
UCLA
UCLA Electronic Theses and Dissertations

Title
Closing the Gap in Control System Implementations

Permalink
https://escholarship.org/uc/item/7qc2v0b2

Author
Saha, Indranil

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qc2v0b2
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Closing the Gap

in

Control System Implementations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Indranil Saha

2013

c© Copyright by

Indranil Saha

2013

Abstract of the Dissertation

Closing the Gap

in

Control System Implementations

by

Indranil Saha

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Jens Palsberg, Chair

A cyber-physical system tightly coordinates discrete computation and continuous

control of physical resources. Most safety-critical cyber-physical systems run so-

phisticated control algorithms at their core. While these control algorithms have

been studied thoroughly from a theoretical standpoint, their implementation on

real platforms raises many issues that need to be addressed to ensure the relia-

bility of cyber-physical systems. While control theory studies the properties of a

control system based on real analysis and mostly ignores the effect of implement-

ing the control laws in software, these effects can have a significant impact on the

performance or stability of the implementation of a control law.

Consider the following mismatches between assumptions made by control the-

ory and guarantees provided by implementation platforms. First, control theo-

retic methods are based on real analysis, which assume real numbers are infinite-

precision. However, in software implementation, mathematical real numbers are

approximated using floating-point or fixed-point arithmetic. Second, control com-

putation time is often assumed to be negligible, which may not often be the case

in the real implementations. Third, when multiple control applications run on a

ii

shared platform, schedulability requirements of the corresponding tasks impose

additional constraints on the behavior of the systems, that traditional mathemat-

ical control design algorithms do not take into account.

In this thesis, we address these three problems related to implementation of

controller software for cyber-physical systems. First, we show how the stability

property can be verified for a physical system under the action of controller soft-

ware and how to synthesize controller software to minimize the effect of quantiza-

tion error on the stability quality. Second, we show that the naive implementation

of some control algorithms may be infeasible due the computation time required

for the control tasks on real platforms and provide a memoization based im-

plementation scheme that guarantees the feasibility of the implementation along

with maintaining expected control performance. Third, we address the problem of

scheduling control tasks from multiple control systems on a single processor and

provide static and dynamic scheduler synthesis strategies to maintain stability

and achieve optimal performance in the control systems. Solving these problems

takes an important step towards closing the gap between control theory and the

implementation of control systems.

iii

The dissertation of Indranil Saha is approved.

Milos D. Ercegovac

Todd Millstein

Paulo Tabuada

Rupak Majumdar

Jens Palsberg, Committee Chair

University of California, Los Angeles

2013

iv

To my parents . . .

v

Table of Contents

1 Introduction . 1

1.1 Contributions . 3

1.2 Organization . 6

2 Basics of Control Theory . 7

2.1 Mathematical Notation . 7

2.2 Mathematical Model of a Control System 8

2.2.1 Continuous-Time Systems 8

2.2.2 Stability Properties . 9

2.2.3 Continuous-Time Linear Control Systems 11

2.2.4 Discrete-Time Linear Control Systems 11

2.2.5 Observer . 12

2.3 Performance Criteria . 13

2.3.1 Region of Practical Stability 13

2.3.2 LQR-LQG Performance 15

2.3.3 L∞ to RMS Gain . 16

3 Verification . 18

3.1 Motivating Example . 19

3.2 Effect of Implementation Errors 22

3.2.1 Implementation Error in Fixed-Point Implementation . . . 22

3.2.2 Stability analysis of controller implementations 23

3.3 Symbolic Error Analysis . 26

vi

3.3.1 Real-Valued Programs . 26

3.3.2 Fixed-Point Representation 28

3.3.3 Fixed-point Semantics . 31

3.3.4 Symbolic Error Analysis 32

3.3.5 Arithmetic Encoding . 35

3.4 Extensions . 36

3.5 Evaluation . 38

3.5.1 Implementation . 38

3.5.2 Experiments . 40

3.6 Related Work . 44

4 Synthesis . 46

4.1 Stability of Perturbed Systems . 48

4.1.1 The Effect of Errors . 48

4.1.2 Example . 50

4.2 Computing Quantization Error 53

4.2.1 Best fixed-point implementation 53

4.2.2 Error Bound Computation 54

4.3 Optimal Controller Synthesis . 57

4.3.1 Optimization objectives 57

4.3.2 Particle Swarm Optimization 58

4.3.3 Overall Algorithm . 59

4.4 Extension: PID Controllers . 60

4.5 Evaluation . 63

4.5.1 Implementation . 63

vii

4.5.2 Experiments . 64

4.6 Related Work . 68

5 Optimization . 69

5.1 Motivating Example . 70

5.2 Generating Minimal-Error Fixed-Point Expression 73

5.2.1 Genetic Programming . 74

5.2.2 Instantiating Genetic Programming 75

5.2.3 Fitness Evaluation . 77

5.2.4 Why Genetic Programming? 79

5.3 Optimal Controller Synthesis . 79

5.4 Optimal Fixed-Point Program Synthesis Problem is NP-hard . . . 82

5.5 Evaluation . 84

5.5.1 Implementation . 84

5.5.2 Experiments . 84

5.6 Related Work . 89

6 Memoization . 91

6.1 Self-Triggered Control . 94

6.1.1 Self-Triggered Implementation 94

6.1.2 Problem: Trigger Time Computation 97

6.2 Hybrid Implementation . 98

6.2.1 Memoized Trigger Time Computation 99

6.2.2 Dynamic Choice of Memoization Region 101

6.2.3 Effect of State Quantization 102

viii

6.2.4 Fixed-point Representation 105

6.3 Nonlinear Systems . 106

6.4 Evaluation . 108

6.4.1 Implementation . 108

6.4.2 Experiments . 109

6.5 Related Work . 118

7 Static Scheduling . 119

7.1 Control Systems Performance with Limited Computation 121

7.1.1 Scheduled Linear Control Systems 121

7.1.2 Bound on L∞ to RMS gain 125

7.1.3 Scheduled Nonlinear Control Systems 128

7.1.4 Finding the Optimal Successful Transmission Rate 130

7.1.5 Motivating Example . 131

7.2 Optimal Performance Scheduler Synthesis 132

7.3 Scheduler Design . 136

7.3.1 Synthesis through Constraint Solving 137

7.3.2 Maximal Scheduler Synthesis 139

7.3.3 Overall Algorithm . 140

7.4 Evaluation . 140

7.4.1 Implementation . 140

7.4.2 Experiments . 143

7.5 Related Work . 144

8 Dynamic Scheduling . 146

ix

8.1 Networked Control Systems . 148

8.1.1 Finding the Operating Rate 149

8.1.2 Motivating Example . 150

8.2 Schedulability Analysis in the Presence of Packet Dropout 151

8.2.1 Computing Message Transmission Times 153

8.2.2 Schedulability Analysis of Control Computations 154

8.2.3 Computation of Maximum Successful Transmission Rates . 156

8.3 Optimal Controller Synthesis . 156

8.3.1 Cost Function . 157

8.3.2 Overall algorithm . 158

8.4 Scheduler Synthesis . 159

8.5 Evaluation . 161

8.5.1 Implementation . 161

8.5.2 Experiments . 162

8.6 Related Work . 165

9 Conclusion and Future Work . 167

9.1 Looking Ahead . 168

References . 171

x

List of Figures

3.1 Fixed point controller implementation for locomotive and train car

(generated by Fixed Point Advisor and Real Time Workshop) . . 21

3.2 Decision procedure runtime for bitvector and integer implementation 41

4.1 Evolution of the output y with initial state (0.2, 0.2)T for the pair

of gains (K1, L1) and (K2, L2) using 16-bit implementation. Upper

panel: evolution of y from 0 to 15 seconds. Lower panel: evolution

of y from 5 to 15 seconds (magnified version). 52

4.2 Cost of the best particle and average cost of all population vs iter-

ation. 65

4.3 synthesized fixed-point controller C code for Bicycle. 66

5.1 A possible fixed-point implementation for the example expression. 72

5.2 Summary of absolute errors for different implementations 73

5.3 Rewrite rules. 76

5.4 Comparison of analyzed upper bound and simulated lower bound

on maximum errors for the linear benchmark batch processor (state

2). 78

5.5 Comparison of analyzed upper bound and simulated lower bound

on maximum errors for the nonlinear benchmark rigid body (out1). 78

6.1 Memoization region and table . 99

6.3 CPU time required for batch reactor process for different imple-

mentations using the Leon2 processor for different running times in

the disturbance-free scenario . 114

xi

6.4 CPU time required for the jet engine compressor for different imple-

mentations on the PowerPC processor for different running times

for disturbance scenario 2 . 116

7.1 Linear control system with dropout 121

7.2 The upper bound of the L∞ to RMS gain vs successful transmission

rate for an inverted pendulum for K1 = [4.8462 0.1800] 133

7.3 Scheduler synthesis toolbus . 142

8.1 Linear control system with dropout 149

8.3 Periodic state transmission and control computation 153

xii

List of Tables

3.1 Strongest postconditions for real-valued programs 27

3.2 Semantics of unsigned fixed-point operations in terms of bitvector

operations. The other cases are symmetric. The shr and shl opera-

tors are bitvector shift-right and shift-left operations, and lsb(x, k)

picks the lower order k bits of a bitvector x. 30

3.3 Experimental Results . 40

4.1 Synthesized gains and required time for synthesizing them. 63

4.2 Least upper bound (lub) on the LQR cost (2.10), for a given initial

condition x, the LQG cost (2.11), and the Euclidean norm of the

steady state error for the LQR-LQG and the synthesized gains. . 63

5.1 Continued in the next page . 85

5.2 Maximum absolute errors for the best expression found by GP with

the settings elitism: 2, tournament selection: 4, with and without

crossover (seed used: 4357). err is the analyzed error. g denotes

the generation in which the solution is found. 86

5.3 Synthesized gains and required time for synthesizing them. 88

5.4 Improvement in the size of region of practical stability for the im-

proved and synthesized controllers 89

5.5 Least upper bound (lub) on the LQR cost, for a given initial con-

dition x and the LQG cost for the baseline and the optimal imple-

mentations. 89

6.1 CPU time required for different implementations of the controller

of the batch reactor process running for 2000s 111

xiii

6.2 Communication cost for different implementations of the controller

of the batch reactor process running for 2000s 113

6.3 CPU time and communication cost for different implementations

of the controller of the jet engine compressor running for 2000s . . 117

7.1 Control systems parameters . 143

7.2 Experimental results . 144

8.1 Control systems parameters . 163

8.2 Synthesized controllers . 164

xiv

Acknowledgments

First I would like to express my sincere gratitude to my advisor Prof. Rupak

Majumdar for his continual guidance and exceptional support throughout the du-

ration of my dissertation work. He took utmost care to teach me different skills

to do effective research and guided me to grow up as an independent researcher.

I would also like to thank Prof. Jens Palsberg, Prof. Todd Millstein, Prof. Mi-

los Ercegovac and Prof. Paulo Tabuada for serving as my dissertation committee

members and for their insightful comments and feedback during the oral qual-

ifying examination and the final defense presentation. The courses taught by

Prof. Rupak Majumdar, Prof. Todd Millstein, Prof. Jens Palsberg, Prof. Paulo

Tabuada and Prof. Lieven Vandenberghe at UCLA have been of great help to

prepare myself for my dissertation research.

This dissertation is based on the research I have done with my advisor Prof. Ru-

pak Majumdar and a number of other collaborators. I would like to thank

Dr. Adolfo Anta, Eva Darulova, Prof. Viktor Kuncak, Prof. Rupak Majumdar,

Prof. Paulo Tabuada and Dr. Majid Zamani for the enjoyable collaborations. Spe-

cial thanks goes to Dr. Majid Zamani for many insightful discussions that helped

hone my knowledge in control theory. Many of his ideas found their way in this

thesis. I would also like to thank Dr. Manuel Mazo and Dr. Matthias Rungger for

many helpful discussions on different topics in control theory.

I am greatly thankful to Dr. Natarajan Shankar for hosting my three intern-

ships at SRI International and for his continual guidance and encouragements

during my dissertation work. I am grateful to Dr. Ashish Gehani, Dr. Shalini

Ghosh, Sam Owre, Dr. John Rushby and Dr. Ashish Tiwari for three learning-

filled summer internships at SRI International. I would also like to thank Dr. Jy-

otirmoy Deshmukh, Dr. Jim Kapinski, Koichi Ueda and Hakan Yazarel of Toyota

Technical Center for their encouragement and helpful feedback on my dissertation

xv

work. I sincerely thank my advisor Prof. Rupak Majumdar for hosting my research

visits at MPI-SWS. I am also very much thankful to all administrative staffs at

UCLA Computer Science department, SRI International and MPI-SWS for there

exceptional support that made my stay in these institutes very comfortable and

productive.

I am in debt to my professors at Kalyani Government Engineering College,

India for building my basic knowledge in Electronics and Communication Engi-

neering, and my professors at Indian Statistical Institute, Kolkata for building

my basic knowledge in Computer Science. I specially thank Prof. Bhargab Bhat-

tacharya, Prof. Bhabani P. Sinha and Prof. Susmita Sur-Kolay of Indian Statistical

Institute Kolkata for encouraging me and helping me prepare for a doctoral study.

Thanks are due to my colleagues at Honeywell, Bangalore, especially Subhas Ku-

mar Ghosh, Janardan Misra, Debapriyay Mukhopadhyay and Dr. Suman Roy,

for encouraging me to pursue a doctoral study. I would also like to thank Dr. S.

Ramesh of General Motors R&D for his encouragement in pursuing research in

the area of safety-critical embedded systems.

I feel extremely lucky to have lab mates and colleagues like Elias Bareinboim,

Sharath Gopal, Manu Jose, Hesam Samimi, Dr. K. C. Shashidhar, Sai Deep Tetali

and Zilong Wang, who always took time to ask me about the progress on my

research and gave good advice whenever I needed. The light moments spent with

them always helped me come back with a refreshed mood to work harder on my

dissertation research.

I would like to thank my friends and relatives for their continual encourage-

ment. Thanks are due to Tilak Adhya, Indranil Basu, Dr. Saurav Basu, Kuntal

Chakraborty, Kousik Debnath, Dr. Pavel Ghosh, Satadal Ghosh, Rudra Narayan

Hota, Sucheta Roy, Lokesh Kumar Sambasivan, Aditya Zutshi and many others for

their encouragement during my doctoral study. I would like to thank my brother

Abhranil Saha and my extended family in India for their love and encouragement.

xvi

Finally, I express my sincere gratitude to my parents for cheering me up at

every stage during my doctoral study. Starting from my childhood days, they

have spent so much of their time and energy for my education. Without their

love, endless support and encouragement, this thesis might not be possible. This

thesis is dedicated to them.

xvii

Vita

2003 B.Tech.(Electronics and Communication Engineering), Kalyani

Govt. Engineering College, India

2005 M.Tech.(Computer Science), Indian Statistical Institute, India

2005 – 2008 Research Scientist, Honeywell, India

xviii

Publications

Adolfo Anta, Rupak Majumdar, Indranil Saha, Paulo Tabuada. Automatic Verifi-

cation of Control System Implementations. EMSOFT 2010. (Best Paper Award)

Rupak Majumdar, Indranil Saha, Majid Zamani. Performance-Aware Scheduler

Synthesis for Control Systems. EMSOFT 2011.

Rupak Majumdar, Indranil Saha, Majid Zamani. Synthesis of Minimal Error

Control Software. EMSOFT 2012. (Best Paper Nomination)

Indranil Saha and Rupak Majumdar. Trigger Memoization in Self-Triggered Con-

trol. EMSOFT 2012.

Eva Darulova, Viktor Kuncak, Rupak Majumdar and Indranil Saha. Synthesis of

fixed-point Programs. Manuscript under submission.

Indranil Saha and Rupak Majumdar. Performance Aware Dynamic Scheduling in

Networked Control Systems. Manuscript under submission.

xix

CHAPTER 1

Introduction

A cyber-physical system tightly coordinates discrete computation and continu-

ous control of physical resources. Applications of cyber-physical systems are nu-

merous – ranging from simple home appliances, for example, a thermostat, to

complex transportation systems, for example, autonomous vehicles. Most safety-

critical cyber-physical systems run sophisticated control algorithms at their core.

In a cyber-physical system, the subsystem which runs the control algorithms is

referred as a control system. The control system is often implemented on a hard-

ware platform. The control system obtains the state of the plant through a set of

sensors at certain discrete time instances. The state of the plant represents the

physical quantities such as position, velocity, temperature, pressure and so on.

Based on the current state of the plant, the control system computes the control

inputs to be applied to the plant. The control inputs are applied to the plant

through a set of actuators. Often the sensors communicate with the controller

through a network.

While the control algorithms have been studied thoroughly from a theoretical

standpoint, their implementation as software raises many issues that need to be

addressed to ensure the reliability of cyber-physical systems. Consider the com-

mon practice of designing a control system using continuous mathematics and im-

plementing it in software. At one end of the spectrum we have control engineering

that studies the evolution of continuous dynamical systems while mostly ignoring

the effect of implementing feedback control laws in software. At the other end, we

1

have software engineering, which abstracts away physical components when mod-

eling computation. Thus, mathematical real numbers are approximated using

floating-point or fixed-point arithmetic, and the continuous world is discretized

through sampling. In designing a controller mathematically, the control compu-

tation time is often assumed to be negligible, which may not often be the case in

the real implementations. Moreover, the automotive and the aerospace industries

are moving from using federated architectures, where a single control application

is implemented on one processor, to integrated architectures, where the objective

is to implement a number of control loops on a single processor. When multiple

control applications run on a shared platform, schedulability requirements of the

corresponding tasks impose additional constraints on the behavior of the systems.

Quantifying the effect of using finite precision arithmetic in the implementation of

controller program requires the application of program analysis techniques. The

effect of computation time and schedulability analysis are studied in the context of

implementation of real-time systems. Thus we see that building a reliable cyber-

physical system requires combining knowledge from at least three areas: control

engineering, software engineering and real-time systems. Unfortunately, there has

been very little interaction among these fields to date. The current practice is to

design a controller without taking into account the implementation constraints,

and then simulate the implemented control system thoroughly to make sure that

the system behaves reasonably. However, for safety-critical systems, we need for-

mal guarantees on the behavior. In this thesis, we study how we can combine

techniques from control theory, software engineering and real-time systems theory

to build cyber-physical systems that are provably correct with respect to some

desirable properties.

2

1.1 Contributions

Implementation of controller software using finite precision arithmetic.

The controller for a cyber-physical system is designed based on real arithmetic,

considering the dynamics of the system to be continuous. However, when the

controller is realized as software, the dynamics of the system is discretized based

on some chosen sampling time, and finite precision arithmetic is used to represent

the variables. Now one should ensure that the implementation still ensures the

desired properties of the system. This is a verification question that requires

both control theoretic analysis and program analysis of control software. We

show through control theoretic analysis that the verification question regarding

the desired property of the implemented control system can be reduced to the

question of verifying the bound on the error due to quantization effect introduced

at the implementation of the controller program. We employ program analysis

techniques to verify the bound on the implementation error.

There is a relevant control software synthesis challenge: For a chosen finite

precision arithmetic, design a controller for which the implemented software has

the least error among all possible controllers. Generally, controllers are designed

to minimize the control cost (the power of the control signal) and the state cost

(the deviation of the state from the desired value). We show that the controller

designed based on optimization of such costs may produce a controller whose

fixed point implementation may have significant error in the output. We pro-

vide a stochastic optimization-based methodology to synthesize a controller that

minimizes both the state and control cost along with the error in the fixed point

implementation of the controller software.

The synthesized controllers generally have the form of a linear expression (for

linear control systems) or a polynomial (for nonlinear control systems). A naive

compilation of a controller expression may produce a program that significantly

3

deviates from the controller designed using real arithmetic, whereas a different or-

der of evaluation can result in a program that is close to the real value on all inputs

in its domain. We have developed a compilation scheme that compiles real-valued

arithmetic expressions to fixed point arithmetic programs, which minimizes the

error in the fixed-point program with respect to the real-valued expression. Our

technique is based on genetic programming, where the fitness of each candidate

program is determined based on the bound on the error at the output of the pro-

gram. To compute the bound on the error, we employ a static analysis technique

based on affine arithmetic. This compilation scheme enables us to further improve

the precision of the controller implementation.

Implementation of self-triggered control systems. The second contribution

of this thesis is the introduction of a novel software implementation scheme for

self-triggered control systems. In a self-triggered implementation, the control task

computes the actuator signal as well as a triggering time that specifies the next

time instance at which the control task should be run. Self-triggered implementa-

tions have the potential to decrease communication costs and CPU requirements

over time-triggered ones by running the steady-state plant in open loop for long

intervals if there is no disturbance. Thus, a self-triggered implementation is an

attractive technique to be used for integrated architectures of cyber-physical sys-

tems, in which multiple control loops and non-critical applications share the same

resources (CPU or communication network). However, we show that commonly

claimed gains for self-triggered implementations are too optimistic. The analy-

sis of most self-triggering algorithms ignore the execution times for computing

the trigger times. We show, using implementations of several self-triggering al-

gorithms proposed in the literature on common embedded platforms, that the

execution time to compute the trigger time can be non-negligible compared to

the trigger times, and may even be higher than a trigger time itself, rendering a

naive implementation infeasible. We propose an implementation scheme for self-

4

triggered control using state quantization and memoization of trigger times in a

cache, and provide guarantees on the steady state behavior of the control systems.

Our implementation scheme is always feasible, and the performance of the imple-

mented controller meets the expectations stated in the literature on self-triggered

control systems.

Scheduler synthesis for optimal performance. The third contribution of this

thesis is to understand the end-to-end behavior of control systems implemented

on shared platforms. In integrated architectures, where the objective is to imple-

ment a number of control loops on a single processor, the most important issue

is scheduling—how to schedule the control tasks with fairness so that all the con-

trol systems attain desired performances. We provide a constraint solving based

static scheduler synthesis framework for scheduling control tasks from multiple

control systems on a single processor. The scheduler judiciously drops control

task computation to maintain schedulability and ensures not only stability but

also optimal performance of the individual control systems.

In designing a static scheduler, we assume that the communication medium

between the plant and controller is perfect. However, in real scenario, the commu-

nication between the sensors attached to the plant to measure the plant’s state and

the controller often happens through a network which introduces communication

delay and packet dropout. The design of a scheduling algorithm in a networked

control setting would require that the scheduler also takes into account the delay

and any packet dropped due to network failure. As packet drop by the network

is unpredictable, we cannot design a static scheduler to solve this problem. We

show how we can synthesize a controller and a dynamic scheduling strategy that

together ensure optimal performance of the control system even in the presence

of delay and arbitrary packet dropout (with an upper limit on the rate of packet

dropout) by the network.

5

1.2 Organization

The rest of this thesis is divided into eight chapters. In Chapter 2, we provide

the necessary background of control theory. In Chapter 3, we show how to verify

stability properties of the implementation of a control system. In Chapter 4, we

provide a framework for controller synthesis, that can take into account the tradi-

tional control performance criteria together with the effect of the implementation

constraints while synthesizing a controller. In Chapter 5, we show that the syn-

thesized controller programs can be further optimized by properly choosing the

order of the arithmetic operations, and present a genetic programming based tool

that synthesizes a controller program taking into account all possible ordering of

the arithmetic operations. In Chapter 6, we present an implementation scheme for

self-triggered control using state quantization and memoization of trigger times

in a cache, and provide guarantees on the steady state behavior of the control

systems. In Chapter 7, we present a constraint solving based static scheduler

synthesis scheme to maintain stability and achieve optimal performance in the

control systems in the absence of any network induced packet drop. In Chapter 8,

we present a dynamic scheduler synthesis scheme that taking into account packet

drops by the network maintains stability and achieves optimal performance in

the control systems. We conclude the thesis in Chapter 9, outlining a number of

possible directions of future research.

6

CHAPTER 2

Basics of Control Theory

In this chapter, we introduce the mathematical notations used throughout the

thesis. We also provide the required background of control theory.

2.1 Mathematical Notation

We denote by R, R+
0 , and R+ the real, non-negative real, and positive real num-

bers, respectively. The natural numbers, including zero, are denoted by N0. The

function eAt, for t ∈ R denotes the matrix function defined by the convergent

series:

eAt = 1n×n + At+
1

2!
A2t2 +

1

3!
A3t3 + . . .

where 1n×n is the identity matrix with n rows and n columns and e is Euler’s

constant. The zero matrix with n rows and m columns is denoted by 0n×m. The

j-th entry of a vector x ∈ Rn is denoted by xj and the Euclidean norm of x is

given by ‖x‖ =
√
x2

1 + x2
2 + . . .+ x2

n. We will also use the 1-norm, denoted by

‖x‖1 and defined by ‖x‖1 = |x1|+ |x2|+ . . .+ |xn|, where |xj| is the absolute value

of xj ∈ R. These two norms are related by ‖x‖ ≤ ‖x‖1 ≤
√
n‖x‖. The induced 2

norm of a matrix A ∈ Rn×m is given by: ‖A‖ =
√
λmax (ATA). We call the matrix

A Hurwitz if its eigenvalues are inside the unit circle, centered at the origin.

A continuous function γ : R+
0 → R+

0 , is said to belong to class K if it is strictly

increasing and γ(0) = 0. A K-function γ is said to belong to class K∞ if γ(s)→∞
as s → ∞. A continuous function β : R+

0 × R+
0 → R+

0 is said to belong to class

7

KL if β(r, t) belongs to class K∞ for each fixed t ≥ 0 and β(r, t) is decreasing

with respect to t and β(r, t) → 0 as t→∞ for each fixed r ≥ 0. A function

F : Rn → R is called radially unbounded if F (x)→∞ as ‖x‖ → ∞.

2.2 Mathematical Model of a Control System

2.2.1 Continuous-Time Systems

Physical systems are typically modeled by differential equations:

d

dt
ξ = f(ξ, υ, ω) (2.1)

in which the curve ξ : R → Rn describes how the physical quantities of interest

change over time. At each time instant t ∈ R, ξ(t) is a vector in Rn containing the

values of physical quantities such as positions, velocities, temperatures, pressures,

etc. The vector υ(t) denotes an input signal acting on the system. This input

can be manipulated by a controller to control the behavior of the system. The

vector ω(t) denotes an uncontrollable disturbance signal acting on the system.

We assume that the curves υ and ω follow some regularity assumptions, so that

the existence and uniqueness of the solutions of (2.1) can be guaranteed. The

curve ξ is said to be a solution or trajectory of (2.1) when there exists an input

curve υ : R→ Rm such that the time derivative of ξ at time t equals f(ξ(t), υ(t)).

We denote by ξxυ(t) the point reached by the solution ξ of (2.1) at time t ∈ R,

starting at the state x ∈ Rn and under the input υ : R→ Rm and the disturbance

ω : R→ Rq. Note that different input curves υ give rise to different trajectories ξ.

The objective of the control engineer is to design a controller υ = k(ξ, c) computing

υ based on the evolution of the physical variables and the desired commands c

given by the user.

The resulting input curves υ force the corresponding trajectories ξ to have

desirable properties, most notably asymptotic stability. Intuitively, given a desired

8

operating point x0 ∈ Rn, we would like to design input curves υ so that trajectories

ξ of (2.1) converge asymptotically to x0, i.e., limt→∞ ξ(t) = x0. Moreover, stability

also requires that if ξ(0) is close to x0, then ξ(t) should remain close to x0 for t > 0.

Whenever the controller υ = k(ξ, c) gives rise to trajectories with the preceding

properties, we say that x0 is a global asymptotically stable equilibrium point for

d

dt
ξ = f(ξ, k(ξ, c)).

In the next subsection, we provide formal definitions of the notion of stability.

2.2.2 Stability Properties

Here we provide formal definitions of different stability criteria that are widely

used as desirable properties of a closed loop control system. For more detailed

analysis, we refer the readers to the book by Khalil [Kha02].

The closed loop system is stable with respect to the origin ξ = 0, if for every

b > 0 there exists a a > 0 such that

‖ξ(0)‖ ≤ a ⇒ ‖ξ(t)‖ ≤ b for all t ≥ 0

The closed loop system is called asymptotically stable if it is stable and a can be

chosen so that

‖ξ(0)‖ ≤ a ⇒ ξ(t)→ 0 as t→∞.

If the above condition holds for any a > 0, the closed loop system is called globally

asymptotically stable with respect to the origin. The closed loop system is called

exponentially stable if there exist positive constants a, c and λ such that for all

‖ξ(0)‖ ≤ a, ξ(t) satisfies the inequality

‖ξ(t)‖ ≤ c‖ξ(0)‖e−λt, ∀t ≥ 0.

If the above inequality holds for any a, the closed loop system is called globally

exponentially stable.

9

The stability of a closed loop control system in the presence of a piecewise

continuous disturbance input d(t) is given by the concept of input-to-state stability.

A closed-loop dynamical system with a disturbance input is represented as

ξ̇ = f(ξ, k(ξ(t)), d(t)).

The system is called input-to-state stable (ISS) if there exists a K∞ function α,

and a KL function β, such that for any initial state ξ(0), the state ξ(t) satisfies

the following inequality:

‖ξ(t)‖ ≤ β(‖ξ(0)‖, t) + α(‖d‖∞), ∀t ≥ 0

Sufficient conditions on different stability criteria are given using Lyapunov func-

tions. A Lyapunov function is a continuously differentiable function V : D → R,

D ⊂ Rn, for which the following conditions hold:

V (0) = 0, V (ξ) > 0 for all ξ 6= 0.

The derivative of V along the solution of the closed loop system is given by

V̇ (ξ) =
∂V

∂ξ
f(ξ, k(ξ(t)))

The closed loop system is stable with respect to ξ = 0 if there exists a Lyapunov

function V such that V̇ (ξ) ≤ 0 for all ξ 6= 0. The closed loop system is asymp-

totically stable with respect to origin if there is a Lyapunov function V such that

V̇ (ξ) < 0 for all ξ 6= 0. The closed loop system is globally asymptotically stable

if there exists a radially unbounded Lyapunov function with V̇ (ξ) < 0. The closed

loop system is exponentially stable if there exists a Lyapunov function V and a

positive constant λ such that

V (ξ(t)) ≤ V (0)e−λt, for all t ≥ 0.

The largest constant that can be used for λ in the above inequality is called the

rate of decay. The closed loop system is ISS if there exists a radially unbounded

Lyapunov function V and two K∞ functions α1 and α2 such that

V̇ (ξ, d) ≤ −α1(‖ξ‖) + α2(‖d‖) for all ξ, d.

10

2.2.3 Continuous-Time Linear Control Systems

In this thesis, we have mostly dealt with linear time-invariant systems. A linear

time-invariant control system is given by the following differential equations:

 ξ̇ = Aξ +Bυ +Bω,

η = Cξ + ν,
(2.2)

where, for any t ∈ R, ξ(t) ∈ Rn, υ(t) ∈ Rm, ω(t) ∈ Rq, η(t) ∈ Rp, and A, B, B, and

C are matrices of appropriate dimensions. Note that υ, ω, η, and ν denote control

input, disturbance, output of the system and measurement noise, respectively. We

assume that ω(t) and ν(t), for any t ∈ R, are zero-mean Gaussian noise processes

(uncorrelated from each other). For all curves ω, we also write ξxυ(t) to denote

the points reached at time t under the input υ from initial condition x = ξxυ(0).

2.2.4 Discrete-Time Linear Control Systems

To describe the mismatch between the controller specifications and its software

implementations such as digital sampling and finite precision arithmetic, which is

the focus of this paper, we consider the discrete-time version of (2.2), as follows: x[r + 1] = Aτx[r] +Bτu[r] +Bτd[r] + es,

y[r] = Cx[r] + v[r],
(2.3)

where the matrices Aτ , Bτ , and Bτ are given by:

Aτ =eAτ , Bτ =

∫ (r+1)τ

rτ

eA(τ−t)Bdt,

Bτ =

∫ (r+1)τ

rτ

eA(τ−t)Bdt,

and τ is the sampling time. The signals x, u, d, y, and v describe the exact value of

the signals ξ, υ, ω, η, and ν, respectively, at the sampling instants 0, τ, 2τ, 3τ,

11

Mathematically, we have:

x[r] =ξ(rτ), u[r] = υ(rτ), d[r] = ω(rτ),

y[r] =η(rτ), v[r] = ν(rτ), ∀r ∈ N0.

The term es in (2.3) is the sampling error. It can be shown that by sampling suffi-

ciently fast, the error es can be made arbitrarily small [CF95a]. Since typical em-

bedded controller implementations use sampling time in the range of milliseconds

to microseconds, we will make the assumption that quantization errors dominate

the sampling errors, and assume that es = 0.

2.2.5 Observer

We assume that only output y of the system is measurable and not the full state

x. Hence, a (proportional) feedback K : Rn → Rm defines the input

u[r] = −Kx̃[r] (2.4)

based on an estimation x̃ of the state x. As explained in [Hes09], the estimation

x̃ can be constructed using the observer dynamic: x̃[r + 1] = Aτ x̃[r] +Bτu[r] + L (y[r]− ỹ[r]) ,

ỹ[r] = Cx̃[r],
(2.5)

where ỹ should be viewed as an estimate of y and the linear map L : Rp → Rn is

called an observer gain. Here we ignore the effect of the external disturbance and

the measurement noise.

Thus a controller implementation with an observer is given by: x̃[r + 1] = Dτ x̃[r] + Eτy[r],

u[r + 1] = Kx̃[r + 1],
(2.6)

where, Dτ = (Aτ −BτK − LC) and Eτ = L.

12

By applying the feedback u[r] = −Kx̃[r] and combining the dynamics of con-

trol system in (2.3) and observer in (2.5), one obtains: x[r + 1] = Aτx[r]−BτKx̃[r] +Bτd[r],

x̃[r + 1] = Dτ x̃[r] + EτCx[r] + Eτv[r],
(2.7)

which gives the dynamics of the closed loop control system.

2.3 Performance Criteria

Apart from the stability properties, the designed control systems should also sat-

isfy some optimality criteria. Here we present three performance criteria that we

have dealt with in this thesis.

2.3.1 Region of Practical Stability

Definition 1. A bounded set S ⊂ Rn is said to be globally asymptotically stable

for a differential equation (2.1) if the following two properties hold:

• ∀α ∈ R+ ∃t∗ ∈ R+ ∀t ≥ t∗ d(ξx(t), S) ≤ α;

• ∀α ∈ R+ ∃β ∈ R+
0 ∀t ∈ R+

0

d(x, S) ≤ β =⇒ d(ξx(t), S) ≤ α.

where the distance from x to S, denoted by d(x, S), is defined by:

d(x, S) = inf
y∈S
‖x− y‖.

The set S is called the region of practical stability. Whenever the set S contains

a single point x0, we speak of an asymptotically stable equilibrium point x0 rather

than of an asymptotically stable set. The first requirement in Definition 1 asks

that for any initial state x ∈ Rn, the corresponding trajectory ξx asymptotically

converges to the set S in the sense that after t∗(α) units of time ξx will be α-close

13

to S. The second condition prevents ξx from deviating too much from S when

x is close to S. The notion of asymptotic stability for discrete-time difference

equations is obtained from Definition 1 by replacing t, t∗ ∈ R+
0 with r, r∗ ∈ N0.

The following result describes how stability properties are affected by additive

perturbations. It summarizes several results from [CF95b] in a convenient form.

Proposition 1. Consider the discrete-time linear system:

x[r + 1] = Ax[r]

and assume that the origin is an asymptotically stable equilibrium point. Then,

for any signal d : N→ Rn satisfying ‖d‖ ≤ b(d) for some constant b(d) ∈ R+
0 , the

set:

S = {x ∈ Rn | ‖x‖ ≤ γb(d)}

is globally asymptotically stable for the discrete-time system:

x[r + 1] = Ax[r] +Bd[r] (2.8)

where γ is given by:

γ = maxψ∈[0,2π[

∥∥(eiψ1n×n − A)−1B
∥∥ .

with i =
√
−1. Moreover, the output o = Cx is guaranteed to converge to the set:

SC = {o ∈ Rp | ‖o‖ ≤ γCb(d)} (2.9)

with:

γC = maxψ∈[0,2π[

∥∥C(eiψ1n×n − A)−1B
∥∥ .

In the control literature, γC is known as the L2 gain of the control system. It

describes how much the disturbance signal d is amplified by the discrete-time linear

system. When a disturbance d of magnitude b(d) is injected into the dynamical

system, as described by (2.8), the state evolution will deviate from the nominal

behavior by at most γCb(d) as described by the set (2.9).

14

2.3.2 LQR-LQG Performance

In addition to asymptotic stability, controller designers also consider the perfor-

mance of the controller, that is, of the controllers ensuring asymptotic stability

of the origin, one desires the controller that minimizes a given cost function. A

common approach for optimal output feedback controller are the Linear Quadratic

Regulator (LQR) and Linear Quadratic Gaussian (LQG). The LQR cost function

to be minimized is given by:

JLQR =
+∞∑
r=0

{
x[r]TQx[r] + u[r]TRu[r]

}
, (2.10)

for some chosen weight matrices Q and R that are positive definite and of appro-

priate dimensions.

The LQG cost function to be minimized is given by:

JLQG = lim
r→+∞

E
[
‖e[r]‖2

]
, (2.11)

where E stands for expected value and e is the estimation error for the control

system in (2.7) whose dynamic is given by:

e[r + 1] = x[r + 1]− x̃[r + 1] = (Aτ − LC)e[r] +Bτd[r]− Lv[r]. (2.12)

As mentioned before, d and v are assumed to be zero-mean Gaussian noise process

(uncorrelated from each other) with covariance matrices:

E
(
d[r]d[r]T

)
= Q̂, E

(
v[r]v[r]T

)
= R̂, ∀r ∈ N0, (2.13)

where Q̂ and R̂ are some positive semi-definite matrices of appropriate dimensions.

A standard control-theoretic construction rewrites the cost function (2.10) as

JLQR = x[0]TS(K)x[0], where u = −Kx, and S(K) ∈ Rn×n is a positive definite

matrix that is the unique solution for S to the Lyapunov equation:

(Aτ −BτK)T S (Aτ −BτK)− S +Q+KTRK = 0, (2.14)

15

where K is a controller making Aτ − BτK Hurwitz. See [Hes09] for detailed

information. Additionally, we have

λmin(S(K))‖x[0]‖2 ≤ JLQR ≤ λmax(S(K))‖x[0]‖2, (2.15)

where λmin(S(K)) ∈ R+ and λmax(S(K)) ∈ R+ are minimum and maximum

eigenvalues of S(K), respectively. Therefore, JLQR can be minimized for all pos-

sible choices of initial conditions by just minimizing the maximum eigenvalue of

S(K). Note that since S is a positive definite and symmetric matrix, its maximum

eigenvalue is equal to its induced 2 norm ‖S‖.

Similarly, the cost function (2.11) can be rewritten as JLQG = ‖P (L)‖, where

P (L) ∈ Rn×n is a positive definite matrix that is the unique solution for P to the

Lyapunov equation:

(Aτ − LC)P (Aτ − LC)T − P +Bτ Q̂B
T

τ + LR̂LT = 0, (2.16)

where L is an observer gain makingAτ−LC Hurwitz. See [Hes09] for more detailed

information. Therefore, JLQG can be minimized by just minimizing ‖P (L)‖.

Note that the optimal feedback u = −Kx minimizing the LQR cost in (2.10)

is computed using the deterministic dynamic:

x[r + 1] = Aτx[r] +Bτu[r].

On the other hand, the optimal gain L minimizing the LQG cost in (2.11) is

computed using the stochastic dynamic in (2.12). Thanks to the separation prin-

ciple for linear control systems [Hes09], one concludes that the overall closed loop

system in (2.7) is UGAS even though the gains K and L are designed separately.

2.3.3 L∞ to RMS Gain

We now consider the L∞ to RMS gain as a performance criterion for LTI control

systems and consider the effect of dropouts.

16

For the discrete-time LTI control system in (7.3), the L∞ to RMS induced

gain from w to y is defined as follows:

sup
‖w‖∞ 6=0,X(0)=0

(
lim supl→∞

1
l

∑l
j=0 y

T (j)y(j)
) 1

2

‖w‖∞
, (2.17)

where ‖w‖∞ := sup{‖w(k)‖2, k ≥ 0}, and ‖w(k)‖2 =
√
wT (k)w(k).

The L∞ to RMS induced gain is a performance criterion showing the effect of

the disturbance on the output of the plants [HBH99]. Having smaller L∞ to RMS

induced gain implies better performance in the sense that the effect of disturbance

on the output of the plant is smaller.

17

CHAPTER 3

Verification

In this chapter, we introduce a methodology for the design and automatic verifica-

tion of control system implementations for stability properties. Our methodology

has two components. First, we provide a mathematical analysis of stability that

incorporates implementation errors arising out of the mismatch between the ideal

mathematical controller and its software implementation. Our analysis provides a

relationship between the region where the continuous variables can be steered to

under the action of the controller and the error between the ideal controller and

its implementation.

Second, we perform static program analysis on the software code implementing

the controller to compute an upper bound on the error between the mathematical

control signal and the software output. The static analysis is based on verification

condition generation [Win93], and reduces the error bound question to a validity

problem for a formula in the combination theory of reals and bitvectors, for which

off-the-shelf, efficient decision procedures are available [FHR07]. Together with

the first part, this enables us to compute an upper bound on the region to which

the implemented controller is guaranteed to steer the system.

We have implemented Costan (for Controller Stability Analyzer), a tool that

reads in controller implementations in C and checks the maximum possible er-

ror between the outputs of the C implementation and the Simulink function im-

plementing the mathematical controller. The current version of Costan targets

fixed-point implementations of controllers. Fixed-point implementations use fixed

18

width (e.g., 16- or 32-bit) integers to implement numerical operations over real

numbers. They are useful for implementing controllers on hardware platforms

without floating point support. (Our methodology carries over to floating point

implementations, given the semantics of floating point operations in the verifica-

tion condition generation [BKW09, FSI09].) Using Costan, we have analyzed error

bounds for a number of linear and non-linear control systems implementations,

including a realistic train car controller [MPS76], and we have characterized the

regions to which the controllers can steer the physical variables.

3.1 Motivating Example

We start with a simple example that shows the controller design process and

describes the semantic gap between a mathematical controller and its implemen-

tation. We consider a simple physical model of a locomotive pulling a train car

where the connection between the locomotive and the car is modeled by a spring

in parallel with a damper. The model has been borrowed from [MPS76]. The

dynamics of this system is given by:

d

dt


ξ1

ξ2

ξ3

=


0 1 −1

− k
m1
− b+c

m1

b
m1

k
m2

b
m2

− b
m2



ξ1

ξ2

ξ3

+


0

1
m1

0

 υ (3.1)

ω =

0 1 0

0 0 1



ξ1

ξ2

ξ3

 (3.2)

where ξ1 represents the distance between the locomotive and the car, ξ2 and ξ3

represent the velocities of the locomotive and the car, m1 = 176580Kg is the

mass of the locomotive, m2 = 100698Kg is the mass of the car, b = 1100Ns/m is

the damping coefficient, k = 7874N/m is the restitution coefficient of the spring,

c = 160Ns/m is the aerodynamic friction coefficient, and υ represents the force

19

applied by the locomotive.

The control objective is to quickly reduce the possible oscillations between the

locomotive and the car. Through a simple change of coordinates this problem can

be reformulated to the design of a controller that forces ξ1 to converge to zero.

One possible state feedback controller for the system is given by:

υ = −Kξ, K =
[
0.1763 0.3494 −0.0602

]
. (3.3)

However, if only the velocities of the locomotive and car can be measured, (3.3)

cannot be directly implemented. Hence, the feedback controller (3.3) is extended

with an observer estimating the distance between the locomotive and the car as

follows:

d

dt


ζ1

ζ2

ζ3

 =


0 79.58 −127.95

−1.04 −10.68 −1.19

0.07 1.49 −11.26



ζ1

ζ2

ζ3



+


−78.58 126.95

8.69 1.54

−1.48 11.25

ω. (3.4)

The resulting controller consists of the estimator and the feedback control law (3.3)

evaluated at the estimate ζ, i.e.:

υ = −Kζ.

Figure 3.1 shows (part of the) fixed-point implementation of the controller.

The code was generated automatically by Real Time Workshop. We point out

two observations about the implementation. First, the controller is implemented

using finite precision, fixed-point numbers, and “looks” very different from the

mathematical controller. For example, the last five lines of the controller code

implement the matrix multiplication (3.3), but the correspondence is not obvious

from the code. Second, the output of the implementation need not exactly match

20

int DelayStateX DSTATE[3]; // fixed point type: signed, 32bits, 28 fractional bits

int Xk[3], CXk[3]; // fixed point type: signed, 32bits, 28 fractional bits

int Gain1; // fixed point type: signed, 32bits, 29 fractional bits

int Gain2; // fixed point type: signed, 32bits, 28 fractional bits

int u1; // fixed point type: signed, 32bits, 28 fractional bits

static void controller(void)

{
int tmp, tmp0;

Xk[0] = DelayStateX DSTATE[0];

Xk[1] = DelayStateX DSTATE[1];

Xk[2] = DelayStateX DSTATE[2];

Gain2 = 310689525; // Reference input

. . . // update observer state

// compute control output based on state and observation

for (tmp = 0; tmp < 3; tmp++) {
tmp0 = (int)((long int)OutputMatrixC Gain[tmp] * (longint)Xk[0] � 30U);

tmp0 += (int)((long int)OutputMatrixC Gain[tmp + 3] * (long int)Xk[1] � 30U);

tmp0 += (int)((long int)OutputMatrixC Gain[tmp + 6] * (long int)Xk[2] � 30U);

CXk[tmp] = tmp0;

}
tmp = (int)((long int)(-757257017) * (long int)CXk[0] � 31U);

tmp += (int)((long int)(-1500825839) * (long int)CXk[1] � 31U);

tmp += (int)((long int)258754934 * (long int)CXk[2] � 31U);

Gain1 = tmp;

u1 = (Gain1 � 1) + Gain2;

}

Figure 3.1: Fixed point controller implementation for locomotive and train car

(generated by Fixed Point Advisor and Real Time Workshop)
21

the mathematical control function, due to finite precision arithmetic. In particu-

lar, it is not clear if this C implementation maintains the stability properties that

were guaranteed by the mathematical design.

In the rest of the chapter, we describe our methodology that enables us to rea-

son about the mathematical control system in conjunction with the implemented

code.

3.2 Effect of Implementation Errors

In this section, we consider quantization errors due to the fixed-point implemen-

tation of the controller code.

3.2.1 Implementation Error in Fixed-Point Implementation

We use the notation Q(x) and Q(P) to denote the fixed-point representation of

a vector x ∈ Rn and a matrix P ∈ Rn×m, respectively. A possible software

implementation of the controller (2.6) can then be described by:

x̂[r + 1] = Q (Q(Q(Dτ)x̂[r]) +Q(Q(Eτ)Q(y[r])))

= Dτ x̂[r] + Eτy[r] + eq1

û[r + 1] = Q (Q(−K)x̂[r + 1])

= −Kx̂[r + 1] + eq2. (3.5)

where

eq1 = Q (Q(Q(Dτ)x̂) +Q(Q(Eτ)Q(y)))−Dτ x̂− Eτy

eq2 = Q (Q(−K)x̂) +Kx̂

denote quantization errors. Note that the expressions for x̂[r + 1] and û[r + 1]

were obtained by performing a quantization after each algebraic operation. A

different software implementation can give rise to a different expression for the

22

error. Although different software implementations lead to different quantization

errors, eq1 and eq2 will always denote the difference between the quantized ver-

sion in a particular implementation and the un-quantized version of the algebraic

expressions.

In the following discussion, we ignore the effect of external disturbance and

measurement noise. The evolution, at the discrete-time instants 0, τ, 2τ, 3τ, . . ., of

the physical system (2.2) controlled by the implementation (3.5) can be obtained

by combining the exact discretization of (2.2):

x[r + 1] = Aτx[r] +Bτu[r] (3.6)

y[r + 1] = Cx[r + 1] (3.7)

with (3.5). The result is the discrete-time system:

x[r + 1] = Aτx[r]−BτKx̂[r] +Bτeq2 (3.8)

x̂[r + 1] = Dτ x̂[r] + EτCx[r] + eq1 (3.9)

Two new signals appear in (3.6) and (3.7). They are defined as follows:

x[r] = ξ(rτ), u[r] = υ(rτ), ∀r ∈ N0.

3.2.2 Stability analysis of controller implementations

The equations (3.8) and (3.9) describing the plant and the controller can be rewrit-

ten in matrix form:

w[r + 1] = Gw[r] +He[r] (3.10)

with:

w =

x
x̂

 , e =

eq2
eq1

 ,
and:

G =

 Aτ −BτK

EτC Dτ

 , H =

0n×n Bτ

1n×n 0n×n

 .
23

Under the working assumption that τ is sufficiently small, it can be shown1 that

w0 = 0 is an asymptotically stable equilibrium point for:

w[r + 1] = Gw[r].

Using the state space representation in (3.10), it is straightforward to compute

the set where the state trajectories asymptotically converge, as defined in the

following proposition. The proposition follows from Proposition 1 in Chapter 2.

Proposition 2. Consider the discrete-time linear system in (3.10). For any sig-

nals eq1 and eq2 satisfying ‖eq1‖ ≤ b(eq1) and ‖eq2‖ ≤ b(eq2), b(eq1), b(eq2) ∈ R+
0 ,

the output o = Mw is guaranteed to converge to the set:

SM = {o ∈ Rq | ‖o‖ ≤ γM (b(eq1) + b(eq2))}

with:

γM = maxψ∈[0,2π[

∥∥M(eiψ12n×2n −G)−1H
∥∥

The constants b(eq1) and b(eq2) are bounds for ‖eq1‖ and ‖eq2‖, respectively.

Note that the smaller the errors eq1 and eq2, the smaller is the set where o con-

verges to. In the limiting case where the quantization errors are non-existent,

i.e., b(eq1) = 0 = b(eq2), the set S becomes the point o = 0. Hence, if we seek an

implementation guaranteeing that the set of outputs o ∈ Rq satisfying ‖o‖ ≤ ρ is

asymptotically stable, the quantization errors eq1 and eq2 in the software imple-

mentation need to satisfy:

b(eq1) + b(eq2) ≤
ρ

γM
. (3.11)

In the preceding equation, ρ describes how much the continuous variables are

allowed to deviate from the nominal behavior due to implementation errors. For

1Under a small sampling time τ , matrix G can be seen as a small perturbation of the matrix

eJτ with J =
[
A BK
EC D

]
. Since the latter matrix has eigenvalues with negative real part, the

eigenvalues of G are inside the unit disk.

24

the example in Section 3.1 we have T = 0.001 and:

Aτ =


1 0.0010000 −0.0010000

−0.0000044 0.9999992 0.0000006

0.0000078 0.0000011 0.9999989



Bτ =


0.00000283

0.00566293

0.00000003



Dτ =


0.9999536 0.0790688 −0.1272843

−0.0010375 0.9893293 −0.0011182

0.0000769 0.0014819 0.9887948



Eτ =


−0.0781482 0.1262988

0.0086947 0.0014643

−0.0014725 0.0111945

 .
Since the objective is to regulate the distance between the locomotive and the car,

described by x1, the relationship between the output o and the state w is given

by:

o = x1 =
[
11×1 01×5

]x
x̃


and the resulting value for γM is 36.11. Hence, for a desired value of ρ = 2cm,

the quantization errors need to satisfy:

b(eq1) + b(eq2) ≤
0.02

36.11
= 5.53 · 10−4

In summary, our analysis has produced a quantitative relation given by Equa-

tion (3.11) between the implementation errors and the asymptotically stable set.

In the following section, we show how bounds on the implementation errors b(eq1)

and b(eq2) can be computed statically from the controller source code.

25

3.3 Symbolic Error Analysis

Intuition. Given a real-valued polynomial function y = f(x), a program F

implementing f using finite precision arithmetic, and a range [l, u] for x, the goal

of symbolic error analysis is to find how far the value f(x) can be from the output

of F (x̂) when x is chosen from the range [l, u] and x̂ is the closest representation

of x using the finite precision implementation of real numbers. To solve this

problem, we first construct the strongest post-condition SP(F)(x̂, ŷ) [Win93] for

the function F which is a symbolic formula relating the input x̂ to F with its

output ŷ. Then, we set up a set of constraints that is the conjunction of: (a) “x

is chosen in its range” x ∈ [l, u], (b) “x differs from x̂ in at most the precision δ

of the finite precision representation” |x− x̂| ≤ δ, (c) y = f(x), (d) “the program

F transforms x̂ to ŷ” SP(F)(x̂, ŷ), and finally, ask (e) what is the maximum

difference between y and ŷ under the constraints (a)-(d)?

The rest of this section formalizes this intuition.

3.3.1 Real-Valued Programs

We represent (mathematical) control functions as real-valued programs. A real-

valued program P = (I, L,O, rng, s) consists of a set of input variables I, a set of

local variables L, a set of output variables O, a function rng mapping each input

variable i in I to an interval [li, hi] of the reals, and a body s defined by the

grammar:

s ::= x := c | x := y⊕z | s1; s2 | assume(e) | s1[]s2 (3.12)

where x ranges over variables in L∪O, y, z range over variables in I ∪L, c ranges

over arbitrary rational constants, e ranges over Boolean expressions over the vari-

ables in I ∪ L, and ⊕ ∈ {+,−, ∗} ranges over arithmetic operations. The body

s consists of assignment statements, sequential composition s1; s2, conditionals

(assume), and non-deterministic choice s1[]s2. For x, z variables and c a rational

26

s SPR(s, θ)

x := c ∃x′.θ[x′/x] ∧ x = c

x := y⊕z ∃x′.θ[x′/x] ∧ x = y⊕z
assume(e) θ ∧ e
s1; s2 SPR(s2, SPR(s1, θ))

s1[]s2 SPR(s1, θ) ∨ SPR(s2, θ)

Table 3.1: Strongest postconditions for real-valued programs

constant, we write x := c ∗ z as shorthand for y := c;x := y ∗ z.

Note that there are no loops in the language. This is because most programs

in this domain come with static bounds on the number of iterations of a loop, and

so loops can be unrolled statically. We keep the non-deterministic choice opera-

tion to model external conditions that choose between different implementations.

For simplicity of exposition, we omit arrays and pointers as well as non-recursive

function calls from our language, although our implementation handles these fea-

tures.

For a set X of variables, an X-valuation is a mapping from X to the reals. We

write {{X}}R for the set of all X-valuations. For an X-valuation ν and variable

x ∈ X, we write ν(x) for the value of x under the valuation ν. A program state

is a I ∪ L ∪ O-valuation. In the following, we use first-order formulas with free

variables in I ∪L∪O to denote sets of program states: a formula θ represents the

set of program states that satisfy the formula θ.

The semantics of a real-valued program is given using the strongest post-

condition operation SPR. The function SPR maps a body s and a first-order

formula θ to a first-order formula SPR(s, θ). We use the notation θ[x′/x] to denote

the formula θ in which each occurrence of x is substituted by x′. For a first-order

formula θ with free variables in X, and an X-valuation ν, we say ν satisfies θ if the

27

formula obtained by substituting each occurrence of x ∈ X with ν(x) evaluates

to true. In the following, we identify an X-valuation ν with a |X|-dimensional

vector. For a first-order formula θ and a set X = {x1, . . . , xk} of variables, we

write ∃X.θ as shorthand for ∃x1.∃x2 . . . ∃xk.θ.

The transformer SPR is shown in Table 3.1. The operations have the usual

semantics [Win93], and SPR(s, θ) returns a formula that characterizes the set of

program states that can be reached by executing the statement s from a program

state satisfying the formula θ. An I-valuation ν ∈ {{I}}R satisfies the rng con-

straints if it maps every v ∈ I to a value in rng(v), i.e., if ν(v) ∈ rng(v) for each

v ∈ I. The semantics of a real-valued program defines a mathematical relation,

written [[P]]R, between I-valuations and O-valuations in the following way: the

pair of valuations (ν, µ) ∈ [[P]]R is in the relation if ν is an I-valuation, µ is an

O-valuation, and µ satisfies ∃L.SPR(s,
∧
v∈I v = ν(v)).

3.3.2 Fixed-Point Representation

A fixed-point type is a triple 〈s, n,m〉 consisting of a sign bit s ∈ {s, u} (for signed

and unsigned), a length n ∈ N, and a fractional part m ∈ N. A fixed-point type

〈s, n,m〉 interprets a bitvector of n bits as a rational number in the following way.

A bitvector b = bn−1 . . . b0 of type 〈u, n,m〉 represents the rational number

1

2m

n−1∑
i=0

2ibi

i.e., the bitvector represents a rational number where the last m bits are used for

the fractional part, and the top n−1−m bits for the integer part. The range of pos-

sible values for the type 〈u, n,m〉 is the set Un,m = { p
2m | p ∈ N, 0 ≤ p ≤ 2n − 1}.

The bitvector bn−1 . . . b0 of type 〈s, n,m〉 represents the rational number

1

2m

[
−2n−1bn−1 +

n−2∑
i=0

2ibi

]
Thus, a signed fixed-point number represents a positive, zero, or negative rational

28

number. The range of possible values for the type 〈s, n.m〉 is the set Sn,m =

{ p
2m | p ∈ Z,−2n−1 ≤ p ≤ 2n−1 − 1}. The most significant bit bn−1 of a fixed-point

number of type 〈s, n,m〉 is called the sign bit.

Representation of constants. Since not all real numbers can be represented

using fixed-point types, we represent fixed-point approximations to real numbers.

Let 〈u, n,m〉 be a fixed-point type, and let 0 ≤ c < 2n−m be a real number. The

representation repr(c) : 〈u, n,m〉 of c is the number p
2m for 0 ≤ p ≤ 2n−1 for which

c− p
2m is minimized. Clearly, (c− r) ≤ 1

2m for the representation r of c. Similarly,

for the fixed-point type 〈s, n,m〉 and a rational −2n−1−m ≤ c < 2n−m−1, the

representation repr(c) : 〈s, n,m〉 of c is the number p
2m for −2n−1 ≤ p ≤ 2n−1 − 1

for which c− p
2m is minimized. Again, (c− r) ≤ 1

2m for the representation r of c.

Let X be a set of variables and let typ be a function mapping each x ∈ X to

a fixed-point type. For a valuation ν ∈ {{X}}R mapping each variable in X to a

real value, we write repr(ν) for the fixed-point valuation that maps each variable

x to repr(ν(x)) of type typ(x).

Arithmetic operations and assignments. Consider the typed variables x :

〈u, nx,mx〉, y : 〈u, ny,my〉, and z : 〈u, nz,mz〉, and the assignment x := y + z.

In fixed-point arithmetic, the addition must be performed by first scaling the

bitvectors y and z so that their binary points align. Moreover, the addition can

result in a number with max{ny, nz}+ 1 bits, and this number must be scaled to

fit into the bitvector x. Table 3.2 shows the sequence of bitvector operations to

perform these steps.

We consider the case my ≤ mz and ny ≤ nz, the other cases are similar. First,

we multiply y by 2mz−my to align the binary points of the two operands (variable

t1 in Table 3.2). Second, the variables t1 and z are added as bitvectors. This

creates a number t2 with mz fractional bits, and nz −mz + 1 integer bits. These

bits must be “fitted” into the nx bits of x. Assuming mx ≤ mz (the other cases

29

Command Semantics Assumptions

x : 〈u, nx,mx〉 := c x := repr(c) : 〈u, nx,mx〉 0 ≤ c < 2nx−mx

x : 〈s, nx,mx〉 := c x := repr(c) : 〈s, nx,mx〉 −2nx−mx−1 ≤ c < 2nx−mx−1

x : 〈u, nx,mx〉 := t1 : 〈u, nz + 1,mz〉 := shl(y,mz −my); my ≤ mz, ny ≤ nz mx ≤ mz

y : 〈u, ny,my〉 ± z : 〈u, nz,mz〉 t2 : 〈u, nz + 1,mz〉 := t1 ± z;

t3 : 〈u, nz + 1,mx〉 := shr(t2,mz −mx);

x : 〈u, nx,mx〉 := lsb(t3, nx);

x : 〈u, nx,mx〉 := t1 : 〈u, ny + nz,my +mz〉 = y ∗ z; mx ≤ my +mz

y : 〈u, ny,my〉 ∗ z : 〈u, nz,mz〉; t2 : 〈u, ny + nz,mx〉 = shr(t1,my +mz −mx);

x : 〈u, nx,mx〉 = lsb(t2, nx)

Table 3.2: Semantics of unsigned fixed-point operations in terms of bitvector

operations. The other cases are symmetric. The shr and shl operators are bitvector

shift-right and shift-left operations, and lsb(x, k) picks the lower order k bits of a

bitvector x.

are similar), we truncate the mz fractional bits by right-shifting the bitvector

mz−mx bits and storing the result in t3 (thus keeping mx bits of precision for the

fractional part). Finally, we copy the lower nx bits of t3 into the bitvector x. The

subtraction operation has to consider two cases. If x is greater than z, in which

case the operation proceeds similar to addition. If x is less than z, then by 2’s

complement arithmetic, a 2n term is added to the result.

While we can give a direct semantics for signed arithmetic operations using

signed bitvector operations, it is conceptually easier to give the semantics for

signed numbers by reduction to unsigned ones. We do this by separately tracking

the sign and the magnitude of a signed number, performing the operations on the

magnitudes using unsigned arithmetic, and finally putting the appropriate sign

bits back.

To perform fixed-point multiplication of y and z, we multiply y and z as signed

or unsigned integers to get a bitvector with ny +nz bits in the unsigned case (and

ny +nz + 1 bits in the signed case) of which my +mz bits represent the fractional

30

part. These bits are “fitted” into x by first truncating the fractional part to keep

mx bits of precision, and then copying the lower nx bits into x (and copying the

sign bit into the sign bit of x). The corresponding bitvector operations are shown

in Table 3.2.

3.3.3 Fixed-point Semantics

A fixed-point program P = (I, L,O, typ, s) consists of sets I, L, O of input, local,

and output variables respectively, a type-map typ from I ∪ L ∪ O to fixed-point

types, and a body s defined by the grammar (3.12). That is, a fixed-point program

is syntactically identical to a real-valued program, but each variable is interpreted

as a fixed-point type rather than a rational number. We assume that programs are

well-typed in that arithmetic operations do not mix signed and unsigned types.

For a set X of fixed-point variables, an X-fixed-point valuation is a function

that maps each variable v ∈ X with typ(v) = 〈u, n,m〉 (respectively, typ(v) =

〈s, n,m〉) to a value in Un,m (respectively, Sn,m). We write {{X}} for the set of

all X-fixed-point valuations. When the type of variables (rational or fixed-point)

is clear from the context, we omit “fixed-point” and simply write valuation. A

fixed-point program state is an I ∪L∪O-fixed-point valuation. Notice that fixed-

point programs are finite-state, since the possible set of fixed-point valuations to

all the fixed-point variables in a program is finite.

The semantics of a fixed-point program is given using the strongest post-

condition operation SP mapping a body s and a first-order formula θ to a first-

order formula SP(s, θ). The definition of SP is identical to SPR for the constructs

;, [], and assume(e). The strongest postcondition operation for assignments is

defined using the semantics of arithmetic operations and assignments given in

Table 3.2.

A fixed-point program P defines a relation [[P]] between I-valuations and O-

31

valuations: the pair (ν, µ) ∈ [[P]] if ν ∈ {{I}} is an I-valuation, µ ∈ {{O}} is an

O-valuation, and µ satisfies ∃w ∈ L.SP(s,
∧
v∈I v = ν(v)).

3.3.4 Symbolic Error Analysis

We now formally define the error between a real-valued program and its fixed-

point implementation.

Definition 2. The implementation-error decision problem asks, given a real-

valued program P = (I, L,O, rng, s), a fixed-point program P ′ = (I, L′, O, typ, s′),

and an error bound ε > 0, is it true that for every µ ∈ {{I}}R satisfying the rng

constraints, we have ||ν − ν ′|| < ε for every pair ν ∈ {{O}}R, ν ′ ∈ {{O}} satisfying

[[P]]R(µ, ν) and [[P ′]](repr(µ), ν ′)? (Note that P and P ′ have the same set of input

and output variables, but can have different local variables and different bodies.)

Intuitively, for an input valuation µ satisfying the rng constraints, we run P on

µ and P ′ on repr(µ) and compare the results. The answer to the implementation-

error decision problem is “yes” if the norm of the difference of the outputs between

the programs is less than ε.

We now show that the implementation-error decision problem reduces to the

satisfiability problem for the combination theory of bitvectors and reals with ad-

dition and multiplication. For a variable v ∈ I ∪O, we write v as the real-valued

variable in P and fp(v) for the fixed-point version of v in P ′. For a formula ϕ and

a set X of variables, we write ϕ[fp(X)/X] for the formula obtained by replacing

32

each variable x ∈ X appearing ϕ with fp(x). Consider the following formula:∧
v∈I v ∈ rng(v)∧ (a)∧
v∈I:typ(v)=〈·,n,m〉 |v − fp(v)| ≤ 1

2m∧ (b)

SPR(s, true)∧ (c)

SP(s′, true)[fp(I ∪ L′ ∪O)/(I ∪ L′ ∪O)] (d)

⇒
||o− fp(o)|| ≤ ε (e)

(3.13)

where o denotes the vector of all elements of O. In the formula, (a) encodes the

rng constraints on the variables in I, (b) encodes the quantization error in the

inputs, (c) and (d) encode the semantics of the programs P and P ′ respectively,

and (e) encodes that the output differences are bounded by ε. The answer to the

implementation-error decision problem is “yes” iff the above formula is valid.

By naive enumeration, the bitvector constraints in the above formulas can be

reduced to Boolean operations. Thus, the implementation-error decision prob-

lem reduces to a satisfiability question in the theory of reals with multiplication

(naively, by enumerating all of the finitely many bits). The decidability of this

latter theory [Tar51, Can88] implies the following theorem.

Theorem 1. The implementation-error decision problem is in PSPACE.

Note that in order to prove the error bound is not ε, we can (1) guess the

bits in polynomial time, and (2) solve the resulting problem in the existential

theory of reals with addition and multiplication [Can88]. This gives a PSPACE

bound for the problems, using Savitch’s theorem and closure of PSPACE under

complementation.

In practice, instead of enumeration, in our implementation, we use efficient

decision procedures for the combination theory.

While we assume that ε is given as an input, notice that we can approximate

the minimal ε that bounds the error to any desired precision by using binary

33

search in a range.

Linear Approximation. The solution to the absolute-error problem uses a

reduction to a decision procedure for non-linear arithmetic. In practice, these

decision procedures are not as scalable as decision procedures for linear arithmetic.

We now consider a special case of the problem for which we can reduce the error

problems to problems in linear arithmetic.

A linear constraint is of the form
∑

i cixi ∼ b where ci and b are real num-

bers and ∼∈ {≥,≤,=}. A linear formula is a Boolean combination of linear

constraints. As linear real-valued program P = (I, L,O, rng, s), every assignment

statement in s is one of the forms x := c, x := y ± z, or x := c ∗ y for variables

x, y, z and real constant c, and in every assume statement assume(e), we have e

is a linear constraint.

Linear real-valued programs are an important special case: the implementation

of a linear controller or a non-linear controller through lookup tables and linear

interpolation is a linear real-valued program.

For linear real-valued programs, the constraints SPR(s, true) is a formula in

linear arithmetic. Thus, in the constraints (3.13), the antecedent is a formula in

the combination theory of linear arithmetic and bitvectors. The problem is that

we use the Euclidean norm, which introduces non-linear terms.

We define the linear approximation to the implementation-error problem in

which we ask if the 1-norm of the output difference in less than ε, i.e., if ||ν − ν ′||1 <
ε in Definition 2 instead of the Euclidean norm. For linear real-valued programs,

the linear approximation to the problem can be reduced to a decision problem

in the combination theory of linear arithmetic and bitvectors. This gives the

following result.

Theorem 2. For a linear real-valued program P and a fixed-point program P ′,

the linear approximation to the implementation-error problem is coNP-complete.

34

To show that an error bound is greater than ε, we can guess the bits and

reduce the problem to the satisfiability question for linear arithmetic. Thus, the

complement of the problem is in NP. coNP-completeness follows from the hardness

of Boolean reasoning.

Notice that the linear approximation can be used to provide a conservative

upper bound on the Euclidean norm, using the fact that ||x|| ≤ ||x||1 for any vector

x.

3.3.5 Arithmetic Encoding

While the bitvector semantics provides an “execution semantics” for fixed-point

programs, we now give an alternate semantics to fixed-point programs by reduc-

tion to constraints over integers that is more suited to symbolic analysis. In the

arithmetic semantics, we associate an integer variable x̂ with each fixed-point

variable x. The key idea is to simulate the bitvector operations on integers.

The fixed-point implementation of an arithmetic operation in {+,−, ∗} in-

volves the arithmetic operation, and optionally one or more shift operations and

an lsb operation in the fixed-point code. In the integer encoding, after each core

arithmetic operation, we separate the sign and magnitude of the result before

applying shift and lsb (least significant bits) operations on it. Let t be the tempo-

rary variable representing the result of the arithmetic operation. We represent by

sgn(t) the sign of t and by mgn(t) the magnitude of t. The magnitude mgn(t) can

be considered an unsigned fixed-point number with the same length and the same

number of fraction bits as t. Thus, we only need to simulate the bitvector opera-

tions on unsigned bitvectors using arithmetic operations (and using the Boolean

structure to encode the different possibilities on the sign bits).

Now let x be an unsigned number. We simulate shl(x, `) by x̂ ∗ 2` (note that

` is a constant, so this is multiplication by a constant). We simulate shr(x, `) by

35

(x̂ − (x̂ mod 2`))/2`. We simulate lsb(x, `) by x̂ mod 2`. Note that the shift

operations and the lsb operation does not modify the sign of the operand. So now

we can determine the sign of the result of the whole arithmetic operation to be

sgn(t). While x mod k is not directly implemented as an operation in a linear

arithmetic decision procedure, the predicate y = x mod k is easily encoded as

∃z.x = kz + y ∧ 0 ≤ y < k.

3.4 Extensions

We now indicate two extensions to the analysis in Section 3.2.

Sensor and Actuator Errors. The first extension deals with errors arising from

sensors and actuators in the system.

Sensing errors esense can be defined as the mismatch esense = ŷ[n]− y[n] be-

tween the measured output ŷ[n] of the sensor and the true value y[n] of the signal.

Similarly, actuation errors are defined by the mismatch eact = û[n]−u[n] between

the desired actuator value u[n] and the actual value û[n] enforced by the actu-

ator. Bounds on these errors are readily available from the sensor and actuator

specifications. Using esense, we can redefine the quantization error eq1 as:

eq1 = Q(Q(Dτ)x̂+Q(Eτ)Q(y + esense))−Dτ x̂+ Eτy.

Similarly, we can redefine the quantization error eq2 as:

eq2 = Q(Q(K)x̂) + eact −Kx̂.

With these new definitions for eq1 and eq2, the analysis in Section 3.2.2 remains

valid and the implemented controller is guaranteed to steer the state of the plant

to the set of states x satisfying (3.11).

Nonlinear Systems. The analysis of Section 3.2 can be extended to nonlin-

ear control systems by performing an analysis based on Lyapunov functions.

36

A Lyapunov function V : Rn → R+
0 satisfies V (x) = 0 =⇒ x = 0 and

∂V
∂x
f(x, k(x)) ≤ −λV (x). It is known that the existence of a Lyapunov function

implies that x0 = 0 is an asymptotically stable equilibrium point.

We now illustrate how our analysis for implementation errors can be done

for feedback controllers of the form υ = k(ξ) designed for a nonlinear control

system d
dt
ξ = f(ξ, υ). When designing controller k with the objective of rendering

x0 = 0 a globally asymptotically stable equilibrium point, a Lyapunov function

for d
dt
ξ = f(ξ, k(ξ)) is also designed. Moreover, if the controller is robust, a typical

requirement for controller design, the following stronger inequality also holds:

∂V

∂x
f(x, k(x) + e) ≤ −λV (x) + σ‖e‖2.

Due to the implementation errors, the actuators receive the value:

u = Q(k(Q(x))) = k(x) + εq3

where the quantization error εq3 is defined by:

εq3 = Q(k(Q(x)))− k(x).

Hence, the time derivative of V ◦ ξ will be given by:

d

dt
V ◦ ξ =

∂V

∂x

∣∣∣
x=ξ

f(ξ, k(ξ) + εq3) ≤ −λV ◦ ξ + σ‖εq3‖.

Through integration we arrive at:

V ◦ ξ(t) ≤ e−λtV ◦ ξ(0) +

∫ t

0

e−λ(t−τ)σ‖εq3(τ)‖dτ

≤ e−λtV ◦ ξ(0) +
σb(εq3)

λ

where b(εq3) is an upper bound for ‖εq3‖. Since:

lim
t→∞

V ◦ ξ(t) ≤ σ
b(εq3)

λ

the trajectories of the controlled system are guaranteed to converge to the set of

states x defined by V (x) ≤ σb(εq3)/λ. As expected, the implemented controller

37

still enforces asymptotic stability. However, in the presence of implementation

errors, we can only guarantee that trajectories converge to a set containing x0 = 0

and the size of this set decreases when the error εq3 is reduced.

3.5 Evaluation

3.5.1 Implementation

We have implemented Costan, an automatic tool to compute the error bound be-

tween a mathematical control law and a fixed-point implementation for the control

law. We model the mathematical control system in Simulink, and generate fixed-

point controller code using Simulink’s Fixed-Point Advisor and Real-Time Work-

shop. The real-valued program for the controller is extracted from the Simulink

model of the controller as an imperative program.

The inputs to Costan consist of the mathematical model and the fixed-point im-

plementation of the controller, a mapping between the input and output variable

names used in the two descriptions, the ranges of values for the input variables,

and the fixed-point types for each variable in the fixed-point implementation. Cur-

rently, the ranges for the input variables are determined by Matlab simulations.

Ranges for the variables measured and computed by the controller can also be ob-

tained by analyzing the mathematical models. Given a desired operating region

for the physical system, the control designer can compute how much the physical

variables will deviate from this region while converging to the desired equilibrium

point. The possibility of computing such value is essentially a consequence of

the second requirement in Definition 1 in Chapter 2. A similar analysis can then

be performed for the observer in order to determine the range for all the vari-

ables in the control code. The fixed-point types can be obtained from Simulink

Fixed-point advisor, or given as inputs to the Fixed-point code generator.

38

The core of Costan generates verification conditions as well as the constraints

for the implementation-error decision problem shown in Equation (3.13). Loops

are statically unrolled. In most cases, there is an explicit constant bound on the

number of iterations. A few loops, e.g., those implementing binary search over

a lookup-table to look up precomputed values, do not have an explicit constant

bound in the code, but these bounds can be inserted from the (static) knowledge

of the size of the lookup table.

Our tool uses the decision procedures Yices [DM06] and HySat [FHR07]. We

use Yices to solve the linear approximation to the implementation-error problem

for linear controllers. For nonlinear controllers, we use HySat. For a given ε, if the

constraints from Equation (3.13) are not valid, we get a concrete test input that

indicates where the mathematical controller and the implementation diverges. We

use the integer-based encoding for fixed-point arithmetic over the bitvector im-

plementation. This is because in our experiments (described below), the bitvector

encoding scaled poorly.

Starting with a range for the error bound, Costan performs a binary search

over the range to find out the smallest ε for which the difference between the

outputs is less than ε. As a terminating condition we specify a margin on the

range. If at any iteration the size of the range for ε goes below this margin then

we terminate the algorithm deciding the upper bound of current range to be the

error bound.

In most examples, the mathematical controller and the fixed-point implemen-

tation had identical syntactic structure. This allowed us to perform compositional

analysis, in which we computed the best error bounds on all live variables going

out of a block of code based on computed error bounds on all variables reaching

the block of code. However, our analysis cannot be fully compositional, as the

mathematical controller and the implementation can take different branches at a

conditional. So, at conditionals, our analysis “fell back” to verification condition

39

Example Error bound Set size (ρ) Run time

vehicle steering (16bit) 0.0163 0.0375 1m14.313s

pendulum (16bit) 0.0508 0.1806 2m36.409s

dc motor (16bit) 0.0473 1.0889 2m15.110s

train car - 1 car (32bit) 5e-7 2.6080e-5 3m25.478s

train car - 2 cars (32bit) 1.5e-6 9.4000e-5 5m39.607s

train car - 3 cars (32bit) 8.5e-6 0.0010 9m34.485s

train car - 4 cars (32bit) 3.351e-5 0.0080 10m9.179s

train car - 5 cars (32bit) 1.655e-4 0.0627 20m28.822s

jet engine[poly] (16bit) 4e-3 0.0230 0m0.551s

jet engine[3× 8] 6.40 37.0431 0m34.636s

jet engine[5× 10] 4.48 25.9296 0m34.293s

jet engine[7× 14] 2.73 15.8009 1m6.981s

jet engine[21× 21] 1.25 7.2348 18m15.794s

jet engine[21× 101] 0.88 5.0933 50m23.127s

jet engine[100× 100] 0.33 1.9100 103m19.977s

Table 3.3: Experimental Results

generation.

3.5.2 Experiments

We have applied Costan to a set of linear and nonlinear controller implementations

to estimate the implementation errors and hence, using the analysis of Section 3.2,

the region of asymptotic stability for the systems. Table 3.3 shows our experimen-

tal results on linear and nonlinear controllers, including the set S = {||x|| ≤ ρ}
to where the state trajectories converge.

Linear Controllers. As the first example we choose the vehicle steering model

from [AM09]. This model describes how to control the trajectory of a vehicle

40

through an actuator that causes a change in the orientation. It is possible to

design a linear feedback controller that stabilizes the dynamics and tracks a given

reference value r of the lateral position of the vehicle. The inputs to the controller

are the reference r and two state inputs coming from the controlled system. The

output of the controller is the control signal that goes as an input to the vehicle

steering system. For the reference input we choose the range to be [0, 100]. We

considered a 16-bit implementation. Our analysis finds that the absolute error for

this fixed-point C code is bounded above by 0.0163.

We also demonstrate the scalability of the integer encoding over the direct

bitvector encoding. Figure 3.2 shows how the time due to decision procedure

varies with ε for bitvector-based and the integer-based encodings. The SAT-

solving time grows rapidly near the “best” ε, and the bitvector analysis timed out

in the range [0.012, 0.8] while the integer encoding was stable.

0 0.005 0.01 0.015
0

1

2

3

4

5

6

tim
e[

s]

0.5 1 1.5 2
10−1

100

101

102

103

104

tim
e[

s]

Integer implementation
Bit−vector implementation

Error bound

 0.015

Figure 3.2: Decision procedure runtime for bitvector and integer implementation

41

We considered two other “textbook” linear control systems with feedback: the

simple inverted pendulum [KA02] and the armature-controlled DC motor system

[Zak03]. For the simple inverted pendulum, the controller has three inputs: one

is the reference input and the other two are the state inputs. Our analysis re-

veals that the absolute error bound for a 16-bit implementation of the controller

is 0.0508. The controller for the DC motor system has four inputs: the refer-

ence input and three state inputs. The error bound obtained for the DC motor

controller output for a 16-bit implementation is 0.0473.

In the three examples described above the states of the system were directly

measured. To consider a system where only some of the states can be measured,

we revisit the example in Section 3.1. We scale up the example gradually by

adding up to 5 cars. The measured states correspond to the velocities of the

locomotive and the train cars. The states that cannot be measured correspond to

the distance between the locomotive and the first car and the distances between

any two cars. Hence, for n train cars we have n+ 1 measured states and n states

that are estimated using the measured states. The inputs to the controller are

the measured states, while the control output, the force applied to the engine,

is computed from the measured inputs and the estimated states. We consider

32-bit fixed-point representation for all the variables. The length of the fraction

part of each variable is decided in such a way that no overflow occurs and the

precision of the variable is maximized. Table 3.3 shows the error bounds for

train-car controllers with up to 5 cars. The model with 5 cars (with 11 states)

can be analyzed in about 20 minutes. The 32-bit implementation of the controller

helps us achieve significantly small error bound.

While generating fixed-point code for a controller, a few times we have erro-

neously introduced overflow in some variables. Costan has been able to detect the

overflow by detecting that the desired error bound is impossible to achieve. From

the counterexample obtained from the decision procedure we were able to detect

42

the overflow in the implementation.

Nonlinear Controllers. We analyzed two implementations of a jet-engine con-

troller from [KK95a]. There are two inputs, and the control law is a polynomial

function of the inputs. One implementation directly evaluates the polynomial con-

trol law using fixed-point arithmetic. The other pre-computes the control law for

various values of the input, and looks up the control action for an input from the

“closest” point in the table. In both the cases we consider 16-bit implementation.

When the controller is implemented as a lookup table, apart from the quantization

error, error is also introduced due to the approximation of the output values in the

lookup table. The error bound on the output of the controller based on lookup

tables is dominated by the error in the lookup table, which depends on the size of

the table. We used Costan to compute the error bounds on the control output for

lookup tables of different size. Table 3.3 shows error bound obtained for differ-

ent dimensions of the lookup table (e.g., the example “jet engine[3× 8]” denotes

a controller with a lookup table with 3 × 8 = 24 entries). For larger lookup ta-

bles, our implementation adopts a compositional strategy of dividing up the input

range, computing output errors in each range, and then taking the maximum of

the results. Calculation of the error bound on the single lookup table takes more

than 2 hours for the lookup table with 2121 entries, while we can get the same

error bound in less than one hour by dividing the lookup table into four smaller

tables. The largest lookup table that we analyze has 10000 entries, we break it

into 16 lookup table of equal size and successfully calculate the error bound in less

than 2 hours. As might be expected, the direct polynomial evaluation with 16-bit

arithmetic is more precise than even our largest lookup table implementation.

43

3.6 Related Work

While there has been a lot of work on static analysis of safety-critical control sys-

tem implementation code [BCC03, Fer04, Cou05, GPB07, BGP09, FSI09, DGP09],

the main emphasis in previous work has been on low-level properties such as arith-

metic overflows or buffer overruns. By incorporating mathematical analysis of

control design into our methodology, we can focus on application level properties

such as stability. By putting the control designer “in the loop” we can move the

complexity of some of this analysis from the static analysis tool to the mathematics

of control. While we describe a program analysis based on verification-condition

generation, analyses based on abstract interpretation, such as Astree [BCC03] and

Fluctuat [GPB07, BGP09] will also be applicable to the analysis.

An alternate approach outlined in [FA08a, FA08b, AFP09] generates math-

ematical stability proofs and compiles such proofs into the implementation. We

believe our methodology holds the advantage of separation of concerns. By forcing

the implementation to conform to one of several possible stability proofs, we limit

the space of implementation and optimization options. Instead, by producing a

—more abstract— relationship between implementation errors and the regions

where the physical variables can be steered to, we are free to explore different

implementations. For example, in our experiments, we consider a non-linear con-

trol system with two different implementations: one based on a direct evaluation

of a polynomial control law and a second based on the evaluation of the same

polynomial using a lookup table and interpolation. Compiling the stability proof

for the second option (which looks very different from the mathematical polyno-

mial function) would be hard. Further, the compilation of stability proofs requires

extensive changes to already complex auto-code generators to produce the proof

of stability along with the implementation. Moreover, if controller implementa-

tions are written from scratch, the compilation strategy does not work, but our

44

methodology, being agnostic to the source of the controller, does.

45

CHAPTER 4

Synthesis

In this chapter, we shift our focus from verification to synthesis. For linear sys-

tems, a standard optimal control design approach uses the linear quadratic regu-

lator (LQR) and linear quadratic Gaussian (LQG) algorithms [Hes09], which find

a feedback controller stabilizing the plant while minimizing quadratic cost func-

tions. The LQR cost function takes into account the deviations of the state and

control inputs from ideal values and the LQG cost function takes into account

the deviation of the state from its estimation. However, they usually do not take

implementation errors arising from fixed-precision arithmetic into account. Thus,

a controller optimizing only the LQR-LQG cost may have a large implementation

error because its implementation on a fixed-precision platform has large numerical

errors, but a controller “close” to the optimal performance may have much lower

numerical errors when implemented on the same platform.

We present a methodology to modify the performance criterion of LQR-LQG

to additionally minimize the error due to quantization in the implementation.

Technically, we answer the following two challenges. First, how can we estimate

the error due to quantization in a given implementation? Second, how can we

find Pareto-optimal points for the two objectives given by the LQR-LQG and

quantization error cost functions? We proceed as follows.

For the first step, for a given linear feedback controller and the operating

intervals of the states of the plant and the controller, we first perform a precise

range analysis of the controller variables, and use the computed ranges to allocate

46

bitwidths to each controller variable. We implement our range analysis based on

linear programming. Using the allocated bitwidths, we generate code for a fixed-

precision program implementing the control law. Finally, we use an algorithm

based on mixed-integer linear programming to find a bound on the maximum

difference between the ideal control law and the output of the fixed-precision

program.

For the second step, we optimize a weighted linear combination of the two

cost functions using a stochastic local search technique. LQR-LQG is attractive

because it gives rise to a convex optimization problem, for which efficient solutions

are known. Unfortunately, additionally tracking the quantization error results in

a non-convex optimization problem. We solve the non-convex optimization prob-

lem using particle swarm optimization (PSO), a population-based stochastic opti-

mization approach [KE95, LAS09, JLY07]. PSO iteratively solves an optimization

problem by maintaining a population (or swarm) of candidate controllers, called

particles, and moving them around in the search-space of possible controllers, try-

ing to minimize the objective function. In our setting, a particle represents gain

parameters for a controller.

In more detail, our algorithm proceeds as follows. Given a linear control design

problem, we set up a non-convex optimization problem to minimize a weighted

combination of the LQR-LQG cost function and the implementation error. We

minimize this cost function using PSO. In each step of PSO, given a new controller,

we perform the following checks. First, we check if the controller is stabilizing

(by examining the eigenvalues of the controlled system). If not, we assign the

controller an infinite cost. If it is stabilizing, we generate the best possible fixed-

point code for this controller under a hardware budget and perform static analysis

to estimate a bound on the implementation error. We compute the value of the

objective function by taking the weighted sum of the LQR-LQG cost and this

bound. We continue PSO until convergence or until some iteration bound is met.

47

At this point, we output the controller that minimized the objective function.

We have implemented this methodology on top of Matlab’s Control Theory

Toolbox, using an implementation of PSO proposed in [EKG12], and a custom

static analysis using the lp solve linear programming tool. In our experiments,

we compare the LQR-LQG cost and implementation errors of controllers gen-

erated by conventional LQR-LQG optimization (implemented in Matlab) with

controllers generated by PSO using our methodology. In most cases, our con-

trollers have LQR-LQG costs close to the optimal LQR-LQG controllers, but

have implementation errors that are reduced by a factor of 4 or more. Thus, we

generate controllers with guaranteed bounds on practical stability regions that

are 4 times or more smaller than the pure LQR-LQG optimal controllers. Our

work provides an integrated analysis to take quantization errors into account in

model-based design and implementation of controllers. While we have instanti-

ated the methodology using the LQR and LQG costs and quantization errors, our

algorithm is more generally applicable to other performance criteria and other

sources of modeling or implementation error.

4.1 Stability of Perturbed Systems

4.1.1 The Effect of Errors

In this subsection we will show the effect of both external disturbance and mea-

surement error, and the error due to implementation using fixed-precision arith-

metic on the stability of the closed loop control systems. We extend the analysis

in Section 3.2 to take into account the external disturbance and the measurement

noise. Using a fixed-point implementation of the feedback gain as well as the

48

observer dynamic, one gets the following overall dynamics: x[r + 1] = Aτx[r]−BτKx̂[r] +Bτd[r] +Bτeq2,

x̂[r + 1] = Dτ x̂[r] + EτCx[r] + Eτv[r] + eq1,
(4.1)

where eq1 and eq2 are quantization errors in observer dynamic and feedback gain

codes, respectively. Now, one can rewrite the control system in (4.1) as follows:

w[r + 1] = Gw[r] +H1e1[r] +H2e2[r], (4.2)

with:

w =

 x

x̂

 , e1 =

 d

v

 , e2 =

 eq2

eq1

 ,
and:

G =

 Aτ −BτK

LC Aτ −BτK − LC

 , H1 =

 Bτ 0n×p

0n×q L

 ,
H2 =

 0n×n Bτ

In 0n×m

 .
The following proposition follows from Proposition 1 in Chapter 2 and de-

scribes the stability properties of linear control systems in (4.2) with respect to

disturbance, measurement noise, and implementation errors in the feedback gain

and observer dynamic.

Proposition 3. Consider the discrete-time linear system in (4.2). For any input

e1 and e2 satisfying ‖e1[r]‖ ≤ b(e1) and ‖e2[r]‖ ≤ b(e2) for any r ∈ N0 and

some constants b(e1), b(e2) ∈ R+
0 , the system is globally asymptotically stable with

respect to the set:

A = {x ∈ Rn | ‖x‖ ≤ γ1b(e1) + γ2b(e2)} ,

where γ1 and γ2 are given by:

γj = maxθ∈[0, 2π[

∥∥∥(eiθI2n −G)−1
Hj

∥∥∥ , for j = 1, 2,

49

with i =
√
−1. Moreover, the output y = [C 0p×n]w ∈ Rp is guaranteed to

converge to the set:

Ay = {y ∈ Rp | ‖y‖ ≤ γ1yb(e1) + γ2yb(e2)} , (4.3)

where γ1y and γ2y are given by:

γjy = maxθ∈[0, 2π[

∥∥∥[C 0p×n]
(
eiθI2n −G

)−1
Hj

∥∥∥ , for j = 1, 2. (4.4)

The error vector e1 includes disturbance and measurement noise, depending

for example on the environment and the quality of the sensors collecting measure-

ments. Hence, the controller designer does not have any control on the value of

b(e1). However, one can reduce the amount of γ1y by appropriately choosing gains

K and L. On the other hand, one can reduce the amount of not only γ2y but

also b(e2) by appropriately choosing gains K and L. We use Proposition 3 in the

following way. Given a feedback gain K and an observer gain L, we compute L2

gains γ1y and γ2y and an upper bound b(e2) on the implementation error e2. Then

the output of the controlled system (with implementation error) must converge

to set Ay in (4.3). We show later that appropriate choices of gains K and L can

shrink the size of the set Ay and hence, provide a tighter bound on the set to

which the output of the system converges.

4.1.2 Example

We now present a simple motivating example showing how different choices of

controllers may result in different steady state errors due to their fixed-point

implementations, yet providing approximately the same LQR-LQG performance.

50

Consider the following simple physical model of a bicycle, borrowed from [AM09]:

 ξ̇1

ξ̇2

 =

 0 g
h

1 0

 ξ1

ξ2

+

 1

0

 (υ + ω) ,

η =
[
av0
bh

v20
bh

] ξ1

ξ2

+ ν,

(4.5)

where ξ1 is the steering angular velocity, ξ2 is the steering angle, η is the role

angle, υ is the torque applied to the handle bars, g = 9.8m/s2 is the acceleration

due to gravity, h = 1.5m is the height of the center of mass, v0 = 2m/s is the

velocity of the bicycle at the rear wheel, a = 0.5m is the distance of the center of

mass from a vertical line through the contact point of the rear wheel and b = 1m

is the wheel base.

The control objective is to design a feedback gain K ∈ R1×2 and an observer

gain L ∈ R2×1 such that the feedback control law u = −Kx̂, where x̂ = [x̂1, x̂2]
T

is the state of the observer in (2.5), makes the closed loop system globally asymp-

totically stable. By choosing the matrices Q = I2 and R = 1 inside the LQR

cost function and Q̂ = 1 and R̂ = 1 in (2.13), the feedback and observer gains

minimizing the LQR and LQG costs are given by K1 = [5.1538, 12.9724], and

L1 = [0.0317, 0.0118]T , respectively. Consider a second pair of feedback and ob-

server gains given by K2 = [3.0253, 12.6089] and L2 = [0.0132, 0.1021]T . For the

initial condition x = (0.2, 0.2)T , the value of the LQR cost function is 264.1908

for feedback gain K1 and 284.1578 for K2. Moreover, the value of the LQG cost

function is 0.0229 for observer gain L1 and 0.0246 for L2. So, the gains K2 and

L2 give cost functions about 7% greater than the optimal gains K1 and L1.

We now show how different choice of feedback and observer gains result in

different fixed-point implementation errors. For now, let us assume that ω(t) = 0

and ν(t) = 0, for any t ∈ R+
0 . In Figure 4.1, we show the output of the closed-loop

system starting from the initial condition x = (0.2, 0.2)T , when the feedback gain

and observer dynamic are implemented using 16-bit fixed-point representation.

51

0 5 10 15−0.5

0

0.5

1

y

5 10 150

0.005

0.01

0.015

time

y

K2 and L2
K1 and L1

K2 and L2
K1 and L1

Figure 4.1: Evolution of the output y with initial state (0.2, 0.2)T for the pair of

gains (K1, L1) and (K2, L2) using 16-bit implementation. Upper panel: evolution

of y from 0 to 15 seconds. Lower panel: evolution of y from 5 to 15 seconds

(magnified version).

As can be observed from Figure 4.1, the output of the controlled system does

not converge to the equilibrium point at the origin because of the fixed-point

implementation error in the controllers. Furthermore, the practical stability region

using gains K2 and L2 is much smaller than the one using gains K1 and L1.

Using bounds on implementation errors for the two controllers (described in

Section 4.2) and Proposition 3, we can prove that the output of the system with

feedback and observer gains K1 and L1 (resp. K2 and L2) converges to a ball

centered at the origin with radius 0.5486 (resp. 0.0513), whenever the output of

the system and the state of the observer take values in the interval [−1, 1] and

the feedback gain and observer dynamic are implemented using 16-bit fixed-point

implementation. As can be seen, given a 16-bit implementation, feedback and

observer gains K2 and L2 may be preferred to gains K1 and L1 because they have

guaranteed bounds on practical stability region that is 10 times smaller than gains

K1 and L1 and provide approximately similar LQR/LQG performance. If one

considers the effect of disturbance and measurement noise, it can be proved that

52

the output of the system with feedback and observer gains K1 and L1 (resp. K2

and L2) converges to a ball centered at the origin with radius 5.0489b(e1)+0.5486

(resp. 2.5341b(e1) + 0.0513), where b(e1) is an upper bound on the size of the

vector e1 introduced in (4.2).

4.2 Computing Quantization Error

In this section we show how to compute a bound on the fixed-point implementation

error for given feedback and observer gains K and L. We assume that the outputs

of the controlled system and the state of the observer are restricted to compact

subsets Y ⊂ Rp and X̂ ⊂ Rn, respectively.

4.2.1 Best fixed-point implementation

An operation using real arithmetic may have different fixed-point implementations

depending on how many bits are allocated to hold the integer part and the fraction

part of the variables and intermediate results. Allocating fewer bits than required

to hold the integer part may lead to overflow. On the other hand, if more than the

required number of bits are allocated to the integer part, the quantization error

increases due to assigning fewer bits to the fractional part. When we compare

the fixed-point implementations of different expressions, we consider their best

possible implementation, which we define next. Let us fix the number of bits to be

v for the representation of every variable in the implementation of an expression.

Then we define the best fixed-point implementation as follows:

Definition: Best fixed-point implementation for given intervals. For

a given v and given intervals for the variables and intermediate results, an im-

plementation I is called the best fixed-point implementation, if for every input

variable or intermediate result that takes values from an interval [rmin, rmax], the

fixed-point representation is given by 〈1, v, w〉, where w = v − 1 − z and z, the

53

number of integral bits, is given by

z = dlog2(max(abs(rmin), abs(rmax)))e (4.6)

For example, if the interval for a variable is [-35.55, 48.72], the representation for

the variable in the best 16-bit fixed-point representation has z = 6 bits for the

integer part, so it is given by 〈1, 16, 9〉. For a constant C = 0.0864 where z = −3,

the representation is given by 〈1, 16, 18〉.

Note that the best fixed-point implementation depends on intervals assigned to

intermediate variables. We say that intervals are tight if the intervals for internal

nodes are as small as possible, which we can define by doing interval computation

and fixed point allocation in parallel, as follows. Suppose we have an arithmetic

operation x = x1 ∗ x2, and we have tight intervals S1 and S2 associated with the

variables x1 and x2. Let S = {x1 ∗x2 | x1 ∈ S1, x2 ∈ S2} and let z and w be given

by (4.6) taking rmin = inf(S) and rmax = sup(S). We then require the interval

assigned to the node to be [roundF(rmin, v, w), roundF(rmax, v, w)] where roundF

denotes the rounding used in fixed-point computations when the representation

is (1, v, w).

A property of the above definitions is that, in the special case when the input

intervals have lower bound equal to upper bound and are representable as fixed

point numbers, then the tight intervals for intermediate nodes also have their

lower bounds equal to their upper bounds, and are equal to the values of the

sub-expression when evaluated in fixed-point arithmetic.

4.2.2 Error Bound Computation

In Chapter 3, we used a combination of decision procedures and binary search

technique to compute the error bound. While decision procedures work for both

linear and nonlinear control systems, the amount of time required by the deci-

sion procedures to compute the error bound is not small enough to be used for

54

controller synthesis. In this chapter we concentrate on synthesizing controllers

for linear control systems, and apply a mixed-integer linear-programming-based

optimization technique to find out the error bound between a computation in real

arithmetic and its best fixed-point implementation. This technique is both precise

and scalable for linear control systems.

Suppose we have an arithmetic operation s : a = b op c, where op ∈ {+,−, ∗},
where we assume that if op = ∗, then either b or c is a constant. If op = + or

op = −, then b and c can both be variables. We associate an integer variable x̂

with the fixed-point representation of a real variable x. Let the range of the values

for a and b and c are [la, ua], [lb, ub], and [lc, uc], respectively. Let the fixed-point

representation of a, b and c be 〈1, na,ma〉, 〈1, nb,mb〉, and 〈1, nc,mc〉, respectively.

Let b(eb) and b(ec) be bounds on the quantization errors of b and c, respectively.

The optimization problem to find the bound on the error is given by:

maximize |a− 2−ma â|
subject to la ≤ a ≤ ua, lb ≤ b ≤ ub∣∣∣b− 2−mb ∗ b̂

∣∣∣ ≤ b(eb)

|c− 2−mc ∗ ĉ| ≤ b(ec)

a = b op c

Φ(fp(s))

(4.7)

where fp(s) is the fixed-point representation of the statement s and Φ(s) denotes

a logical formula that relates the inputs and outputs of the fixed-point represen-

tation s. Technically, Φ is the strongest postcondition [Win93] of s with respect

to true. We compute Φ using an arithmetic encoding of a fixed-point computa-

tion as shown in Chapter 3. Here we illustrate the computation of the strongest

postcondition Φ using an example.

Example. Suppose we have the following arithmetic operation

s : y = −7.2479 ∗ x .

55

Assume the compact set for x is [-1, 1]. The fixed-point expression corresponding

to s in the best fixed-point implementation is

fp(s) : −ŷ = (−115 ∗ x̂)� 6 .

The strongest postcondition Φ(fp(s)) of fp(s) is given by:

Φ(fp(s)) := tmp = −115 ∗ x̂ ∧
tmp ≥ 0→ tmp1 = tmp ∧
tmp < 0→ tmp1 = −tmp ∧
tmp1 = 26 ∗ divisor + remainder ∧
remainder ≥ 0 ∧ remainder < 26 ∧
tmp ≥ 0→ ŷ = divisor ∧
tmp < 0→ ŷ = −divisor ,

where tmp, tmp1, divisor, and remainder are integer variables.

Depending on the arithmetic operation, we need to solve at most four instances

of mixed integer linear programming problems to solve the optimization problem

in (4.7), and the maximum among all of these instances gives the bound on the

error in the fixed-point implementation.

We use the above technique to compute the bound on the error in one operation

in the fixed-point implementation of a gain. The implementation of a gain involves

a series of arithmetic operations. We compute the error bound for the output of

one arithmetic operation at a time. Let s : a = b op c is an arithmetic operation

in the implementation of a gain. In the arithmetic operation, b and c may either

be a constant, a state variable or a temporary variable which captures the result

of some previous operation. If b (or c) represents a constant, and the fixed-point

representation contains m bits for the fraction part, then the error in the fixed

point representation is bounded by 1
2m . If b (or c) represents a state variable,

then the fixed-point datatype can be determined from the given compact set for

the state, and the fixed-point datatype can be determined accordingly. Then the

error in the fixed-point representation is bounded by 1
2m , where m is the number

56

of bits to represent the fraction part in the fixed-point datatype of the variable. If

b (or c) is a temporary variable used to hold the result of an earlier computation,

then the range and error bound for the variable are already known.

4.3 Optimal Controller Synthesis

We now describe our controller synthesis algorithm that minimizes a cost func-

tion combining LQR and LQG performance, disturbance, measurement noise, and

implementation errors.

4.3.1 Optimization objectives

The example in Section 4.1.2 suggests that the control design should optimize

for the following objectives: the LQR and the LQG costs for performance, error

caused by disturbance and measurement noise, and the implementation error given

by a fixed-precision encoding. Accordingly, we define a cost function that is

weighted sum of the four factors:

J (K,L) = w1
‖S(K)‖
‖S∗‖ + w2

‖P (L)‖
‖P ∗‖ + w3

γ1y

γ∗1y
+ w4

γ2yb(e2)

γ∗2yb
∗(e2)

, (4.8)

where w1, . . . , w4 are weighting factors, S∗ and P ∗ are matrices, computed from

Lyapunov equations in (2.14) and (2.16) using standard LQR and LQG gains

(KLQR and LLQG), γ1y and γ2y (resp. γ∗1y and γ∗2y) are the L2 gains in (4.4) using

feedback and observer gains K and L (resp. KLQR and LLQG) and b(e2) (resp.

b∗(e2)) is the bound on the implementation error of given feedback and observer

gains K and L (resp. KLQR and LLQG). Minimizing the terms γ1y and γ2yb(e2)

inside (4.8) results in a tighter bound on the set Ay in Proposition 3. Since the

four factors in (4.8) have different scales, we normalized them by their values using

the standard gains KLQR and LLQG. The designer can choose w1, . . . , w4 based

on the priorities on LQR and LQG performances and steady state error. Our

57

objective is to find feedback and observer gains that minimize the cost function

J .

We focus on implementation errors arising out of fixed-precision arithmetic.

The bound b(e2) is computed using the strategy explained in Section 4.2. Since the

cost function J is not necessarily convex with respect to the feedback and observer

gains K and L, we cannot reduce the design problem to a convex optimization

problem. We use a heuristic stochastic optimization approach to find feedback

and observer gains K and L minimizing J .

In our exposition, we consider the plant model to be precise, and only consider

quantization effects as the source of error. Our methodology can consider both

additive and multiplicative uncertainties in the plant model as well [GL94]. We

can take those uncertainties into account by adding appropriate extra terms to

the cost function in (4.8), using the results provided in [ZSK09, ZKS07]. We omit

the details for simplicity.

4.3.2 Particle Swarm Optimization

Since the cost function is non-convex, we use a stochastic local search technique

approach called particle swarm optimization (PSO). It maintains a set of po-

tential solutions (called “particles”) in a compact d-dimensional search space

D =
∏d

j=1[y
j
min, y

j
max] ⊂ Rd, minimizing a given cost function. The particles

move in this space according to their velocity. Each particle, indexed by i ∈ N,

has a position yi ∈ Rd, changing between ymin and ymax, and a velocity vector

vi ∈ Rd, changing between some vectors vmin and vmax. The terms vmin and vmax

are often set to the maximum dynamic range of the variables on each dimension

[ZKS09]: −vjmin = vjmax = |yjmax − yjmin|. Every particle remembers its own best

position (i.e., the lowest value of the cost function achieved so far by this particle)

in a vector Pi ∈ Rd. The best position with respect to the cost function among

58

all of the particles so far is stored in a vector Pg ∈ Rd.

PSO updates the positions and velocities of all particles iteratively. The new

velocity and position for particle i are determined as:

vl+1
i =wlvli + c1r1

(
P l
i − yli

)
+ c2r2

(
P l
g − yli

)
, (4.9)

yl+1
i =yli + vl+1

i , (4.10)

where the superscript l denotes the iteration number, the subscript i = 1, . . . , N

denotes the index of the particle, and N is the number of particles. The constant

wl in (4.9) is updated using the inertia weight approach [EKG12] as the following:

wl = wmax −
wmax − wmin

lmax

(l − 1), (4.11)

where wmax and wmin are adjusted to 1 and c1+c2
2
− 1 and lmax is the maximum

number of iterations. The constants c1 and c2 in (4.9) are the acceleration con-

stants, influencing the convergence speed of particles toward its own and global

best positions and set to 0.5 and 1, respectively [EKG12]. The constants r1 and

r2 in (4.9) are uniformly distributed random numbers on the interval [0, 1].

4.3.3 Overall Algorithm

The PSO algorithm is used to search for feedback and observer gains K ∈ Rm×n

and L ∈ Rn×p for the control system (4.1), minimizing (4.8). Note that a particle

in PSO represents a feedback and an observer gain K and L, respectively, moving

in an m× n+ n× p dimensional search space. To discard those gains that make

the controlled system unstable, we penalize unstable gains by including a penalty

term P̃ in the cost function such that P̃ = 0 if Aτ − BτK and Aτ − LC are

Hurwitz and P̃ = +∞ otherwise. The cost function for PSO is then F (K,L) =

J (K,L) + P̃ (K,L).

The design steps are as follows:

(1) Initialize positions of N feedback gains Ki and observer gains Li by KLQR

59

and LLQG, respectively, and uniformly randomly initialize their velocities,

for i = 1, . . . , N .

(2) Given any feedback gain Ki and observer gain Li, compute the cost function

F (Ki, Li). To compute P̃ , check if Aτ − BτK and Aτ − LC are Hurwitz.

There are some steps to compute J . First, compute S(Ki) and P (Li) by

solving the Lyapunov equations (2.14) and (2.16), respectively, and find

their induced 2-norm. Second, compute the L2 gains γ1y and γ2y. Third,

compute b(e2) by solving the optimization problems from Section 4.2.

(3) Compare F (Ki, Li) to its own best position Pi so far and the global best

position Pg so far. If F (Ki, Li) is less than the previous personal best (resp.

the global best), update the best position (resp. the global best) to Ki and

Li.

(4) Modify the velocity and position of each pair Ki and Li according to (4.9)

and (4.10).

(5) If the number of iterations, denoted by l, reaches the maximum, denoted by

lmax, or the value of F does not change for the global best position Pg for

50 consecutive iterations up to error 10−6 then go to Step (6), otherwise go

to Step (2);

(6) The latest Pg is an estimate for the optimal controller.

4.4 Extension: PID Controllers

PID controllers are a common class of controllers in many industries, such as

automotive, power systems, servomotors, and so on. We now extend the analysis

of Section 4.1.1 to PID controllers. A PID controller generalizes a proportional

feedback controller, and includes three terms: a proportional term, an integrator,

60

and a differentiator. For an input υ, the output η of the PID controller is computed

as follows:

η(t) = KPυ(t) +KI

∫ t

0

υ(s)ds+KD
dυ(t)

dt
, ∀t ∈ R+

0 , (4.12)

where KP , KI , and KD are called proportional, integrator, and differentiator

gains, respectively. To describe the mismatch between the PID specifications and

its software implementation, we consider the discrete-time version of (4.12). An

integrator term:

η(t) =

∫ t

0

υ(s)ds, ∀t ∈ R+
0 ,

can be discretized based on the trapezoidal approximation as follows:

y[r + 1] = y[r] +
τ

2
(u[r + 1] + u[r]) , ∀r ∈ N0, (4.13)

where τ is the sampling time, y[r] = η(rτ) + e1 and u[r] = υ(rτ), for any r ∈ N0.

A common way of discretizing a differentiator, is based on the backward Euler

method. A differentiator term:

η(t) =
dυ(t)

dt
, ∀t ∈ R+

0 ,

can be discretized as follows:

y[r + 1] =
u[r + 1]− u[r]

τ
, ∀r ∈ N0, (4.14)

where y[r] = η(rτ) + e2 and u[r] = υ(rτ), for any r ∈ N0. By using the fast sam-

pling time assumption, we can ignore the errors e1 and e2 in the discretized ver-

sions of the integrator and differentiator in comparison with quantization errors.

To follow the same analysis as in Section 4.1.1, we need a state space realization

of PID controller. By resorting to control theoretic results (see, e.g., [Kai80]) and

using the discretization rules in (4.13) and (4.14), the state space realization of

discretized PID controller with input û[r] and output ŷ[r] are obtained as follows: x̂[r + 1] = Âx̂[r] + B̂û[r],

ŷ[r] = Ĉx̂[r] + D̂û[r],
(4.15)

61

where

Â =

 0 1

0 1

 , B̂ =

 0

1

 , Ĉ =

[
KD

τ
KIτ −

KD

τ

]
,

D̂ =

(
KP +

KIτ

2
+
KD

τ

)
.

Without loss of generality, consider a single-input (m = 1) single-output (p = 1)

discrete-time linear control system of the form: x[r + 1] = Ax[r] +Bu[r],

y[r] = Cx[r].

Since the input of the PID controller is equal to the negative of the output of the

plant (û = −y) because of negative feedback and the output of the PID controller

is equal to the input of the plant (u = ŷ), one obtains: x[r + 1] =
(
A−BD̂C

)
x[r] +BĈx̂[r],

x̂[r + 1] = −B̂Cx[r] + Âx̂[r].
(4.16)

Similar to what has been explained in Section 4.1.1, by fixed-point implementation

of the PID controller, one gets the following overall dynamic: x[r + 1] =
(
A−BD̂C

)
x[r] +BĈx̂[r] +Beq2,

x̂[r + 1] = −B̂Cx[r] + Âx̂[r] + eq1,
(4.17)

where eq1 and eq2 are quantization errors in computing the PID controller. Now,

we can use the same strategy, as explained in Subsection 4.3.3, to design param-

eters KP , KI , and KD of PID controllers minimizing a performance-based cost

function as well as the effect of quantization error. For example, one can consider:

J (KP , KI , KD) =
w1

PM
+

w2

GM
+ w3γ(b(eq1) + b(eq2)), (4.18)

where PM and GM are phase and gain margins, w1, w2, w3 are weighting factors,

γ is the L2 gain of the linear control system (4.17) and b(eq1) and b(eq2) are the

bounds on the implementation errors eq1 and eq2. Note that control over PM and

62

Control systems # bits Synthesized gains Time cost

K L

Bicycle 16 [3.0253 12.6089] [0.0132 0.1021]T 1h36m41s

DC motor position 16 [0.1129 0.0211 0.0093] [0.0390 0.3700 − 0.0175]T 1h39m06s

Pitch angle control 32 [-0.1202 42.5655 1.0001] [0.0001 0.0000 0.0017]T 8h31m53s

Inverted pendulum 32 [-1.5362 -2.0254 16.5192 2.7358]

 0.0017 0.0021 0.0012 0.0000

0.0001 0.0018 0.0122 0.0770

T 9h54m17s

Batch reactor process 16

 0.0583 0.9093 0.3258 0.8721

−2.4638 −0.0504 −1.7099 1.1653

  0.0774 −0.0022 0.0267 0.0356

−0.0103 0.0227 0.0398 0.0001

T 3h08m29s

Table 4.1: Synthesized gains and required time for synthesizing them.

Control lub of LQR cost LQG cost Steady state error

systems LQR Synthesized LQG Synthesized LQR-LQG Synthesized

K L gains

Bicycle 3956.3‖x‖2 4331.7‖x‖2 0.0229 0.0246 5.0489b(e1)+0.5486 2.5341b(e1)+0.0513

DC motor position 1001.6‖x‖2 1376.7‖x‖2 36.6315 36.6731 30.566b(e1)+0.16 15.421b(e1)+0.011

Pitch angle control 2.9732× 106‖x‖2 2.9887× 106‖x‖2 0.0013 0.0018 2.6781b(e1)+0.4746 1.4453b(e1)+0.0807

Inverted pendulum 4.2988× 104‖x‖2 5.3471× 104‖x‖2 0.3600 0.3897 83.4217b(e1)+0.0432 30.3801b(e1)+0.0086

Batch reactor process 223.1773‖x‖2 223.1825‖x‖2 0.0731 0.0949 2.9309b(e1)+0.4194 2.1216b(e1)+0.1642

Table 4.2: Least upper bound (lub) on the LQR cost (2.10), for a given initial

condition x, the LQG cost (2.11), and the Euclidean norm of the steady state

error for the LQR-LQG and the synthesized gains.

GM guarantees robust stability of the closed-loop systems [Hes09]. The phase

and gain margins measure the system’s tolerance to the time delay and the steady

state gain, respectively.

4.5 Evaluation

4.5.1 Implementation

We have developed Ocosyn, a tool that implements the algorithm presented in

Section 4.3.3 in Matlab. We use a PSO function in Matlab from [EKG12]. We

implemented a static analyzer in OCaml that synthesizes the best fixed-point

program and computes the bound on the fixed-point implementation error for

63

given feedback and observer gains K and L, respectively. The tool gets the number

of bits in the fixed-point datatype, compact subsets Y ⊂ Rp and X̂ ⊂ Rn, and

feedback and observer gains K and L, respectively, as inputs. The optimization

problems in computing the error bound are solved using the mixed-integer linear

programming tool lp solve [LP]. All the experiments were done on a laptop with

CPU Intel Core 2 Duo at 2.4 GHz.

4.5.2 Experiments

Linear Control Systems We have applied Ocosyn to a number of linear control

systems. In all of the experiments, the number of particles in PSO is N = 24,

the maximum number of iterations is lmax = 100, and we choose the matrices

Q = In and R = Im in (2.10) and Q̂ = Iq, and R̂ = Ip in (2.13). The value of

lmax was chosen in such a way that appropriate gains are obtained in terms of

the cost function (4.8) (or (4.18)) for all control systems. Moreover, we assume

that the search space is D =
∏n×m+n×p

i=1 [−150, 150] ⊂ Rn×m+n×p, which contains

the standard LQR and LQG gains for all the examples. Further, we work on the

compact subsets Y =
∏p

i=1[−1, 1] ⊂ Rp and X̂ =
∏n

i=1[−1, 1] ⊂ Rn. All constants

and variables are expressed in SI units.

Our unstable examples include a bicycle [AM09], a DC motor position con-

trol [CMU], a pitch angle control [CMU], an inverted pendulum [CMU], a batch

reactor process [GL94], and another inverted pendulum for PID synthesis [CMU].

See Table 5.3 and 5.5 for experimental results. Note that for those examples for

which a 32-bit implementation is chosen, the 16-bit one provides a stability region

which is even larger than the range of the variables inside the controller. For all

the examples except the batch reactor process, the weighting factors in (4.8) are

chosen as w1 = w2 = w3 = 1 and w4 = 5. For the batch reactor process example,

the weighting factors are chosen as w1 = w3 = 1, w2 = 2, and w4 = 5.

64

0 20 40 60 80 1003

4

5

6

7

8

Iteration

C
os

t f
un

ct
io

n

Best: 3.1406, Mean: 3.1605

Best
Mean

Figure 4.2: Cost of the best particle and average cost of all population vs iteration.

As can be seen from Table 5.5, in comparison with the conventional LQR-LQG

approach, the synthesis approach proposed here worsens the LQR and LQG per-

formances by at most 1.37 times (for DC motor position) and 1.38 times (for Pitch

angle control), respectively. However, the proposed synthesis approach improves

the size of the region of practical stability due to quantization error by at least

2.55 times. For certain examples, the improvement goes beyond the factor of 10.

For the bicycle and DC motor position control, the region of practical stability

due to quantization error improves by a factor of 10.69 and 14.55, respectively.

To assess the quality of the proposed stochastic search method, we run the

algorithms 10 times for the bicycle model. The resulted standard deviation of

the cost function J in (4.8) of all runs was 0.2806 which is around 9% of the

best cost 3.1406. Figure 4.2 shows how the value of the cost function improves

monotonically with the number of iteration for the best run. The fixed-point C

code for the synthesized controller is shown in Figure 4.3.

PID controller In this example, we provide a PID controller for an inverted

pendulum whose dynamic is given by a transfer function. Consider the transfer

65

float output(float yin)

{
static int x1 = x10; // fixdt(1,16,14)

static int x2 = x20; // fixdt(1,16,14)

int x1 new; // fixdt(1,16,14)

int x2 new; // fixdt(1,16,14)

int u; // fixdt(1,16,11)

// Intermediate variables

int Gain1; // fixdt(1,16,15)

int Gain2; // fixdt(1,16,15)

int Gain3; // fixdt(1,16,15)

int Add1; // fixdt(1,16,14)

int Gain4; // fixdt(1,16,15)

int Gain5; // fixdt(1,16,15)

int Gain6; // fixdt(1,16,15)

int Add2; // fixdt(1,16,15)

int Gain7; // fixdt(1,16,13)

int Gain8; // fixdt(1,16,11)

y = convert to fixedpoint(yin);

Gain1 = (31499 ∗ x1) >> 14; Gain2 = (−3145 ∗ x2) >> 14; Add1 = (Gain1 +Gain2) >> 1;

Gain3 = (432 ∗ y) >> 14; x1 new = ((Add1 << 1) +Gain3) >> 1;

Gain4 = (−1907 ∗ x1) >> 14; Gain5 = (23835 ∗ x2) >> 14; Add2 = Gain4 +Gain5;

Gain6 = (3345 ∗ y) >> 14; x2 new = (Add1 +Gain6) >> 1;

Gain7 = (24783 ∗ x1 new) >> 14; Gain8 = (25823 ∗ x2 new) >> 14;

u = (Gain7 + (Gain8 << 2)) >> 2;

return(float(u));

}

Figure 4.3: synthesized fixed-point controller C code for Bicycle.

66

function of an inverted pendulum, borrowed from [CMU], given by:

Φ(s)

U(s)
=

ml
q
s

s3 + b(I+ml2)
q

s2 − (M+m)mgl
q

s− bmgl
q

, (4.19)

where q = (M +m)(I+ml2)− (ml)2, output φ is the angular position of the mass

to be balanced, input υ is the force applied to the cart, g = 9.8 is the acceleration

due to gravity, l = 0.3 is the length of the rod, m = 0.2 is the mass of the system

to be balanced, M = 0.5 is the mass of the cart, b = 0.1 is the coefficient of

friction of the cart, and I = 0.006 is the moment of inertia of the pendulum.

Using standard results in control theory [Kai80], one obtains the following state

space realization for the inverted pendulum:


ξ̇1

ξ̇2

ξ̇3

 =


−0.1818 3.8977 0.5568

8.000 0 0

0 1 0



ξ1

ξ2

ξ3

+


1

0

0

 υ

φ = [0 0.5682 1]


ξ1

ξ2

ξ3

 .
Our objective is to design PID gainsKP , KI , andKD minimizing the cost function

(4.18) with weighting factors w1 = w2 = w3 = 1 and such that the closed loop

system has a settling time (ts) of less than 5 seconds and such that the pendulum

does not move more than 0.05 radians away from the vertical axis. The latter two

constraints are treated the same as the stability constraint in Subsection 8.3.2

by penalizing the cost function (4.18). The synthesized gains are KP = 109.032,

KI = 1.2268, and KD = 13.9945. The closed loop system has PM = +∞,

GM = 26237, γ(b(eq1) + b(eq2)) = 4.1705 × 10−4, settling time ts = 0.4790, and

ensures that the pendulum does not move more than 0.0098 radians away from

the vertical axis.

67

4.6 Related Work

The results in [Wil85, Wil89, LSG92] provide controller synthesis approaches min-

imizing some performance criteria where controllers are implemented using fixed-

point arithmetic. The results in [Wil85, Wil89, LSG92] assume some excitation

conditions under which the quantization error can be modeled as a zero mean

uniform white noise. Furthermore, they do not provide any bounds on regions of

practical stability. Our results do not make any assumptions on the quantization

error and provide an explicit bound on the region of practical stability.

Static analysis for range analysis has been studied extensively in the context of

optimum bitwidth allocation to intermediate variables in a fixed-point program,

mostly in the DSP domain [LGC06b, LCN07a, OCC07a]. These approaches em-

ploy abstractions based on interval arithmetic [Moo66] or affine arithmetic [SF97].

Jha [Jha11] gives an algorithm for optimal fixed-point program synthesis based

on inductive synthesis. Jha’s algorithm is general, but takes several minutes for

each synthesis step. We found our mixed-integer linear programming approach to

be both precise and reasonably fast for our application.

68

CHAPTER 5

Optimization

The precision of a fixed-point computation can depend on the order of evaluation

of arithmetic operations. Since fixed-point arithmetic is not associative, and mul-

tiplication does not distribute over addition, the order in which a real polynomial

is evaluated can cause differences in the error of the computation. Since the per-

formance of controllers depends on the error introduced in the controller output,

this difference can have significant impact on the performance of the controller.

However, optimizing the error in the evaluation has received much less attention

in fixed-point compilation, and has been limited to peephole optimizations (such

as removing redundant shift operations locally) [AC00].

We present a technique to synthesize a fixed-point implementation for a given

real-valued specification. Our synthesis method chooses the evaluation order of

arithmetic operations to minimize the computation error. Given a real-valued

arithmetic expression t, we aim to find a fixed-point implementation t′, such that

(1) the expressions t and t′ are equivalent when interpreted over reals, and (2)

the error between the real value and the fixed-point value computed by t′ is mini-

mal over all other fixed-point implementations equivalent to t. We show that the

decision problem of finding an evaluation order that minimizes the error bound

between the specification and the implementation is NP-hard, so a tractable com-

plete search algorithm is unlikely.

Our technique is therefore based on a heuristic search implemented through

genetic programming (GP) [PLM08]. We use the mutation and crossover opera-

69

tions of genetic programming to generate new sub-expressions. To evaluate the

fitness of a proposed solution, we use a static analysis based on affine arithmetic

to compute an upper bound on the error. The objective of the search is to mini-

mize the upper bound computed by the static analysis. While our static analysis

only computes an upper bound, we show, through extensive simulations, that the

statically-computed upper bounds are proportional to the actual errors observed

by simulations. We can thus use the less expensive upper bounds to compare two

expressions with respect to precision.

We have implemented our technique on top of Ocosyn and we have evaluated

it on a set of control application benchmarks. Our experiments demonstrate

that our technique is adequate in finding good fixed-point implementations for

linear controllers. For non-linear computations we encounter limitations in using

static analysis based on affine-arithmetic, but our search method works with any

technique to estimate variable ranges, so further improvements in this area can

be incorporated into our approach.

5.1 Motivating Example

We motivate the problem using a controller for a batch reactor processor [Ros74].

The computation of a state of the controller is given by the following expression:

(−0.0078) ∗ st1 + 0.9052 ∗ st2 + (−0.0181) ∗ st3 +

(−0.0392) ∗ st4 + (−0.0003) ∗ y1 + 0.0020 ∗ y2

(5.1)

where sti is an internal state of the controller and yi is an input to the controller.

There are additional similar expressions to compute the other states and the

outputs of the controller.

Consider a fixed-point implementation of this controller. If we assume an input

range of [−10, 10] for all input variables and a uniform bit length of 16, each input

variable gets assigned the fixed-point format 〈1, 16, 11〉. This means that of the

70

16 bits we use 1 bit to represent the sign of the number, 4 bits for the integer part

(10 < 24 = 16), and the remaining 11 bits for the fractional part. The constant

−0.0078 gets the format 〈1, 16, 22〉 (0.0078 < 216−1−22 = 2−7 = 0.0078125). If we

multiply st1 now by −0.0078, the result will have 33 bits, which we fit into 16 bits

by performing a right shift. Following the order of arithmetic operations in (5.1)

gives a fixed-point arithmetic program shown in Figure 5.1.

The fixed-point arithmetic implementation of the controller can have a large

roundoff error. For example, because of the representation, the input values can

already have an error as large as 0.00049. These errors then propagate throughout

the computation. For a specific implementation, such as the one above, we can

compute an upper bound on the error using an affine arithmetic-based static

analysis. For our example, the maximum absolute error bound is 3.9e-3. We

can bound the error from below using simulation, where we run the floating-

point and the fixed-point programs side-by-side on a large number of random

inputs and compare the results. Note that this technique only gives us an under-

approximation. Using this approach, we get a lower bound on the error of 3.06e-3.

One way to reduce the error is to increase the bit length. If we add one

bit to each variable, we get a simulated maximum error of 1.51e-3, which is an

improvement by about 50%. However, increasing bit-widths means incurring more

cost and may not be desirable.

A different possibility is to use a different order of evaluation for the expression.

As fixed-point arithmetic operations are not associative, two different evaluation

orders for the same implementation can have significantly different absolute errors.

Consider the following reordering of Equation (5.1):

((0.9052 ∗ st2) + (((st3 ∗ −0.0181) + (−0.0078 ∗ st1)) +

(((−0.0392 ∗ st4) + (−0.0003 ∗ y1)) + (0.002 ∗ y2))))
(5.2)

When implemented using 16-bit fixed-point arithmetic, we find, using our static

analysis, that the maximum error bound is 1.39e-03, which is an even larger

71

tmp0 = ((-32716l * st1) >> 18)

tmp1 = ((29662l * st2) >> 15)

tmp2 = ((tmp0 + (tmp1 << 4)) >> 4)

tmp3 = ((-18979l * st3) >> 16)

tmp4 = (((tmp2 << 4) + tmp3) >> 4)

tmp5 = ((-20552l * st4) >> 15)

tmp6 = (((tmp4 << 4) + tmp5) >> 4)

tmp7 = ((-20133l * y1) >> 22)

tmp8 = (((tmp6 << 4) + tmp7) >> 4)

tmp9 = ((16777l * y2) >> 19)

tmp10 = (((tmp8 << 4) + tmp9) >> 4)

return tmp10

Figure 5.1: A possible fixed-point implementation for the example expression.

improvement of 55%, without requiring any extra hardware.

Our approach is to search the space of possible implementations of an arith-

metic expression to find one that has the minimum fixed-point implementation

error bound. We search the space using genetic programming (GP). GP finds this

expression by evolving a population of expressions through selection of the best

expressions with respect to the error, mutation and crossover. Figure 5.2 summa-

rizes the worst-case error bounds for the different formulations of the expression.

By exhaustively enumerating all possible rewrites, we see that the maximum er-

ror bounds can vary between approximately 1.39e-3 and 3.11e-3. That is, even

for a relatively short example, the worst error bound can be over a factor of 2

larger than the best possible one. GP can find the optimal expression without an

exhaustive enumeration. This does not cost any additional hardware, thus we get

the additional precision “for free”.

72

expression simulated error

original 3.06e-3

worst rewrite 3.11e-3

additional bit 1.52e-3

best rewrite 1.39e-3

best found by GP 1.39e-3

Figure 5.2: Summary of absolute errors for different implementations

5.2 Generating Minimal-Error Fixed-Point Expression

In this section we describe our algorithm to solve the problem of synthesizing

minimal-error fixed-point program for a given expression. An expression is gener-

ated by the following grammar:

t ::= v | x | t1 + t2 | t1 − t2 | t1 ∗ e2 | t1/t2

where v and x are rational constants or variables, respectively. The fixed-point

implementation of an expression then consists of assigning fixed-point represen-

tations to all input variables and intermediate results, i.e. to each node in the

expression abstract syntax tree (AST).

Definition: Worst-case error. Assume a fixed-point implementation of an

expression t. Given the values of variables, we define the expression error as |tr−tf |
where tr is the value of t computed in real numbers, and tf the value computed

by the fixed-point implementation. Given the intervals for input variables of

t, the worst-case error for a fixed-point implementation of t is the maximum

over all expression errors where the values of variables range over the fixed-point

representable values from the given intervals.

Given a real valued expression t we aim to find an expression t′ that is math-

ematically equivalent to t and whose implementation in fixed-point arithmetic

minimizes, among all equivalent expressions, the worst-case absolute error over

73

all inputs in given ranges I:

minequivalent t′ maxx∈I

∣∣∣tr(x)− t′f (x)
∣∣∣

Our best expression search algorithm is based on Genetic Programming.

5.2.1 Genetic Programming

Genetic algorithms are heuristic search algorithms inspired by natural evolution.

The algorithm evolves a population of candidate solutions by repeating the fol-

lowing steps for each new generation of solutions: from two candidates selected

from the current generation new solutions are created by mutation and crossover

whose quality is evaluated by a user-defined fitness function.

The candidate solutions are usually represented by strings so that these op-

erations mimic closely natural evolution. Candidates for mutation and crossover

are selected by tournament selection where a fixed number of candidates is chosen

at random and the one with the highest fitness is selected as the final candidate.

Note that the problem domain can be very complex and that it does not need

to have a gradient for guiding the search. Genetic programming [PLM08] is a

variant of a genetic algorithm that performs the search over computer programs

instead of strings. Mutation and crossover operators are thus defined on abstract

syntax trees (ASTs).

Algorithm 5.2.1 gives an overview of our search procedure based on genetic

programming. The input to our algorithm is a real valued expression and ranges

for its variables. Our tool initializes the initial population with 30 copies of this

expression and the search is repeated for 30 generations. We explain the steps of

the algorithm in the following subsection.

74

Algorithm 5.2.1: Overview of the search procedure
1:Input: expression, input ranges

2:initialize population of 30 expressions

3: repeat for 30 generations

4: generate 30 new expressions:

5: select 2 expressions with tournament selection

6: do equivalence-preserving crossover

7: do equivalence-preserving mutation

7: evaluate fitness (worst-case error bound)

8: Output: best expression found during entire run

5.2.2 Instantiating Genetic Programming

We start with (mathematically) correct program and instantiate the general ge-

netic programming algorithm to find a program that is numerically as correct as

possible (correctness is defined with respect to an evaluation of the expression in

mathematical reals). Thus, our mutation and crossover operators need to gener-

ate expressions that are mathematically equivalent to the initial expression and

the fitness function needs to quantify the numerical precision.

Mutation The mutation operator selects a random node in the expression AST

and applies one of the applicable rewrite rules from Figure 5.3. The rules capture

the usual commutativity, distributivity and associativity of real arithmetic. Some

of these rules do not have an effect on the numerical precision by themselves, but

are necessary to generate other rewrites of an expression. To keep the operations

simple, we rewrite subtractions (a− b→ a+ (−b)) and divisions (a/b→ a∗ (1/b))

before the GP run.

75

(1) (a + b) + c = a + (b + c) (8) 1/a * 1/b = 1/(ab)

(2) a + b = b + a (9) - (1/a) = 1/(-a)

(3) (-a) + (-b) = -(a + b) (10) (a * b) + (a * c) = a * (b + c)

(4) (a * b) * c = a * (b * c) (11) (a * c) + (b * c) = (a + b) * c

(5) a * b = b *a (12) (a * b) + (c * a) = a * (b + c)

(6) (-a) * b = - (a * b) (13) (b * a) + (a * c) = (b + c) * a

(7) a * (-b) = - (a * b)

Figure 5.3: Rewrite rules.

Crossover While maintaining mathematical equivalence is easy for the muta-

tion operation, in the case of crossover it is not evident how to perform it efficiently

in general. Given two trees t1 and t2 as candidates for the crossover, the genetic

algorithm picks a random node in t1, which is the root of the subtree s1. The

problem is then the following: find in an efficient way a subtree s2 in t2 that is

mathematically equivalent to s1. Instead of implementing a general decision pro-

cedure, we chose to do the following. At initialization, each subtree is annotated

with a label that is the string representation of the expression at that subtree.

During mutation, labels are preserved in the new generation as much as possible.

For example, suppose we have the node (a+ b) + c, with label (a + b) + c. We

can apply mutation rule 1 to obtain a + (b + c) but the label will remain (a +

b) + c. Note that some of the mutation rules break equivalences (e.g. mutation

rule 10), hence not all labels can be preserved. In that case we add a new la-

bel. During crossover, we then only need to check for identical labels. If labels

match, it means that the subtrees come from the same initial subtree and hence

are mathematically equivalent and we can exchange them in a crossover operation.

Parameters Our genetic programming pipeline has several parameters that can

influence the results: the number of best individuals passed on to the next gener-

ation unchanged (elitism) (0, 2 or 6), the number of individuals considered during

tournament selection (2, 4 or 6), and the probability of crossover (0.0, 0.5, 0.75 or

76

1.0). The most successful setting we found is with a tournament selection among

4 and an elitism of 2 while performing crossover every time, i.e. with probability

of 1.0. Note, however, that even in the case of other settings, the improvements

are still significant (on the order of 50%).

5.2.3 Fitness Evaluation

We use a static analysis based approach to compute the fitness of an expression.

Our static analysis tool computes sound over approximations of the ranges of all

variables and of the maximum absolute error of the corresponding best fixed-point

implementation as introduced in Section 4.2.1.

Our tool uses affine arithmetic to compute the ranges of all intermediate val-

ues. From this we can determine the best possible fixed-point format and the

quantization error at each computation step. The error bounds we compute are

sound with respect to real arithmetic.

If we are interested in proving that the roundoff errors stay within certain

bounds, the computed bounds on the absolute errors need to be as tight as pos-

sible. Note that the main requirement on the analysis in our problem is slightly

different. While tight bounds on errors are an advantage, what we need to know

is the relative precision of our analysis tool. That is, we need to know whether

the analysis tool is able to distinguish a better implementation from a less pre-

cise one. To see why this is different from the usual case, note that the analysis

tool assumes worst-case errors at each computation step. It general, however, the

worst-case errors will not be attained at all computation steps.

Thus, before using our analysis tool in a GP framework, we evaluate this prop-

erty experimentally. We generate a number of random rewrites for an expression,

for which we then obtain the actual errors by simulation. We present here the

results for one linear and one nonlinear benchmark (batch controller [GL94], state

77

Figure 5.4: Comparison of analyzed upper bound and simulated lower bound on

maximum errors for the linear benchmark batch processor (state 2).

Figure 5.5: Comparison of analyzed upper bound and simulated lower bound on

maximum errors for the nonlinear benchmark rigid body (out1).

2 and rigid body [AT10], output 1 respectively). For 100 random different expres-

sion formulations, the ratio between the analyzed upper bound on the error and

the simulated lower bound on the error has a mean of 1.29387 and a variance of

0.00082 for the batch controller, state 2 benchmark and a mean of 1.66697 and

a variance of 0.08315 for the rigid body, output 1 benchmark. Figures 5.4 and

Figure 5.5 show a direct comparison between the analyzed and simulated errors.

In the linear case, the computed bounds on the errors are proportional to the

actual errors, thus indicating a good relative precision. In the nonlinear case the

correspondence is not as precise, however we expect it to be still sufficient for

our purpose. The “more nonlinear” a computation becomes, the less precise we

expect affine arithmetic to be.

78

5.2.4 Why Genetic Programming?

It is in general not evident from an expression whether it is in a good form with

respect to precision and exhaustively enumerating all possible formulations of ex-

pressions becomes impossible very quickly. For only linear expressions the number

of possible orders of adding n terms modulo commutativity, which does not affect

precision, is (2n− 3)!!1. For our example from Section 5.1 with 6 terms there are

already 945 expressions. For our largest benchmark with 15 terms there are too

many possibilities to enumerate.

We thus need a suitable search strategy to find a good formulation of an

expression among all the possibilities. We show in Section 5.4 that the problem

of finding an expression whose worst-case error bound is minimal is NP-hard

and that it amounts to minimizing the ranges of intermediate variables. Since the

inputs for the expressions can, in general, be positive and negative, optimizing one

subcomputation may lead to a very large intermediate sum in a different part of

the expression. An algorithm that tries to find the optimal solution in a systematic

way (e.g. dynamic programming) is thus unlikely to succeed. Our problem also

does not have a notion of a gradient and it cannot be easily formulated in terms

of inputs and outputs or constraints.

Genetic programming does not rely on any of these features, and its formula-

tion as a search over program AST fits our problem very nicely.

5.3 Optimal Controller Synthesis

The controller for a discrete-time linear control system is given by Equation (2.5)

and Equation (2.4). If we implement the controller using fixed-point arithmetic,

we introduce additive error to the output of the controller. Thus the fixed-point

1The number of full binary trees with n leaves is Cn−1, where Cn are the Catalan numbers.
We can label each of the trees in n! ways. Taking into account commutativity gives: Cn−1·n!

2n−1 .

79

implementation of the controller is given by: x̂[r + 1] = (Aτ −BτK − LC)x̂[r] + Ly[r] + eq1,

û[r + 1] = −Kx̂[r + 1] + eq2,
(5.3)

where eq1 ∈ Rn and eq2 ∈ Rm. The vector e =

 eq1

eq2

 captures the implemen-

tation error of the controller. As shown in Proposition 3 in Chapter 4, in the

presence of implementation error the state of plant can only be shown to converge

asymptotically in a set around the origin. The set is called the region of practical

stability.

Controller synthesis has been traditionally performed by minimizing LQR and

LQG costs [Hes09]. In Chapter 4, we showed how to synthesize a controller co-

optimizing both the LQR/LQG cost and the region of practical stability. There we

optimize a weighted linear combination of the two cost functions using a stochas-

tic local search technique. The optimization problem is non-convex, and is solved

using particle swarm optimization (PSO), a population-based stochastic optimiza-

tion approach [KE95]. PSO iteratively solves an optimization problem by main-

taining a population (or swarm) of candidate controllers, called particles, and

moving them around in the search-space of possible controllers, trying to mini-

mize the objective function.

In each step of PSO, given a new controller, a bound on the implementation

error is estimated for a naive implementation. The value of the objective function

is computed by taking the weighted sum of the LQR-LQG cost and this bound.

Note that the implementation does not consider all possible expressions for a

controller. If the controller is given by K = [k1, k2, . . . , kn] and the state of the

plant is denoted by x = [x1, x2, . . . , xn], then the expression that is considered

for the implementation of the fixed-point program is of the form f = (((k1x1 +

k2x2) + k3x3) + . . . + knxn). We refer to this expression as the naive expression.

Note that the implementation of another expression may give a better bound on

80

the error. The expression giving the least bound for the error is referred to as the

best expression.

We call the implemented controller corresponding to the naive expression the

baseline implementation. The naive expression can be passed through the genetic

algorithm based rewriting method to get the best expression, and the correspond-

ing controller implementation is called the improved implementation. Let us sup-

pose that the controller gains synthesized by the PSO method in Chapter 4 is

denoted by K. Let us assume that the bound on the error in its baseline imple-

mentation is bbK , and that for its improved implementation is biK . Now there may

exist another controller K ′ with the bounds on the error in its baseline imple-

mentation and improved implementation to be bbK′ and biK′ respectively such that

bbK < bbK′ , and biK′ < biK . This implies that if we use the method in Chapter 4

to implement the baseline controller and then employ the genetic programming

based best expression search strategy presented in Section 5.2 to get the improved

controller, we may not obtain the best possible controller implementation.

To achieve the best possible implementation for a controller, we take the fol-

lowing strategy. In every step of PSO, for a given controller, we start with the

naive expression and apply our genetic-programming-based rewriting technique

to find the best expression. We use this bound on the implementation error of

the best expression in the objective function. The controller implemented us-

ing this new objective function is referred as the optimal implementation. In the

Evaluation section, we show that such combination of search strategies substan-

tially improves the guaranteed properties of the synthesized controllers, showing

that techniques for synthesis of fixed-point programs have concrete benefits for

practical controller synthesis.

81

5.4 Optimal Fixed-Point Program Synthesis Problem is

NP-hard

This section shows that given an arithmetic expression, the problem of finding

a mathematically equivalent expression for which the computed worst-case er-

ror bound of the output of the fixed-point implementation is least is NP-hard.

This justifies our use of a heuristic search method such as genetic programming.

Though our algorithm supports operators ‘+’, ‘-’ , ‘*’ or ‘/’, we show the NP-

hardness proof already for a problem that deals with the operator ‘+’ alone.

For such an expression T , we define E(T) as the worst-case error bound of the

best fixed-point implementation, as follows.

Let the set of internal nodes of T be denoted by ni and consider the best fixed-

point implementation of T with tight intervals, as introduced in Subsection 4.2.1.

As the worst case error ei at node ni we use

ei = R(max(abs(rmini), abs(rmaxi))))/2v−1

where R is a function used to make the bound uniform. A possible sound choice

for R include s R(x) = 2dlog2 xe, which, according to the Definition (4.6) makes the

error equal to the value of the least significant bit 2−w. Another, slightly more

conservative choice, is R(x) = 21+log2 x = 2x, which we adopt here.

Minimum-Error Fixed-point Set Range Sum (MEFxRS): Let X = {x1, . . . , xp}
denote a set of variables, xi ∈ R. Given an expression of the form

∑p
i=1 xi, where

each variable xi can take value from a range [rmini , rmaxi], find the ordering of the

addition operations that yields the minimal worst-case error bound of the best

fixed-point implementation of the expression.

Our objective is to show that the problem MEFxRS is NP-hard. Towards that

end, we first define a simplified problem where we compute the sum of a set of

integers (instead of intervals). Note that the numbers may be both positive and

82

negative.

Minimum-Error Fixed-point Set Value Sum (MEFxVS): Let X = {v1, . . . , vp}
denote a set of integers. Given an expression of the form

∑p
i=1 vi, find out the

ordering of the addition operations, that yields the minimal worst-case error bound

at the output of the best fixed-point implementation of the expression.

It is straight-forward to show that an instance of a MEFxVS problem with

values vi can be reduced to a MEFxRS problem, for example, by letting rmini =

rmaxi = vi. In what follows, we show that MEFxVS is NP-hard.

To derive an expression for the worst-case error bound, we consider the AST

of the expression, and in particular one internal node ni representing a partial

sum. Let the fixed-point value at ni be ci. To use our definition for the worst-case

error bound, note that rmini = rmaxi = ci. Then,

ei =
1

2v−1
R(|ci|) =

1

2v−2
|ci|

Thus, at any internal node ni, the error ei is α|ci| for α = 2−(v−2). The errors

at the leaf nodes are constant and we denote their sum by e0. The worst-case error

bound for the implementation tree T is thus given by E(T) = e0 + α
∑p−1

i=1 |ci|
For a fixed number of overall bits v , e0 and α is constant. The implementation

error can thus be minimized by minimizing the partial sum at the internal nodes

of an implementation tree. This sum is called the cost of T and is given by

C(T) =
∑p−1

i=1 |ci| in [KW98].

Kao and Wang show in [KW98, Section 2] that the decision problem C(T) ≤
K, where C(T) is the cost of the implementation tree T and K is a positive

integer, is NP-hard. Using that result we have the following theorem.

Theorem 3. The Minimum-Error Fixed-point Set Range Sum (MEFxRS) prob-

lem is NP-hard.

83

5.5 Evaluation

5.5.1 Implementation

We have implemented the algorithm to synthesize the optimal implementation of

a controller presented in Section 5.3 on top of Ocosyn and we call the resulting

tool Ocosyn+. Ocosyn+ incorporates genetic algorithm based expression rewriting

in the search for the optimal controller using PSO. For implementing our genetic

programming based expression search algorithm, we use ECJ [ECJ], an evolution-

ary computation framework written in Java. We use a PSO function in Matlab

from [EKG12]. We have used the same setup for PSO as used in Chapter 4. The

synthesis experiments were done on a laptop running Mac OS X version 10.7.4

with 2 GHz Intel Core i7 CPU and 8GB 1600MHz DDR3 Memory.

5.5.2 Experiments

We evaluate our technique on a number of benchmarks. Our benchmarks include

a bicycle model [AM09], a DC motor position control [CMU], a pitch angle con-

trol [CMU], an inverted pendulum [CMU] and a batch reactor process [GL94].

The controllers for these system were taken from Chapter 4, which attempted

to minimize the size of the region of practical stability by choosing a controller

whose baseline fixed-point implementation has the best possible bound on the

error among all controllers that stabilize the plant. To show the scalability of our

tool we choose the example of a locomotive pulling a train car where the connec-

tion between the locomotive and the car is modeled by a spring in parallel with a

damper [MPS76]. By increasing the number of cars, we can increase the dimension

of the system. We also consider a nonlinear controller for a rigid body [AT10].

Each benchmark consists of one expression and ranges for its input parameters.

We wish to minimize the error on the one output value it computes over all possible

84

Benchmark err
orig.- no-cross

orig.
orig.- best

orig. g

bicycle (out1) 2.66e-3 0.00 0.00 -

bicycle (state1) 2.53e-4 0.19 0.19 1

bicycle (state2) 1.82e-4 0.00 0.00 -

dc motor (out1) 1.06e-4 0.00 0.00 -

dc motor (state1) 2.77e-4 0.00 0.00 -

dc motor (state2) 3.75e-4 0.25 0.25 4

dc motor (state3) 1.27e-4 0.00 0.00 -

pendulum (out1) 8.09e-8 0.03 0.03 5

pendulum (state1) 5.13e-9 0.17 0.17 1

pendulum (state2) 6.11e-9 0.38 0.38 16

pendulum (state3) 5.14e-9 0.00 0.00 -

pendulum (state4) 4.97e-9 0.27 0.27 7

pitch angle (out1) 1.33e-7 0.18 0.18 4

pitch angle (state1) 4.26e-9 0.30 0.30 2

pitch angle (state2) 2.79e-9 0.00 0.00 -

pitch angle (state3) 3.81e-9 0.20 0.20 2

batch reactor (out1) 5.15e-4 0.00 0.00 -

batch reactor (out2) 1.28e-3 0.12 0.12 2

batch reactor (state1) 3.46e-4 0.15 0.15 1

batch reactor (state2) 2.77e-4 0.00 0.00 -

batch reactor (state3) 3.55e-4 0.26 0.26 2

batch reactor (state4) 4.11e-4 0.23 0.23 7

batch (out1) 4.53e-3 0.07 0.07 2

batch (out2) 1.10e-2 0.12 0.12 7

batch (state1) 1.95e-3 0.50 0.50 3

batch (state2) 1.94e-3 0.50 0.50 6

batch (state3) 2.25e-3 0.36 0.37 18

batch (state4) 1.97e-3 0.33 0.33 7

Table 5.1: Continued in the next page

85

Benchmark err
orig.- no-cross

orig.
orig.- best

orig. g

traincar 1 (out) 1.11e-4 0.09 0.09 2

traincar 1 (state 1) 1.98e-6 0.03 0.03 6

traincar 1 (state 2) 3.57e-7 0.25 0.25 16

traincar 1 (state 3) 2.79e-7 0.24 0.24 7

traincar 2 (out) 7.40e-5 0.09 0.09 19

traincar 2 (state 3) 1.23e-7 0.49 0.59 21

traincar 3 (out) 1.26e-3 0.13 0.13 7

traincar 3 (state 6) 1.32e-7 0.48 0.58 21

traincar 3 (state 7) 1.31e-7 0.43 0.53 17

traincar 4 (out) 9.34e-3 0.26 0.29 27

traincar 4 (state 1) 7.29e-8 0.73 0.73 19

traincar 4 (state 2) 7.34e-8 0.67 0.73 25

traincar 4 (state 3) 1.01e-7 0.66 0.60 14

traincar 4 (state 4) 6.96e-8 0.64 0.70 26

traincar 4 (state 5) 1.42e-7 0.61 0.68 26

traincar 4 (state 6) 1.67e-7 0.59 0.59 16

traincar 4 (state 7) 1.67e-7 0.56 0.56 13

traincar 4 (state 8) 1.38e-7 0.60 0.60 19

traincar 4 (state 9) 1.67e-7 0.47 0.47 7

rigid-body (out1) 1.08e-1 0.33 0.33 5

rigid-body (out2) 9.92e-1 0.20 0.20 15

Table 5.2: Maximum absolute errors for the best expression found by GP with

the settings elitism: 2, tournament selection: 4, with and without crossover (seed

used: 4357). err is the analyzed error. g denotes the generation in which the

solution is found.

86

inputs. Some of the benchmarks compute internal states of a controller (denoted

with e.g. “state 1”). Since each state is computed with a different expression, we

treat them here as separate benchmarks. For all benchmarks we consider a fixed

bit length, signed fixed-point format and truncation as the rounding mode.

Synthesizing the Best Expression. Table 5.1 and Table 5.2 lists the maximum

absolute errors (computed by our analysis tool) for the best expressions found

by GP for all our benchmarks. The benchmarks are ordered approximately by

complexity with the smaller linear benchmarks first and the nonlinear benchmarks

at the end of the table. From the third column we can see that we get substantial

improvements in precision of up to 70%. The tables show the results obtained

for the most successful setting we have found. Most successful in this case means

that the best expression among all the runs was found nearly every time. It

also shows the results with crossover turned off. The comparison of these two

columns suggests that crossover is helpful. We therefore expect that randomized

local search techniques are not as effective as genetic programming, but they still

produce useful reductions in the errors.

Performance Enhancement in Control Systems. In Table 5.3 we provide

the controllers synthesized by Ocosyn+ and the time required to synthesize them.

In Table 5.4, we present the size of the region of practical stability for the baseline,

improved and the optimal controllers for different benchmark systems and also the

percentage improvement in the size of the region for the improved and the optimal

controllers. The baseline and the improved implementations are based on the con-

trollers provided in Chapter 4, and the optimal implementations are based on the

controllers synthesized using Ocosyn+. Note that the region of practical stability

for the baseline implementation varies from the result provided in Chapter 4. For

example, for bicycle, the size of the region was presented as 0.0513 ignoring the

effect of disturbance and measurement noise, the corresponding figure is 0.0785

in our experiment. This discrepancy is due to the fact that we use a different

87

Control systems # bits Synthesized gains Time cost

K L

bicycle 16 [3.0265e+ 0 1.2608e+ 1] [6.9088e− 3 1.1135e− 1]T 51m36s

dc motor 16 [1.1760e-1 1.7400e-2 1.3300e-2] [4.0400e-2 3.6720e-1 -1.2400e-2]T 43m15s

pitch angle 32 [-1.2022e-1 4.2566e+1 1.0004e+0] [3.2131e-4 2.1565e-5 1.8907e-3]T 1hr21m58s

pendulum 32 [-1.5362e+0 -2.0254e+0 1.6519e+1 2.7358e+0]

 1.7000e-3 2.1000e-3 1.2000e-3 0.0000e+0

1.0000e-4 1.8000e-3 1.2200e-2 7.7000e-2

T 38m43s

batch reactor 16

 5.9434e-2 9.0617e-1 3.2788e-1 8.7115e-1

-2.4646e+0 -4.4966e-2 -1.7086e+0 1.1691e+0

  7.6055e-2 -1.8342e-3 2.9025e-2 3.0801e-2

-1.1106e-2 2.2255e-2 3.9666e-2 -9.2832e-4

T 2hr45m35s

Table 5.3: Synthesized gains and required time for synthesizing them.

method to estimate the bound on the error in the fixed-point implementation.

The abstract interpretation based error estimation method used in this chapter is

an order of magnitude faster than the mixed-integer linear programming approach

in Chapter 4., which is apparent from the “time cost” column in Table 5.4. Even

after incorporating the genetic programming based expression evaluation method

in the synthesis process, our tool takes less time to synthesize a controller for all

the benchmarks. Moreover, though our error estimation is less precise in compar-

ison to that of Chapter 4 for 16 bit implementations, for 32 bit implementations

(pitch angle and inverted pendulum) our estimation is significantly more precise.

The results in Table 5.4 show that we can improve the size of the region

by rewriting the expression used in the baseline implementation. However, the

improvement becomes significant when we incorporate the rewriting technique in

the search method. Our results show that it is even possible to achieve more

that 50% improvement in the synthesized controller with respect to the baseline

controller. Table 5.5 shows the LQR/LQG cost of the baseline and the optimal

controllers. The results show that in most of the examples, LQR and LQG costs

do not degrade in the optimal controller with respect to the baseline controller.

Only for the DC motor position example, the degradation in LQR cost is 8%. In

a few instances, the LQG cost even improves.

88

Control Region of Practical Stability Improvement (%)

systems Baseline Improved Optimal Improved Optimal

bicycle 7.85e-02 7.70e-02 6.99e-02 1.93 10.96

dc motor 1.64e-02 1.44e-02 9.80e-03 12.14 40.24

pitch angle 1.08e-02 8.87e-03 5.15e-03 18.00 52.32

pendulum 3.11e-04 2.64e-04 2.51e-04 14.76 19.26

batch reactor 2.59e-01 2.24e-01 2.07e-01 13.31 20.08

Table 5.4: Improvement in the size of region of practical stability for the improved

and synthesized controllers

Control lub of LQR cost LQG cost

systems Baseline Optimal Baseline Optimal

bicycle 4.33+3‖x‖2 4.33e+3‖x‖2 2.46e-2 2.47e-2

dc motor 1.38e+3‖x‖2 1.50e+3‖x‖2 3.67e+1 3.67e+1

pitch angle 2.99e+6‖x‖2 2.99e+6‖x‖2 1.80e-3 1.58e-3

pendulum 5.35e+4‖x‖2 5.35e+4‖x‖2 3.90e-1 3.90e-1

batch reactor 2.23e+2‖x‖2 2.23e+2‖x‖2 9.49e-2 9.08e-2

Table 5.5: Least upper bound (lub) on the LQR cost, for a given initial condition

x and the LQG cost for the baseline and the optimal implementations.

5.6 Related Work

A lot of research has gone into providing semi-automated compilation support

from floating-point to fixed-point implementations [FRC03, MSB07, BR05, OCC07b].

The primary concern in these works has been bitwidth allocation: finding out the

number of bits to allocate for the integral and the fractional parts of each real

variable, so that the resulting implementation does not lose too much precision

and the fixed-point variables do not overflow.

89

The range analysis problem has been studied extensively in the context of

optimum bit-width allocation to intermediate variables in a fixed-point program,

mostly in the DSP domain. Both static [LGC06a, LCN07b, OCC07b] and simulation-

based [BR05, MSB07] approaches have been used. Existing work applied genetic

programming as a technique to construct asynchronous circuits [MPS11] or pro-

grams that can be model checked [KP08].

Jha [Jha11] gives an algorithm for optimal fixed-point program synthesis based

on inductive synthesis. His objective is to find out the best fixed-point implemen-

tation for a given expression, and does not consider rewriting of expressions. More-

over, it takes several minutes to synthesize a fixed-point program corresponding to

an expression, where our abstract interpretation based technique can synthesize

a fixed-point program corresponding to an expression in seconds .

To our knowledge, the only work that considers rewriting of expressions to

improve precision in the context of abstract interpretation is [IM12]. The authors

develop an abstract domain for representing an under-approximation of mathe-

matically equivalent expressions. They then use a local, greedy search to extract

some expression with a more precise formulation in a floating-point implementa-

tion. While the computation of precision is similar to ours, this approach excludes

many possible expressions due to the local search and due to the under approxi-

mation in the abstract domain. Also, no validation of the results obtained with a

static analysis tool as compared to “true” errors is performed and thus the issue

of imprecision when dealing with nonlinear expressions is missed. In previous

work [Mar09] the authors also considered fixed-point arithmetic. They used, how-

ever, only the maximum number of bits required to hold the integer part as the

precision measure, which is too imprecise to distinguish many expressions.

90

CHAPTER 6

Memoization

In this chapter, we will shift our focus to a different aspect of control system

implementation — the effect of computation time on the feasibility of implemen-

tation of a control system. We will introduce the related problem in the context

of self-triggered implementation of the control systems. Self-triggered implemen-

tations of digital controllers have been proposed recently as a computation- and

communication-efficient technique for the software realization of a control law

[VMF03, LCH07, MT08, WL09, MAT09, MT09, ASP10, AT10]. In a self-triggered

implementation, the control task computes, in addition to the actuation signal,

the next instant of time at which the control law should be recomputed (the trig-

ger time). In between the control updates, the actuation signal is held constant

and the plant evolves in open loop. The appropriate choice of trigger time ensures

that the resulting system is still stable and has required performance.

Self-triggering is an attractive technique for integrated architectures of cyber-

physical systems, in which multiple control loops and non-critical applications

share the same resources (CPU or communication network) [OSH09]. Unlike the

traditional time-triggered approach, where the control computation is performed

periodically with a fixed period, it has the potential of making many fewer com-

putations and lower use of the communication bandwidth. This is because the

period in a time-triggered approach is chosen under a worst-case assumption, and

control computations are performed at this rate even when the plant is in steady

state and there are no disturbances [AW90a]. Unlike event-triggered approaches

91

[Arz99, San06, HSV08], in which the state of the plant is continuously monitored

using dedicated hardware to detect an event that triggers control re-computation,

self-triggered approaches do not require the computation costs or extra hardware

for continuous sensing. Indeed, simulations of some benchmark control systems

demonstrate that self-triggered implementations can provide significant savings in

both computation and communication [MAT09, MT09, ASP10, AT10].

In this chapter, we show that savings estimates claimed for self-triggered im-

plementations are somewhat optimistic. In most simulations of self-triggered im-

plementations, it is assumed that the execution time required to compute the

trigger time is negligible. We show that this assumption is not realistic for a

number of common embedded platforms, and that the time required to compute

the trigger time can indeed be more than the trigger time itself, making a direct

implementation infeasible.

We propose an implementation scheme for self-triggered controllers using mem-

oization of trigger times. We demonstrate that our implementation can provide

similar savings in communication bandwidth as the naive self-triggered implemen-

tation, while keeping computation costs low. We maintain a memoization region:

a subset of the state space around a given operating point for the controller. We

quantize the memoization region into a grid of chosen precision, and compute the

trigger times for states on the grid on demand. To compute the trigger time of

a state ξ, we compute its quantization on the grid and see if the trigger time

has been cached from a previous computation. If so, we return the pre-computed

value. If not, instead of computing the trigger time with the same priority as

the control task, we schedule it as a background task of lower priority, and fall

back on a time-triggered implementation in case it is not computed in time. If

the operating point is fixed, the entire memo table can be pre-computed and

there is no runtime overhead. However, in many cases the operating points can

change dynamically and may not be known statically, or the space required to

92

keep the entire grid may be too high. In these cases, we compute the entries of

the memo table incrementally and on demand, falling back on a time-triggered

implementation if the computation does not finish in time.

The quantization of states in computing trigger times introduces an error in

the implementation of the controller, since the trigger time may not be computed

for the given state, but for its approximation on the grid. We show how we can

bound the effects of this error, and provide a bound on the practical stability of

the controlled system [LL61, PW07, AMS10] based on results on self-triggered

controllers for control systems with bounded disturbances [ASP10]. While we

focus on trigger times, quantization and memoization can also be applied to the

computation of the control law, and a similar error analysis can be performed.

(In our examples, the computation of the control law takes negligible time in

comparison to the computation of the trigger time, so we focus only on memoizing

trigger times.)

We have developed a framework to evaluate self-triggered implementations of

control systems. Our framework uses Truetime [CHL03] for the simulation of con-

trol applications and aiT [HF09] for the computation of worst case execution times.

We evaluate our implementation on the example of a batch reactor process, a stan-

dard linear system benchmark used in previous papers on self-triggered control

[MAT09, MT09, ASP10], and an example of a jet engine compressor, a standard

nonlinear control benchmark [AT10]. Experimental results show that our hybrid

implementation attains communication costs close to that of naive self-triggered

implementations, and simultaneously reduces computation costs significantly.

93

6.1 Self-Triggered Control

The evolution of a dynamical system with time is captured by a differential equa-

tion:

ξ̇ = f(ξ, υ), ξ(0) = ξ0 (6.1)

where ξ(t) ∈ Rn denotes the state of the system at time t and υ(t) ∈ Rm denotes

the external input to the system at time t. Equation (6.1) is obtained from

Equation (2.1) ignoring the effect of external disturbance. The curve ξ : R →
Rn is said to be a solution or trajectory of (2.1) when there exists a piecewise

continuous input curve υ : R → Rm such that the time derivative of ξ at time t

equals f(ξ(t), υ(t)). The control system is called linear time invariant if there are

matrices A ∈ Rn×n and B ∈ Rn×m such that

ξ̇(t) = Aξ(t) +Bυ(t), ξ(t) ∈ Rn, υ(t) ∈ Rm. (6.2)

Equation (6.2) is obtained from Equation (2.2) by ignoring the effect of external

disturbance, and assuming that the full state of the plant is available for the

computation of the control signal. A controller

υ(t) = k(ξ(t)) (6.3)

computes the input υ(t) as a function of the state ξ(t).

6.1.1 Self-Triggered Implementation

To implement a control law for the system (6.1) on a digital computer, the state

of the plant is sampled at a sequence of time instants t0 = 0, t1, t2, . . . The state

of the plant at time instant ti is ξ(ti), and the computed control signal is given by

u(ti) = k(ξ(ti)). The time instant ti is called the trigger time. The control signal

is applied to the plant immediately after it is available, and is held constant until

the next trigger time ti+1. The control signal computation time is generally in

94

the microsecond range and can be considered to be negligible. Thus the control

signal in the digital implementation of the system in (6.1) is given by

υ(t) = υ(ti) for t ∈ [ti, ti+1[(6.4)

In a time-triggered implementation, the control engineer fixes a sampling pe-

riod T > 0, and selects a periodic sequence of trigger times ti = iT , for i ∈ N. For

self-triggered implementations, the sequence {ti}i∈N is computed online. At time

ti, in addition to the control signal, the next time instant ti+1 when the plant’s

state would be sampled is computed based on the current state ξ(ti). This com-

putation is done based on a rule that is designed to ensure stability and desired

performance of the control system.

We focus on linear control systems. Here we briefly recall the self-triggered

implementation of a linear controller achieving exponential stability as proposed

in [MAT09, MT09]. Consider the linear time-invariant control system (6.2). The

system is rendered closed loop exponentially stable by using a controller

υ(t) = −Kξ(t). (6.5)

where ξ(t) is the solution of (6.2) at time t, and matrices A, B, and K are of

appropriate dimensions. The closed loop system is given by

ξ̇ = (A−BK)ξ (6.6)

As the closed loop system is stable, there exists a Lyapunov function

V (ξ(t)) = ξ(t)TPξ(t) (6.7)

where P is a symmetric positive definite matrix. The matrix P can be obtained

by solving the following Lyapunov equation:

(A−BK)TP + P (A−BK) +Q = 0 (6.8)

where Q is a given symmetric positive definite matrix.

95

The Lyapunov function in (6.7) admits an exponential decay. Let V be a

Lyapunov function satisfying (6.8) and let λ0 > 0 denote its rate of decay. For

self-triggered implementations, we fix 0 < λ < λ0 and define a function S upper-

bounding the evolution of V :

S(t, ξ(tk)) = V (ξ(tk))e
−λ(t−tk). (6.9)

Thus, at t = tk, we have S(t, ξ(tk)) = V (ξ(tk)) and for tk < t < tk+1, we have

S(t, ξ(tk)) > V (ξ(t)). The constant λ in the function S specifies the desired

performance of the control system.

The self-triggered implementation has to ensure that the value of V (ξ(t)) never

goes beyond the value of S(t, ξ(tk)). To ensure this, a triggering function is defined

as

h(t, ξ(tk)) = V (ξ(t))− S(t, ξ(tk)) for all t ≥ tk (6.10)

Triggering happens when h(t, ξ(tk)) = 0. At that moment, the plant’s state is

sampled again. The triggering scheme ensures that there exists a positive constant

τmin such that for any i, we have τi = ti+1−ti ≥ τmin. The value of τmin is effectively

computable from the parameters of the control system and the Lyapunov function

(see Theorem 5.1 in [MAT09]).

To implement self-triggered control, the designer fixes two design parameters:

a maximum duration τmax between two triggering instants that determines how

long the system is allowed to operate in open loop, and a discretization parameter

∆ > 0 that puts a grid on the interval [τmin, τmax]. Then, a discrete version of the

triggering function h from (6.10) is defined:

h̃(n, ξ(tk)) = V (ξ(tk + n∆))− S(n∆, ξ(tk)) (6.11)

The self-triggered implementation Γl : Rn → R+, Γl(ξ(tk)) = tk+1 for linear

96

control systems is given by:

tk+1 = max{tk + τmin, tk + nk∆} (6.12)

nk = max{s ≤ bτmax

∆
c | for all n ∈ [0, s] : h̃(n, ξ(tk)) ≤ 0}

Note that the worst case execution time depends on nk and nk depends on τmax and

∆. The self-triggered implementation scheme is feasible only if the time required

to compute the trigger time tk+1 is less than tk+1 − tk.

6.1.2 Problem: Trigger Time Computation

We now illustrate the problem of implementing the self-triggering scheme defined

above through a motivating example of a batch reactor process originally described

in [Ros74] and used in [MAT09, MT09, ASP10] as a benchmark. The model of

the plant is given by

ξ̇ =


1.38 −0.20 6.71 −5.67

−0.58 −4.29 0 0.67

1.06 4.27 −6.65 5.89

0.04 4.27 1.34 −2.10

 ξ +


0 0

5.67 0

1.13 −3.14

1.13 0

 υ.

The feedback controller

υ = −

0.1006 −0.2469 −0.0952 −0.2447

1.4099 −0.1966 0.0139 0.0823

 ξ
renders the system exponentially stable. Let us denote the worst case execution

time (WCET) of the computation of the trigger time tk+1 by τc. The rate of

decay is λ0 = 0.41. Setting λ = 0.9λ0, we get τmin = 18ms. The authors of

[MT09] chose τmax = 358ms and ∆ = 10ms. The maximum possible value for

nk is thus 35. With these choices, we implement the trigger time computation

given by (6.12) using the discrete triggering function (6.11) as a C program and

cross-compile it using a GNU-based cross-compiling system. We then compute the

97

WCET of the trigger time computation using aiT [HF09], a state-of-the-art worst

case execution time analysis tool. The WCET of the trigger time is 29.793ms on

a Leon 2 processor, assuming the processor frequency to be 100MHz (Most of

the commercial implementations of Leon 2 processor have clock frequency below

100MHz [Leo]). As we see, the WCET is greater than τmin. This implies that

there may be cases where the controller will produce the next trigger time at

an instant when the trigger time has already passed. This clearly shows the

infeasibility of the implementation of the triggering rule provided in [MT09]. (In

simulating the performance of their controller, the authors of [MT09] ignore trigger

computation times.)

Note that we cannot increase the value of τmin as it depends on the parameters

of the control system, and increasing τmin may cause the self-triggered implemen-

tation of the control system to violate stability requirements. The self-triggered

implementation may be made feasible by decreasing the value of τmax, as τmax is

a design parameter and the worst case execution time is directly proportional to

τmax. Decreasing the value of τmax does not have any effect on the performance

of the control system. However, it causes the trigger of the controller to occur

more frequently than what the designer in [MT09] expected, and thus increases

communication between the controller and the actuators (negating much of the

benefits of self-triggering). Thus, the performance advantages of self-triggered

implementations must be evaluated taking the computation time for the trigger

time into account.

6.2 Hybrid Implementation

We now present a hybrid implementation scheme for self-triggered control systems.

Our implementation utilizes a time-vs-space tradeoff, and memoizes trigger times

for future reuse. We assume that a fixed-size piece of memory is available to store

98

-3 -2 -1 0 3 2 1

-1

-2

1

2

ξ(t)ξ̂(t)

�0, 0�

�0, 1�

�1, 0� �6, 0�

�0, 4�

�1

�2

Figure 6.1: Memoization region and table

the memoization table, which maps a state of the system (a vector in Rn) to a

trigger time. The memoization table can be accessed using indices computed from

a state as described later.

6.2.1 Memoized Trigger Time Computation

For the implementation, we fix a memoization region [−w,w] ⊆ Rn of the control

system around the origin. We want to memoize the computed trigger time for

any state in this region. Since the memoization table is finite, we discretize the

memoization region using a quantization factor ε ∈ Rn. We describe the choice of

ε in Section 6.2.3. The memoization region is represented as a multi-dimensional

array, where each element is a trigger time. The number of entries in the table is

given by

N =
n∏
i=1

2wi
εi

(6.13)

As an example, Figure 6.1 shows an example system with two state variables

and the memoization region [−3, 3] × [−2, 2]. The quantization factor ε = (1, 1),

99

that is, each state is divided into intervals of size one unit. There are 24 different

entries in the memoization table, and they are indexed as shown in the figure,

from (0, 0) at the bottom left corner to (5, 3). The quantized value of a state ξ

is the state corresponding to the closest grid point to its left and bottom, e.g.,

the state ξ = (1.3, 1.3) is quantized to ξ̂ = (1.0, 1.0), with index (4, 3). Note that

the difference between ξ̂(t) and ξ(t) is bounded by the quantization factor ε, thus

ξ̂(t) ≥ ξ(t)− ε.

Algorithm 6.2.1 shows the pseudo-code for trigger-time computation with

memoization. The function findTriggerTime takes as input the system state

ξ(tk) at the kth sample time tk and returns tk+1, the next time the plant should

be sampled. The memoization table Memo stores trigger times. The function

findIndex takes the state ξ(tk) and returns the index of its discretization, if

within the memoization region, or a special value denoting that the current state

is outside the memoization region. In case the current state is outside the mem-

oization region, the trigger time computation is scheduled (line 5). In case the

current state is within the memoization region, the memoization table is first

checked (line 7). If the trigger time has been pre-computed, it is returned (line

11). Otherwise, the trigger time computation is scheduled with the discretized

state (line 9). When the computation is done, the memoization table is updated

with the computed value.

The statement

min(τmin, schedule trigger(ξ̂))

indicates that the task of computing the trigger time is scheduled as a background

task of lower priority than the control loop. If the task finishes before τmin, its

value is returned, otherwise, the plant is sampled again at tk+τmin. That is, if the

background task is not finished in time, the controller reverts to a time-triggered

implementation with period τmin. On completion of the task to compute the trigger

time, the memoization table Memo is updated with the computed value (in case

100

Algorithm 6.2.1: Trigger Time Computation with Memoization.

Input: ξ(tk), the state of the system at time instant tk

Output: tk+1, the next trigger time of the controller

function findDeliveryTime(ξ)1

begin2

〈s1 . . . sn〉 = findIndex(ξ)3

if then4

outsideRange(〈s1 . . . sn〉)5

else6

return min(τmin, schedule trigger(ξ))7

end8

if then9

Memo[s1 . . . sn] is not found10

else11

ξ̂ = quantizeState(〈s1 . . . sn〉)12

return min(τmin, schedule trigger(ξ̂))13

end14

return Memo[s1 . . . sn]15

end16

the state was within the memoization region). Moreover, in our implementation,

when one trigger time computation is running, no other trigger task is spawned,

and the controller works in a time-triggered mode using the minimum trigger time

τmin as the sampling period. We call this implementation scheme hybrid.

6.2.2 Dynamic Choice of Memoization Region

In Section 6.2.1 we assume that in the steady state the control system operates

at the origin, and we fix the memoization region to be [−w,w] ⊆ Rn. If a control

system has only one operating point, the memoization table can be precomputed

101

offline for all the states in the memoization region around the operating point

instead of computing the table online. However, in reality, a control system may

have a number of operating points, and the system can move from one operating

point to another during its life cycle. All these operating points may not be known

to the designer of the system a priori. For example, one of the states of the batch

reactor process introduced in Section 6.1.2 is the temperature of the reactor. The

desired temperature of the reactor is different during the different reaction phases.

It is not possible to store the memoization table for all operating points in the

memory.

We handle the change in operating point during runtime by online reconfig-

uration of a parameter used in Algorithm 6.2.1. Suppose the operating point

changes from ξ1 to ξ2. We assume that the size of the memoization region re-

mains the same for any operating point. Thus, the memoization region changes

from [ξ1 − w, ξ1 + w] to [ξ2 − w, ξ2 + w]. Even though there may be an overlap

between the old and new memoization regions, the data in the overlapped region

is not reused, as that data needs to be moved to a new location in the memo-

ization table, and this operation may take many CPU cycles. The findIndex

function in Algorithm 6.2.1 depends on an offset vector that maps a state in the

memoization region to a particular position in the memoization table. When the

operating point changes, we perform the following two actions. First, the memo-

ization table is cleared. Second, the offset parameter is reconfigured to reflect the

new memoization region.

6.2.3 Effect of State Quantization

As our memoization based implementation employs quantization of the state of the

control system, we need to take into account the effect on the quantization on the

triggering time. Since the trigger time computation does not have a closed form

formula, correcting the triggering rule to take into account the quantization error

102

is not straightforward. Rather, we show how the quantization error influences the

behavior of the closed loop system in the steady state.

To show how the quantization error on the states effect the overall behavior

of a linear control system, we resort to a result proved by Almeida, Silvestre, and

Pascoal [ASP10]. Consider the following linear time-invariant control system:

ξ̇(t) = Aξ(t) +Bυ(t) + δ(t), ξ(t) ∈ Rn, υ(t) ∈ Rm, (6.14)

where δ(t) is exogenous disturbance with bounded L∞ norm δb. Note that the

system in (6.14) is obtained by introducing an additive disturbance term δ(t) in

the system in (6.2). In the presence of disturbance it is not possible to render the

system (6.14) asymptotically stable to the origin. Rather, it was shown in [ASP10]

that by appropriately modifying the triggering rule in (6.10), it is possible to

ensure that the system is exponentially stable with respect to a region around the

origin.

Consider the Lyapunov function in (6.7). It can be shown that in the presence

of bounded disturbance, the feedback law in (6.5) can render the states of the

system (6.2) exponentially in a region defined by

V (ξ(t)) ≤ max{V (ξ(t0))e
−γ0(t−t0), Vb}, (6.15)

where ξ(t0) denotes the initial state of the evolution at time t0. Note that as

t→∞, V (ξ(t)) is inside a region defined by Vb. For the system (6.14), Vb is given

by

Vb =
4λ3

max(P)δ2
b

(λmin(Q)− γ0λmax(P))2
, (6.16)

where P and Q are matrices in the Lyapunov Equation (6.8).

Now the performance function in (6.9) need be modified according to the

behavior of V (ξ(t)) in (6.15). The modified specification function is given by

S ′(t, ξ(tk)) = max{V (ξ(tk))e
−γ(t−tk), Vb}, (6.17)

103

where 0 < γ < γ0. The triggering function in (6.10) is now modified as follows:

h(t, ξ(tk)) = U(t, ξ(t))− S ′(t, ξ(tk)), (6.18)

where U(t, ξ(t)) is given by

U(t, ξ(tk)) = V (ξ(tk)) + µ(t, ξ(tk)), (6.19)

with µ(t, ξ(tk)) = β(t)(2‖Pξ(tk)‖ + λmax(P)β(t)) and β(t) = δb
σ

(eσ(t−tk) − 1). The

value of σ can be chosen as any value between ‖A‖ and 1
2
λmax(A+ AT).

As shown in [ASP10], the self-triggered implementation in (6.12) with the

triggering function given in (6.18) renders the states of the system (6.14) in finite

time to the set {ξ(t) ∈ Rn : V (ξ(t)) ≤ Vb}. We call this set the region of practical

stability, or in short, the stability region.

We model the quantization error arising from the memoization based imple-

mentation of a self-triggered linear control system as the disturbance δ in (6.14).

For a state ξ(t) the control signal and the trigger time is computed by its quan-

tized value ξ̂(t), where ξ(t) − ξ̂(t) = ε̄(t). The computed control signal is given

by

υ̂(t) = −Kξ̂(t) = υ(t) +Kε̄(t).

Plugging the value of the control signal in (6.2), we get

ξ̇(t) = Aξ(t) +Bυ(t) +BKε̄(t), ξ(t) ∈ Rn, υ(t) ∈ Rm. (6.20)

Comparing (6.20) with (6.14) we get that the disturbance arising due to quanti-

zation in the states is given by

δ(t) = BKε̄(t). (6.21)

Suppose we have been given an upper bound V max
b on Vb as the specification.

To find the upper bound of the quantization factor we proceed as follows: The

104

upper bound on the L∞ norm of δ(t) is given by

δmax
b =

√
(λmin(Q)− γ0λmax(P))2

4λ3
max(P)

V max
b . (6.22)

The upper bound on the quantization factor ε is found by solving the following

optimization problem:

maximize ε1

subject to ‖BKε1[1 1 1 1]T‖ ≤ δmax
b ,

(6.23)

where ε̄(t) = ε1[1 1 1 1]T . Here we have chosen the quantization factors in all

dimensions to be equal. The optimization problem in (6.23) is a convex one. The

solution of the optimization problem provides the upper bound on the quantization

factor of the state.

Theorem 4. Consider the linear control system (6.2), with stabilizing controller

(6.5) and Lyapunov function V obtained from (6.7) and (6.8). Let V max
b be a

given bound on the stability region. Suppose the controller is implemented using

the hybrid implementation using Algorithm 6.2.1, using a discretization ε given by

(6.23). Then, the state ξ is guaranteed to converge to the set {ξ ∈ Rn | V (ξ) ≤ V max
b }.

6.2.4 Fixed-point Representation

The trigger time is computed in (6.12) as a floating point entity. A single precision

floating point value needs four bytes of space in memory. To save memory, we

can store the trigger time as a fixed-point number. The trigger times are always

positive, thus we do not need to deal with the sign of a number. The fixed-point

representation of a trigger time is given as a pair 〈n,m〉 consisting of a length

n ∈ N, and a length of the fractional part m ∈ N. The length of the integer part

is n−m, if n > m, and 0 otherwise. To achieve the highest precision for a chosen

length m of the representation, the length of the fractional part m is chosen such

that the maximum trigger time τmax satisfies 2n−m−1 ≤ τmax < 2n−m. In this

105

case, the maximum error in the fixed-point representation is given by 2−m. For

example, if the range of the trigger time to be represented is given by [0.020, 0.400]

and we choose n = 8, then m = 9 and the bound on the error in the representation

is given by 2−9.

Given a computed trigger time t, its fixed-point representation can be stored

as an integer given by t̂ = b(t× 2m)c. From the fixed-point representation t̂, the

floating point value t̃ of the trigger time is obtained by t̃ = 2−mt̂. To use fixed-point

representations in Algorithm 6.2.1, line 9 and line 11 are adapted appropriately.

Note that it is always safe to use t̃ obtained from the memoization table instead

of using t, as t̃ ≤ t.

6.3 Nonlinear Systems

We now extend the hybrid implementation to self-triggered implementations of

nonlinear control systems.

Triggering Rule. Consider the nonlinear dynamical system (2.1). We recall the

setting of [AT10]. The objective of the controller is to ensure that an invariant on

the state of the plant, given as the specification, is never violated. Henceforth, we

will refer to this specification as invariant specification. The idea behind a self-

triggered implementation is that at any time instant t, the difference between the

current state x(t) and the last measured state x(ti) for i ∈ N is bounded in such

a way that the invariant specification on the closed loop system is not violated.

This error is referred as the measurement error and is given by

e(t) = ξ(ti)− ξ(t) for t ∈ [ti, ti+1]. (6.24)

The dynamics of the closed loop control system is given by:

ξ̇ = f(ξ, k(ξ + e)). (6.25)

Now if the control law is designed to render the system (2.1) ISS with respect to

106

measurement error, there exists a Lyapunov function V for the system satisfying

the following inequality:

V̇ ≤ −α1(‖x‖) + α2(‖e‖). (6.26)

where α1 and α2 are K∞ functions. To maintain stability of the closed loop

system (6.25), we have to ensure that V̇ < 0. This can be ensured if the following

condition holds:

α2(‖e‖) ≤ κα1(‖x‖), κ > 0. (6.27)

The triggering strategy in a nonlinear control system is designed based on the

invariant specification on the states of the system around the equilibrium point.

If a Lyapunov function satisfying the inequality in (6.26) can be discovered for

the system, then an invariant on the admissible error can be derived from the

invariant on the states using (6.27). As shown in [AT10], these two invariants can

be used to derive a closed form formula z to compute the next sampling time tk+1

from the sampled state ξ(tk) at the current sampling time tk.

The self-triggered implementation Γnl : Rn → R+, Γnl(ξ(tk)) = tk+1 for non-

linear control systems is given by:

tk+1 = z(ξ(tk)). (6.28)

Hybrid Implementation. Given the triggering rule (6.28), the hybrid imple-

mentation is similar to the implementation of linear controllers, where we dis-

cretize the state space and memoize computed trigger times.

Since there is a closed form formula to compute the triggering time, we can

correct the triggering times by taking into account the maximum possible error in-

troduced by quantizing the states. To find the maximum possible error introduced

107

in the trigger time, we solve the following optimization problem:

maximize τe

Subject to τ = z(ξ) τ̂ = z(ξ̂)

τe = τ − τ̂
ξ − ξ̂ ≤ ε ξ ≥ ξ̂.

(6.29)

In this optimization problem, ξ denotes the sampled state and ξ̂ denotes the

quantized state obtained from ξ. We denote by τ and τ̂ the trigger time computed

based on ξ and ξ̂ respectively. We maximize τe, the difference between τ and τ̂ ,

subject to additional constraints that the difference between ξ and ξ̂ is bounded

by the quantization factor ε and ξ ≥ ξ̂.

For a given state ξ(tk), if the maximum value of τe is obtained as τmaxe then

the triggering time is computed by the following modified form of (6.28):

tk+1 = z(ξ̂(tk))− τmaxe . (6.30)

Note that unlike linear control systems, the control signal in a nonlinear control

system is computed based on ξ(tk) instead of ξ̂(tk).

6.4 Evaluation

6.4.1 Implementation

In our experiments we have used the Truetime simulator [CHL03] to implement

the control tasks for our example control systems and simulate the systems un-

der different conditions. We choose PowerPC MPC5xx [Pow] and Leon2 [Leo]

processors as the two target platforms on top of which the embedded control ap-

plications are built. The PowerPC MPC5xx is widely used in Delphi Corporation

and Robert Bosch GmbH to develop engine controllers. The Leon 2 processor

was developed by European Space Research and Technology Centre to be used

108

for European space projects. The worst-case execution times [WEE08] for control

computation and trigger time computation on the target processors have been

obtained using the worst-case execution time analysis tool aiT [HF09]. The con-

trol computations and trigger time computations are implemented in C, and then

cross-compiled for respective processors using GNU-based cross compilation sys-

tems. The worst-case execution times are computed by aiT based on the compiled

binary code. The computation of trigger time involves computation of square root

function and exponential function. We implement the square root computation

using the Babylonian method [Kos09]. The exponential function is computed by

expanding it as a Taylor series.

6.4.2 Experiments

We demonstrate our results on a benchmark linear control system: a batch reactor

processor, and a benchmark nonlinear control system: a jet engine compressor.

We report CPU times and communications costs. Given a time interval, CPU

times are reported as the total CPU time required by all control tasks over the

time interval. The communication cost is the number of control tasks run over a

time interval. This captures the cost of communication, since each control task

requires transmitting the plant state from the sensors to the controller and the

actuation signal from the controller to the actuators.

Linear System: Batch Reactor Process. First, we present our results on

the batch reactor process from Section 6.1.2. The Lyapunov function for the

closed loop system has been computed using (6.8) with Q = I4. With this choice

of Q, we have λmax(P) = 1.2185 and λmin(Q) = 1. The other parameters are

chosen in accordance with [ASP10]: τmin = 39.8ms, τmax = 720ms, ∆ = 10ms,

γ0 = 0.08207, γ = 0.008207. We compute the values of τmax on both PowerPC

and Leon2 processors to ensure that the trigger computation time τc does not

exceed the minimum trigger time τmin. The values of modified τmax are 510ms

109

and 270ms on PowerPC and Leon2, respectively.

Suppose we want the state of the system to converge in a stability region V max
b

of size 0.5 when the system is free from any external disturbance. The upper bound

on the quantization factor can be found to be 0.04346 by first finding the value

of δmax
b for V max

b = 0.5 using (6.22), and then solving the optimization problem

in (6.23). We choose the quantization factor to be 0.04 in each dimension. We

store the trigger times in the memoization table as a 8-bit fixed-point number. The

fixed-point representation is given by 〈8, 8〉, as 0.5 < τmax < 1. The trigger time

retrieved from the memoization table may by at most 2−8 less than its computed

value. We choose the memoization region to be [−0.5, 0.5] in each dimension.

With the quantization factor to be 0.04, the number of entries in the memoization

table is computed by (6.13) to be 390625. As each entry of the memoization

table takes 1 byte, the memoization table requires at most 381.47KB. Note that

if this amount of memory is not available, we have two options. First, we may

increase the value of the quantization factor which in turn increases the bound on

the size of the stability region. Second, we may shrink the memoization region

without changing the quantization factor. The second option ensures that the

specification on the size of the stability region is met, but we memoize trigger

time for the states in a narrower region, thus the computation time grows.

We compare three different implementations for the batch reactor processor:

(i) a time-triggered implementation using the sampling period τmin, (ii) a self-

triggered implementation using the triggering rule (6.12), where the triggering

function is given by (6.18). The maximum trigger time τmax is updated to ensure

that the computation of the trigger time is guaranteed to be finished before the

minimum trigger time τmin (τmax = 510ms for PowerPC and τmax = 270ms for

Leon2 processor), and (iii) our hybrid implementation, without decreasing the

maximum trigger time (τmax = 720ms). We fall back to the time-triggered imple-

mentation using trigger time τmin when the trigger time computation takes more

110

Implementation Disturbance Free Disturbance Scenario 1 Disturbance Scenario 2

PowerPC Leon2 PowerPC Leon2 PowerPC Leon2

TT 0.164s 0.226s 0.164s 0.226s 0.164s 0.226s

ST 167.514s 342.554s 167.188s 341.117s 167.691s 342.541s

Hybrid 0.959s 1.824s 4.039s 7.336s 31.322s 57.360s

Table 6.1: CPU time required for different implementations of the controller of

the batch reactor process running for 2000s

than τmin time.

We simulate the self-triggered batch reactor process on three scenarios: (a) the

system is free from any external disturbance (Disturbance free), (b) the system is

subjected to a periodic external disturbance signal of pulse shape with amplitude

8, period 800 samples, pulse width 40 samples, zero phase delay, and sample time

10ms. (Disturbance scenario 1), and (c) the system is subjected to a normally

distributed random disturbance signal with mean 0, variance 1, and sample time

1ms (Disturbance scenario 2).

The evolution of the state of the batch reactor process with initial state

〈2, 2, 2, 2〉 is shown in Figure 6.2 for the case when no external disturbance is

present. While the state of the time-triggered implementation and the self-

triggered implementation eventually go to the origin, the state of the hybrid

implementation eventually enters the region defined by V max
b and remains there

forever.

Table 6.1 and Table 6.2 show the CPU time and communication cost for dif-

ferent implementations of the controller for the batch reactor process for 2000s

runtime. From Table 6.1, we see that the naive self-triggered implementation

takes significantly more CPU time in comparison to the time-triggered implemen-

tation. The hybrid implementation brings the required CPU time close to that of

the time-triggered implementation. Table 6.2 shows that the number of commu-

111

0 2 4 6 8 101

0

1

2

3

Time (in Sec)

Va
lu

e
of

 S
ta

te
s

(a) TT

0 2 4 6 8 100.5

0

0.5

1

1.5

2

2.5

Time (in Sec)

Va
lu

e
of

 S
ta

te
s

(b) ST

0 2 4 6 8 100.5

0

0.5

1

1.5

2

2.5

Time (in Sec)

Va
lu

e
of

 S
ta

te

(c) Hybrid

Figure 6.2: Evolution of states of a batch reactor process from initial state

〈2, 2, 2, 2〉 for (a) time-triggered (TT), (b) self-triggered (ST), and (c) Hybrid

implementation

112

Implementation Disturbance Free Disturbance Scenario 1 Disturbance Scenario 2

PowerPC Leon2 PowerPC Leon2 PowerPC Leon2

TT 50251 50251 50251 50251 50251 50251

ST 5731 7422 14735 15786 5974 7422

Hybrid 5868 5891 15847 15868 6932 7343

Table 6.2: Communication cost for different implementations of the controller of

the batch reactor process running for 2000s

nications from the plant to the controller improves significantly in self-triggered

implementations, as claimed in the existing literature on self-triggered control

systems. The Hybrid implementation maintains similar communication cost as

the naive self-triggered implementations. For self-triggered implementation, the

number of communications is always more for Leon2 processor, as τmax for Leon2

is less than that for PowerPC. For Hybrid implementation, the number of commu-

nications is more for Leon2 processor than that for PowerPC as the trigger time

computation takes more time with the Leon2 processor than with the PowerPC

processor and the system remains in time-triggered mode when the trigger time

computation is running.

Figure 6.3 shows how the CPU time required for the controller of the batch

reactor process for different implementations using Leon2 processor vary for dif-

ferent duration of runtime between 500s and 5000s when there is no external

disturbance acting on the system. The figure shows that the naive self-triggered

implementation always takes significantly more computation time than the time-

triggered implementation. However, our hybrid implementation is always close

to the time-triggered implementation in terms of computation time, and as time

progresses and the memoization table gets filled up with trigger times, the dif-

ference between the computation time for our hybrid implementation and that of

the time-triggered implementation slowly decreases.

113

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10 2

10 1

100

101

102

103

104

Run Time (in sec)

C
PU

 T
im

e
(in

 s
ec

)

TT
ST
Hybrid

Figure 6.3: CPU time required for batch reactor process for different implementa-

tions using the Leon2 processor for different running times in the disturbance-free

scenario

Nonlinear System: Jet Engine Compressor. We illustrate our experimental

results on nonlinear self triggered control systems using the standard benchmark of

a jet engine compressor. The model of the system originally appeared in [KK95b].

In [AT10], it was adapted to translate the desired equilibrium point to the origin

as follows:

ξ̇1 = −ξ2 −
3

2
ξ2
1 −

1

2
ξ3
1

ξ̇2 =
1

β2
(ξ1 − u) (6.31)

where ξ1 and ξ2 denote the mass flow and pressure rise in the compressor re-

spectively. The symbol β is a constant positive parameter. The output of the

controller u denotes the throttle mass flow.

A control law u = k(ξ1, ξ2) was designed in [AT10] to render the system

in (6.31) globally asymptotically stable. The control law is given by:

u = ξ1 +
β2

4
(z(ξ2

1 + 1) + 3ξ2
1y + ξ3

1 + ξ1 + 3y) (6.32)

114

where y = (3ξ2
1 + 2ξ2 − ξ1)/(ξ2

1 + 1) and z = 2ξ1y(y − 3) + ξ2
1(4y − 6). By substi-

tuting u with its corresponding expression, the closed loop system becomes

ξ̇1 = −1

2
(ξ2

1 + 1)(ξ1 + y)

ξ̇2 = −(ξ2
1 + 1)y (6.33)

The following ISS Lyapunov function is provided in [AT10]

V = 1.46ξ2
1 − 0.35ξ1y + 1.16y2,

which is computed using SOStools [PPS04]. Using this Lyapunov function, this

can be shown that the state of the closed loop system ξ = (ξ1, y)T and the mea-

surement error on the state e = (e1, e2)
T are related by the following inequality:

0.90‖e‖2 ≤ 0.74ν2‖ξ‖2

Now based on the specification that the state ξ is contained in the invariant set

{ξ ∈ Rn|V (ξ) = 27.04}, the following formula is provided in [AT10] to compute

the trigger time:

tk+1(ξ(tk)) =
29ξ1(tk) + ‖ξ(tk)‖2

5.36‖ξ(tk)‖ξ1(tk)2 + ‖ξ(tk)‖2
τ ∗,

where τ ∗ = 7.63ms for ν = 0.33.

The operating point of the jet engine is ξ1 = 0, ξ2 = 0. The state ξ1 is mass

flow, which is a positive quantity. The state ξ2 is pressure rise, which may be both

positive and negative. We choose the memoization region to be 〈ξ1 ∈ [0, 0.5], ξ2 ∈
[−1, 1]〉. The minimum trigger time τmin = τ ∗ = 7.63ms. We choose the maximum

trigger time τmax = 250ms, and store the trigger times in the memoization table

as a fixed-point number with representation 〈8, 10〉. This enables us to store the

trigger time in 1 byte. We assume that we have 256KB memory available to store

the memoization table. With this amount of memory, the quantization factor

can be chosen to be 0.002 in each dimension, using (6.13). For this quantization

115

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Run Time (in sec)

C
PU

 T
im

e
(in

 s
ec

)

TT
ST
Hybrid

Figure 6.4: CPU time required for the jet engine compressor for different imple-

mentations on the PowerPC processor for different running times for disturbance

scenario 2

factor, we solve the optimization problem (6.29) to find out the value of τmaxe .

The optimization problem is not convex and we solve the problem numerically by

dividing the region 〈ξ1 ∈ [0, 0.5], ξ2 ∈ [−1, 1]〉 into a grid with precision 0.0001

and exhaustively searching all the points on the grid. We find that the value

of τmaxe for the values of ξ1 in the range [0, 0.25] is fairly high (greater than the

minimal trigger time 7.63ms). We shift the memoization region in the ξ1 direction

to exclude the region from the memoization region. Thus our memoization region

is 〈ξ1 ∈ [0.25, 0.75], ξ2 ∈ [−1, 1]〉. In the memoization region, τmaxe is 6.634ms.

We consider two scenarios to compare the performance of the hybrid implemen-

tation with the time-triggered and self-triggered implementations without mem-

oization. In both scenarios we consider the evolution of the system for 2000s in

the presence of external disturbances. In the first scenario, the disturbance signal

is a periodic pulse signal with amplitude 8, period 400 samples, pulse width 40

samples, zero phase delay and sample time 10ms. In the second scenario, the

disturbance is a normally distributed random signal with mean 1, variance 1, and

116

Implementation Disturbance Scenario 1 Disturbance Scenario 2

Computation Commu- Computation Commu-

PowerPC Leon2 nication PowerPC Leon2 nication

TT 1.094s 1.732s 262122 1.094s 1.732s 262122

ST 0.338s 0.473s 18729 0.303s 0.422s 16447

Hybrid 0.190s 0.315s 19009 0.117s 0.211s 16464

Table 6.3: CPU time and communication cost for different implementations of the

controller of the jet engine compressor running for 2000s

sample time 1ms. We do not show results for the scenario when no external dis-

turbance is present, as the memoization-based implementation does not provide

any benefit due to not including a region around the origin (ξ1 is in the range

[0, 0.25]). Table 6.3 shows the CPU time and the communication cost for the two

processors for different implementations of the controller for runs of length 2000s.

The results show that a self-triggered implementation without memoization itself

gives significant savings on both the CPU time and number of communications.

However, with memoization, we can gain even more in CPU time with a slight

increase in the number of communications. The number of communications in-

creases in the hybrid implementation as we need to decrease the trigger time to

correct any error arising due to quantization of states in the trigger time compu-

tation. On both processors, the time to compute the trigger time is always less

than the minimum trigger time τmin. Thus the hybrid implementation never falls

back to the time-triggered implementation, and the number of communications

for both the processors are the same.

Figure 6.4 shows how the CPU time required for jet engine compressor for dif-

ferent implementations using PowerPC processor vary in the disturbance scenario

2 for different duration of runtime between 500s and 5000s. The figure shows

that the savings in CPU time grows with time from the time-triggered implemen-

117

tation to self-triggered implementation without memoization, and also from the

self-triggered implementation without memoization to the hybrid implementation.

As time progresses, more and more trigger times are memoized, and the ratio of

cache hit to cache miss also increases. Thus the CPU time requirement keeps on

decreasing with time for the hybrid implementation.

6.5 Related Work

Memo table based implementations for explicit model predictive control have been

suggested before [BMD02, AB09], where the control signals for a compact state

space, computed by solving an optimization problem, are stored in a lookup ta-

ble for fast actuation. We show memo tables allow fast implementation of self-

triggered controllers as well, even with dynamic computations in case it is not

feasible to pre-compute the entire table.

118

CHAPTER 7

Static Scheduling

From now on, we will focus on the controller-scheduler co-design problem in the

context of implementing multiple control systems on a single processor. In this

chapter, we present a framework to design a static scheduler for a number of con-

trol applications running on a single processor. The objective of the scheduler

is not only to ensure stability of the control systems but also achieve optimal

performance in terms of disturbance rejection. We exploit the observation that

control systems do not always achieve optimal performance when a control sig-

nal is transmitted to the plant in every cycle. We provide a precise analysis of

the relationship between the fraction of times when control tasks are “dropped”

by the scheduler and the performance of the system. In a second step, we use

this information to derive a scheduler that occasionally drops a control signal but

ensures that the rate of dropped control signals corresponds to the rate for opti-

mal performance. Thus, in our methodology, we achieve end-to-end performance

but keep a separation of concerns: a purely modular, control theoretic approach

provides the relationship between the performance of the control systems and the

rate of drops, and a purely software-related scheduler synthesis exploits the slack.

Technically, we make two contributions. First, we give a control theoretic cal-

culation that provides a relationship between the long run average of the dropped

packets with the performance of a control system. We model control systems in

which a scheduler can discard control computations in certain cycles as networked

control systems. The action of the scheduler is modeled as a switch that deter-

119

mines if the control signal reaches the plant (the task is scheduled) or gets dropped

(the task is discarded). In the latter case, the actuator values are kept fixed to

their values in the previous cycle. Using results from networked control systems

[BPZ02], we give bounds on the fraction of drops that still guarantees the stability

of the plant, as well as derive a relationship between the upper bound of the L∞ to

RMS gain of the plant (a standard measure of control systems performance) and

the fraction of packet drops, as well as an optimization problem in terms of linear

matrix inequalities that can be used to constructively determine this relationship.

We note that the relationship between packet-drop rate and performance is not

monotonic, as might be expected. In particular, if a system is not schedulable,

simply adding more resources to make it schedulable (as done in current practice)

may not necessarily yield a better performance.

Second, we provide an automatic technique that takes control tasks, their

periods, worst-case execution times and deadlines, as well as the rates at which

control signals should be dropped, and outputs a static schedule (if possible)

that guarantees that in a given period of time, the number of control signals are

dropped in such a way that the optimal performance is achieved for each control

loop. Our algorithm sets up the scheduler synthesis problem as a constraint

satisfaction question, where the variables encode which task gets run in which

time slot, and uses off-the-shelf SMT solvers to find models of the constraints.

We have implemented our methodology in a tool that determines schedulabil-

ity of multiple control tasks sharing the same computation platform. We expect

that a separate tool computes worst case execution times, but use off-the-shelf

linear matrix inequality solvers (based on semi-definite programming) as well as

SMT solvers to synthesize performance bounds and static schedulers. We have

applied our implementation on a standard benchmark of multiple inverted pen-

dulums sharing the same processor [ZSW08], and show how we can completely

automatically derive schedulers ensuring optimal performance levels.

120

Figure 7.1: Linear control system with dropout

7.1 Control Systems Performance with Limited Compu-

tation

We now describe a control theoretic formulation of the behavior of a linear time

invariant control system in which the control law may not be computed at every

step. We consider the discrete-time linear time-invariant control system in (2.3).

However, here our focus is on disturbance rejection, and we ignore the effect of

measurement noise.

7.1.1 Scheduled Linear Control Systems

Owing to the transmission delay from the sensor to the controller, and the com-

putation time of the controller, the control signal cannot be applied to the very

state based on which the control signal is computed. Rather, the control input at

the k-th time step is computed based on the state of the plant at the (k − 1)-th

time step. For simplicity, we assume that this one time unit delay is enough to

accommodate the transmission time of the sensor data to the controller and the

computation time of the controller. In this chapter, we assume that the sensor

data instantaneously reaches the controller and only the computation time to be

the only reason for the delay in applying control signal to the plant. In Chapter 8

121

we will introduce a network between the sensor and the controller, and would deal

with the delay introduced by the network.

We consider state feedback controllers of the form u(k) = −Kx(k − 1), where

the matrix K is called the gain of the controller. The aim of the controller is to

ensure that the closed-loop system has certain properties, such as exponential sta-

bility, and a certain performance. Standard control-theoretic computations allow

us to obtain state feedback controllers with the desired properties (see [AW90b]).

The intuition behind our model is as follows. In each discrete time step k =

1, 2, . . ., the current state x(k) is observed, and the scheduler tries to schedule the

control computation task if possible. If the control task is scheduled, the signal

u(k) = −Kx(k − 1) is computed and applied to the actuators. In time steps k

at which the control signal is not computed (i.e., in which the scheduler does not

schedule the control task), we expect the controller to retain its previous value:

u(k) = u(k − 1).

We model the scheduled control system as a networked control system with

a loss of “data packets” between the controller and the plant, that is, we model

the link between the controller and the plant as a channel with a switch (see

Figure 7.1). In each time step, if the switch is closed (indicating that the scheduler

ran the control task), the control signal is the updated control law, but if the switch

is open (indicating that the scheduler could not run the control task), the control

signal is unchanged from the previous control signal. Cycles in which the switch

is open are said to incur dropouts of the control signal. Our main result is the

effect of dropouts on the performance of the control system.

In Figure 7.1, when the switch is closed (position S1), the output of the con-

troller is transmitted to the plant, and when the switch is open (position S2),

the output of the switch is held at the previous value. Similar to [BPZ02], the

122

dynamics of the switch can be modeled formally as follows:

When switch is in position S1 : u(k) = −Kx(k − 1), (7.1)

When switch is in position S2 : u(k) = u(k − 1). (7.2)

Define the signal s(k) = 1 if the switch is in position S1 at the kth time step, and

s(k) = 2 if the switch is in position S2 at the kth time step. These correspond to

the control input being computed or not.

By choosing X = [xT , uT]T as the new state vector, the closed loop system

with dropout, depicted in Figure 7.1, is given by:

X(k + 1) = Ãs(k)X(k) + B̃1s(k)w(k) (7.3)

y(k) = C̃s(k)X(k),

where, using the dynamics of the switch in (7.1) and (7.2), we obtain

Ã1 =

 Aτ Bτ

−K 0m×m

 , B̃11 =

 Bτ

0m×l

 , C̃1 = [C 0p×m];

and

Ã2 =

 Aτ Bτ

0m×n Im×m

 , B̃12 =

 Bτ

0m×l

 , C̃2 = [C 0p×m],

where 0m×n denotes the zero matrix in Rm×n and Im×m denotes the identity matrix

in Rm×m.

Note that the successful transmission rate in this paper is the rate at which

the switch in Figure 7.1 is in position S1. Following [HBH99], the successful

transmission rate r is given by

r = lim
L→∞

1

L

L∑
k=0

(2− s(k)).

The dropout rate means the rate at which the switch in Figure 7.1 is in S2.

If the successful transmission rate for a control system is r, its dropout rate

123

is 1 − r. Clearly, in the former case, the scheduler runs the control task and

updates the actuator, and in the latter case, it does not. The following theorem

provides a sufficient condition on the successful transmission rate that guarantees

the stability of the closed loop system.

Theorem 5. Consider the LTI control system in (7.3). Let r be the successful

transmission rate. Assume that the closed loop system with no dropout and no

disturbance is stable (i.e., maxi|λi(Aτ −BτK)| < 1, where λi(Aτ −BτK) is the i-

th eigenvalue of the matrix Aτ −BτK). Then the LTI control system with dropout

in (7.3), with no disturbance, is exponentially stable for all

rmin < r ≤ 1,

where rmin = log(β2)
log(β2)−log(β1)

, β1 = maxi|λi(Ã1)|2, and β2 = maxi|λi(Ã2)|2, β1 < 1

and β2 > β1.

Proof. Following Theorem 6 in [ZBP01] it can be shown that for the LTI control

system in (7.3), if there exists a Lyapunov function V (x(kh)) = xT (kh)Px(kh)

and scalars α1 and α2 such that

αr1α
1−r
2 > 1 (7.4)

ÃT1 PÃ1 ≤ α−2
1 P (7.5)

ÃT2 PÃ2 ≤ α−2
2 P (7.6)

then the system is exponentially stable.

Let βi = α−2
i for i = 1, 2. From (7.5) and (7.6) we get that β1 = maxi|λi(Ã1)|2

and β2 = maxi|λi(Ã2)|2. Now by taking the log in (7.4) we get,

r >
log(β2)

log(β2)− log(β1)
.

The constraint β1 < 1 and β2 > β1 ensures that rmin < 1.

124

Note that if β2 < 1, then rmin < 0. If β2 < 1, then the open loop system is

stable, and a controller is not required for the stability of the system. For any

unstable system, β2 > 1 and 0 < rmin < 1.

7.1.2 Bound on L∞ to RMS gain

The following theorem provides a relationship between the successful transmission

rate and the upper bound of the L∞ to RMS gain for the control system in (7.3).

Theorem 6. Consider the discrete time LTI control system in (7.3) with the

successful transmission rate r. The L∞ to RMS gain is less than positive constant

γ if there exists a piecewise continuous function V : Rn+m → R≥0, such that

V (0) = 0, and γ1, γ2 ∈ R such that

rγ2
1 + (1− r)γ2

2 < γ2, (7.7)

and

V
(
ÃiX + B̃1iw

)
− V (X) ≤ γ2

iw
Tw − yTy, for i = 1, 2. (7.8)

Proof. We proceed as in [HBH99], adapting the argument to discrete time control

systems. Using inequality (7.8), we have:

V (X(k + 1))− V (X(k)) ≤ γ2
iw(k)Tw(k)− y(k)Ty(k)

≤ γ2
i ‖w‖2∞ − y(k)Ty(k), (7.9)

where either i = 1 or i = 2 because at time instant k, the switch in Figure 7.1

is either closed or open. By summing up inequalities (7.9) for k = 0, 1, · · · , l, we

125

obtain:

V (X(l + 1))− V (X(0)) ≤ γ2
1


total times the

switch is closed

between 0 and l

 ‖w‖2∞

+γ2
2


total times the

switch is open

between 0 and l

 ‖w‖2∞ −∑k=l
k=0 y(k)Ty(k).

In the limit, when l→ +∞, the total times that the switch is closed is equal to rl

and the total times that the switch is open is equal to (1 − r)l. Therefore, since

X(0) = 0 in (2.17), we have:

V (X(l + 1)) ≤ γ2
1rl‖w‖2∞ + γ2

2(1− r)l‖w‖2∞ −
k=l∑
k=0

y(k)Ty(k).

Using (7.7) and V (X(l + 1)) ≥ 0, we obtain:

1
l

∑l
j=0 y

T (j)y(j)

‖w‖2∞
≤ rγ2

1 + (1− r)γ2
2 < γ2. (7.10)

Therefore, we get:

lim supl→∞
1
l

∑l
j=0 y

T (j)y(j)

‖w‖2∞
< γ2, (7.11)

which completes the proof.

In the next lemma, we show that by choosing V (X) = XTPX, the inequality

(7.8) becomes a Linear Matrix Inequality (LMI) for the control system in (7.3).

Lemma 1. Consider the control system in (7.3). Using V (X) = XTPX, the

inequality (7.8) becomes an LMI as follows: ÃTi PÃi − P + C̃T
i C̃i ÃTi PB̃1i

B̃T
1iPÃi B̃T

1iPB̃1i − γ2
i

 ≤ 0. (7.12)

126

Proof. In the proof, we drop the arguments of X and w for simplicity.

V
(
ÃiX + B̃1iw

)
− V (X) = (ÃiX + B̃1iw)TP (ÃiX + B̃1iw)

−XTPX = XT ÃTi PÃiX + wT B̃T
1iPÃiX +XT ÃTi PB̃1iw

+wT B̃T
1iPB̃1iw −XTPX ≤ γ2

iw
Tw −XT C̃T

i C̃iX.

By arranging the terms we obtain:

XT
[
ÃTi PÃi − P + C̃T

i C̃i

]
X + wT B̃T

1iPÃiX (7.13)

+XT ÃTi PB̃1iw + wT
[
B̃T

1iPB̃1i − γ2
i

]
w ≤ 0.

The inequality (7.13) can be rewritten as: X

w

T  ÃTi PÃi − P + C̃T
i C̃i ÃTi PB̃1i

B̃T
1iPÃi B̃T

1iPB̃1i − γ2
i

 X

w

 ≤ 0.

Since [xT wT] is an arbitrary vector, the previous inequality is equivalent to the

following LMI:  ÃTi PÃi − P + C̃T
i C̃i ÃTi PB̃1i

B̃T
1iPÃi B̃T

1iPB̃1i − γ2
i

 ≤ 0, (7.14)

which completes the proof.

Note that by choosing V (X) = XTPX and for a given successful transmission

rate r, we can minimize γ, the upper bound of the L∞ to RMS induced gain, by

solving the following optimization problem:

minimize rγ2
1 + (1− r)γ2

2

subject to ÃTi PÃi − P + C̃T
i C̃i ÃTi PB̃1i

B̃T
1iPÃi B̃T

1iPB̃1i − γ2
i

 ≤ 0

for i = 1, 2

γ1, γ2 ∈ R,

P > 0

(7.15)

127

For 0 < r ≤ 1, we denote by γ(r) the upper bound on the L∞ to RMS gain

obtained by solving the optimization problem (7.15) for this choice of r.

7.1.3 Scheduled Nonlinear Control Systems

We now provide an extension of the preceding results to nonlinear control systems

in discrete time. We consider nonlinear control systems in discrete time given by

the following difference equations:

x(k + 1) = f (x(k), u(k), w(k)) , (7.16)

y(k) = h (x(k)) ,

where f and h are smooth maps and x(k), u(k), w(k), and y(k) belong to the

same spaces as in (2.3). Here, we consider state feedback controllers of the form

u(k) = k(x(k)), where k is a smooth map. As in the linear case, the dynamics of

the switch can be modeled formally as the following:

When switch is in position S1 : u(k) = k (x(k − 1)) , (7.17)

When switch is in position S2 : u(k) = u(k − 1). (7.18)

By following the same strategies as we did for linear systems and choosing X =

[xT , uT]T as the new state vector, the closed loop system with dropout is given

by:

X(k + 1) = f̃s(k) (X(k), w(k)) , (7.19)

y(k) = h̃s(k) (X(k)) ,

where, using the dynamics of the switch in (7.17) and (7.18), we obtain:

f̃1 (X(k), w(k)) =

 f (x(k), u(k), w(k))

k (f (x(k − 1), u(k − 1), w(k − 1)))

 , (7.20)

h̃1 (X(k)) = h (x(k)) ;

128

and

f̃2 (X(k), w(k)) =

 f (x(k), u(k), w(k))

u(k)

 , (7.21)

h̃2 (X(k)) = h (x(k)) .

The following theorem provides a sufficient condition on the successful transmis-

sion rate that guarantees the stability of the closed loop system.

Theorem 7 ([HBH99]). Consider the nonlinear control system with dropout in

(7.19) with the successful transmission rate r. The system with no disturbance

is exponentially stable with decay rate greater than γ if there exists a piecewise

continuous function V : Rn+m → R≥0, and γ1, γ2, β1, β2 ∈ R>0, such that

β1‖X‖22 ≤ V (X) ≤ β2‖X‖22, (7.22)

γr1γ
(1−r)
2 > γ > 1, (7.23)

and

V
(
f̃i (X, 0)

)
− V (X) ≤

(
γ−2
i − 1

)
V (X), for i = 1, 2. (7.24)

As in the linear case, we can prove a similar relationship between the successful

transmission rate and the L∞ to RMS gain for the nonlinear control system in

(7.19). The proof of the following theorem is the same as the proof of Theorem 6.

Theorem 8. Consider the nonlinear control system with dropout in (7.19) with

the successful transmission rate r. The L∞ to RMS gain is less than positive

constant γ if there exists a piecewise continuous function V : Rn+m → R≥0, such

that V (0) = 0, and γ1, γ2 ∈ R such that

rγ2
1 + (1− r)γ2

2 < γ2, (7.25)

and

V
(
f̃i (X,w)

)
− V (X) ≤ γ2

iw
Tw − yTy, for i = 1, 2. (7.26)

129

Note that if functions f and h in (7.16) and the state feedback controller k are

polynomial with respect to their arguments, by using SOS programming [PPS04]

we can search for functions V , decay rates and upper bounds of L∞ to RMS gain

satisfying the inequalities in Theorems 7 and 8 for given values of r.

7.1.4 Finding the Optimal Successful Transmission Rate

We now consider the problem of choosing the successful transmission rate for a

given controller to achieve the best performance. The successful transmission

rate at which the best performance is achieved is called the optimal successful

transmission rate and is denoted by ropt. A lower bound on the rate for each

system is given by Theorem 5: this is the rate rmin required to ensure stability.

An upper bound rmax on the rate is decided by the scheduling constraints. If there

is no scheduling constraint, rmax = 1.

Now, the following theorem provides the possible successful transmission rates

that may achieve optimal performance.

Theorem 9. The L∞ to RMS gain of the discrete time LTI control system in (7.3)

attains the minimum value for the successful transmission rate to be either at rmin

or at rmax.

Proof. Let us assume that the values of γ1 and γ2 for which the L∞ to RMS gain

attains the minimum value are γ1opt and γ2opt. Now there may be three cases:

Case 1: γ1opt > γ2opt. Note that the LMIs in the constraints (7.15) in the

optimization problem in (7.15) do not depend on r. Thus a solution for γ1 and γ2

is valid for any successful transmission rate. In this case, if we decrease the value

of r for the same values of γ1 and γ2, the value of γ also decreases with r. In this

case, the minimum value of γ is obtained at rmin.

Case 2: γ1opt > γ2opt. By using similar argument as Case 1, we can show that

the L∞ to RMS gain attains the minimal value at rmax.

130

Case 3: γ1opt = γ2opt. In this case, γ becomes equal to γ2 and thus remains

constant for any successful transmission rate. Thus rmax and rmin both gives the

optimal value for the L∞ to RMS gain.

7.1.5 Motivating Example

As a motivating example, we use the model of the inverted pendulum from [ZSW08].

The state-space representation of an inverted pendulum is given by:

ẋ = Ax+Bu+Bw;

y = Cx,

where

A =

 0 1

g
l

ρ
ml2

 , B =

 0

1
ml

 , (7.27)

B =

 0.1

0

 , C = [0.001, 0].

In this model, x = [x1, x2]
T is the state of the system, with x1 the angular position

and x2 the angular velocity of the point mass, m is the mass, l is the length of

the rod, g = 9.8m/s2 is acceleration due to gravity, ρ is the rotational friction

coefficient, u is the applied force (control input), and w is the disturbance input.

Let us consider an instance of the above system where ρ = 0.6, m = 0.4

and l = 0.6. All values are in S.I. units. We discretize the plant in (7.27) with

sampling period of 20ms. A stabilizing controller for the discretized plant is given

by K1 = [4.8462 0.1800]. The minimum successful transmission rate for this

system to ensure stability is rmin = 0.6623.

Now we plot how the upper bound on the L∞ to RMS gain varies with the

successful transmission rate between rmin and rmax = 1. The figure is obtained

by quantizing the successful transmission rates between rmin and rmax with a

131

quantization factor 0.01, and then solving the optimization problem in (7.15) for

each choice of the successful transmission rate. For a given controller, we refer

to the plot of transmission rate vs. performance as the performance profile of the

controller. The curve in Figure 7.2 shows the performance profile for the controller

K1.

Note that we use the upper bound on the L∞ to RMS gain instead of the L∞ to

RMS gain for a particular disturbance pattern while constructing the performance

profile. Though different successful transmission rate may be the best for different

disturbance pattern, we are interested to find out a successful transmission rate

for which we can guarantee the minimum bound on the L∞ to RMS gain, even if

this successful transmission rate may not be the best for all possible disturbance

pattern.

Now we come to the problem of choosing the optimal successful transmission

rate. Due to scheduling constraints, the value of rmax may be less than 1. The

value of ropt depends on the value of rmax. In our present example, if rmax ≤ 0.87

then γ(rmin) ≤ γm(rmax). Thus, the choice of optimal successful transmission

rate is rmin, as in that case choosing rmin would give the optimal performance

and optimal CPU time usage. If rmax > 0.87 then γ(rmax) < γ(rmin). If rmax is

permitted by the scheduling constraints to be greater than 0.87, rmax becomes the

optimal successful transmission rate. This example illustrates that the scheduling

constraints have effect on the choice of the operating successful transmission rate.

7.2 Optimal Performance Scheduler Synthesis

Suppose we have N control systems that are all sharing the same computational

resources. Each controller is implemented as a software task Ci that computes

the control law. Each task Ci has two parameters 〈hi, ci〉, where hi denotes the

sampling time and ci the worst-case execution time of the task. A task will be

132

0.65 0.7 0.75 0.8 0.85 0.9 0.95 14.6

4.7

4.8

4.9

5

5.1x 10−3

successful transmission rate

bo
un

d
on

 p
er

fo
rm

an
ce

Student Version of MATLAB

Figure 7.2: The upper bound of the L∞ to RMS gain vs successful transmission

rate for an inverted pendulum for K1 = [4.8462 0.1800]

active immediately after the beginning of a sampling period and, following [LL73],

we assume that the deadline for the control task is the end of the sampling period.

Suppose we have chosen successful transmission rates ri for each control task. The

system {(Ci, ri) | i ∈ {1, . . . , N}} is schedulable with dropout if it is possible to

schedule the tasks so that each scheduled task finishes before its deadline, but the

scheduler can drop ri fraction of the task Ci. The following proposition follows

using an argument similar to Theorem 7 in [LL73].

Proposition 4. The system {(Ci, ri) | i ∈ {1, . . . , N}} is schedulable with dropout

iff
∑N

i=1 rici/hi ≤ 1.

Notice that if a system is schedulable with dropout, then it remains schedula-

ble with dropout if the rates are decreased. There are two issues in designing a

scheduler. First, how should we choose the rates ri so that the system is schedu-

lable with dropout? Second, having chosen the rates such that the system is

schedulable with dropout, how can we assign a static schedule that schedules all

control tasks and ensures the rates chosen?

We now consider the problem of choosing the successful transmission rates. A

lower bound on the rate for each system is given by Theorem 5: this is the rate rmin

133

required to ensure stability. Figure 7.2 shows how the upper bound on the L∞ to

RMS gain varies with the successful transmission rate for an inverted pendulum.

As can be seen from Figure 7.2, the upper bound on the L∞ to RMS gain does

not change monotonically with respect to the successful transmission rate. Ideally,

for each system, we should choose the successful transmission rate for which the

bound on the L∞ to RMS gain attains the minimum. However, when there are

multiple control systems, the controllers compete for scheduling resources. Thus it

may not be possible to accommodate the best successful transmission rates for all

the control systems. For scheduler synthesis, we rather consider a set of successful

transmission rates that we call eligible rates for scheduler synthesis.

Fix a control system with dropout. A successful transmission rate r is called

eligible if it satisfies the following two conditions:

• r ≥ rmin, where rmin is as in Theorem 5,

• for each r′ ∈ [rmin, r), we have γ(r′) ≥ γ(r).

The eligible rates provide “undominated” solutions: one cannot simultaneously

reduce r and get better performance. We would like to find points on the Pareto

curve of eligible rates for the N systems.

For each system Ci, we calculate the lower bound rmin,i. We discretize the

range [rmin,i, 1] with a chosen discretization factor and find the subset Ei of the

discrete points that are eligible. We order the points in Ei by the total ordering

�: for r1, r2 ∈ Ei, if r1 � r2 then γ(r2) ≤ γ(r1), that is, “higher” values in �
give better performance. Let rbesti ∈ Ei denote the maximal (in the �-ordering)

successful transmission rate in Ei.

We now have a multi-objective optimization problem: choose points in E1 ×
. . . × EN that optimize the performance of each system. Though the perfor-

mance of each control system is independently specified, the controllers compete

134

for scheduling resources, and we may not be able to choose rbesti for each control

system. Instead, we look for undominated solutions.

One way to deal with this problem is to use a ranking method [YH95]. In this

method, the objectives in the multi-objective optimization problem are ranked

based on their importance. Of the N objectives, the rank 1 is assigned to the most

important objective, rank N is assigned to the least important one, and the ranks

of the other elements are assigned inversely proportional to their importance. If a

number of elements have the same importance, then the average rank is used for

all of them. Assume that the control system designer can provide such a ranking

for the control systems. These ranks can be used to assign a weight to each

objective in the multi-criterion optimization problem. There are several ways to

assign the weights based on the ranks, we use the following two formulas [SSE81]:

wi =

1
qi∑N
j=1

1
qj

wi =
(N − qi + 1)∑N
j=1(N − qj + 1)

where qi and wi denote the rank and the weight of the i-th element respectively.

The weights obtained by these formulas are called rank reciprocal weights and

rank sum weights respectively.

Once the weights have been chosen, we define the optimal performance sched-

uler synthesis problem as choosing rates ri ∈ Ei such that the system is schedulable

and the weighted sum wiγ(ri) is minimized.

Formally, we require

minimize
∑N

i=1wiγ(ri)

such that ri ∈ Ei for each i ∈ {1, . . . , N}∑N
i=1 ciri/hi ≤ 1

It is straightforward to show that the multiple-choice knapsack problem [SZ79,

KPP04] can be reduced to the above optimization problem. This establishes that

the decision version of the optimal-performance scheduler synthesis problem is

NP-hard. (In the decision version, we ask if there exists ri ∈ Ei such that the

135

system is schedulable with dropout and
∑N

i=1wiγ(ri) ≤ K for an input parameter

K.)

Theorem 10. The optimal performance scheduler synthesis decision problem is

NP-hard.

For the upper bound on the complexity of the problem, we need to be careful

because in general the optimization problem (7.15) can only be approximated to a

given accuracy ε. However, given an ε, the LMI can be solved in time polynomial

in the size of the input matrices and log 1
ε
. Thus, the approximate version of

the optimal performance scheduler synthesis decision problem, where we ask if

|∑N
i=1wiγ(ri)−K| ≤ ε for input parameters K and ε can be solved in NP.

7.3 Scheduler Design

As the optimal-performance scheduler synthesis problem is computationally hard,

we instead heuristically solve the following simplified version. First, for each sys-

tem, we find out the minimum successful transmission rates rmin,i using Theorem 5.

Second, we find out an upper bound rmax,i on the successful transmission rates

for all the control systems, such that the system {(Ci, rmax,i) | i ∈ {1, . . . , N}} is

schedulable with dropout. If for some i we have rmax,i < rmin,i, clearly the system

is unschedulable. Otherwise, for each control system individually, we choose the

best eligible successful transmission rate rbest ,i in the range [rmin,i, rmax,i] (i.e., for

which γ(r) is minimized for r ∈ [rmin,i, rmax,i]). Note that rbest ,i is either rmin,i or

rmax,i. We then synthesize a static scheduler, ensuring the chosen rates of suc-

cessful transmission rates for all the control systems. While the algorithm is not

guaranteed to produce an optimal schedule, it heuristically attempts to jointly

maximize the performance of all the systems.

We present our overall algorithm in two steps. In Section 7.3.1, we assume

that we are given a successful transmission rate for each controller and present a

136

set of constraints that must be satisfied by any static scheduler that schedules the

system with dropout. In Section 7.3.2, we show how these set of constraints can

be modified to find an upper bound on the successful transmission rates in such

a way that the system is schedulable with dropout when these rates are chosen.

Section 7.3.3 summarizes the algorithm.

7.3.1 Synthesis through Constraint Solving

To synthesize a static scheduler, we consider a duration T , called the basic cycle,

for which we synthesize a schedule. The schedule for any duration T ′ > T is

obtained by repeating the synthesized schedule. Let us assume that each rate ri is

a fraction ki

Ki
, for integers ki and Ki. We also assume, by scaling, that the sampling

times hi of the control systems take integer values. The duration of the basic

cycle T is chosen such that the cycle of duration T can accommodate an integer

number of tasks after considering dropouts. We set T = lcm(K1, K2, . . . , KN) ×
lcm(h1, h2, . . . , hN), where lcm stands for the least common multiple.

Let mi = T
hi

denote the number of task instances of Ci that are generated in the

duration T . We introduce mi variables si1, si2, . . . simi
for i ∈ {1, . . . , N}. Each

variable sij takes values in {0, 1}. If the variable sij = 1, this denotes that the

jth instance of task Ci (running in the time interval [(j− 1)hi, jhi) was scheduled

and if the variable sij = 0, this denotes that the jth instance of task Ci was

dropped by the scheduler. Additionally, we introduce mi variables ti1, ti2, . . . timi

for i ∈ {1, . . . , N}. If sij = 1, i.e., the instance of Ci in the slot [(j − 1)h, jhi)

is scheduled, then tij denotes the time in the interval [(j − 1)hi, jhi) when the

execution of the task begins. Otherwise, if sij = 0, then tij is set to −1.

Below we present the constraints on the scheduling problem.

1. For each controller i, for each of the mi tasks in the basic cycle, the instance

137

of the task Ci is either scheduled or dropped:

∧
i∈{1,··· ,N}

∧
j∈{1,··· ,mi}

(sij = 1) ∨ (sij = 0). (7.28)

2. For each controller i, the number of instances of Ci that are scheduled in

the basic cycle is equal to mi × ri (which is an integer, by choice of T):

∧
i∈{1,··· ,N}

mi∑
j=1

sij = mi × ri. (7.29)

3. For all tasks Ci, if the instance of Ci is scheduled in a slot, the start time

of the task should be scheduled after the beginning of the slot and the end

time of the task should be before the end of the slot.

∧
i∈{1,··· ,N}

∧
j∈{1,··· ,mi}

(sij = 1) =⇒

(tij ≥ (j − 1)× hi) ∧ (tij + cij ≤ j × hi). (7.30)

If the instance of the task is dropped, the start time of the task is set to −1.

∧
i∈{1,··· ,N}

∧
j∈{1,··· ,mi}

(sij = 0) =⇒ (tij = −1) (7.31)

4. The time slot assigned for two tasks should not intersect:

∧
i,k∈{1,··· ,N}

i 6=k

∧
j∈{1,··· ,mi}

∧
l∈{1,··· ,mk}

(tij ≥ 0) ∧ (tkl ≥ 0)

=⇒ (tij + ci ≤ tkl) ∨ (tkl + ck ≤ tij) (7.32)

If the constraints are not satisfiable, there does not exist a scheduler for the

given successful transmission rates. However, if the constraints are satisfiable we

obtain a valid schedule. Further, the schedule obtained by repeating the static

schedule every T units of time shows that the system {(Ci, ri) | i ∈ {1, . . . , N}} is

schedulable with dropout.

138

7.3.2 Maximal Scheduler Synthesis

We now present how to find the maximum successful transmission rates for all

the controllers that preserve schedulability. To solve this problem, we introduce

variables xi that denote the number of instances of task Ci that are scheduled in

one basic cycle, and formulate a vector maximization problem [MA04] where the

objective vector v is given by vi = xi. (The variables xi are proportional to the

rates.)

As in Section 7.2, we simplify the multi-objective optimization problem to a

single-objective optimization problem by choosing weights and taking the weighted

sum of the vector. We assume the control designer additionally provides a priority

for each control system. The weight of a control system is derived from its priority

using the weight finding formulas introduced in Section 7.2. The single objective

function is
∑N

i=1wixi. We formulate this optimization problem as a constraint

solving problem, and find the optimal values for xi by solving a series of feasibility

problems.

First, we modify the set of constraints presented in Section 7.3.1 in the fol-

lowing way. The set of constraints in (7.29) are replaced by the following set of

constraints: ∧
i∈{1,··· ,N}

mi∑
j=1

sij ≥ xi (7.33)

Moreover, we add the following constraint to the set of constraints:

N∑
i=1

wi × xi > λ, (7.34)

where λ is a constant. If the constraints are infeasible then λ is certainly an upper

bound for the objective function. We iteratively update λ and solve the set of

constraints till we find the maximum λ for which the constraints are satisfiable.

The satisfying assignment of those constraints gives the maximal rates xi/T for

which the system is schedulable with dropout.

139

7.3.3 Overall Algorithm

In this section we present the overall algorithm to synthesize a static schedule

with dropout. The inputs of the algorithm are the systems Ci with their sampling

times hi, worst case execution times ci, and priority πi ∈ {1, . . . , N}. The output

of the algorithm is a static schedule, if possible. The algorithm has the following

steps.

In the first step, using Theorem 5, we find out the minimum successful trans-

mission rates for all the controllers to achieve exponential stability. In the second

step, we find out the maximum successful transmission rates by solving the opti-

mization problem described in Section 7.3.2. If the minimum rate is greater than

the maximum rate for some system, we stop and say unschedulable.

Now, for each system Ci, we have a range [rmin,i, rmax,i] for the successful

transmission rates, and any choice of ri in this range ensures that the system is

schedulable with dropout. For each controller, the optimal successful transmission

rate is rmin,i if γ(rmin,i) ≤ γ(rmax,i), otherwise, rmax,i is the optimal successful

transmission rate for the controller.

Now, by solving the constraints in Section 7.3.1 for the optimal successful

transmission rates for each controller, we find a static schedule.

7.4 Evaluation

7.4.1 Implementation

Figure 7.3 shows the toolbus that we have developed to synthesize static sched-

ulers automatically for linear time invariant control systems with dropout. The

inputs to our tool are (1) the mathematical description of the plants, (2) the lin-

ear controllers, (3) the sampling times, (4) the computation times for the control

tasks, and (5) the ranking or priority of the control systems. We assume that

140

the feedback controllers and the sampling periods have been designed using stan-

dard control theoretic methods [AW90b], and the execution times of the control

tasks have been calculated using standard techniques [WEE08]. We use a Matlab

script to compute the lower bound on the successful transmission rates follow-

ing Theorem 5. We automatically compute the upper bounds on the rates using

Yices [DM06] from the sampling time, computation time, and the ranking of the

control systems. Note that while the lower bounds on the rates are independent

from each other, the upper bounds need to satisfy the scheduling constraints. It

may be the case that the lower bound of the successful transmission rate is bigger

than the upper bound for a control system. In this case, we cannot generate a

schedule. The feasibility of a schedule is checked using a Matlab script. If there

exists a feasible schedule, we find out the rates for which the performance of the

control system becomes optimal. For each controller, we we find out the upper

bound on the L∞ to RMS gain for the minimum and maximum successful trans-

mission rates by solving optimization problem (7.15) using CVX [GB11] and choose

optimal rate. The optimal rates are then used to form the constraints that are

solved using Yices to get the optimal schedule.

To find out the upper bounds of the successful transmission rates, we solve a

vector optimization problem using the weights calculated from the ranking of the

control systems. The individual objective functions are the number of successfully

transmitted packets (denoted by ni) in a basic cycle with duration T , where

ni = mi × ri, and mi is the number of generated packets for the i-th controller in

a basic cycle and ri is the successful transmission rate of controller i. We solve

this optimization problem by solving a number of feasibility problems and using

the bisection method [BV04]. Let f denote the value of the objective function.

As we want to find the maximal of successful transmission rates maintaining

schedulability, we need to maximize the scalarized objective function. We add

the constraint f > C in the set of constraints, where C is a constant. We start

141

Control
systems

parameters

Computing upper
bounds of successful

transmission rates

Computing lower
bounds of successful

transmission rates

Upper bounds of
successful

transmission rates

Lower bounds of
successful

transmission rates

Checking
feasibility Stop

Not feasible

Finding optimum
rates

Feasible

Optimum rates

Finding optimum
scheduler

Optimum
scheduler

Figure 7.3: Scheduler synthesis toolbus

with C = 1. As the sum of the weights is 1, and the values of ni’s are greater

than equal to 1, the constraints are satisfiable. We then iteratively find out the

maximum value C such that the set of constraints are satisfiable. This is done as

follows. At each step, if the constraints are satisfiable, then to choose the next C

we multiply the current C by 2. If in any step, the constraints are unsatisfiable,

then we choose the next C to be the average of the current value of C and the

value of C for which the constraints were satisfiable for the last time. We stop in

a step when the constraints are satisfiable and the difference between the previous

and the current values of C is below a certain threshold (in our implementation,

we choose 0.5). The values of ri(=
ni

mi
)’s in the last step provide the upper bounds

on the successful transmission rates.

In the last step of our algorithm we need to find out the schedule correspond-

ing to the chosen values of the successful transmission rates for different control

systems. The constraints (7.29) in Subsection 7.3.1 are the corresponding set of

constraints. As these constraints are equality constraints, they limit the feasible

space of the constraints, and it is hard for the SMT solver to find a feasible so-

142

Systems Mass (kg) Length(m) Priority Controller Sampling Computation

gain time (s) time (s)

System 1 0.50 0.50 1 [5.4925 -0.3667] 0.015 0.005

System 2 0.50 0.60 1 [5.2434 -0.2488] 0.015 0.005

System 3 0.50 0.50 1 [5.7505 -0.2024] 0.020 0.005

System 4 0.50 0.60 1 [5.4447 -0.0739] 0.020 0.005

Table 7.1: Control systems parameters

lution. To alleviate this problem, for a control system, we choose a few different

rates instead of just one rate, for which the performance of the control system is

reasonably good. Now we replace a constraint set (7.29) in Subsection 7.3.1 by

the disjunction of the constraints corresponding to different rates. This increases

the feasible search space, and Yices can find out a schedule relatively easily.

7.4.2 Experiments

We illustrate our technique by synthesizing a scheduler for four inverted pen-

dulums. The model of such pendulum is given in (7.27). We assume that all

pendulums have mass m = 0.5, and rotational friction coefficient ρ = 0.6. The

pendulums differ from each other in their lengths, chosen as [l1, l2, l3, l4] = [0.50,

0.60, 0.50, 0.60], their sampling times, chosen as [h1, h2, h3, h4] = [0.015s, 0.015s,

0.020s, 0.020s], and their controllers, designed as K1 = [5.4925 −0.3667], K2 =

[5.2434 −0.2488], K3 = [5.7505 −0.2024] and K4 = [5.4447 −0.0739]. We as-

sume that the computation time for all the controllers is the same and equal to

0.005s. All constants and variables are expressed in SI units. The parameters of

the control systems are summarized in Table 7.1.

Using Theorem 5, we obtain rmin,1 = 0.6588, rmin,2 = 0.7312, rmin,3 = 0.6234,

and rmin,4 = 0.6838, which guarantee that by choosing successful transmission

rates bigger than these rates, the inverted pendulums, with no disturbances, are

exponentially stable. The obtained maximum successful transmission rates are

143

Systems rmin rmax Optimal Transmission rate

upper bound of the used in static

L∞ to RMS gain scheduler synthesis

System 1 0.6588 0.70 0.0057 0.70

System 2 0.7312 0.80 0.0055 0.80

System 3 0.6234 0.90 0.0055 0.90

System 4 0.6838 0.90 0.0054 0.90

Table 7.2: Experimental results

rmax,1 = 0.70, rmax,2 = 0.80, rmax,3 = 0.90 and rmax,4 = 0.90, when the ranks of the

control systems are chosen to be equal, and we use rank reciprocal weights. Since

rmin,i < rmax,i for i = 1, 2, 3, 4, feasible ranges of the successful transmission rates

exist for all the pendulums. For all the control systems γ(rmax) < γ(rmin). Thus

the rates for which we find schedules are 0.70, 0.80, 0.90 and 0.90 respectively

for controllers i = 1, 2, 3, 4. The optimal rates have been chosen as multiples

of 0.05. We synthesize the schedule for these rates which can be roughly the

schedule corresponding to the optimal performance. The experimental results are

summarized in Table 7.2. Our tool takes 5m7.610s to compute the maximum

successful transmission rates for the controllers, and 1m27.986s to synthesize the

scheduler.

7.5 Related Work

The co-design problem of feedback controllers and schedulers has been studied in

the past [SLS96, RHS97, ACE00, RS00, ZSW08], focusing on the choice of sam-

pling times such that the system is schedulable and each system attains optimal

performance. An extensive review of this field can be found in [XS06]. Cervin

introduced the idea of feedback scheduling [Cer03] to perform online schedule de-

144

sign to cope with varying or unknown workloads. Zhang et al. [ZSW08] presented

theoretical results on scheduling of a number of single-input single-output (SISOs)

control systems to achieve balances among robustness, schedulability, and power

consumption. However, the global optimization problems that arise in these works

can be hard to solve efficiently. Branicky et al. [BPZ02] proposed a technique to co-

design feedback controllers and schedulers for networked control systems [ZBP01]

with packet dropouts. They studied the effect of packet dropout on the stability

of control systems and applied the rate monotonic scheduling algorithm [Liu00] to

schedule controllers in such a way that the controllers maintain stability when the

rates of packet dropouts are bounded above. However, they did not consider the

tradeoff of performance and packet dropout in their work. In this work we show

that it is possible to achieve better performance than just achieving stability by

suitably choosing the rate of packet dropout for a controller. The rates of packet

dropout are chosen in such a way that all the control tasks are schedulable and

individual control systems achieve optimal performance. Our objective is to syn-

thesize a scheduler statically that will provide a schedule following which all the

control systems will achieve the best possible performance maintaining fairness.

We automatically synthesize a scheduler considering dropout of packets. We

formulate the scheduling problem as a constraint solving problem, and use the

SMT solver Yices [DM06] to synthesize a scheduler automatically. Very recently,

the merits of using SMT solver for scheduler synthesis have been championed

in [Ste08] and [LM10]. Steiner [Ste08] presents an evaluation of scheduler synthe-

sis with Yices for time-triggered multi-hop networks. Legriel and Maler [LM10]

present a framework to solve the task graph scheduling problem on a multipro-

cessor, while achieving the cheapest configuration. Our results fall in the general

class of program synthesis, and we exploit domain knowledge (e.g., control theo-

retic performance requirements) to synthesize task schedulers.

145

CHAPTER 8

Dynamic Scheduling

In this chapter, we describe a methodology and a tool to automatically synthesize

optimal controllers for multiple control loops in an integrated architecture in the

presence of communication and computation constraints. All the controllers exe-

cute on the same CPU and the controllers receive the state of their corresponding

plants from the sensors through a network. The network introduces a delay in the

transmission of the state. Moreover, it can drop some packets due to interference

or corruption. We assume that there is an upper bound on the rate of packet

drop by the network, but there is no deterministic mechanism of modeling the

drop of individual packets. Our goal is to design controllers for each plant which

ensure global asymptotic stability, but in addition, optimally reject disturbances

(as measured by the L∞ to RMS gain), in spite of network packet losses and

shared computational resources.

Unfortunately, when co-designing controllers and schedulers for optimal dis-

turbance rejection, it is known from Chapter 7 that the performance of a controller

does not increase monotonically with the rate of successful transmission. Thus,

an optimal controller may decide not to compute the control signal even if com-

putational resources are available. In the absence of network losses, we suggested

in Chapter 7 a methodology that picks a Pareto-optimal operating point for the

controllers and designs a static scheduler that ensures that each controller com-

putes the control signal exactly at the transmission rate for optimal performance.

In the presence of network losses, the scheme of Chapter 7 is not applicable, since

146

the scheduler may need to dynamically adjust the computation of control signals

based on the history of packet losses.

In this chapter, our objective is to synthesize controllers for the individual

control systems and a dynamic scheduler that can ensure stability and optimal

disturbance rejection for all the control systems. We solve this problem using the

following three steps.

Scedulability Analysis. We provide a feasibility criterion for a given set of

control tasks to be schedulable on a single processor in the presence of packet

drops by the network and task drops by the scheduler. For each controller, we

compute the maximum successful transmission rate rmax (the maximum rate of

computing the control task) so that the schedulability can be ensured using earliest

deadline first strategy (Section 8.2).

Optimal Controller Synthesis. We give an algorithm to search for optimal

controllers in the presence of network losses and computation constraints. Recall

that the performance of a controller is not monotonic with the successful trans-

mission rate. In the presence of network losses, the scheduler can only guarantee

that the successful transmission rate of a controller is within an operating range

(in the interval [r− rnet , r] for a rate r chosen by design). The performance of the

controller in the operating range can potentially vary significantly. Our goal is

to design a controller and an operating range such that the average performance

in the operating range is the best possible one over the space of possible stabiliz-

ing controllers and their schedulable successful transmission rates [rmin, rmax]. To

solve the controller synthesis problem, we solve optimization problems at two lev-

els. First, given a controller, we find a lower bound on its performance for different

successful transmission rates. As shown in Chapter 7 the problem of finding the

lower bound on the performance for a fixed rate is a convex optimization prob-

lem. Second, we find a controller for which the performance is optimal on average

in an operating range. This is also a minimization problem, but unfortunately

147

not convex. To solve this non-convex optimization problem, we use PSO, a local

search based stochastic optimization method [KE95, JLY07] (Section 8.3).

Dynamic Scheduler Implementation. We present a dynamic scheduling scheme

that ensures the successful transmission rates in the chosen operating rages for the

individual controllers, and hence, the performance, of each controller is maintained

at the optimal value on average in the presence of network losses (Section 8.4).

We have implemented our controller design methodology in Matlab. We as-

sume that the communication uses the CAN protocol and the processor is shared.

We show how an optimal controller can be synthesized under scheduling con-

straints on the example of five inverted pendulums implemented on a shared pro-

cessor.

8.1 Networked Control Systems

We assume the following architecture for the system. The state of the plant is

sensed at a regular interval and sent to the controller through a network (see

Figure 8.1). We assume that the transmission of the plant’s state through the

network and the computation of the control signal takes less than one sampling

period. We divide a sampling period into two sub-periods. At the end of the

first sub-period, the state of the plant is available for control computation. In the

second sub-period, the control signal is computed and the control signal is directly

applied to the plant precisely at the end of the second sub-period (at the end of

a period).

Due to network failure some packets from the sensor may be dropped and may

never reach the controller. The controller itself may also decide not to compute

the control signal in some rounds. The goal of the controller is to maintain a

successful transmission rate of the control signal over a period of time so that

the control system is exponentially stable and also has the desired performance in

148

�����

����	
�

���
	

�	��
	���
��

������	

Figure 8.1: Linear control system with dropout

terms of disturbance rejection.

8.1.1 Finding the Operating Rate

We now consider the problem of choosing the successful transmission rate for a

given controller to achieve the best performance. In Chapter 7, we have seen that

the optimal performance is achieved at a successful transmission rate ropt which

is equal to either the minimum successful transmission rate rmin or the maxi-

mum successful transmission rate rmax. Ideally, we should choose the successful

transmission rate ropt for which the bound on the L∞ to RMS gain attains the

minimum value. As the network may also drop packets, it is not possible for the

controller to drop the packets according to a static scheduling scheme so that the

successful transmission rate is maintained at ropt . Rather, the controller must

resort to a dynamic scheduling scheme and maintain the successful transmission

rate in a range so that optimal performance is achieved on average.

Let γm(r) is the mean of the L∞ to RMS gains for r′ ∈ [r − rnet, r] and the

range [r− rnet, r] is discretized according to a discretization factor. Our objective

is to find the successful transmission rate r so that γm(r) is minimized among all

r in the range [rmin + rnet, rmax]. The following theorem shows that we have two

choices for such successful transmission rate.

Theorem 11. The operating successful transmission rate is either rmax or rmin +

rnet.

149

Proof. If r > rmax, then scheduling constraints will be violated. If r < rmin + rnet,

then due to packet drop in the network, the successful transmission rate may be

less than rmin, and the system may be unstable. If we choose any other rate r,

rmin + rnet < r < rmax, we can use the reasoning of Theorem 9 and show that by

shifting the operating rate either towards rmax or towards rmin, it is possible to

decrease the average value of the L∞ to RMS gain in the operating region.

8.1.2 Motivating Example

As a motivating example, we use the model of the inverted pendulum in (7.27) in

Chapter 7.

Let us consider an instance of the pendulum system where ρ = 0.6, m = 0.4

and l = 0.6. All values are in S.I. units. We discretize the plant in (7.27) with

sampling period of 20ms. A stabilizing controller for the discretized plant is given

by K1 = [4.8462 0.1800]. The minimum successful transmission rate for this

system to ensure stability is rmin = 0.6623.

Now we plot how the upper bound on the L∞ to RMS gain varies with the

successful transmission rate between rmin and rmax = 1. The figure is obtained

by quantizing the successful transmission rates between rmin and rmax with a

quantization factor 0.01, and then solving the optimization problem in (7.15) for

each choice of the successful transmission rate. For a given controller, we refer

to the plot of transmission rate vs. performance as the performance profile of

the controller. The curve in Figure 8.2(a) shows the performance profile for the

controller K1.

Now we come to the problem of choosing the operating successful transmission

rate. Due to scheduling constraints, the value of rmax may be less than 1. The

value of ropr depends on the value of rmax. In our present example, if rmax ≤
0.87 then γm(rmin + rnet) ≤ γm(rmax). Thus, the choice of operating successful

150

transmission rate is rmin + rnet, as in that case choosing rmin + rnet would give

the optimal performance and optimal CPU time usage. If rmax > 0.87 then

γm(rmax) < γm(rmin+rnet). If rmax is permitted by the scheduling constraints to be

greater than 0.87, rmax can be chosen as the operating successful transmission rate

to get better performance. This example illustrates that the scheduling constraints

have effect on the choice of the operating successful transmission rate.

Now let us consider another controller K2 = [5.8125 0.1249]. The performance

profile for this controller is shown in Figure 8.2(b). The performance profiles of the

two controllers K1 and K2 illustrate that the performance of the two controllers

may be quite different and thus two controllers may have different disturbance

rejection capabilities. Thus we have the following controller synthesis question:

Given a plant, how to synthesize a stabilizing controller that optimizes the per-

formance under the scheduling constraints?

Thus, in the context of implementation of multiple controllers on a single pro-

cessor, we consider the following controller-scheduler co-design problem: Given

a set of plants we would like to synthesize controllers for them and find the op-

erating points so that the control tasks for all the systems are schedulable and

the control systems attain the Pareto optimal performance in terms of the L∞ to

RMS gain.

8.2 Schedulability Analysis in the Presence of Packet Dropout

In Section 8.1, we considered network packet losses. Now, we additionally intro-

duce the effect of multiple control loops sharing the same CPU and the network.

Since the CPU is shared, we have to schedule the control tasks and ensure that

each control task achieves an optimal successful transmission rate in the presence

of scheduling constraints and network losses.

Let n denote the number of control systems. Let hi denote the sampling period

151

0.65 0.7 0.75 0.8 0.85 0.9 0.95 14.6

4.7

4.8

4.9

5

5.1x 10−3

successful transmission rate

bo
un

d
on

 p
er

fo
rm

an
ce

Student Version of MATLAB

(a) K1

0.5 0.6 0.7 0.8 0.9 15.8

6

6.2

6.4

6.6

6.8x 10−3

successful transmission rate

bo
un

d
on

 p
er

fo
rm

an
ce

Student Version of MATLAB

(b) K2

Figure 8.2: The upper bound of the L∞ to RMS gain vs successful trans-

mission rate for an inverted pendulum for (a) K1 = [4.8462 0.1800] and (b)

K2 = [5.41250.1489]

152

� � � �

��

��

� �� �� �

Figure 8.3: Periodic state transmission and control computation

of the i-th control system. The state of the plant of the i-th control system is

sampled at the instants 0, hi, 2hi, . . ., as illustrated in Figure 8.3. The period hi

is divided into two sub-periods fi and di. In the first fi time duration, the state

of the plant is transmitted to the controller. At the end of the first sub-period

fi, the state of the plant is available for the computation of the control signal.

During the second sub-period di, the control signal is computed and the control

signal is applied to the plant at the end of the sampling period. Note that the

control computation task arrives periodically with a period hi, and the deadline

of the control computation is di. Let ci denote the worst case computation time

for the control signal of the i-th control system.

The control signal may not be applied to the plant in every cycle. The con-

troller may not be able to generate the control signal due to the loss of the packet

from the sensor in the network. The controller itself may decide not to compute

the control signal to achieve the optimal performance. We denote by ri the suc-

cessful transmission rate of the control signal to the plant for the i-th control

system.

8.2.1 Computing Message Transmission Times

To find out the value of fi for the i-th control system, we find out the worst case

delivery time of the message from the sensor to the controller. The computation

of worst case message delivery time depends on the nature of the protocol used

in the transmission of message. We do not address the general problem in this

153

paper, but use known results about the worst case message delivery time for the

CAN protocol [THW95, DBB07]. In our experiments, we use CAN protocol to

transmit a message from a sensor to a controller, and use the recurrence relation

in [DBB07] to compute the worst case message delivery time. Note that the fis

for different control systems may be different.

8.2.2 Schedulability Analysis of Control Computations

The control computation tasks for the i-th control system arrives at the time in-

stants fi, fi+hi, fi+2hi, Given hi, fi, di, ci and ri for each control system, we

first find out if it is feasible to schedule the control computations on a single pro-

cessor using the earliest deadline first scheduling strategy. Theorem 12 addresses

this feasibility question.

Theorem 12. The earliest deadline first scheduling algorithm is feasible for the

control computations, if for all t1 < t2, we have

n∑
i=1

ηi(t1, t2)rici ≤ (t2 − t1)

where

ηi(t1, t2) = max{0, bt2 − fi − di
hi

c −max{0, dt1 − fi
hi
e}+ 1}

Proof. The proof follows from Lemma 3.4 and Lemma 3.5 in [BR90].

As shown by Baruah and Rosier [BR90], if the fi’s are different for different i,

the feasibility problem is coNP-hard in a strong sense, implying that the problem

even does not have a pseudo-polynomial solution. However, in the synchronous

case, when the start time of the initial computation cycle for all the systems are

the same, the feasibility test can by performed in pseudo-polynomial time. To

make the start time of the initial computation cycles of all the control systems

synchronous, we choose the start time for the computation for all the control

154

systems to be

F = maxi fi

The following theorem says that under suitable condition, the schedulabil-

ity problem for a set of synchronous control systems can be solved in pseudo-

polynomial time.

Theorem 13. Let κ be a fixed constant, 0 < κ < 1, such that
∑n

i=1 ri
ci
hi
≤ κ.

Then the problem of testing if all the computation tasks initially activated at the

same time are schedulable can be solved in O(n max{hi − di}) time.

Proof. The proof is similar to the proof of Theorem 3.1 in [BR90]. It can be

shown that if all the computation tasks arrives synchronously at the beginning,

then the value of t1 and t2 in checking the feasibility condition in Theorem 12

can be chosen as 0 and κ
1−κmax{hi − di} respectively. Given that κ, hi and di

are constant, the t2 takes a constant value. As we need to check the feasibility

condition in Theorem 12 for each control system, the feasibility problem can be

solved in O(n max{hi − di}) time.

The algorithm to check feasibility of scheduling the computation for different

control systems by an earliest deadline first scheme is as follows. The algorithm

takes as input vectors h, d, c, and r for the control systems. For any time t, we

denote by load(t) the amount of processing time required by the already scheduled

computations for the control systems. At any time t, load(t) is given by

load(t) =
n∑
i=1

(bt− di
hi
c+ 1)rici.

From Theorems 12 and 13, the system is EDF schedulable iff load(t) is less than

or equal to t for each t in the time interval [0, κ
1−κmax{hi−di}], where κ is chosen

as in the proof of Theorem 13. We call this algorithm testEDFFeasibility.

155

8.2.3 Computation of Maximum Successful Transmission Rates

Here we show how to find the upper bound on the rate of successful transmission so

that the control tasks are schedulable under the earliest deadline first scheduling

scheme. The algorithm to find the maximum successful transmission rates for all

the control systems is shown in Algorithm 8.2.1. The algorithm takes as input

the vectors h, d and c representing the period, deadline and computation time of

the control tasks for all the control systems, respectively. The symbol r denotes

the vector representing the successful transmission rates of the control systems.

Initially, the components of r are set to 1. The algorithm runs in a loop. At each

step, it calls Algorithm testEDFFeasibility to check if the control tasks with the

rate vector r is schedulable. If yes, vector r is returned as the vector containing

the maximum successful transmission rates. Otherwise, the components of r are

decremented by using a vector ε. We can assign priorities to the control systems

and the components of ε can be selected in such a way that the control system

with a higher priority gets a higher maximum successful transmission rate, and

thus a possibility of having a better performance.

8.3 Optimal Controller Synthesis

In this section we present our optimal performance controller synthesis scheme.

The objective is to synthesize a controller that achieves the optimal performance

in terms of the L∞ to RMS gain in the presence of packet dropout in the network

and any constraint imposed on the maximum successful transmission rate by the

implementation platform. The synthesis algorithm involves solving a minimization

problem, which is of non-convex nature. We use particle swarm optimization

(PSO) [KE95, JLY07], a stochastic local search approach, to solve our problem.

PSO iteratively solves an optimization problem by maintaining a population (or

swarm) of candidate controllers, called particles, and moving them around in the

156

Algorithm 8.2.1: Computation of Maximum Successful Transmission Rates

function findMaximumRates(h, d, c)1

begin2

r := [1 1 . . . 1]3

while r > 0 do4

result := testEDFFeasibility(h, d, c, r)5

if result = feasible then6

return r7

end8

r := r − ε9

end10

return “not feasible”11

end12

search-space of possible controllers, trying to minimize the objective function.

In each iteration, a particle is assigned a new position and a new velocity that

determine its position in the next iteration.

8.3.1 Cost Function

We define a cost function for a controller K based on which we search for an

optimal controller. The cost function is based on Theorem 11. The cost function

is given by

Cost(K) =


min(γm(rmax), γm(rmin + rnet)), if 0 < rmin < 1 and

rmax − rmin > rnet

∞ , otherwise

(8.1)

The successful transmission rate r for which the cost function achieves the

minimum value is the operating successful transmission rate (denoted by ropr) for

the controller K. The range [ropr − rnet, ropt] is called the operating successful

157

transmission range.

8.3.2 Overall algorithm

The PSO algorithm is used to search for a controller K ∈ Rm×n, minimizing (8.1).

A particle in PSO represents a pole of the closed loop system. The value of each

component of the pole is selected from a range (−1, 1) to make sure that the

controller K obtained for the pole is a stabilizing controller [AW90b].

The design steps can be summarized as the following:

(1) Uniformly randomly initialize positions and velocities of N closed loop poles

pi, i = 1, . . . , N , where N is the number of particles.

(2) Given any initial pole pi, find out the corresponding controller Ki [AW90b].

For the controller Ki, compute the cost using the cost function Cost(Ki).

(3) Compare Cost(Ki) to its own best position Pi so far and the global best

position. If Cost(Ki) is less than the previous best (resp. the global best),

update the best position (resp. the global best) to pi.

(4) Modify the velocity and position of each pi according to the rules given

in [JLY07].

(5) If the number of iterations reaches the maximum, denoted by lmax, then go

to Step (6), otherwise go to Step (2).

(6) The pole for which the cost function of the corresponding controller attains

the minimal value is the optimal controller.

The algorithm can also be terminated if there is no change in the value of the

cost function for a significant number of steps.

158

8.4 Scheduler Synthesis

In this section, we show the scheduling strategy for the control tasks on a shared

processor. The scheduler has to make sure that the rate of control computations

eventually reaches the ropr and stays there if there is no packet dropout by the

network. If the rate of packet drop by the network is bounded by rnet, then the

rate of control computation is guaranteed to be in the range [ropr − rnet, ropr].

Algorithm 8.4.1 presents the pseudo code for the scheduler. In the algorithm,

r(i) and m(i) denote the current successful transmission rate and the number of

periods occurred so far for the i-th control system. The scheduler runs in an

infinite loop. When the scheduler receives the state of a plant for the control

computation, the scheduler first checks if scheduling the task would make the

rate of scheduled task go above the operating rate ropr. If not, then the control

computation is scheduled based on earlier deadline first strategy. As the operating

rates for all control systems are below the maximum successful transmission rates,

the schedulability of the control tasks is guaranteed.

Theorem 14. In the steady state, the rate at which the control computation is

scheduled for a control system is guaranteed to be in the range [ropr − rnet, ropr].

Proof. Note that the scheduler schedules the control computation only if the suc-

cessful transmission rate cannot go above ropr after scheduling the computation.

Thus, we have to show that when the system reaches the steady state, the value of

successful transmission rate cannot go below ropr−rnet. We consider the following

two cases.

Case 1: ropr ≤ 1 − rnet. In this case, irrespective of the packet dropout

by the network, the successful transmission rate eventually reaches ropr as the

scheduler always schedules the computation when r < ropr. Once this steady state

is reached, due to packet dropout by the network, the successful transmission rate

may decrease, but as the rate of packet drop by the network is bounded by rnet,

159

Algorithm 8.4.1: Scheduler

function scheduleControlComputation(ropr)1

begin2

for i = 1 . . . n do3

r(i) = 0, m(i) = 04

end5

time := 06

while true do7

for i = 1 . . . n do8

if (time− fi)%hi = 0 then9

success new rate := r(i)∗m(i)+1
m(i)+110

failure new rate := r(i)∗m(i)
m(i)+111

if The state of the plant is received then12

if success new rate ≤ ropr(i) then13

Schedule based on EDF strategy14

r(i) := success new rate15

else16

// Scheduler drops the computation17

r(i) := failure new rate18

end19

else20

// Packet drop by network21

r(i) := failure new rate22

end23

m(i) := m(i) + 124

end25

end26

time := time+ 127

end28

end29

160

the successful transmission rate cannot go below ropr − rnet.

Case 2: ropr > 1−rnet. Here we consider two extreme cases. In the presence of

maximum packet drop by the network, the successful transmission rate can reach

1 − rnet in the steady state and remains there. The successful transmission rate

1− rnet is in the range [ropr− rnet, ropr]. If there is no packet drop by the network

before the successful transmission rate reaches the steady state, then the value

of the successful transmission rate can reach ropr in the steady state. Once the

successful transmission rate is in this state, in the presence of maximum packet

dropout by the network in the future, the successful transmission rate cannot go

below ropr − rnet.

8.5 Evaluation

8.5.1 Implementation

We implemented our synthesis tool on top of Matlab. We use PSOt [Bir03], a

PSO toolbox for Matlab, to solve the synthesis problem. In our experiments, we

set the number of the particles in PSO to be N = 24 and the maximum number

of iterations lmax = 50. The synthesis process terminates if there is no change in

the value of the objective function for consecutive 25 iterations, or if the number

of iterations reaches lmax. To solve the convex optimization problem to find the

upper bound on the L∞ to RMS induced gain for a specific successful transmission

rate, we use YALMIP modeling language [Lof04] and SDPT3 semidefinite program

solver [TTT03].

We consider that the plant state is transmitted by the sensor using CAN

protocol in a single precision floating point format. The plant has two states.

Thus for 2 states the data packet from the sensor to the controller contains 8

bytes. We assume that the speed of the CAN bus is 250KBPS, and the bound on

161

the drop of packets by the network is 0.05. As shown in [DBB07], the transmission

time of a CAN message m with 11-bit identifier and sm data bytes is given by

(55 + 10sm)τbit, where τbit is the time required to transmit 1 bit through the CAN

network. With 250KBPS speed of the CAN bus, τbit = 0.004ms. Thus, the

transmission of a message from the sensor to the controller requires 0.54ms.

In our experiments we have used the Truetime simulator [CHL03] to implement

the control tasks and simulate the systems under different conditions.

The choice of CAN protocol in our experiments is motivated by the fact

that CAN is a widely used protocol in the domain of networked control sys-

tems and Truetime supports simulation using CAN protocol. The CAN proto-

col has recently been proposed to be implemented over wireless network connec-

tions [BEC05, Ozc08]. Correctly designed CAN protocol is quite reliable, but the

use of wireless network for relaying CAN frames makes it prone to packet dropout.

Though we use CAN protocol for our experiments, our technique is applicable to

any network protocol for which it is possible to guarantee a bound on the rate of

packet dropout.

8.5.2 Experiments

We illustrate our results on synthesizing multiple control systems on a single plat-

form on the example of five inverted pendulums sharing the communication net-

work and a processor. The model of such pendulums is presented in Section 7.1.5.

We assume that all pendulums have mass m = 0.5, and rotational friction coef-

ficient ρ = 0.6. The pendulums differ from each other in their lengths, chosen as

[l1, l2, l3, l4, l5] =[0.50, 0.50, 0.60, 0.50, 0.60], and their sampling times, chosen

as h = [h1, h2, h3, h4, h5] = [15ms, 20ms,20ms, 25ms, 25ms]. We assume that

the computation time for all the controllers is the same and equal to 5ms. All

constants and variables are expressed in SI units. The parameters of the control

162

Systems Mass Length Sampling Computation rmax

(kg) (m) time (s) time (s)

System 1 0.50 0.50 0.015 0.005 0.80

System 2 0.50 0.50 0.020 0.005 0.80

System 3 0.50 0.60 0.020 0.005 0.80

System 4 0.50 0.50 0.025 0.005 0.80

System 5 0.50 0.60 0.025 0.005 0.80

Table 8.1: Control systems parameters

systems are summarized in Table 8.1.

We use the algorithm provided in [DBB07] to compute the worst case message

delivery time for the individual control systems. The priorities for the CAN mes-

sages are assigned based on the duration of the periods. If the period for a control

system is longer, it gets lower priority. The worst case message delivery time for

the control systems are given by [f1, f2, f3, f4, f5] = [0.54ms, 1.08ms, 1.62ms,

2.16ms, 2.70ms]. To keep the start time of the initial computation cycles for all

the control system to be the same, we choose F = 2.70ms. With this value of

F, we compute the values of the deadlines for the control computation to be [d1,

d2, d3, d4, d5] = [12.30ms, 17.30ms, 17.30ms, 22.30ms, 22.30ms]. We now use

Algorithm 8.2.1 to find out the maximum possible successful transmission rate for

all the control systems to satisfy EDF schedulability condition. We use the same

weight for all the systems, and the maximum possible successful transmission rate

is 0.80 for all the systems. Table 8.2 shows the synthesized controllers for the three

pendulums, their minimum successful transmission rate rmin, operating successful

transmission rate ropr, the value of the cost function, and time required to syn-

thesize the controllers. All experiments were carried out on a notebook running

Mac OS 10.7.4 with 2 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3

memory.

163

Systems Controller rmin ropr Cost Synthesis

Time (s)

System 1 [5.3284 -0.3643] 0.7478 0.8000 0.0052 2677

System 2 [5.1875 -0.4825] 0.7491 0.8000 0.0047 2244

System 3 [5.1715 -0.2639] 0.7470 0.8000 0.0048 2202

System 4 [5.5158 -0.2726] 0.6596 0.8000 0.0038 2545

System 5 [5.1740 -0.2355] 0.7480 0.8000 0.0045 2417

Table 8.2: Synthesized controllers

To judge the quality of the synthesized controllers, we compare the controller

synthesized for System 5 with another arbitrarily chosen stabilizing controller. We

call the synthesized controller Ksyn = [5.1740− 0.2355] and the arbitrarily chosen

controller Karb = [5.0050 − 0.5772]. For both the controllers we set the operating

successful transmission rate to 0.80. Figure 8.4 shows the evolution of the state

angular velocity with time under the action of the two controllers. Figure 8.4(a)

shows the evolution of the state when the plant is subjected to a band-limited

white noise with noise power 0.1 and sample time 0.01. Figure 8.4(b) shows the

evolution of the state when the plant is subjected to a disturbance signal of pulse

shape with amplitude 1 unit, period 10s, pulse width 1s, and zero phase delay.

The figures show that Ksyn clearly outperforms Karb significantly in terms of the

capability of dealing with disturbance.

We also measure the control cost for the two controllers to make sure that

the synthesized controller is not consuming too much power. The control cost is

measured as the sum of the amplitude of the control signal at the end of each

sampling period for a time duration of 100s. For the band-limited white noise

disturbance, the control cost for Ksyn and Kart are 582.00 units and 1756.00 units

respectively. For the pulse shaped disturbance signal, they are 531.00 units and

1562.00 units respectively. Thus the synthesized controller also uses significantly

164

0 20 40 60 80 100−1

−0.5

0

0.5

1

1.5

2

Time

An
gu

la
r P

os
iti

on

Ksyn
Karb

Student Version of MATLAB

(a) band limited white noise

0 20 40 60 80 100−1

−0.5

0

0.5

1

1.5

2

2.5

Time

An
gu

la
r P

os
iti

on

Ksyn

Karb

Student Version of MATLAB

(b) disturbance signal of pulse shape

Figure 8.4: Evolution of angular position with time for the synthesized controller

and an arbitrarily chosen controller from initial state 〈1, 1〉 for (a) a band-limited

white noise and (b) a disturbance signal of pulse shape

less control power.

8.6 Related Work

There are a number of papers that address the problem of maintaining stabil-

ity in the presence of network induced delay (e.g. [SQ03, ZSC05]), or packet loss

(e.g. [ZBP01, XL07, WC07, LH11]) or simultaneously delay and loss (e.g. [YWC04b,

YWC04a, GB07]). However, the problem of designing controllers that achieve op-

165

timal performance in terms of disturbance rejection in the presence of network

induced delay and packet loss was not studied in the past.

166

CHAPTER 9

Conclusion and Future Work

In this thesis, we have attempted to resolve the issues that arise during the im-

plementation of control systems, and are not taken into account during designing

the controllers mathematically using control theory. More specifically, we address

the following three problems: First, we show how the stability property can be

verified for a physical system under the action of controller software and how to

synthesize controller software to minimize the effect of quantization error on the

stability quality. Second, we show that the naive implementation of some control

algorithms may be infeasible due the computation time required for the control

tasks on real platforms and provide a memoization based implementation scheme

that guarantees the feasibility of the implementation along with maintaining ex-

pected control performance. Third, we address the problem of scheduling control

tasks from multiple control systems on a single processor and provide static and

dynamic scheduler synthesis strategies to maintain stability and achieve optimal

performance in the control systems. So far, control theory, software engineering

and real-time system theory have been studied as three independent fields. In

this thesis, we show how we can make a confluence of these three fields towards

building reliable cyber-physical systems.

Software code for controllers provides a sweet spot for static checkers: while the

application domain is often safety-critical —making verification desirable— the

code itself usually has statically unrollable loops and statically allocated memory,

removing language features that are the bane of most static analyzers. Moreover,

167

unlike generic software, software for control systems often comes with mathemat-

ical models and specifications. This allows a co-ordinated analysis by pushing

some of the complexity of software analysis to the model level. Our results show

how domain knowledge from control theory on the one hand and program verifi-

cation and synthesis techniques on the other can interact to provide a solution to

reliability problems in cyber-physical systems.

Controller synthesis problems have been widely reduced to convex optimization

problems for which efficient algorithms are available. However, when we want to

take into account different implementation issues in the controller design phase,

we need to solve complex multi-objective optimization problems which are often

not amenable to the reduction to convex optimization problems. In this thesis we

have showed that combination of convex optimization and stochastic optimization

techniques has great potential to solve complex controller synthesis problems.

9.1 Looking Ahead

We end this thesis with an outline of some possible interesting future work:

Bridging the gap between control theory and controller implementa-

tion. In this thesis, we have focused on two major implementation issues: (a) the

use of finite precision arithmetic and (b) communication delay and packet dropout

in the network. There are mainly three performance criteria for controller syn-

thesis: (i) the steady state behavior of the control system, (ii) the control cost

and the state cost (LQR cost) and (iii) the capability of disturbance rejection. In

my research so far, I have shown how the implementation error due to the use of

finite precision arithmetic affects the steady state behavior of the control system,

and how packet dropout may be utilized to enhance the disturbance rejection ca-

pability of the controller. However, the other combinations of the implementation

issues and the performance criteria are also very interesting. For example, how

168

does the use of finite precision arithmetic affect the LQR/LQG performance and

the capability of disturbance rejection? How does the packet dropout affect the

steady state behavior and the LQR/LQG performance? In my future research, my

aim would be to close these gaps between control theory and the implementation

of the control systems by answering questions of the above form. The end-goal

is to develop a framework that would be capable of synthesizing controllers that

take all implementation constraints into account, and that are Pareto optimal

with respect to all the performance criteria.

Dealing with complex cyber-physical systems. In this thesis we have con-

centrated on classical linear and nonlinear control systems. The next step of the

research would be to extend our results for complex control systems, for example,

switching control systems. The stability of a switching control system is given by

an analysis on dwell time and average dwell time [Lib03]. It would be interest-

ing to study how the implementation error in the controller effect the dwell time

parameters of the control systems. Another example may be analyzing robotic

controllers for implementation error. In a robot manipulator, the tracking error

depends on the quality of the implementation. Currently there is no available

formal technique to analyze the effect of implementation error on the tracking

quality. The results in this thesis motivates research to deal with such problems.

Study of processor architectures for cyber-physical systems. This the-

sis discusses issues related to the implementation of multiple control systems on

top of a single processor. Recently multicore processors have been introduced

in aerospace and automotive domains to enhance the performance of the imple-

mented systems. Though scheduling issues for multi-core processors have received

a lot of research attention, the implementation of multiple control systems on a

multicore processor has received very little research interest so far. It would be

interesting to study how we can synthesize controllers that will have optimal per-

formance while running on multicore processors in the presence of other tasks of

169

different criticality levels. It would also be interesting to study if we can come up

with fundamentally new processor architectures that would be more suitable for

building cyber-physical systems than the existing processor architectures. More-

over, it would be worth investigating how suitable FPGAs are for the implemen-

tation of cyber-physical systems on top of them.

Abstract interpretation for nonlinear arithmetic. Abstract interpretation

based technology has been very efficient in estimating error bound of the fixed-

point implementation of a linear controller program, and thus has been very useful

in controller synthesis based on the minimization of the effect of the implementa-

tion error on the performance of the controller. However, the technique does not

work very well for the nonlinear controllers. Our effort on estimating the error

bound for a jet engine controller [KK95b] reveals that the abstract interpretation

based error estimation technique may end up providing very pessimistic bound.

This benchmark motivates research towards enhancing the capabilities of abstract

interpretation based tools to deal with nonlinear arithmetic.

170

References

[AB09] A. Alessio and A. Bemporad. “A Survey on Explicit Model Predic-
tive Control.” In Nonlinear Model Predictive Control, volume 384 of
LNCIS, pp. 345–369. Springer, 2009.

[AC00] T. Aamodt and P. Chow. “Embedded ISA Support for Enhanced
Floating-Point to Fixed-Point ANSI C Compilation.” In CASES,
2000.

[ACE00] K.-E. Arzen, A. Cervin, J. Eker, and L. Sha. “An introduction to
control and scheduling co-design.” In Proceedings of CDC, 2000.

[AFP09] F. Alegre, E. Feron, and S. Pande. “Using Ellipsoidal Domains to
Analyze Control Systems Software.” CoRR, abs/0909.1977, 2009.

[AM09] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, 2009.

[AMS10] A. Anta, R. Majumdar, I. Saha, and P. Tabuada. “Automatic veri-
fication of control system implementations.” In Proc. EMSOFT, pp.
9–18, 2010.

[Arz99] Karl-Erik Årzén. “A Simple Event-Based PID Controller.” In Proc.
IFAC, volume 18, pp. 423–428, 1999.

[ASP10] João Almeida, Carlos Silvestre, and António M. Pascoal. “Self-
Triggered State Feedback Control of Linear Plants under Bounded
Disturbances.” In Proc. CDC, pp. 7588–7593, 2010.

[AT10] Adolfo Anta and Paulo Tabuada. “To Sample or not to Sample: Self-
Triggered Control for Nonlinear Systems.” IEEE Trans. Automatic
Control, 55(9), 2010.

[AW90a] K. J. Åström and B. Wittenmark. Computer-controlled systems: the-
ory and design. Prentice-Hall, Inc., 2nd edition, 1990.

[AW90b] K. J. Åström and B. Wittenmark. Computer-controlled systems: the-
ory and design. Prentice-Hall, Inc., 2nd edition, 1990.

[BCC03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. “A Static Analyzer for Large Safety-
Critical Software.” In PLDI, pp. 196–207. ACM, 2003.

[BEC05] C. Bayilmis, I. Erturk, and C. Ceken. “Extending CAN segments with
IEEE 802.11 WLAN.” In The 3rd ACS/IEEE International Confer-
ence on Computer Systems and Applications, pp. 79–86, 2005.

171

[BGP09] O. Bouissou, E. Goubault, S. Putot, K. Tekkal, and F. Védrine. “Hy-
bridFluctuat: A Static Analyzer of Numerical Programs within a Con-
tinuous Environment.” In CAV, LNCS 5643, pp. 620–626. Springer,
2009.

[Bir03] B. Birge. “PSOt - a particle swarm optimization toolbox for use with
Matlab.” In Swarm Intelligence Symposium, 2003. SIS ’03. Proceed-
ings of the 2003 IEEE, pp. 182–186, 2003.

[BKW09] A. Brillout, D. Kroening, and T. Wahl. “Mixed abstractions for
floating-point arithmetic.” In FMCAD, pp. 69–76. IEEE, 2009.

[BMD02] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N.
Pistikopoulos. “The explicit linear quadratic regulator for constrained
systems.” Automatica, 38(1):3–20, 2002.

[BPZ02] M. S. Branicky, S. M. Phillips, and W. Zhang. “Scheduling and Feed-
back Co-Design for Networked Control Systems.” In Proceedings of
CDC, pp. 1211–1217, 2002.

[BR90] Sanjoy K. Baruah and Louis E. Rosier. “Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic Real-Time Tasks
on One Processor.” Real-Time Systems, 2:301–324, 1990.

[BR05] P. Belanovic and M. Rupp. “Automated Floating-point to Fixed-point
Conversion with the Fixify Environment.” In Proc. Rapid System
Prototyping, 2005.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[Can88] J. Canny. “Some Algebraic and Geometric Computations in
PSPACE.” In STOC, pp. 460–467. ACM, 1988.

[Cer03] A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis,
Lund University, 2003.

[CF95a] T. Chen and B. A. Francis. Optimal sampled-data control systems.
Springer-Verlag, New York, 1995.

[CF95b] T. Chen and B.A. Francis. Optimal Sampled-Data Control Systems.
Springer-Verlag, 1995.

[CHL03] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-
Erik Årzén. “How Does Control Timing Affect Performance? Analysis
and Simulation of Timing Using Jitterbug and TrueTime.” IEEE
Control Systems Magazine, 23(3):16–30, 2003.

172

[CMU] “Control Tutorial for Matlab and Simulink.” Available online at
http://www.library.cmu.edu/ctms/ctms/.

[Cou05] P. Cousot. “Integrating Physical Systems in the Static Analysis of
Embedded Control Software.” In APLAS, pp. 135–138, 2005.

[DBB07] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien.
“Controller Area Network (CAN) schedulability analysis: Refuted,
revisited and revised.” Real-Time Systems, 35(3):239–272, 2007.

[DGP09] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and
F. Védrine. “Towards an Industrial Use of FLUCTUAT on Safety-
Critical Avionics Software.” In FMICS, LNCS 5825, pp. 53–69.
Springer, 2009.

[DM06] B. Dutertre and L. de Moura. “A Fast Linear-Arithmetic Solver for
DPLL(T).” In CAV, LNCS 4144, pp. 81–94. Springer, 2006.

[ECJ] Sean Luke. “The ECJ Owners Manual.” Available online at
http://www.cs.gmu.edu/ eclab/projects/ecj/docs/manual/manual.pdf.

[EKG12] S. Ebbesen, P/ Kiwitz, and L. Guzzella. “A generic particle swarm
optimization function for Matlab.” American Control Conference (to
appear), June 2012.

[FA08a] E. Feron and F. Alegre. “Control software analysis, Part I Open-loop
properties.” CoRR, abs/0809.4812, 2008.

[FA08b] E. Feron and F. Alegre. “Control software analysis, Part II Closed-
loop analysis.” CoRR, abs/0812.1986, 2008.

[Fer04] J. Feret. “Static Analysis of Digital Filters.” In ESOP, LNCS 2986,
pp. 33–48. Springer, 2004.

[FHR07] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. “Effi-
cient Solving of Large Non-linear Arithmetic Constraint Systems with
Complex Boolean Structure.” J. SAT, 1:209–236, 2007.

[FRC03] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen. “Fast, Accu-
rate Static Analysis for Fixed-Point Finite-Precision Effects in DSP
Designs.” In ICCAD, 2003.

[FSI09] G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta. “Ro-
bustness of model based simulation.” In RTSS, pp. 345–354. IEEE,
2009.

[GB07] Matas Garca-Rivera and Antonio Barreiro. “Analysis of networked
control systems with drops and variable delays.” Automatica,
43(12):2054 – 2059, 2007.

173

[GB11] M. Grant and S. Boyd. “CVX: Matlab Software for Disciplined Con-
vex Programming, version 1.21.” http://cvxr.com/cvx, Jan 2011.

[GL94] M. Green and D. J. N. Limebeer. Linear robust control. Prentice Hall,
August 1994.

[GPB07] E. Goubault, S. Putot, P. Baufreton, and J. Gassino. “Static Analysis
of the Accuracy in Control Systems: Principles and Experiments.” In
FMICS, LNCS 4916, pp. 3–20. Springer, 2007.

[HBH99] A. Hassibi, S. P. Boyd, and J. P. How. “Control of asynchronous
dynamical systems with rate constraints on events.” In Proceedings of
CDC, volume 2, pp. 1345 –1351, 1999.

[Hes09] J. P. Hespanha. Linear systems theory. Princeton University Press,
September 2009.

[HF09] Reinhold Heckmann and Christian Ferdinand. “Worst-Case Execution
Time Prediction by Static Program Analysis.” White paper, AbsInt
Angewandte Informatik GmbH, 2009.

[HSV08] W. P. M. H. Heemels, J. H. Sandee, and P. P. J. Van Den Bosch.
“Analysis of Event-Driven Controllers for Linear Systems.” Intl. J. of
Control, 81(4):571–590, 2008.

[IM12] Arnault Ioualalen and Matthieu Martel. “A New Abstract Domain
for the Representation of Mathematically Equivalent Expressions.”
In SAS, 2012.

[Jha11] S.K. Jha. Towards Automated System Synthesis Using SCIDUCTION.
PhD thesis, University of California at Berkeley, 2011.

[JLY07] M. Jiang, Y. P. Luo, and S. Y. Yang. “Stochastic convergence analysis
and parameter selection of the standard particle swarm optimization
algorithm.” Information Processing Letters, 102(1):8–16, April 2007.

[KA02] B. Kisacanin and G. C. Agarwal. Linear Control Systems. Kluwer
Academic/Plenum Publishers, 2002.

[Kai80] T. Kailath. Linear systems. Prentice-Hall, Inc., 1980.

[KE95] J. Kennedy and R. Eberhart. “Particle swarm optimization.” In Pro-
ceedings of IEEE International Conference on Neural Networks, pp.
1942–1948, 1995.

[Kha02] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

174

[KK95a] M. Krstic and P.V. Kokotovic. “Lean backstepping design for a jet
engine compressor model.” IEEE Conf. Contr. App., pp. 1047–1052,
1995.

[KK95b] M. Krstic and P.V. Kokotovic. “Lean backstepping design for a jet
engine compressor model.” In Proceedings of IEEE Conf. Control
App., pp. 1047–1052, 1995.

[Kos09] O. Kosheleva. “Babylonian Method of Computing The Square Root:
Justifications Based on Fuzzy Techniques and on Computational Com-
plexity.” In Annual Meeting of the North American Fuzzy Information
Processing Society (NAFIPS), pp. 1–6, 2009.

[KP08] Gal Katz and Doron Peled. “Model Checking-Based Genetic Pro-
gramming with an Application to Mutual Exclusion.” In TACAS, pp.
141–156, 2008.

[KPP04] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer Verlag, 2004.

[KW98] Ming-Yang Kao and Jie Wang. “Efficient minimization of numeri-
cal summation errors.” In Automata, Languages and Programming.
Springer, 1998.

[LAS09] H. Liu, A. Abraham, and V. Snasel. “Convergence analysis of swarm
algorithm.” World congress on Nature and Biologically Inspired Com-
puting, pp. 1714–1719, December 2009.

[LCH07] Michael Lemmon, Thidapat Chantem, Xiaobo Sharon Hu, and
Matthew Zyskowski. “On Self-Triggered Full Information H-infinity
Controllers.” In Proc. HSCC, pp. 371–384, 2007.

[LCN07a] J. A. López, C. Carreras, and O. Nieto-Taladriz. “Improved Interval-
Based Characterization of Fixed-Point LTI Systems with Feedback
Loops.” IEEE Trans. on CAD of Integrated Circuits and Systems,
26(11):1923–1932, 2007.

[LCN07b] J. A. López, C. Carreras, and O. Nieto-Taladriz. “Improved Interval-
Based Characterization of Fixed-Point LTI Systems with Feedback
Loops.” IEEE Trans. on CAD of Integrated Circuits and Systems,
26, 2007.

[Leo] “LEON2 Processor.” http://vlsicad.eecs.umich.edu/BK/Slots/cache/
www.gaisler.com/products/leon2/leon.html.

175

[LGC06a] D. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and
G. A. Constantinides. “Accuracy-Guaranteed Bit-Width Optimiza-
tion.” IEEE Trans. on CAD of Integrated Circuits and Systems,
25(10), 2006.

[LGC06b] D. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and
G. A. Constantinides. “Accuracy-Guaranteed Bitwidth Optimiza-
tion.” IEEE Trans. on CAD of Integrated Circuits and Systems,
25(10):1990–2000, 2006.

[LH11] Michael Lemmon and Xiaobo Sharon Hu. “Almost sure stability
of networked control systems under exponentially bounded bursts of
dropouts.” In Proceedings of HSCC, pp. 301–310, 2011.

[Lib03] Daniel Liberzon. SWITCHING IN SYSTEMS AND CONTROL.
Birkhauser, 2003.

[Liu00] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., 2000.

[LL61] J. LaSalle and S. Lefschetz. Stability by Lyapunov’s Direct Method.
Academic Press, Inc., 1961.

[LL73] C. L. Liu and J. W. Layland. “Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment.” Journal of ACM,
20(1), 1973.

[LM10] J. Legriel and O. Maler. “Meeting Deadlines Cheaply.” Technical
Report TR-2010-1, Verimag Research Report, 2010.

[Lof04] J. Lofberg. “YALMIP : a toolbox for modeling and optimization in
MATLAB.” In Computer Aided Control Systems Design, 2004 IEEE
International Symposium on, pp. 284–289, 2004.

[LP] “lp solve, a Mixed Integer Linear Programming (MILP) solver.”
Available online at http://lpsolve.sourceforge.net/.

[LSG92] K. Liu, R. E. Skelton, and K. Grigoriadis. “Optimal controllers for
finite wordlength implementation.” IEEE Transactions on Automatic
Control, 37(9):1294–1304, September 1992.

[MA04] R. T. Marler and J. S. Arora. “Survey of multi-objective optimization
methods for engineering.” Structural and Multidisciplinary Optimiza-
tion, 26(6):369–395, 2004.

[Mar09] Matthieu Martel. “Enhancing the implementation of mathematical
formulas for fixed-point and floating-point arithmetics.” Formal Meth-
ods in System Design, 35(3), 2009.

176

[MAT09] Manuel Mazo Jr., Adolfo Anta, and Paulo Tabuada. “On Self-
Triggered Control for Linear Systems: Guarantees and Complexity.”
In Proc. ECC, 2009.

[Moo66] R. Moore. Interval Analysis. Prentice Hall, 1966.

[MPS76] P. McLane, L. Peppard, and K. Sundareswaran. “Decentralized feed-
back controls for the brakeless operation of multilocomotive powered
trains.” IEEE Trans. Autom. Control, 21(3):358–363, 1976.

[MPS11] Trent McConaghy, Pieter Palmers, Michiel Steyaert, and Georges
G. E. Gielen. “Trustworthy Genetic Programming-Based Synthesis of
Analog Circuit Topologies Using Hierarchical Domain-Specific Build-
ing Blocks.” IEEE Trans. Evolutionary Computation, 15(4):557–570,
2011.

[MSB07] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. “Low-Power Opti-
mization by Smart Bit-Width Allocation in a SystemC-Based ASIC
Design Environment.” IEEE Trans. on CAD of Integrated Circuits
and Systems, 26(3), 2007.

[MT08] Manuel Mazo Jr. and Paulo Tabuada. “On Event-Triggered and Self-
Triggered Control Over Sensor/Actuator Networks.” In Proc. CDC,
pp. 435–440, 2008.

[MT09] Manuel Mazo Jr. and Paulo Tabuada. “Input-to-state Stability of
Self-Triggered Control Systems.” In Proc. CDC, pp. 928–933, 2009.

[OCC07a] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho, W. Luk, and
O. Mencer. “Automatic Accuracy-Guaranteed Bit-Width Optimiza-
tion for Fixed and Floating-Point Systems.” In Proc. FPL, pp. 617–
620, 2007.

[OCC07b] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho, W. Luk, and
O. Mencer. “Automatic Accuracy-Guaranteed Bit-Width Optimiza-
tion for Fixed and Floating-Point Systems.” In Proc. FPL, pp. 617–
620, 2007.

[OSH09] Roman Obermaisser, Christian El Salloum, Bernhard Huber, and Her-
mann Kopetz. “From a Federated to an Integrated Architecture.”
IEEE Transaction on Computer-Aided Design of Integrated Circuits
and Systems, 28(7):956–965, 2009.

[Ozc08] Ibrahim Ozcelik. “Interconnection of CAN segments through IEEE
802.16 Wireless MAN.” J. Netw. Comput. Appl., 31(4):879–890, 2008.

[PLM08] Riccardo Poli, William B. Langdon, and Nicholas F. McPhee. A Field
Guide to Genetic Programming. Lulu Enterprises, 2008.

177

[Pow] “PowerPC 5xx Controllers.” http://www.freescale.com/webapp/sps/
site/taxonomy.jsp?code=DRMCRMPC500MC.

[PPS04] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. “SOS-
TOOLS: Control applications and new developments.” in Proceedings
of IEEE International Symposium on Computer Aided Control Sys-
tems Design, pp. 315–320, 2004.

[PW07] Andreas Podelski and Silke Wagner. “Region Stability Proofs for Hy-
brid Systems.” In Proc. FORMATS, pp. 320–335, 2007.

[RHS97] M. Ryu, S. Hong, and M. Saksena. “Streamlining real-time controller
design: From performance specifications to end-to-end timing con-
straints.” In Proceedings of RTAS, pp. 91–99, 1997.

[Ros74] H. H. Rosenbrock. Computer-Aided Control System Design. Academic
Press, 1974.

[RS00] H. Rehbinder and M. Sanfridson. “Integration of off-line scheduling
and optimal control.” In Proceedings of ECRTS, pp. 137–143, 2000.

[San06] J.H. Sandee. Event-driven control in theory and practice: Tradeoffs in
software and control performance. PhD thesis, Technische Universeteit
Endhoven, 2006.

[SF97] J. Stolfi and L. H. Figueiredo. “Self-Validated Numerical Methods and
Applications.” In Monograph for 21st Brazilian Mathematics Collo-
quium, Rio de Janeiro: IMPA, 1997.

[SLS96] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. “On task schedulability
in real-time control systems.” In Proceedings of RTSS, pp. 13–21,
1996.

[SQ03] Hu Shousong and Zhu Qixin. “Stochastic optimal control and analysis
of stability of networked control systems with long delay.” Automatica,
39(11):1877–1884, 2003.

[SSE81] W. G. Stillwell, D. A. Seaver, and W. Edwards. “A Comparison of
Weight Approximation Techniques in Multiple Utility Decision Mak-
ing.” Organizational Behavior and Human Performance, 28:62–77,
1981.

[Ste08] W. Steiner. “An Evaluation of SMT-based Schedule Synthesis for
Time-Triggered Multi-Hop Networks.” In Proceedings of RTSS, 2008.

[SZ79] Prabhakant Sinha and Andris A. Zoltners. “The Multiple-Choice
Knapsack Problem.” Operations Research, 27(3):503–515, 1979.

178

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951.

[THW95] K. W. Tindell, H. Hansson, and A. J. Wellings. “Calculating Con-
troller Area Network (CAN) message response time.” Control Engi-
neering Parctice, 3(8):1163–1169, 1995.

[TTT03] R.H Tutuncu, K.C. Toh, and M.J. Todd. “Solving semidefinite-
quadratic-linear programs using SDPT3.” Mathematical Programming
Ser. B, 95:189–217, 2003.

[VMF03] Manel Velasco, Pau Mart́ı, and Josep M. Fuertes. “The Self-Triggered
Task Model for Real-Time Control Systems.” In Work In Progress
Proceedings of RTSS, pp. 67–70, 2003.

[WC07] Jing Wu and Tongwen Chen. “Design of Networked Control Systems
With Packet Dropouts.” Automatic Control, IEEE Transactions on,
52(7):1314–1319, 2007.

[WEE08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. “The worst-
case execution-time problem – overview of methods and survey of
tools.” ACM Trans. Embed. Comput. Syst., 7:36:1–36:53, 2008.

[Wil85] D. Williamson. “Finite wordlength design of digital Kalman filters
for state estimation.” IEEE Transactions on Automatic Control,
30(10):930–939, October 1985.

[Wil89] D. Williamson. “Optimal finite wordlength linear quadratic regula-
tion.” IEEE Transactions on Automatic Control, 34(12):1218–1228,
December 1989.

[Win93] G. Winskel. The formal semantics of programming languages: an
introduction. MIT Press, 1993.

[WL09] Xiaofeng Wang and M.D. Lemmon. “Self-triggered Feedback Con-
trol Systems with Finite Gain L2 Stability.” IEEE Transaction on
Automatic Control, 54(3):452–467, 2009.

[XL07] Junlin Xiong and James Lam. “Stabilization of linear systems over
networks with bounded packet loss.” Automatica, 43(1):80–87, 2007.

[XS06] F. Xia and Y. Sun. “Control-scheduling co-design: A perspective on
integrating control and computing.” Dynamics of Continuous, Dis-
crete and Impulsive Systems - Series B: Applications and Algorithms,
Special Issue on ICSCA’06, pp. 1352–1358, 2006.

179

[YH95] K. P. Yoon and C. Hwang. Multiple attribute decision making: an
introduction. Sage Publications, Inc., 1995.

[YWC04a] Mei Yu, Long Wang, Tianguang Chu, and Fei Hao. “An LMI ap-
proach to networked control systems with data packet dropout and
transmission delays.” In Decision and Control, 2004. CDC. 43rd IEEE
Conference on, volume 4, pp. 3545 – 3550, 2004.

[YWC04b] Mei Yu, Long Wang, Tianguang Chu, and Guangming Xie. “Stabi-
lization of networked control systems with data packet dropout and
network delays via switching system approach.” In Decision and Con-
trol, 2004. CDC. 43rd IEEE Conference on, volume 4, pp. 3539–3544,
2004.

[Zak03] S. H. Zak. Systems and Control. Oxford University Press, 2003.

[ZBP01] W. Zhang, M. S. Branicky, and S. M. Phillips. “Stability of Networked
Control Systems.” IEEE Control Systems Magazine, 21:84–99, 2001.

[ZKS07] M. Zamani, M. Karimi-Ghartemani, and N. Sadati. “FOPID con-
troller design for robust performance using particle swarm optimiza-
tion.” Journal of Fractional Calculus & Applied Analysis (FCAA),
10(2):169–188, 2007.

[ZKS09] M. Zamani, M. Karimi-Ghartemani, N. Sadati, and M. Parniani. “De-
sign of a fractional order PID controller for an AVR using particle
swarm optimization.” Control Engineering Practice, 17(12):1380–
1387, December 2009.

[ZSC05] L. Zhang, Y. Shi, T. Chen, and B. Huang. “A New Method for Sta-
bilization of Networked Control Systems With Random Delays.” Au-
tomatic Control, IEEE Transactions on, 50(8):1177 – 1181, 2005.

[ZSK09] M. Zamani, N. Sadati, and M. Karimi-Ghartemani. “Design of an
H∞ PID controller using particle swarm optimization.” International
Journal of Control, Automation, and Systems (IJCAS), 7(2):273–280,
April 2009.

[ZSW08] F. Zhang, K. Szwaykowska, W. Wolf, and V. J. Mooney III. “Task
Scheduling for Control Oriented Requirements for Cyber-Physical Sys-
tems.” In Proceedings of RTSS, pp. 47– 56, 2008.

180

