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Thought Experiments in Scientific Discovery: 
What Emergent Mental Capabilities Underlie their Efficacy? 

 
Roger N. Shepard (rshepard@cox.net) 

The Arizona Senior Academy 
13805 E. Langtry Lane, Tucson, AZ 85747 USA 

 
 

Abstract 
 

Examples from Archimedes, Galileo, Newton, Einstein 
and others suggest that fundamental laws of physics 
were—or, at least, could have been—discovered by 
experiments performed not in the physical world but 
only in the mind. Though problematic for a strict 
empiricist, this mode of discovery may have become 
possible, in part, through the evolutionary emergence in 
humans of deeply internalized implicit knowledge of 
abstract principles of transformation and symmetry.   
 
Keywords: Thought Experiments; Physical Laws; 
Imagined Transformations; Mental Rotation; Symmetry; 
Rationality; Moral Laws; Determinism; Free Will 
 

The Problem 
 

Thought experiments are widely reported to have played a 
prominent role in the discoveries of physical laws.  I shall 
describe some specific thought experiments, similar to those 
that were (or may have been) carried out by Archimedes, 
Galileo, Newton, and Einstein and that appear to be 
sufficient to establish fundamental laws of physics, without 
having to carry out any of these experiments physically.  
How is this possible?  Where does such knowledge originate 
if not, as supposed by strict empiricists, from an individual’s 
direct interactions with the physical world?     

The answer I propose grew out of my evolutionary 
perspective together with my cognitive psychological 
researches on mental transformations (Shepard & Cooper, 
1982, Shepard & Metzler, 1971) and on generalization 
(Shepard, 1987; and the related far-reaching developments 
subsequently achieved by Tenenbaum and his coworkers—
e.g., Tenenbaum & Griffiths, 2001a, 2001b). Here, however, 
I focus primarily on the role of mental transformations and 
an associated symmetry principle of invariance under 
transformation. (Some of the ideas I shall present here I 
have previously sketched, e.g., in Shepard, 1994, 2001, 
2003, and in my 1994 William James Lectures at Harvard.) 

For readers engaged in the computational modeling of 
cognitive processes, I invite consideration of how the kinds 
of transformational processes and symmetry principles I 
consider here might be implemented in the modeling of 
processes of scientific discovery. 
 

Empirical Science and Mathematics 
 

Traditionally, a sharp distinction is maintained between the 
empirical sciences including physics, on one hand, and 
mathematics and logic, on the other. Observations, 

measurements, and experiments on physical objects and 
phenomena are generally considered to be essential for the 
advancement of the empirical sciences. But mathematics is 
supposed to be concerned with what propositions are 
logically entailed by other propositions, without regard for 
whether any of these propositions are strictly true of 
anything in the physical world.  

Also, in physics, what are taken to be the elementary or 
primitive objects at any given stage of development of the 
field are always provisional and subject to later re-
conceptualization—often in terms of still more elementary 
entities. Thus, water, experienced as a continuous fluid, is 
reconceived as composed of increasingly more elementary 
entities such as:  discrete molecules, electrons and protons, 
quarks, vibrations in a convoluted high-dimensional 
manifold, and so on—with no clear end in sight. 

But in mathematics, what are taken to be the elementary 
or primitive objects are dictated by the mathematician rather 
than by nature. Such objects as the integers of arithmetic or 
number theory or the points and lines of geometry are 
completely transparent from the outset. We do not suppose 
that an integer or a point is ever going to be found to be 
composed of some previously unsuspected more elementary 
parts.  Instead, the advances yet to be made in number 
theory or in geometry are expected to concern what relations 
among numbers or among points and lines will be found to 
be entailed by whatever axioms we have formulated for 
number theory or geometry.    

Nevertheless, mathematics and physics are alike in that, 
in both cases, we aspire to a consistent theoretical system of 
basic assumptions and derivable implications.  But whereas 
in physics a system is valued primarily to the extent that the 
derivable implications succeed in explaining or predicting 
what we observe or measure in the physical world, in pure 
mathematics the system may be valued for the beauty and 
symmetry of the system and its results–independently of the 
extent to which they agree with anything we observe or 
measure in the physical world. Nevertheless, results of pure 
mathematics that were originally valued for their own 
intrinsic beauty were often later found to be useful or even 
crucial for the development of physical theory. Notable 
examples include the non-Euclidean geometries of 
Minkowski and of Riemann for special and general 
relativity, respectively, and matrix algebra, complex 
numbers, quaternions, and infinite-dimensional Hilbert 
spaces for quantum theory.  

Moreover, physics and mathematics are, alike, creations 
of the human mind. Absent a comprehending mind, the 
equations of either mathematics or of theoretical physics 
would not exist and, even if they did, would exist only as 
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uninterpreted squiggly patterns in the physical world. How 
do we humans come to formulate and to comprehend these 
mathematical equations and, in the case of physics, these 
laws of nature?  When we try to do this for ourselves, we 
may find that the cognitive processes in the cases of physics 
and mathematics are often more similar than the traditional 
distinction between mathematical and the empirical sciences 
would suggest.  To illustrate, I present, first, an example 
from mathematics (specifically, geometry) and, then, several 
simple examples from physics (primarily, mechanics).   

 
Pythagoras’s Theorem for Right Triangles 

 

The theorem attributed to Pythagoras that relates the length 
of the hypotenuse of a right triangle to the lengths of its two 
other sides, is surely a theorem of mathematics.  It may not 
hold exactly in the physical world.  Even before Einstein, it 
clearly did not hold for large triangles on the spherical 
surface of the earth. Then, according to general relativity it 
does not exactly hold for triangles in three-dimensional 
physical space, more or less warped as it is in the vicinity of 
any massive bodies.  Still, according to pure geometry, it 
does hold precisely for triangles in a flat plane.  How can we 
convince ourselves of this latter, mathematical fact?  

There are various intuitive demonstrations of the validity 
of the Pythagorean theorem. Figure 1 illustrates one such 
demonstration.  (I don’t know who originally devised this 
demonstration. I first learned of it from Douglas Hofstadter, 
personal communication.)  The theorem states that for any 
right triangle with shorter sides of lengths A and B and 
hypotenuse of length C, A2 + B2 = C2.  As indicated in the 
figure, this is equivalent to the statement that the sum of the 
areas of the squares constructed on the two shorter sides of 
the triangle equals the area of the larger square constructed 
on the hypotenuse.   

The truth of the theorem can be confirmed by imagining a 
few simple transformations.  First, imagine a straight line 
constructed orthogonal to the hypotenuse and passing 
through the opposite vertex (as indicated in the figure by the 
dotted segment that thus divides the original triangle into 
the two areas labeled “a” and “b”).  Second, imagine each 
constructed square (of area A2, B2, or C2) and its adjacent 
triangle (of area a, b, or a+b) rotated (and also flipped in the 
case of the largest square-plus-triangle) as a rigid unit to 
yield the three house-shaped objects lined up across the 
bottom of the figure. Third, from a consideration of the 
complementary angles of the original triangle, confirm that 
the three triangles at the tops of the three squares (lined up 
below), though differing in size, are necessarily identical in 
shape.  Finally, from this identity of shape and the obvious 
fact that a + b = c, reach the conclusion for the proportional 
areas of the squares that A2 + B2 = C2.   Q E D. 

 I suggest that the operations imagined here are of 
essentially the kind that my students and I investigated in 
our studies of “mental rotation” (Shepard & Cooper, 1982; 
Shepard & Metzler, 1971).  Also crucial, here, is the 
realization that shape and size are invariant under the rigid 
transformations of translation, rotation, and horizontal 
flipping (which is a rotation in depth).  Such invariance 

under transformation corresponds to a symmetry principle, 
which will figure more prominently in ensuing examples.   

 

A2

B2

C2

A2 B2 C2

a
b

b
a

c = a + b

  rotate
 counter-
clockwise

 rotate clockwise
& flip horizontally

  
Figure 1: Proof of the Pythagorean Theorem 

 
Archimedes’s Law of the Lever 

 

Unlike the theorem of Pythagoras, which belongs to pure 
mathematics, Archimedes law of the lever appears to be a 
law of physics.  It can be stated as follows:  Physical objects 
placed along a beam resting on a central fulcrum will 
balance if and only if the sum of the products of the weights 
and their distances from the fulcrum is equal for the objects 
on the left and for the objects on the right of the fulcrum. 
Archimedes may have verified this law by placing actual 
physical objects on actual physical balance beams.  But he 
need not have done so. He may very well have seen that this 
law must hold by thought experiments and a simple 
principle of symmetry, as I illustrate in A-E of Figure 2. 

If he had imagined the situation shown in A, Archimedes 
would immediately have seen by symmetry that the four 
weights must balance.  Because the weights are identical by 
hypothesis, any permutation of them must leave the 
situation unchanged, with no reason for one side or the other 
to tilt down. Now imagine that without altering the weight 
of any part of the beam itself, it is modified to have a 
secondary fulcrum as shown in B.  If the four identical 
weights are now placed as illustrated in C, everything will 
still balance as it did in A.  Moreover, this remains true for 
any placement of the two weights on the secondary Beam 2 
that is symmetrical around that secondary fulcrum.  For any 
such symmetrical placement, the combined weight of those 
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two objects is communicated to the primary beam, as 
before, at the location of that secondary fulcrum. Each of 
the cases exhibited (C, D, & E) satisfies Archimedes’s 
condition.  As shown by the equation over each case, the 
negative sum of the products on the left of the fulcrum 
cancels the positive sum of the products on the right.  

 

 
 
Figure 2: Demonstration of Archimedes’s Law of the Lever 
 

More generally, beginning with any distribution of any 
number of weights along a beam, we can use the same 
symmetry principle to confirm the following:  First, we note 
that whether Archimedes’s condition holds or not (i.e., 
whether the beam balances or not) the fact of its balance or 
imbalance is preserved under any transformation of moving 
any two weights together at the midpoint between them.  
Second, iteration of such transformations converges toward 
the situation in which all the weights are located at 
Archimedes’s centroid of the original distribution.  (At any 
stage of this process, the centroid will be at the fulcrum if 
and only if Archimedes’s condition holds at that stage.)  
Thus are we able to verify Archimedes law, without ever 
placing any actual weights on any actual beam.  So, what 
was taken to be an empirical fact about the physical world 
turns out to be entailed by an abstract, mathematical 
principle of invariance under transformation–or, 
equivalently, of symmetry, as we can verify by thought 
alone, much as we did in the case of Pythagoras’s 
mathematical law concerning right triangles. 

After choosing the mathematical example of Pythagoras 
and the physical example of Archimedes, I noticed another 
connection between them:  Imagine that you wish to verify 
that thee long rods of the same diameter and material would 
form a right triangle.  But (a) the long narrow room in which 
you must do this is not wide enough to accommodate the 
triangle itself and (b) no ruler or measuring tape is available.  
I leave it as an exercise for the reader to prove that if a long 
(unmarked) beam and fulcrum are available, a triangle 
formed by the three bars would form a right triangle if and 
only if a balance is achieved when the two shorter bars are 
laid side-by-side on one side extending from the fulcrum 
and the longest bar is laid on the other side extending from 
the fulcrum (as illustrated in Figure 3). 

 

              
 

Figure 3: Beam balance equivalence of right triangle  
    

Galileo’s Law of Falling Bodies 
 

Perhaps the most extensively analyzed thought experiment 
of all time is the one Galileo used to refute Aristotle’s claim 
that falling bodies drop with speeds proportional to their 
weights (see Gendler, 1998). Presumably, Aristotle did not 
reach his erroneous conclusion by performing an actual 
experiment.  If he reached it from a thought experiment, it 
evidently was one to which he did not devote enough 
thought. He may have imagined hefting a light object in one 
hand and a heavy one in the other and leaped to the hasty 
conclusion that if the objects were released, the greater 
downward force of the heavier object on his hand would 
manifest itself as a faster descent.  But such a conclusion 
ignores inertia–something that Artistotle might have 
realized before Galileo if he had also thought about the 
greater effort needed to accelerate a more massive object to 
the same speed as a lighter object.  

Galileo’s thought experiment was conclusive. It yielded 
the correct conclusion: The speed of descent is independent 
of the weight of the object (to the extent that air resistance is 
negligible). This implies that the greater downward force 
that Aristotle imagined he would feel from the heavier 
object is in fact exactly the force needed to accelerate the 
more massive object to the very same speed. I shall describe 
a thought experiment that is slightly different from the one 
actually offered by Galileo but that is, I believe, equally 
conclusive and more revealing of the relevance of the 
principle of symmetry.     

I imagine Galileo imagining himself at the top of the 
leaning tower at Pisa with three identical bricks.  By the 
symmetry principle of invariance under permutation of 
identical objects, if the three bricks were dropped together, 
they should reach the ground at the same time.  As in the 
case of Archimedes’s identical weights equally distant on 
each side of the fulcrum, there is no reason for one to go 
down more than the other.  Now suppose two of these three 
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bricks are glued together to form a single, twice-as-heavy 
brick. Surely the virtually weightless film of glue used to 
make the two bricks into one would not cause that now 
heavier brick to fall twice as rapidly as the separate, third 
brick. Once again, the correct conclusion is reached without 
having to perform any actual experiment. 
            

Newton’s Law of Action and Reaction 
 

Newton’s inspiration for his universal law of gravitation is 
sometimes attributed to a thought experiment in which he 
imagined throwing an apple (according to legend, one that 
dropped on him as he sat under a tree).  Newton would have 
realized that if he threw the apple with greater and greater 
force, the apple would fall to ground at a greater and greater 
distance from him.  Knowing that the earth is a sphere, he 
would have concluded that if he were able to throw the 
apple with sufficient force, it would fall not to earth but 
around the earth. He might then conjecture that the moon 
was hurling with such speed as to be similarly ever falling 
around the earth.   

I now consider, instead, a different thought experiment 
from which Newton might have arrived at his Third Law of 
Motion—the law that every action has an equal and opposite 
reaction.  I choose the thought experiment for this law for 
two reasons: First, of his three laws of motion, this is the 
one that was most original with Newton. Second, this 
thought experiment derives in a particularly simple and 
transparent way from the principle of symmetry. 

I imagine Newton imagining himself arched over the 
water with his feet on the gunwale of his boat and his hands 
on the gunwale of another boat of the same size that he is 
endeavoring to push away from his boat.  From the obvious 
symmetry of the situation, Newton would realize that there 
is no way that he can push the other boat away from his 
without equally pushing his boat away from the other.  He 
might also go on to realize that if he were stranded in the 
middle of a lake with an oar-less boat load of apples, he 
could propel himself back toward shore by hurling the 
apples, one by one, to the rear with great force (just as space 
vehicles now accelerate through empty space by ejecting 
molecules of gas at very high velocity).   

 
Einstein’s Theory of Relativity 

 

It is widely recognized both that Einstein was, like Galileo, 
a master of the thought experiment and that Einstein was 
attracted to symmetries.  Examples of such symmetries are 
those between observers in relative motion, between electric 
and magnetic fields, and between gravitational force and 
acceleration. He first developed special relativity through 
many thought experiments about how the same events 
would be differently perceived by observers uniformly 
moving relative to each other at appreciable fractions of the 
velocity of light.  Continuing my theme of the physics of 
falling bodies, however, I confine myself, here, to the 
famous thought experiment that he used to support the claim 
of general relativity that light is deflected in passing near a 
massive body.  (It was the empirical confirmation of this 

claim—obtained during Eddington’s expedition to measure 
such a deflection during a solar eclipse—that first brought 
Einstein instant and lasting celebrity around the world.)   

In this thought experiment Einstein imagined himself 
inside an elevator that is in free fall (perhaps as a result of 
its supporting cable having been severed).  Floating 
weightlessly in the falling elevator, like an astronaut in a 
vehicle free-falling around the earth, Einstein would 
experience no gravitational force.  Because no force is 
acting within the elevator, a beam of light passing through 
the elevator would surely traverse a straight line.  In the 
absence of gravitational force, the symmetry between up 
and down removes any reason for the light to be curved 
either upward or downward.   

Then Einstein imagines that he is, instead, a stationary 
observer outside the falling elevator.  He would now feel the 
force of gravity holding him down on the fixed platform 
from which he watches the elevator accelerating downward 
in its free fall.  But clearly, a light beam that traverses a 
straight line relative to the observer in the elevator must 
traverse a downward curving (in fact, parabolic) path to the 
stationary external observer.  That observer will thus 
attribute both his own experience of a downward pressure of 
his feet on the platform and the downward bend of the light 
to the gravitational attraction of the massive earth. 

One of the beauties of Einstein’s special and general 
theories of relativity is that they provide elegant 
mathematical formulations of the symmetries of invariance 
under transformations between observers that are moving 
relative to each other–either uniformly as in the special 
theory or in acceleration as in the general theory. Yet 
Einstein developed these revolutionary theories neither by 
performing physical experiments himself nor by studying 
empirical data collected by others.  He developed them by 
performing thought experiments.  The very first of these–in 
which he imagined moving along with a light wave at light 
speed–led to the counter-intuitive result in special relativity 
that the velocity of light is invariant for all observers 
regardless of how fast each may be moving.           

 
 Empiricist Versus Rationalist Views of  
the Efficacy of Thought Experiments  

 

I have had space, here, to consider just a few simple 
examples illustrating the striking effectiveness of thought 
experiments and symmetry principles in the discovery of 
physical laws.  Elsewhere, I have discussed other examples 
—concerning the discovery of laws of electromagnetism 
and the propagation of light (by Maxwell); laws of thermo-
dynamics, statistical mechanics, and entropy by (Carnot, 
Clausius, and Boltzmann); laws of quantum mechanics by 
(Palanck, Einstein, Bohr, Schrödinger, Heisenberg, 
Feynman, and others); and even (going beyond physics), 
principles of evolutionary biology (by Darwin). (See 
Shepard, 2001, 2003, for a few of the examples I presented 
in my 1994 William James Lectures at Harvard.) 

Still, many scientists find it difficult to believe that laws 
governing the natural world are discoverable through 
thought alone.  They prefer explanations that are more 
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compatible with their deeply entrenched empiricist 
presuppositions.  Some may embrace the idea that most so-
called thought experiments are merely mental re-imaginings 
of the scientist’s own previous interactions with the world. 
Galileo might be supposed already to have noted (perhaps 
unconsciously) that the rate of fall of compact objects is in 
fact largely independent of their weights. Possibly the 
thought experiment he described was mainly an attempt to 
render explicit and vivid, for didactic purposes, what he had 
previously learned from his own experiences. Others may 
suggest that to the extent that a thought experiment is 
effective, it must really be just a disguised version of a 
deductive argument based on already accepted premises.                  

Such efforts to explain away the effectiveness of thought 
experiments strike me as incomplete or unconvincing, and 
perhaps a little desperate. Moreover, the claim by some 
philosophers of science that thought experiments must be 
reducible to deductive arguments has been effectively 
countered by Gendler (1998). I suggest that the dismissive 
stances taken toward thought experiments have been 
motivated by an out-dated “blank-slate” conception of the 
human mind.  They largely ignore the empirical and logical 
evidence that has accumulated from many quarters, 
including evolutionary, developmental, linguistic, cognitive 
and brain sciences, as well as from machine learning theory. 
Clearly, individuals do not come into the world devoid of 
any advance preparation for the kind of world in which they 
must learn to make their ways (Shepard, 2001, p. 712). 

Perhaps the resistance to such evidence arises from a 
mistaken notion that proponents of thought experiments 
assume that the knowledge with which we are innately 
endowed is explicit knowledge of quite specific facts and 
laws of nature. My claim is, rather, that the “knowledge” 
with which we have been endowed by natural selection is 
only implicit and, moreover, that it primarily pertains to the 
most abstract, enduring, and invariant features of our world. 
Some of these features may be physical in nature—such as 
that physical space is three-dimensional and locally 
Euclidean, hence accommodating just six degrees of 
freedom of rigid motion.  Others features may be even more 
abstract, more logical or mathematical in character—such as 
the principle of symmetry (Shepard, 1994, 2001).  

A noteworthy fact about the currently most successful 
theories of the physical world, namely, general relativity 
and quantum mechanics, also seems to be insufficiently 
appreciated by strict empiricists. Each of these theories 
possesses such elegance and tight internal constraints of 
consistency and symmetry that it has proved extremely 
difficult to find any minor changes that can be made to 
either theory without disrupting its whole structure.  In 
retrospect, it almost seems that if we had only been smart 
enough, we could have seen that each theory could not be 
otherwise.  Yet, despite their enormous successes, these two 
theories are known to be inconsistent with each other. 
Hence, the discovery of a still more general theory that 
consistently subsumes both of them as limiting cases would 
be a towering achievement comparable to the discovery of 
each of the two component theories themselves—without 
having collected a single additional empirical datum.   

When we discover such a general theory, we may wonder 
why its laws take the particular form that they do. Only 
three possible answers occur to me. The first is that the form 
of these laws is simply an arbitrary brute fact; there is no 
reason why they are this way rather than some other. The 
second is that these laws form the only mathematically 
possible self-consistent set. And the third is that the universe 
in which we reside is only one of infinitely many, and that 
the entire ensemble includes universes with laws of every 
mathematically possible form. The first of these alternatives 
seems to be implicitly presupposed by strict empiricists and 
the second by pure rationalists. The third possibility falls 
somewhere between. For, in accordance with the anthropic 
cosmological principle, the laws governing our universe are 
then constrained—perhaps tightly—by the requirement that 
they make possible the evolution of intelligent life.            
 

The Evolution of the Rational Capabilities 
Necessary for Successful Thought Experiments  
 

It falls to us, as cognitive scientists, to elucidate the mental 
capabilities that make possible the discovery of the laws of 
nature through thought and, as evolutionary cognitive 
scientists, to suggest how these capabilities may have arisen 
through natural selection. At the outset I noted that the 
ability to imagine identity-preserving transformations, such 
as mental rotations, may have an important role to play.  I 
have proposed that neuronal mechanisms that originally 
evolved in the service of the perceptual representation of the 
external world may have evolved additional capabilities. 
These may have included, successively, capabilities (a) for 
perceptual completion when the sensory input is brief, 
degraded, or incomplete, (b) for anticipation of probable 
ensuing or accompanying events and, finally, (c) for the 
autonomous imagining of possible transformations in the 
sensory absence of such transformations or their objects.  
Possession of this final capability would presumably confer 
significant benefit in planning and problem solving.          

The emergence of the ability to construct explicitly 
articulated consistent theories about this world, however, 
presumably required some additional developments. I 
suggest that the following three may have been critical for 
the successful employment of thought experiments and 
abstract principles such as that of symmetry for this 
purpose: (a) a motivation, arising from our evolutionary 
branching into what has been termed the “cognitive niche,” 
to understand and comprehend the world; (b) the 
concomitant emergence of a capacity for holding immediate 
self interest in abeyance and for contemplating an explicit 
set of alternatives objectively with respect to explicitly 
chosen abstract criteria; and, of course, (c) the emergence of 
language, thus enabling the sharing, preservation, and 
further analysis of results.  The first two of these capabilities 
may not be uniformly well developed or exercised in the 
human population. Thinkers such as Archimedes, Galileo, 
Newton, and Einstein are still notably rare.   

Biological evolution is, of course, a gradual process, 
taking countless generations to manifest appreciable change, 
as the continuities of bodily structure and behavior along 
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evolutionary lines attests. Yet, the unprecedented and 
uniquely human “step to rationality,” as I have termed it 
(Shepard, 2001), has occurred virtually discontinuously on 
the evolutionary time scale. The uncertain but certainly 
enormous potential consequences of this development for 
the future of our species and our world motivates me to end 
this article with a brief sketch of how the ideas I have been 
proposing about the cognitive grounds of science might be 
extended to illuminate the cognitive grounds of ethics.   

 
The Cognitive Grounds of Moral Principles 

and of Deterministic Free Will 
 

Philosophers have long made extensive use of thought 
experiments in attempting to evaluate alternative proposed 
principles of moral action. One example of direct and 
obvious relevance here is the type of thought experiment on 
which Rawls (1971) based his highly influential theory of 
justice. Rawls asked us to imagine a hypothetical situation 
in which those endeavoring to frame rules for the just 
governance of society are prevented by a “veil of ignorance” 
from knowing what role each will be assigned in that 
society. Such framers would thus be prevented from 
favoring rules that would benefit the particular personal 
situations to which they would otherwise be heir through no 
virtue or effort of their own—for example, situations 
varying in health, strength, wealth, power, beauty, youth, 
race, or gender. In terms of the more mathematical concepts 
I have been using, what is being sought here is just the 
symmetry of invariance under permutation of individuals.  
Clearly, such a symmetry principle entails the “Golden 
Rule,” which may well be the candidate moral principle that 
comes closest to eliciting universal verbal assent (if not 
behavioral compliance).  

I do recognize and understand the “is”-“ought” distinction 
and the pervasive skepticism of most scientists and many 
philosophers about the possibility of a universal, objective 
basis for ethics. Yet I confess to finding repugnant the 
alternative of a complete biological/cultural relativism in 
which we, as scientists, may well investigate how what an 
individual in fact does or says is determined by the 
accidents of that individual’s genetic inheritance and 
cultural milieu, but in which we have no justification for a 
conviction that some intentions, actions, or outcomes are 
ultimately and inherently better than others.  

What I now regard as the best and perhaps only hope for 
avoiding nihilistic ethical relativism is to strive for a 
sufficiently deep appreciation and grasp of what may at first 
seem an extremely abstract and airy principle—namely, the 
symmetry principle of invariance under permutation 
(Shepard, 2001, pp. 744-748). Then, and perhaps only then, 
one who is neither a solipsist nor a fatalist and who values 
his or her own life, freedom, and well being, may come to 
know—as well as anyone knows anything—the binding 
force of the Golden Rule. 

Of course, an individual who is not in an appropriate 
sense free to make his or her own moral choices cannot be 
held responsible for those choices. This consideration has 
led me to seek a reconciliation between the need I thus 

fervently feel for and account of such a “freedom of the 
will,” on the one hand, and my unshakeable rational 
conclusion that every event is either deterministically 
caused or else occurs purely by chance.  

The reconciliation that I propose depends on the 
unprecedented capability that has emerged with our “step to 
rationality.” This is the capacity that I have already noted 
for holding immediate self interest in abeyance and for 
contemplating an explicit set of alternatives objectively with 
respect to explicitly chosen abstract criteria (Shepard, 2001, 
pp. 744-748). If the alternatives are weighed in terms of the 
products of their computed subjective values and their 
computed subjective probabilities, as in utility theory, the 
process can be imagined as a literal “weighing” on an 
Archimedian balance beam, with locations along the beam 
representing the computed values and the masses of the 
weights representing the computed probabilities.  

My proposal is compatible with the possibility that one’s 
decisions are strictly determined by preceding events, as 
might be specified in a computational model. But some of 
those preceding causes are also what we call reasons. What 
is required for one’s decision to be free, is that one can 
cognitively represent the entire set of selected alternatives, 
can compute (or re-compute) the value of any one, and can 
adopt the one with the highest computed value, without any 
extraneous constraint or compulsion.  A free decision is thus 
made for one’s own reasons. One could have—and would 
have—decided differently if one’s careful weighing of the 
alternatives had tipped the balance in the other direction.   
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