting into this from (26) for α1β1, α1β1, and |α1|2 − |β1|2, and
writing Re(α0α2 − β0β2) = 1

2 (α0α2 − β0β2 + α0α2 − β0β2), this reduces to
∣
∣α0

∣
∣
2
α0β2−

∣
∣β0

∣
∣
2
α2β0−

∣
∣α0

∣
∣
2
α2β0+

∣
∣β0

∣
∣
2
α0β2 =

(∣
∣α0

∣
∣
2+∣

∣β0

∣
∣
2
) (

α0β2−α2β0
)

.

Hence, conditions (26) imply satisfaction of (11). Analogous arguments can be
used to show satisfaction of (12).

7 Computed examples

Taking the initial and final coefficients of the polynomials (8) as

α0 = 1 + i , α2 = 2 − i , β0 = −1 + i , β2 = 1 − 2 i , (29)

we have α0α2 − β0β2 = 4 + 4 i and α0β2 + α2β0 = − 4 + 2 i, and hence

P = Re
(

α0α2 − β0β2

)

= 4 , Q =
∣
∣
∣α0β2 + α2β0

∣
∣
∣ = √

20 .

Thus, from (27) and (28) we obtain
∣
∣α1

∣
∣ = √

5 ,
∣
∣β1

∣
∣ = 1 and arg

(

α1
) − arg

(

β1
) = φ ,

where φ is defined by

cos φ = − 2√
5

, sin φ = 1√
5

.
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Thus α1, β1 may be expressed in terms of a free angular parameter θ as

α1 = √
5 (cos θ + i sin θ) , β1 = sin θ − 2 cos θ − i (2 sin θ + cos θ)√

5
. (30)

One can verify that, for every θ , the complex values (29) and (30) satisfy the
Hopf map RRMF conditions (26), with Re(α0α2 − β0β2) = |α1|2 − |β1|2 = 4
and α0β2 + α2β0 = 2 α1β1 = − 4 + 2 i.

In terms of the quaternion representation, the choices (29) correspond to

A0 = 1 + i + j − k , A2 = 2 − i − 2 j + k ,

and we have A2 iA∗
0 = 2 + 4 i − 4 j + 2 k. Hence, the quaternion RRMF condi-

tion (25) becomes

A1 iA∗
1 = v ,

where v = 4 i − 4 j + 2 k. In [8] it was shown that such a quaternion equation
has solutions of the form

A1 = √|v| n exp(φ i) ,

where

|v| = 6 , n = v + |v| i
| v + |v| i | = 5 i − 2 j + k√

30
, exp(φ i) = cos φ + sin φ i ,

with φ being a free angular parameter. This yields

A1 = − √
5 sin φ + √

5 cos φ i + sin φ − 2 cos φ√
5

j + 2 sin φ + cos φ√
5

k ,

and one can easily verify that, with the choice φ = θ − 1
2π , this is equal to α1 +

k β1 when α1 and β1 are given by (30).
The quaternion representation can be reduced to canonical form through a

pre-multiplication of A0, A1, A2 with A∗
0/|A0|2 to obtain the new coefficients

A0 = 1 , A2 = − 1
2 − 1

2 i − j + k ,

A1 = 1

2
√

5

[ − 3 sin φ + cos φ + (sin φ + 3 cos φ) i

+ (4 sin φ + 2 cos φ) j + (− 2 sin φ + 4 cos φ) k
]

. (31)
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Frenet

ERF

RMF

Frenet

ERF

RMF

Fig. 1 The RRMF quintics determined by the quaternion coefficients (31) with φ = 0 (upper
curve) and φ = − 1

4 π (lower curve), illustrating the Frenet frame (left), the Euler–Rodrigues frame
(center), and the rational rotation-minimizing frame (right). For clarity, the unit tangent vector
(common to all three adapted frames) is omitted: only the normal-plane vectors are shown

Comparing these coefficients with (21) for the canonical-form components (23)
of A(t) = u(t) + v(t) i + p(t) j + q(t) k gives the correspondence

u1 = − 3 sin φ + cos φ

2
√

5
, v1 = sin φ + 3 cos φ

2
√

5
,

p1 = 2 sin φ + cos φ√
5

, q1 = − sin φ + 2 cos φ√
5

, ξ = − 1
2 .

Hence, noting that |A1|2 = 3
2 , we can identify the two polynomials (24) that

determine the RRMF through a rational rotation of the ERF as

a(t) = (1 − t)2 + u1 2(1 − t)t + 3
2 t2 , b(t) = v1 2(1 − t)t − 1

2 t2 ,
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where u1, v1 are as defined above—see [9] for details on the computation of
the rational RMF from the ERF and a(t), b(t).

The curve control points can be expressed [7] in terms of A0, A1, A2 as

p1 = p0 + 1
5 A0 iA∗

0 ,

p2 = p1 + 1
10

(

A0 iA∗
1 + A1 iA∗

0

)

,

p3 = p2 + 1
30

(

A0 iA∗
2 + 4A1 iA∗

1 + A2 iA∗
0

)

,

p4 = p3 + 1
10

(

A1 iA∗
2 + A2 iA∗

1

)

,

p5 = p4 + 1
5 A2 iA∗

2 ,

p0 being an arbitrary integration constant. Figure 1 illustrates this RRMF
quintic, together with its Frenet frame, ERF, and RMF, for two values of φ.

8 Closure

Adopting canonical coordinates and freely switching between the Hopf map
and quaternion representations of spatial PH quintics yields greatly simplified
constraints identifying the family of curves with rational rotation-minimizing
frames (RRMF quintics). These constraints are merely quadratic in the curve
coefficients, and exhibit the desirable symmetry property of invariance under
a reversion of the curve parameter. The relatively simple nature of these new
RRMF constraints—compared to those formerly available—should greatly
facilitate development of algorithms for the construction, shape analysis, and
practical applications of quintic RRMF curves. It is expected that these new,
simplified characterizations will pave the way toward widespread utilization
of the RRMF curves in motion planning, computer animation, swept surface
constructions, robotics, and other fields in which the specification/control of
spatial orientation along a given path is of central concern.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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