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Exponential suppression of bit or phase 
errors with cyclic error correction

Google Quantum AI*

Realizing the potential of quantum computing requires sufficiently low logical error 
rates1. Many applications call for error rates as low as 10−15 (refs. 2–9), but state-of-the-art 
quantum platforms typically have physical error rates near 10−3 (refs. 10–14). Quantum 
error correction15–17 promises to bridge this divide by distributing quantum logical 
information across many physical qubits in such a way that errors can be detected and 
corrected. Errors on the encoded logical qubit state can be exponentially suppressed as 
the number of physical qubits grows, provided that the physical error rates are below a 
certain threshold and stable over the course of a computation. Here we implement 
one-dimensional repetition codes embedded in a two-dimensional grid of 
superconducting qubits that demonstrate exponential suppression of bit-flip or 
phase-flip errors, reducing logical error per round more than 100-fold when increasing 
the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 
rounds of error correction. We also introduce a method for analysing error correlations 
with high precision, allowing us to characterize error locality while performing 
quantum error correction. Finally, we perform error detection with a small logical qubit 
using the 2D surface code on the same device18,19 and show that the results from both 
one- and two-dimensional codes agree with numerical simulations that use a simple 
depolarizing error model. These experimental demonstrations provide a foundation 
for building a scalable fault-tolerant quantum computer with superconducting qubits.

Many quantum error-correction (QEC) architectures are built on sta-
bilizer codes20, where logical qubits are encoded in the joint state of 
multiple physical qubits, which we refer to as data qubits. Additional 
physical qubits known as measure qubits are interlaced with the data 
qubits and are used to periodically measure the parity of chosen data 
qubit combinations. These projective stabilizer measurements turn 
undesired perturbations of the data qubit states into discrete errors, 
which we track by looking for changes in parity. The stream of parity val-
ues can then be decoded to determine the most likely physical errors that 
occurred. For the purpose of maintaining a logical quantum memory 
in the codes presented in this work, these errors can be compensated 
in classical software3. In the simplest model, if the physical error per 
operation p is below a certain threshold pth determined by quantum 
computer architecture, chosen QEC code and decoder, then the prob-
ability of logical error per round of error correction (εL) should scale as:

ε C Λ= / . (1)d
L

( +1)/2

Here, Λ ∝ pth/p is the exponential error suppression factor, C is a fitting 
constant and d is the code distance, defined as the minimum number of 
physical errors required to generate a logical error, and increases with 
the number of physical qubits3,21. More realistic error models cannot 
be characterized by a single error rate p or a single threshold value pth. 
Instead, quantum processors must be benchmarked by measuring Λ.

Many previous experiments have demonstrated the principles 
of stabilizer codes in various platforms such as nuclear magnetic 

resonance22,23, ion traps24–26 and superconducting qubits19,21,27,28. How-
ever, these results cannot be extrapolated to exponential error sup-
pression in large systems unless non-idealities such as crosstalk are 
well understood. Moreover, exponential error suppression has not 
previously been demonstrated with cyclic stabilizer measurements, 
which are a key requirement for fault-tolerant computing but intro-
duce error mechanisms such as state leakage, heating and data qubit 
decoherence during measurement21,29.

In this work, we run two stabilizer codes. In the repetition code, 
qubits alternate between measure and data qubits in a 1D chain, and 
the number of qubits for a given code distance is nqubits = 2d − 1. Each 
measure qubit checks the parity of its two neighbours, and all meas-
ure qubits check the same basis so that the logical qubit is protected 
from either X or Z errors, but not both. In the surface code3,30–32, qubits 
follow a 2D chequerboard pattern of measure and data qubits, with 
nqubits = 2d2 − 1. The measure qubits further alternate between X and 
Z types, providing protection against both types of errors. We use 
repetition codes up to d = 11 to test for exponential error suppression 
and a d = 2 surface code to test the forward compatibility of our device 
with larger 2D codes.

QEC with the Sycamore processor
We implement QEC using a Sycamore processor33, which consists of a 
2D array of transmon qubits34 where each qubit is tunably coupled to 
four nearest neighbours—the connectivity required for the surface 
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code. Compared with ref. 33, this device has an improved design of the 
readout circuit, allowing for faster readout with less crosstalk and a 
factor of 2 reduction in readout error per qubit (see Supplementary 
Section I). Like its predecessor, this processor has 54 qubits, but we 
used at most 21 because only a subset of the processor was wired up. 
Figure 1a shows the layout of the d = 11 (21 qubit) repetition code and 
d = 2 (7 qubit) surface code on the Sycamore device, while Fig. 1b sum-
marizes the error rates of the operations which make up the stabilizer 
circuits. Additionally, the mean coherence times for each qubit are 
T1 = 15 μs and T2 = 19 μs.

The experiments reported here leverage two recent advancements 
in gate calibration on the Sycamore architecture. First, we use the reset 
protocol introduced in ref. 35, which removes population from excited 
states (including non-computational states) by sweeping the frequency 
of each measure qubit through that of its readout resonator. This reset 
operation is appended after each measurement in the QEC circuit and 
produces the ground state with error below 0.5%35 in 280 ns. Second, 
we implement a 26-ns controlled-Z (CZ) gate using a direct swap 
between the joint states 1, 1� and 0, 2� of the two qubits (refs. 14,36). As 
in ref. 33, the tunable qubit–qubit couplings allow these CZ gates to be 
executed with high parallelism, and up to 10 CZ gates are executed 
simultaneously in the repetition code. Additionally, we use the results 
of running QEC to calibrate phase corrections for each CZ gate (Sup-
plementary Information section III). Using simultaneous cross-entropy 

benchmarking33, we find that the median CZ gate Pauli error is 0.62% 
(median CZ gate average error of 0.50%).

We focused our repetition code experiments on the phase-flip code, 
where data qubits occupy superposition states that are sensitive to 
both energy relaxation and dephasing, making it more challenging to 
implement and more predictive of surface code performance than the 
bit-flip code. A five-qubit unit of the phase-flip code circuit is shown in 
Fig. 1c. This circuit, which is repeated in both space (across the 1D chain) 
and time, maps the pairwise X-basis parity of the data qubits onto the 
two measure qubits, which are measured then reset. During measure-
ment and reset, the data qubits are dynamically decoupled to protect 
the data qubits from various sources of dephasing (Supplementary 
Section XI). In a single run of the experiment, we initialize the data 
qubits into a random string of  + �  or  − �  on each qubit. Then, we repeat 
stabilizer measurements across the chain over many rounds, and finally, 
we measure the state of the data qubits in the X basis.

Our first pass at analysing the experimental data is to turn measure-
ment outcomes into error detection events, which are changes in the 
measurement outcomes from the same measure qubit between adja-
cent rounds. We refer to each possible spacetime location of a detection 
event (that is, a specific measure qubit and round) as a detection node.

In Fig. 1e, for each detection node in a 50-round, 21-qubit phase-flip 
code, we plot the fraction of experiments (80,000 total) where a detec-
tion event was observed on that node. This is the detection event frac-
tion. We first note that the detection event fraction is reduced in the 
first and last rounds of detection compared with other rounds. At these 
two time boundary rounds, detection events are found by comparing 
the first (last) stabilizer measurement with data qubit initialization 
(measurement). Thus, the data qubits are not subject to decoherence 
during measure qubit readout in the time boundary rounds, illustrating 
the importance of running QEC for multiple rounds in order to bench-
mark performance accurately (Supplementary Information section 
VII). Aside from these boundary effects, we observe that the average 
detection event fraction is 11% and is stable across all 50 rounds of the 
experiment, a key finding for the feasibility of QEC. Previous experi-
ments had observed detections rising with number of rounds21, and 
we attribute our experiment’s stability to the use of reset to remove 
leakage in every round35.

Correlations in error detection events
We next characterize the pairwise correlations between detection 
events. With the exception of the spatial boundaries of the code, a 
single-qubit Pauli error in the repetition code should produce two 
detections which come in three categories21. First, an error on a data 
qubit usually produces a detection on the two neighbouring measure 
qubits in the same round—a spacelike error. The exception is a data 
qubit error between the two CZ gates in each round, which produces 
detection events offset by 1 unit in time and space—a spacetimelike 
error. Finally, an error on a measure qubit will produce detections in 
two subsequent rounds—a timelike error. These error categories are 
represented in the planar graph shown in Fig. 2a, where expected detec-
tion pairs are drawn as graph edges between detection nodes.

We check how well Sycamore conforms to these expectations by 
computing the correlation probabilities between arbitrary pairs of 
detection nodes. Under the assumptions that all correlations are pair-
wise and that error rates are sufficiently low, we estimate the probability 
of simultaneously triggering two detection nodes i and j as

p
x x x x

x x
≈

� � − � �� �

(1 − 2� �)(1 − 2� �)
, (2)ij

i j i j

i j

where xi = 1 if there is a detection event and xi = 0 otherwise, and x� � 
denotes an average over all experiments (Supplementary Information 
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Fig. 1 | Stabilizer circuits on Sycamore. a, Layout of distance-11 repetition 
code and distance-2 surface code in the Sycamore processor. In the 
experiment, the two codes use overlapping sets of qubits, which are offset in 
the figure for clarity. b, Pauli error rates for single-qubit and CZ gates and 
identification error rates for measurement, each benchmarked in 
simultaneous operation. c, Circuit schematic for the phase-flip code. Data 
qubits are randomly initialized into + � or − �, followed by repeated application 
of XX stabilizer measurements and finally X-basis measurements of the data 
qubits. Hadamard refers to the Hadamard gate, a quantum operation.  
d, Illustration of error detection events that occur when a measurement 
disagrees with the previous round. e, Fraction of measurements (out of 
80,000) that detected an error versus measurement round for the d = 11 
phase-flip code. The dark line is an average of the individual traces (grey lines) 
for each of the 10 measure qubits. The first (last) round also uses data qubit 
initialization (measurement) values to identify detection events.
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section IX). Note that pij is symmetric between i and j. In Fig. 2c, we plot 
the pij matrix for the data shown in Fig. 1e. In the upper triangle, we 
show the full scale of the data, where, as expected, the most visible 
correlations are either spacelike or timelike.

However, the sensitivity of this technique allows us to find features 
that do not fit the expected categories. In the lower triangle, we plot 
the same data but with the scale truncated by nearly an order of mag-
nitude. The next most prominent correlations are spacetimelike, as 
we expect, but we also find two additional categories of correlations. 
First, we observe correlations between non-adjacent measure qubits 
in the same measurement round. Although these non-adjacent qubits 
are far apart in the repetition code chain, the qubits are in fact spatially 
close, owing to the embedding of the 1D chain in a 2D array. Optimiza-
tion of gate operation frequencies mitigates crosstalk errors to a large 
extent37, but suppressing these errors further is the subject of active 
research. Second, we find excess correlations between measurement 
rounds that differ by more than 1, which we attribute to leakage gener-
ated by a number of sources including gates12 and thermalization38,39. 
For the observed crosstalk and leakage errors, the excess correlations 
are around 3 × 10−3, an order of magnitude below the measured space-
like and timelike errors but well above the measurement noise floor 
of 2 × 10−4.

Additionally, we observe sporadic events that greatly decrease per-
formance for some runs of the repetition code. In Fig. 2d, we plot a time 
series of detection event fractions averaged over all measure qubits 
for each run of an experiment. We observe a sharp three-fold increase 
in detection event fraction, followed by an exponential decay with a 
time constant of 50 ms. These types of events affect less than 0.5% of 
all data taken (Supplementary Information section V), and we attribute 
them to high-energy particles such as cosmic rays striking the quan-
tum processor and decreasing T1 on all qubits40,41. For the purpose of 
understanding the typical behaviour of our system, we remove data 
near these events (Fig. 2d). However, we note that mitigation of these 
events through improved device design42 and/or shielding43 will be 
critical to implementing large-scale fault-tolerant computers with 
superconducting qubits.

Logical errors in the repetition code
We decode detection events and determine logical error probabilities 
following the procedure in ref. 21. Briefly, we use a minimum-weight 
perfect matching algorithm to determine which errors were most 
likely to have occurred given the observed detection events. Using 
the matched errors, we then correct the final measured state of the 
data qubits in post-processing. A logical error occurs if the corrected 
final state is not equal to the initial state. We repeat the experiment 
and analysis while varying the number of detection rounds from 1 to 50 
with a fixed number of qubits, 21. We determine logical performance 
of smaller code sizes by analysing spatial subsets of the 21-qubit data 
(see Supplementary Section VII). These results are shown in Fig. 3a, 
where we observe a clear decrease in the logical error probability with 
increasing code size. The same data are plotted on a semilog scale in 
Fig. 3b, highlighting the exponential nature of the error reduction.

To extract logical error per round (εL), we fitted the data for each number  
of qubits (averaged over spatial subsets) to P ε2 = 1 − (1 − 2 )nerror L

rounds , 
which expresses an exponential decay in logical fidelity with number 
of rounds. In Fig. 3c, we show εL for the phase-flip and bit-flip codes 
versus number of qubits used. We find more than 100× suppression in 
εL for the phase-flip code from 5 qubits (εL = 8.7 × 10−3) to 21 qubits 
(εL = 6.7 × 10−5). Additionally, we fitted εL versus code distance to equa-
tion (1) to extract Λ, and find ΛX = 3.18 ± 0.08 for the phase-flip code and 
ΛZ = 2.99 ± 0.09 for the bit-flip code.

Error budgeting and projecting QEC performance
To better understand our repetition code results and project surface 
code performance for our device, we simulated our experiments with 
a depolarizing noise model, meaning that we probabilistically inject 
a random Pauli error (X, Y or Z) after each operation (Supplementary 
Information section VIII). The Pauli error probabilities for each type of 
operation are computed using mean error rates and are shown in Fig. 4a. 
We first simulate the bit-flip and phase-flip codes using the error rates 
in Fig. 4a, obtaining values of Λ that should be directly comparable to 
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our experimentally measured values. Then we repeat the simulations 
while individually sweeping the Pauli error probability for each opera-
tion type and observing how 1/Λ changes. The relationship between 
1/Λ and each of the error probabilities is approximately linear, and we 
use the simulated sensitivity coefficients to estimate how much each 
operation in the circuit increases 1/Λ (decreases Λ).

The resulting error budgets for the phase-flip and bit-flip codes are 
shown in Fig. 4b. Overall, measured values of Λ are approximately 20% 
worse than simulated values, which we attribute to mechanisms such as 
the leakage and crosstalk errors that are shown in Fig. 2c but were not 
included in the simulations. Of the modelled contributions to 1/Λ, the 
dominant sources of error are the CZ gate and data qubit decoherence 
during measurement and reset. In the same plot, we show the projected 
error budget for the surface code, which has a more stringent threshold 
than the repetition code because the higher-weight stabilizers in both 
X and Z bases lead to more possible logical errors for the same code 
distance. We find that the overall performance of Sycamore must be 
improved to observe error suppression in the surface code.

Finally, we test our model against a distance-2 surface code logical 
qubit19. We use seven qubits to implement one weight-4 X stabilizer 

and two weight-2 Z stabilizers as depicted in Fig. 1a. This encoding can 
detect any single error but contains ambiguity in mapping detections 
to corrections, so we discard any runs where we observe a detection 
event. We show the fraction of runs where no errors were detected in 
Fig. 4c for both logical X and Z preparations; we discard 27% of runs 
each round, in good agreement with the simulated prediction. Logical 
errors can still occur after post-selection if two or more physical errors 
flip the logical state without generating a detection event. In Fig. 4d, 
we plot the post-selected logical error probability in the final meas-
ured state of the data qubits, along with corresponding depolarizing 
model simulations. Linear fits of the experimental data give 2 × 10−3 
error probability per round averaged between the X and Z basis, while 
the simulations predict 1.5 × 10−3 error probability per round. Supple-
mentary Information section VI discusses potential explanations for 
the excess error in experiment, but the general agreement provides 
confidence in the projected error budget for surface codes in Fig. 4b.

Conclusion and outlook
In this work, we demonstrate stable error detection event fractions 
while executing 50 rounds of stabilizer measurements on a Sycamore 
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device. By computing the probabilities of detection event pairs, we 
find that the physical errors detected on the device are localized in 
space and time to the 3 × 10−3 level. Repetition code logical errors are 
exponentially suppressed when increasing the number of qubits from 
5 to 21, with a total error suppression of more than 100× . Finally, we 
corroborate experimental results on both 1D and 2D codes with depo-
larizing model simulations and show that the Sycamore architecture is 
within a striking distance of the surface code threshold.

Nevertheless, many challenges remain on the path towards scal-
able quantum error correction. Our error budgets point to the sali-
ent research directions required to reach the surface code threshold: 
reducing CZ gate error and data qubit error during measurement 
and reset. Reaching this threshold will be an important milestone in 
quantum computing. However, practical quantum computation will 
require Λ ≈ 10 for a reasonable physical-to-logical qubit ratio of 1,000:1 
(Supplementary Information section VI). Achieving Λ ≈ 10 will require 
substantial reductions in operational error rates and further research 
into mitigation of error mechanisms such as high-energy particles.
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Methods

The Sycamore processor
In this work, we use a Sycamore quantum processor consisting of 54 
superconducting transmon qubits and 88 tunable couplers in a 2D 
array. The available operational frequencies of the qubits range from 
5 GHz to 7 GHz. The couplers are capable of tuning the qubit–qubit 
couplings between 0 MHz and 40 MHz, allowing for fast entangling 
gates while also mitigating unwanted stray interactions. The qubits and 
couplers in the Sycamore processor are fabricated using aluminium 
metallization and aluminium/aluminium-oxide Josephson junctions. 
Indium bump bonds are used to connect a chip containing control 
circuitry to the chip containing the qubits. The hybridized device is 
then wire-bonded to a superconducting circuit board and cooled below 
20 mK in a dilution refrigerator.

Control and readout
Each qubit is connected to a microwave control line used to drive XY 
rotations, while qubits and couplers are each connected to flux con-
trol lines that tune their frequencies and are used to perform CZ and 
reset operations. Additionally, each qubit is coupled to a resonator 
with frequency around 4.5 GHz for dispersive readout, and six such 
resonators are frequency multiplexed and coupled to a microwave 
transmission line via a common Purcell filter. Microwave drive and 
flux lines are connected via multiple stages of wiring and filters to 
arbitrary waveform generators (AWGs) at room temperature. The 
AWGs for both microwave and flux control operate at 1 gigasample 
per second, and for the microwaves, signals are additionally upcon-
verted with single sideband mixing to reach the qubit frequencies. The 
outputs of the readout transmission lines are additionally connected 
to a series of amplifiers—impedance matched parametric amplifiers 
at 20 mK, high-electron-mobility transistor amplifiers at 3 K, and 
room-temperature amplifiers—before terminating in a downconverter 
and analogue–digital converter (ADC). Low-level operation of the AWGs 
is controlled by FPGAs. Construction and upload of control waveforms 
and discrimination of ADC signals are controlled by classical computers 
running servers that each control different types of equipment, and a 
client computer that controls the overall experiment.

Calibration
Upon initial cooldown, various properties of each qubit and coupler 
(including coherence times as a function of frequency, control cou-
plings, and couplings between qubits and couplers) are characterized 
individually. An optimizer is then used to select operational frequencies 
for gates and readout for each qubit (or pair of qubits for the CZ gate). 
The optimizer’s objective function is the predicted fidelity of gate 
operations and is designed to incorporate coherence times, parasitic 
couplings between qubits, and microwave non-idealities such as cross-
talk and carrier bleedthrough. More information about the optimiza-
tion can be found in refs. 33,37 and in Supplementary Information section 
XII. Next, the primary operations required for QEC (SQ gates, CZ, reset, 
readout) are calibrated individually. Finally, we perform a round of 
QEC specific calibrations for phase corrections (see Supplementary 
Information section III). Automated characterizations and calibra-
tions are described using a directed acyclic graph, which determines 
the flow of experiments from basic characterizations to fine tuning44.

Execution of the experiment
Circuits for the repetition codes and d = 2 surface code were specified 
using Cirq45, then translated into control waveforms based on calibration 
data. The exact circuits that were run are available on request. For the 
bit-flip and phase-flip repetition codes, the 80,000 total experimental 
shots for each number of rounds were run in four separate experiments. 

Each experiment consisted of randomly selecting initial data qubit 
states, running for 4,000 shots, then repeating that process five times 
for 20,000 shots total. In between shots of the experiment, the qubits 
idle for 100 μs and are also reset. The 400 total experiments (one bit-flip 
and one phase-flip code for each total number of error correction rounds 
between 1 and 50, and four experiments for each number of rounds) 
were shuffled before being run. Data for the distance-2  surface code 
was similarly acquired, but with 15,000 shots for each of the 16 possible 
data qubit states for 240,000 shots total, and shuffling was done within 
each number of rounds over the data qubit states, but no shuffling was 
done over the number of rounds or data qubit basis.

Data analysis
As described in the main text, for each experimental shot, the array of raw 
parity measurements is first prepended with initial data qubit parities 
and appended with final measured data qubit parities. Then the parity 
values are turned into an array detection events by computing the XOR 
between each neighbouring round of measurements, resulting in an 
array that is one less in the ‘rounds’ dimension. For the repetition code 
data, cosmic rays are post-selected by first computing the total detection 
event fraction for each experimental shot, producing an array of 80,000 
values between 0 and 1. Next, we apply a moving average to that array, 
with a rectangular window of length 20. Finally, we find where the moving 
average exceeds 0.2 and remove 100 shots before crossing the threshold 
and 600 shots following the crossing of the threshold. The analysis then 
proceeds through minimum-weight perfect matching and exponential 
fits of logical error rate per round and Λ, as described in the main text and 
in more detail in Supplementary Section X. Cosmic ray post-selection is 
not done for the d = 2 surface code data, since the analysis as described in 
the main text already post-selects any shots where errors are detected.

Data availability
The data that support the plots within this paper and other findings of 
this study are available from the corresponding authors upon reason-
able request.
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