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Abstract

This report describes efforts carried out during early 2008 to determine some of the
science drivers for the “NERSC-6" next-generation high-performance computing
system acquisition. Although the starting point was existing Greenbooks from DOE
and the NERSC User Group, the main contribution of this work is an analysis of the
current NERSC computational workload combined with requirements information
elicited from key users and other scientists about expected needs in the 2009-2011
timeframe. The NERSC workload is described in terms of science areas, computer
codes supporting research within those areas, and description of key algorithms
that comprise the codes. This work was carried out in large part to help select a
small set of benchmark programs that accurately capture the science and
algorithmic characteristics of the workload. The report concludes with a
description of the codes selected and some preliminary performance data for them
on several important systems.



NERSC'’s science-driven strategy for increasing research productivity focuses on the
balanced and timely introduction of the best new technologies to benefit the
broadest subset of the NERSC workload. The goal in procuring new systems is to
enable new science discoveries via computations of a scale that greatly exceed what
is possible on current systems.

The key to understanding the requirements for a new system is to translate
scientific needs expressed by simulation scientists into a set of computational
demands and from these into a set of hardware and software attributes required to
support them. This combination of requirements and demands is abstracted into a
set of representative application benchmarks that by necessity also capture
characteristic styles of coding and thus assure a workload-driven evaluation. The
importance of workload-based performance analysis was best expressed by Ingrid
Bucher and Joanne Martin in a 1982 LANL technical report where they stated,
“Benchmarks are only useful insofar as they model the intended computational
workload.”

At NERSC these carefully chosen benchmarks go beyond representing a set of
individual scientific and computational needs. The benchmarks also comprise the
Sustained System Performance (SSP) metric, an aggregate measure of the real,
delivered performance of a computing system. The SSP is evaluated at discrete
points in time and also as an integrated value to give the system’s potency, meaning
an estimate of how well the system will perform the expected work over some time
period. Taken together, the NERSC SSP benchmarks, their derived aggregate
measures, and the entire NERSC workload-driven evaluation methodology create a
strong connection between science requirements, how the machines are used, and
the tests we use.

This document begins with an examination of the key science drivers for DOE high-
end computation that were identified in the 2005 Greenbook report. We identify
any changes in the science drivers and commensurate requirements that might
affect the selection of next-generation systems. We then provide an introduction to
NERSC’s workload analysis and benchmark selection process. Finally, we present an
analysis of the performance of the selected benchmark applications. A brief
snapshot of benchmark performance as of May 2008 is presented. These are
preliminary data, measured, in general, with no attempt at optimization; in other
words, representing what a user might observe upon initial porting of the codes. In
some cases the data contain estimates, either because the full run is too long or
because it requires more cores than we have access to on the given machine.
Performance data are provided to convey representative efficiency information and
merely demonstrate the ability of the codes to adequately discriminate between
systems; the goal is not to provide substantial analysis and/or machine ranking.



Overview of the NERSC Workload

NERSC serves a diverse user community of over 3000 users and 400 distinct
projects. The workload is comprised of some 600 codes to serve the diverse science
needs of the DOE Office of Science research community. Despite the diversity of
codes, the median job size at NERSC is a substantial fraction of the overall size of
NERSC’s flagship XT4 computing system.

NERSC’s workload covers the needs of 15 science areas across six DOE Office of
Science divisions, in addition to users from other research and academic institutions
outside of the DOE. The pie charts in Figure 1 show the percentages of cycles at
NERSC awarded to the various DOE offices and science areas.
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Figure 1: Awards by DOE office (left) and awards by science area (right).

In this study we focused on the largest components of the NERSC workload, which
include Fusion, Chemistry, Materials Science, Climate Research, Lattice Gauge
Theory, Accelerator Physics, Astrophysics, Life Sciences, and Nuclear Physics, as
shown in Figure 2.
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Figure 2: The NERSC workload study focused on dominant contributors to the NERSC workload.

Climate Science

Climate science computing at NERSC includes a variety of prediction and simulation
activities, including critical support of the U.S. submission to the Intergovernmental
Panel on Climate Change (IPCC). Figure 3 shows that climate science allocations are
dominated by CAM, the Community Climate System Model (CCSM3), and weather
modeling codes. There are INCITE allocations that are also large players, but
because INCITE is not a steady-state allocation we do not consider these projects
further. With the INCITE allocations removed, the dominance of CAM and CCSM3 is
clear (Table 1). Furthermore, CAM is the dominant computational component of the
fully coupled CCSM3 climate model. Therefore, CAM is a good proxy for the most
demanding components of the climate workload.
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Figure 3: Distribution of climate allocation with and without the contribution of the INCITE allocations.
The INCITE awards for "forecast" and "filter" codes are much larger than they are in the steady-state
workload

Code MPP Award Percent Cummulative %
1 | CCSM 2,342,000 51% 51%
2 | CAM 1,085,00 24% 75%
3 | GCRM 375,000 8% 83%
4 | IMPACT 280,000 6% 89%
5 | GCM 100,000 2% 91%
6 | ATHAM 80,000 2% 93%
7 | POP 50,000 1% 94%
8 | WRF 45,000 1% 95%

Table 1: Breakdown of the NERSC workload in Climate Sciences. CCSM and CAM account for > 74% of
the workload. Since CAM is the dominant component of CCSM, CAM is clearly a good proxy for the
climate requirements.

In order to be useful for climate research, CAM must achieve a target performance of
1000x faster than real-time. This places a stringent requirement for the achieved
performance of the climate application on the target system architecture. The
current mesh resolution ultimately limits the exposable parallelism of the
application. However, if the resolution is increased, the size of the simulation time
steps must be reduced to satisfy the Courant stability condition. Increasing the
resolution by 2x requires 4x more time due to the shorter time steps. Therefore, the
climate application pushes towards higher per-processor sustained performance,
which runs counter to current microprocessor architectural trends.



Although spectral CAM dominates the current workload, the IPCC is rapidly
migrating to the finite-volume formulation of CAM (fvCAM). Finite Volume CAM is
more scalable than spectral CAM and is better able to exploit loop level parallelism
using a hybrid OpenMP+MPI programming mode and therefore, take advantage of
SMP nodes. The hybrid model may mitigate the need for improved per-processor
serial performance but would require wider SMP nodes.

In anticipation of the larger mesh resolution targets, we selected the D-mesh (~0.5
degree), which is likely to be the production resolution for some time.

Simulations in material science play an indispensable role in nanoscience research,
an area identified as one of the seven highest priorities for the Office of Science. Of
particular interest recently are studies of Quantum Dots, due to their emerging
importance in miniaturization of electronic and optoelectronic devices, and
computational needs seem virtually unlimited. For example, two specific
applications that scientists in this area foresee include the following:

* Electronic structures and magnetic materials. The current state of the artis a
500-atom structure, which requires 1.0 Tflop/s sustained performance
(typically for several hours), and 100 GB main memory. Future requirements (a
hard disk drive simulation, for instance) are for a 5000-atom structure, which
will require roughly 30 Tflop/s and 4 TB main memory.

* Molecular dynamics calculations. The current state-of-the-art is for a 109-atom
structure, which requires 1 Tflop/s sustained and 50 GB memory. Future
requirements (an alloy microstructure analysis) will require 20 Tflop/s
sustained and 5 TB main memory.

The materials workload presents a dizzying array of codes, as shown in Figure 4.
There are 65 accounts under the BES/material science category that account for
20% of the 324 total NERSC accounts. The total HPC allocation for these accounts
was 4.1 M hours before Bassi was online and 8.8 M hours after the Bassi was online.
Although this allocation as a function of the total is smaller than it was a few years
ago, it still represents 13% of the total NERSC allocation (66.7 M hours after Bassi
was online). The materials science percentage has decreased partly because of the
creations of special programs like SciDAC and INCITE.

In this science area there is an average of about one code per account (or group of
users). However, since the same code can be used by different accounts, one code is
used by 2.15 user groups on average. Except for the VASP code, which is used by 23
groups, the majority of the codes are used by less than 5 groups, and many of the
codes are used only by one group. This is a very diverse community, with many
groups using their own codes.
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Figure 4: The materials science area presents a dizzying array of codes, none of which dominate the
workload.

The different codes can be classified into six categories based on their physics and
the corresponding algorithms. These categories, and their corresponding
allocations, are: density functional theory (DFT, 74%); beyond DFT (GW+BSE,
6.9%); quantum Monte Carlo (QMC, 6.7%); classical molecular dynamics (CMD,
6.4%); (classical Monte Carlo(CMC, 3.1%); and other partial differential equations
(PDE, 2.9%). There is an overwhelming preference for the DFT method, owing to the
current success of that method in ab initio materials science simulations. However,
the DFT method itself has different numerical approaches such as plane wave DFT,
Green'’s function DFT, localized basis and orbital DFT, muffin tin sphere type DFT,
and real space grid DFT. The most popular (both in terms of number of codes and
HPC hours) is plane wave DFT, for which there are 12 codes accounting for 1.6 M
hours.

Density Functional Theory (DFT)

In the DFT method, one needs to solve the single-particle Schréodinger equation (a
second order partial differential equation). Typically, 5-10% of the lowest
eigenvectors are needed from this solution, and the number of eigenvectors is
proportional to the number of electrons in the system. For example, for a thousand-
atom system, a few thousand eigenvectors are needed. There is a key difference
between the complexity of this approach and that of most engineering problems
(e.g, fluid dynamics, climate simulation, combustion, electromagnetics) where only a
small, fixed number of time evolving or eigenvector fields are solved. In DFT, the
Schrodinger equation itself depends on the eigenvectors through the density
function (which gives rise to the name density functional theory). Thus, itis a
nonlinear problem, but one that can be solved by self-consistent iteration of the
linearized eigenstate represented by Schrodinger’s equation, or by direct nonlinear
minimization. Currently, most large-scale calculations are done using self-consistent



iterations. Numerically, what distinguish the different DFT methods and codes are
the different basis sets used to describe the wavefunctions (the eigenvectors).

Planewave DFT

Planewave DFT uses planewaves to describe the wavefunctions, while real space
DFT uses a regular real-space grid. Due to the sharp peak of the potential near
atomic nuclei, special care is needed to choose different basis sets. Besides the
planewave and real-space grid, other conventional basis sets include: atomic orbital
basis set, where the eigenvectors of the atomic Schrédinger equation are used to
describe the wavefunctions in a solid or molecule; Gaussian basis sets, which are
more often used in quantum chemistry due to their analytical properties; muffin-tin
basis, where a spherical hole is cast out near each nucleus and spherical harmonics
and Bessel functions are used to describe the wavefunction inside the hole;
augmented planewaves, where spherical Bessel functions near the nuclei are
connected with the planewaves in the interstitial regions and used as the basis set;
and the wavelet basis sets. In terms of the methods to solve the eigenstate problem,
both iterative scheme and direct eigensolvers have been used in different codes. In
the planewave DFT, an iterative method (e.g., conjugate gradient) is often used;
while in the atomic orbital, Gaussian, and augmented plane-wave (FLAPW)
methods, direct dense solvers (ScaLAPACK) are often used; and in real-space grid
methods, sparse matrix solvers are used.

There are three key components of the iterative planewave method: 3D global FFT
for converting between real and reciprocal space, orthogonalization of basis
functions using dense linear algebra, and pseudopotential calculations using dense
linear algebra. The most time consuming steps are the matrix vector multiplication
and vector-vector multiplication for orthogonalization. For highly parallel
computation, the FFT is the primary bottleneck. However, if the problem size is
increased, the computational requirements of the dense linear algebra grow O(N3)
whereas the FFT requirements grow O(N?2). Therefore, weak scaling a DFT problem
can produce dramatic improvements in the delivered flop rates given the locality of
the linear-algebra calculation; but the benefits of weak-scaling are highly problem
dependent. For example, time-domain experiments do not benefit at all from this
effect.

GW+BSE

GW+BSE is one approach to calculating excited states and optical spectra. It
operates primarily on large, dense matrices. The most time consuming parts are
generating and diagonalizing these matrices. The diagonalization is often done using
a dense eigensolver (with libraries such as ScaLAPACK). The dimension of the
matrix is proportional to the square of the number of electrons in the system.

Quantum Monte Carlo (QMC)

Quantum Monte Carlo (QMC) uses stochastic random walk methods to carry out the
multidimensional integration of the many-body wavefunctions. Since it needs an



assembly sum of different independent walkers, it is embarrassingly parallel. QMC is
a very accurate method, but it suffers from statistical noise; thus, it is difficult to use
for atomic dynamics (where the forces on the atoms are needed).

Classical Molecular Dynamics and Classical Monte Carlo

In classical molecular dynamics (MD), the force calculation step is done in parallel.
Since the classical force field formalism is local in nature (except the electrostatic
force), efficient parallelization is possible as in the NAMD code. Classical Monte
Carlo is sometimes used instead of classical MD, thus it is more interested in the
time evolving process, instead of an assemble sum (as in quantum MC). As a result,
parallelization is not so trivial. There are many recent developments in parallel
schemes for classical MC (besides the possible approach for parallel evaluation of
the total energy as in classical MD). Other PDEs include Maxwell equations (e.g., in
photonic study) and time evolving differential equations for grain boundary and
defect dynamics, etc.

Once the material science workload is reorganized using this taxonomy for their
computational methods, the distribution of algorithms becomes clearer (Figure 5).
The density functional theory (DFT) codes clearly dominate allocations with 72% of
the overall workload. Of that subcategory, planewave DFT codes (that include VASP,
PARATEC, QBox, and PETot) are the dominant component. The DFT codes
(particularly planewave DFT) have very similar computational requirements as
previously discussed — with a common set of dominant components in their
execution profile including:
* 3D FFT, which requires global communication operations that dominate at
high concurrencies and low atom counts
* dense linear algebra for orthogonalization of wave functions (which
dominates for large numbers of electronic states in large atomic systems
with many electrons but has very localized communication)
* dense linear algebra for calculating the pseudopotential (that also dominates
for large numbers of atoms).

Since VASP was not available for public distribution and QBox is export-controlled,
we chose PARATEC as the best-available proxy to the requirements of the Materials
Science workload. We also get to share effort with the NSF Track-1 and Track-2
procurement benchmarks that have also adopted PARATEC as a proxy to the
Materials Science component of their workloads.
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Figure 5: Materials science codes categorized by algorithm.

Chemistry

Despite being one of the most mature simulation fields, the role of computation as a
fundamental tool to aid in the understanding of chemical processes continues to
grow steadily, and one estimate places the number of electronic structure
calculations published yearly about around 8,000!

The dominant single code in the Chemistry workload is S3D due to its substantial
INCITE allocation. However, if we set aside INCITE applications because they are
not steady-state components of the workload, we see that the chemistry workload is
dominated by VASP, which is also dominant in the materials science workload. As a
result, we chose to focus on other components of the Chemistry workload to
emphasize a different set of criteria in the algorithm space.

S3D bears more similarity to the computational requirements of codes in the
astrophysics workload where there are many CFD simulations. We decided to
evaluate S3D as a component of that workload simply due to the similarities in the
computational methods.

Code Award Percent Cumulative%
ZORI 695,000 12% 12%
MOLPRO 519,024 9% 21%
DACAPO 500,000 9% 29%
GAUSSIAN 408,701 7% 36%
CPMD 396,607 7% 43%
VASP 371,667 6% 49%
GAMESS 364,048 6% 56%

Table 2: Top 50% of the chemistry workload shows a diversity of codes.
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Table 2 shows that the top 50% of the chemistry workload has a diversity of codes.
The leader, ZORI, is a QMC code, and as such, emphasizes per-processor
performance, but is not very demanding of the interconnect. The remaining codes
are either DFT (very similar to materials science) or quantum chemistry codes.

For quantum chemistry the most scalable codes are NWChem and GAMESS, and
since these are very demanding of the interconnect they can be useful in
differentiating machines based on support for efficient one-sided messaging.
GAMESS was selected for NERSC benchmarking. Itis also employed by the DOD-
MOD TI-0x procurements, which allows us to collaborate with DOD and allows
vendors to leverage their benchmarking efforts for multiple system bids.

Fusion

Fusion has long been the dominant component of the NERSC workload, accounting
for more than 27% of the overall workload in 2007. The workload is currently
dominated by five codes, which account for more than 50% of the overall fusion
workload (Table 3). Those codes, OSIRIS, GEM, NIROD, M3D, and GTC, fall into two
basic categories. Three of these, OSIRIS, GTC, GEM, are particle-in-cell (PIC) codes,
whereas M3D and NIMROD are both continuum codes (PDE solvers on semi-
structured grids).

The percentage of per-processor peak achieved by particle-in-cell codes is generally
low because the gather/scatter operations required to deposit the charge of each
particle on the grid that will be used to calculate the field involve a large number of
random accesses to memory, making the code sensitive to memory access latency.
GTC is certainly representative in this regard. However, unlike other PIC codes, GTC
does not require a global 3-D FFT, so performance and scalability issues associated
with this aspect of PIC codes must be covered by benchmarks from other
components of the NERSC workload.

guMMIT HPS
X6, 3% OSIRIS
ELB 3% 14%

4%
TDCC
4%

GYRO
4%

AN

TDL
4%

GEM
14%

GS2
5%

code MPP Award Percent Cumulative%

OSIRIS _ 2,112,500 _ 11% 11%
30 nmRop  GEM 2,058,333 11% 22%
16%  NIMROD_ 2,229,167 __ 12% 34%

- M3D 1,921,667 10% 45%

13% GTC 1,783,333 __ 10% 54%
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Table 3: The top 50% of the fusion time usage is dominated by 5 codes.

GTC now utilizes two parallel decompositions, a one-dimensional domain
decomposition in the toroidal direction and a particle distribution within each
domain. Processors assigned to the same domain have a copy of the local grid but
only a fraction of the particles and are linked with each other by a domain-specific
communicator used when updating grid quantities. An Allreduce operation is
required within each domain to sum up the contribution of each processor, which
can lead to lower performance in certain cases. Although it’s not clear that GTC
adequately captures the parallel scaling characteristics of all other PIC codes, it
emerges as a clear winning candidate for benchmarking by virtue of its excellent
scalability, ease of porting, lack of intellectual property encumbrances, and general
simplicity.

On the other hand, we found the fusion continuum codes to be exceedingly complex
as benchmarks, one example of which is the required use of external libraries not
guaranteed to be present on typical vendor in-house benchmarking machines.
However, we also found that the semi-implicit solvers employed by the continuum
codes, presumed to be the most time-consuming portion of a run, had similar
resource requirements to astrophysics codes that model stellar processes (MHD
codes used for modeling core collapse supernovae and astrophysical jets).
Therefore, we chose to focus on the PIC codes as proxies for the fusion workload
requirements.

Simulation is playing an increasingly prominent and valuable role in the theory,
design and development of particle accelerators, detectors, and X-ray free electron
lasers, which are among the largest, most complex scientific instruments in the
world.

The accelerator workload is dominated by PIC codes, but also has strong
representation by sparse matrix codes with Omega3P (see Table 4).

Code MPP Award Percent Cumulative%
VORPAL 1,529,786 33% 33%
OSIRIS 784,286 16% 49%
QuickPIC 610,000 13% 62%
Omega3p 210,536 4% 66%
Track3p 210,536 4% 70%

Table 4. Top Codes in Accelerator Modeling. The PIC codes VORPAL and OSIRIS dominate the
accelerator modeling workload. Even as we look further down the list to 70% of the workload, the
allocations are dominated by PIC codes. The exception is Omega3p, which is bottlenecked by its
eigensolver, which depends on a sparse-matrix direct solver.

The sparse matrix direct solvers have well known scalability issues that will
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ultimately force such codes to adopt new algorithmic approaches (likely sparse
iterative solvers). There was concern that selection of current sparse matrix code
examples would not be reflective of the state-of-the-art computational methods that
will emerge for these problems in the 2009 timeframe. Therefore, we concentrated
our attention on the PIC component of the workload, which is clearly dominant for
this science area.

The PIC codes in accelerator modeling have unique load-balancing problems and
potential inter-processor communication issues that distinguish them from plasma
simulation PIC codes represented by GTC. Whereas plasma microturbulence codes
are generally well load balanced due to the largely uniform distribution of the
plasma throughout the computational domain, many accelerator problems depend
on bunching up the particles because of the narrow focus of the accelerator beam.
This can lead to serious issues for load balancing. Additionally, some of the
accelerator codes, notably those comprising the IMPACT suite from LBNL, use an
FFT algorithm to solve Poisson’s equation, with its associated global, all-to-all
communication.

IMPACT-T was chosen as the benchmark representing beam dynamics simulation.
Part of a suite of codes used for this purpose, IMPACT-T is used specifically for
photoinjectors and linear accelerators. It uses a 2-D domain decomposition of the 3-
D Cartesian grid and is one of the few codes used in the photoinjector community
that has a parallel implementation. It has an object-oriented Fortran90 coding style
that is critical for providing some of its key features. For example, it has a flexible
data structure that allows particles to be stored in “containers” with common
characteristics such as particle species or photoinjector slices; this allows binning in
the space-charge calculation for beams with large energy spreads.

14



In the past, NERSC resources have been brought to bear on some of the most
significant problems in computational astrophysics, including supernova explosions,
thermonuclear supernovae, and analysis of cosmic microwave background data.

Work done by various researchers at LBNL has shown that I/O benchmarking is
most effectively done using [/0 kernel benchmarks such as IOR and stripped-down
applications such as MADCAP rather than using full application codes. This is in
part because of the flexibility IOR offers in measuring a range of file and block sizes,
[/0 methods, and file sharing approaches.

Since I/0 benchmarking has essentially been factored out from the main workload,
therefore, we concentrate on the other solvers in the astrophysics workload that
include a variety of radiation hydrodynamics, MHD, and other astrophysical fluids
calculations.

PDE solvers on block-structured grids are a dominant component of this workload.
Although many of these codes currently employ an explicit time-stepping scheme,
many of the scientists in the field indicate they are moving as quickly as possible
towards implicit schemes (such as Newton Krylov schemes) that have more
demanding communication requirements but offer a much better time-to-solution.

In particular, many implicit schemes are limited by fast global reductions. Virtually
all modern Krylov subspace algorithms (i.e., any thing of the family of conjugate
gradient, biconjugate gradient, biconjugate gradient-stabilized, generalized
minimum residual, etc. methods) for sparse linear systems require inner products of
vectors in order to function. In Fortran, for two vectors X and Y, this would look

like

inner_prod = 0.0

doi=1,n

inner_prod = inner_prod+X(i)*Y(i)
enddo

When the vectors are distributed across a parallel architecture, the "Do" loop sum is
only over the elements of the vector that exist on each processor. The global
summation is then done over the entire process topology with a local sum on each
processor followed by a global reduction operation to get the total sum over the
process topology. Thus it would look roughly like:

local_sum = 0.0

do i=1,nlocal

local_sum = local_sum+X(i)*Y(i)

enddo

call mpi_all_reduce(local_sum,inner_product,MPI_SUM)

15



Virtually all Krylov subspace algorithms require these kinds of inner product
summations. Most classes of implicit algorithms in turn rely heavily on these Krylov
subspace algorithms: sparse linear systems, sparse non-linear systems,
optimization, sensitivity analysis, etc. Therefore, we felt it necessary to select a
benchmark that emphasizes the demands of implicit time stepping schemes to that
we don’t select a machine that is only good for explicit fluid dynamics algorithms
but will ignore the many new applications that utilize implicit approaches that are
just starting to become viable.

Unfortunately, at this time very few codes have been developed that fully implement
implicit time stepping schemes. There were no clearly dominant codes that used
implicit time stepping schemes. Such codes are still in development and are not very
portable. We selected the MAESTRO code in part because of close interactions with
the developers.

MAESTRO is a low mach number astrophysics code used to simulate the long-time
evolution leading up to a type 1a supernova explosion. The NERSC-6 MAESTRO
simulation examines convection in a white dwarf and includes both explicit and
implicit solvers. MAESTRO is capable of decomposing a uniform grid of constant
resolution into a specified number of non-overlapping grid patches but in the
NERSC-6 benchmark does not refine the grid.

Although adaptive mesh refinement (AMR) is a powerful technique with the
potential to reduce resources necessary to solve otherwise intractable problems in a
variety of computational science fields, it brings with it a variety of additional
performance challenges that are worthy of testing in a workload-driven evaluation
environment. In particular, they have the potential to add non-uniform memory
access and irregular inter-processor communication to what might have otherwise
been relatively regular and uniform access and patterns.

We represent AMR in the NERSC-6 benchmark suite with a stripped-down
application that exercises an elliptic solver in the Chombo AMR framework
developed at LBNL. Chombo provides a distributed infrastructure for implementing
finite difference methods for PDEs on block-structured adaptively refined
rectangular grids. The benchmark problem uses a solver with a fixed number of
iterations and weak scales the problem from 256 to 4096 cores.

For more information see
http://www.nersc.gov/projects/SDSA /software/?benchmark=AMR .

[t is no surprise that MILC and other variants of lattice QCD codes dominate the
workload.
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MILC was also adopted by the NSF procurements as a benchmark, so we are able to
leverage the investment in packaging this benchmark for the procurement.

Codes in this group seem to fall into three basic categories. One consists of codes for
sequence searching, comparison, identification, and/or prediction. Basically
informatics types codes, these differ from typical HPC workloads and are not
represented to any extent in NERSC benchmark suites. These codes had a moderate
allocation in 2007, but we concluded that explicitly representing them in the
benchmark suite was unnecessary because the codes are basically constrained by
clock speed (integer processing rates, actually) and thus do not present a
sufficiently challenging or unique problem to the architecture.

The second category consists of a variety of molecular dynamics codes, the most
important of which are AMBER, NAMD, and CHARMM. The capability these codes
offer is merged with requirements for protein folding analysis to create what is
referred to as molecular dynameomics — one of the most challenging areas of
computational science in general. The characteristics of these codes are, in a macro
sense, similar to, if not the same as, the molecular dynamics codes used in material
science; however, individual life-science related molecular dynamics simulations
are likely to be less scalable and more inter-processor communication limited than
those of material science, since inter-atomic potentials are likely to be more subtle
and longer range.

The third category consists of codes that also are or look like material science or
chemistry codes, either for quantum Monte Carlo, classical quantum chemistry, or
DFT methods. The computational characteristics of these have already been
discussed and likely do not differ for life science applications.

The total life science NERSC allocation in recent years has remained small and so no
code has been chosen to uniquely represent this area.

Benchmark selection is an extraordinarily difficult process. As per Ingrid Bucher’s
1983 observation, “benchmarks are only useful insofar as they model the workload
that will run on a given system.” To that end, we use information from our
workload analysis to aid in the selection of benchmarks that are a proxy to the
anticipated NERSC system requirements. Ideally, the benchmarks must cover the
requirements of the target HPC workload, but there are a number of practical
considerations that must be taken into account during the selection process.

Coverage: We assess how well the codes cover science areas that dominate the

NERSC workload as well as the coverage of the algorithm space. This creates a two-
dimensional matrix of computational methods and science areas that must be
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covered.

Portability: The selected codes must be able to run on a wide variety of systems to
allow valid comparisons across architectures. The implementation of the codes
must not be too architecture-specific and the "build” systems for these codes must
be robust so that they can be used across many system architectures.

Scalability: It is important to emphasize applications that justify scalable HPC
resources. Over time, codes that are unable to scale with the resources tend to have
a diminishing role in the HPC workload. In selecting scalable codes, we are not
selecting those that scale easily — rather those that present some of the most
demanding requirements, but are otherwise engineered to expose sufficient
parallelism to run on highly parallel systems.

Open Source: Since the benchmarks must be distributed without restriction to
vendors for benchmarking purposes, no proprietary or export-controlled code can
be used. Only open-source applications that allow us to share snapshots with
vendors can be considered.

Availability: Packaging appropriate benchmark problems requires close
collaboration with the developer for assistance and support. Without the assistance
of the user community, we cannot select appropriate problems for evaluating
systems, and hence will be unable to gauge the value of a given system.

First Cut (Primary Kernel):

Fusion PIC GEM (4.9) (!%TC !4%% XGC (3.7) / SUMMIT (1.5)
Accelerator OSIRIS (2.9) LVORPAL (2.6 / BeamB3D /
modeling QuickPIC

Fusion MHD M3D / NIMROD / GS2 / GYRO /BOUT / Dynamo
DFT VASP / LSMS / PWscf / CPMD (PARATECT
Quantum Chem NWChem / SIESTA / CASINOﬁaussian
Climate <;AM / Fovecast Model / IMPACT

LG Physics < MILC/RMMC

Other astro MADCAP / SNIA / VULCAN / SRH3D /

LifeSei

Table 5: Matrix of codes for first cut of the selection process. The codes were ranked based on their
scores as candidate benchmarks. Codes that could not be widely distributed or were difficult to port
were slowly eliminated until the final 6 benchmarks.

With these considerations in mind, the benchmark team selected problems based on
their ability to fulfill these attributes and rank them based on their score in each of
these areas as candidate benchmark codes. After gaining experience with the codes
by building them or through detailed discussions with the developers, we slowly
reduced the list down to six target benchmark codes. The final problem sizes and
benchmark configurations were determined after the final codes were selected.
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These benchmarks are used individually to understand and compare system
performance. Although our analysis of the individual application performance has
found specific bottlenecks on each system, distilling down to a set of specific
hardware features is unlikely to capture the complex interactions between full
applications and correspondingly complex system architectures. Therefore the
performance of full applications with their associated complex behavior is used to
assess the value of systems. Therefore, we feel using a carefully selected set of full
applications, as a proxy to full workload performance is better able to encode the
DOE Office of Science workload requirements for the purpose of comparing HPC

systems.

Benchmark | Science Area Algorithm Space Base Case Problem Lang Libraries
Concurrency Description
CAM Climate (BER) Navier Stokes CFD 56, 240 D Grid, (~0.5 deg F90 netCDF
Strong scaling resolution); 240
timesteps
GAMESS Quantum Chem Dense linear 256, 1024 (Same rms gradient, MP2 F77 DDI, BLAS
(BES) algebra, DFT as TI-09) gradient
GTC Fusion (FES) PIC, finite 512,2048 100 particles per F90
difference Weak scaling cell
IMPACT-T Accelerator Largely PIC, FFT 256,1024 50 particles per cell F90
Physics (HEP) component Strong scaling (currently)
MAESTRO Astrophysics Low Mach Hydro; 512, 2048 64 x 64 x 128 gridpts F90 Boxlib
(HEP) block structured- Weak scaling per proc; 10
grid multiphysics timesteps
MILC Lattice Gauge Conjugate 256, 1024, 8192 8x8x8x9 Local C,
Physics (NP) gradient, sparse Weak scaling Grid, ~70,000 iters assem.
matrix; FFT
PARATEC Material Science DFT; FFT, BLAS3 256, 1024 686 Atoms, 1372 F90 Scalapack
(BES) Strong scaling bands, 20 iters

Table 6: Final Benchmark Selection Matrix together with problem sizes and concurrencies.
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. D‘ense S!:)arse gocctial Particle Structured Unstructured
Science Areas Linear Linear Methods Methods Grids or AMR Grids
Algebra Algebra (FFT)s
Accelerator X X X X
Science IMPACT IMPACT IMPACT
. X X X
Astrophysics X MAESTRO X MAESTRO MAESTRO
Chemistr X X
4 GAMESS
. X X
Climate CAM CAM
. X X
Combustion MAESTRO AMR Elliptic
Fusion X X
GTC GTC
Lattice Gauge X X X X
g MILC MILC MILC MILC
Material X X X
Science PARATEC PARATEC PARATEC

Table 7: Algorithm coverage by the selected SSP algorithms.

Evolution from NERSC-5 Application Benchmarks

We point out that the selected application benchmarks have changed from those
used for the NERSC-5 procurement. The following considerations led to these

changes:

Workload Evolution: The workload has changed modestly since the NERSC-
5 procurement. Two applications from the last benchmark suite (NAMD and

MadBENCH) were removed because of their reduced contribution to the
workload and were replaced by MAESTRO and IMPACT-T respectively.

Multicore: Power has ended Dennard scaling, so future performance

improvements of HPC systems hinge on doubling the number of processor
cores every 18 months rather than the historical clock-frequency scaling. We
project the next-generation NERSC system will be 3-5x more capable than
NERSC-5. Consequently, the concurrency of the benchmarks has increased
by 4x over the NERSC-5 suite.

Strong-Scaling: Over the past 15 years, parallel computing has thrived on
weak-scaling of problems. However, with the stall in CPU clock frequencies,
there is increased pressure to improve strong-scaling performance of
algorithms. This is because for time-domain methods, increases in problem
resolution must often be accompanied by corresponding decreases in time-
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step size to satisfy the courant stability condition. Whereas the time-step
decreases could be accommodated by performance improvements of
individual cores, next generation algorithms will need to improve their step
rates using increased parallelism (strong scaling). Consequently, our
problem input decks for the NERSC-6 application benchmarks now
emphasize strong-scaling requirements.

Implicit Timestepping: Many PDE solvers on block-structured grids employ
explicit timestepping methods, which perform well when weak-scaled on
massively concurrent systems. However, it is very difficult to improve
strong-scaling performance in light of the stall in CPU clock frequencies. This
will provide increased pressure to move towards implicit timestepping
schemes, which are far more challenging to scale to high concurrencies.
Evidence of this trend has been documented in the 2005 Greenbook and
subsequent reports from the Fusion Simulation Project (FSP) and other DOE
reports. We have coded the requirement into our benchmark suite using
MAESTRO, which implements both implicit and explicit timestepping
schemes.

AMR/Multiscale Physics: Although it is not a major component of our
workload yet, the presence of scalable AMR codes has increased substantially
in our workloads. Given the increased emphasis on multi-physics multiscale
problems in SciDAC and increased need for strong-scaling, we expect these
methods to become increasingly important component of future workloads.

Support for Lightweight/One-Sided Messaging: As systems scale to even
larger concurrencies, the performance of the interconnect for very small
messages becomes increasingly important. Already, our current workload
includes many chemistry applications that depend on Global Arrays (GA) and
other libraries that emulate a global shared address space. These code
benefit greatly from efficient support of light-weight messaging, including
one-sided message constructs. These requirements are represented by the
choice of GAMESS for the application suite.

The highest-concurrency runs for these application benchmarks are also used
together in the Sustained System Performance (SSP) composite benchmark, which is
discussed in a companion document describing both the SSP and ESP tests. The
geometric mean of the performance of these benchmarks is used to estimate the
likely delivered performance of the evaluated systems for the target NERSC
workload. Therefore, this approach fulfills the observation by Ingrid Bucher that
“benchmarks are only useful insofar as they model the intended workload.” These
benchmarks encode our workload requirements, and consequently the SSP metric
provides a good metric for estimating the sustained performance on the anticipated
workload.
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This section provides more detailed descriptions of the NERSC-6 application
benchmark codes and their problem sets, along with some observed characteristics
of the codes and some preliminary performance data from various systems.

The benchmarks serve three purposes in the procurement project. First, each
NERSC-6 benchmark and its respective test problem has been carefully chosen and
developed to represent a particular subset and/or specific characteristic of the
expected DOE Office of Science workload on the NERSC-6 system. As it has been
stated, “For better or for worse, benchmarks shape a field!,” and thus, a key
component of the NERSC workload-driven evaluation strategy is making available
real application codes that capture the performance-critical aspects of the workload.

Second, the benchmarks provide vendors the opportunity to provide NERSC with
concrete data (in an RFP response) associated with the performance and scalability
of the proposed systems on programmatically important applications. We expect
that vendor proposal responses will include the results of running NERSC-6
benchmarks on existing hardware and as well as projections to future, currently
unavailable systems. In this role, the benchmarks play an essential role in the
proposal evaluation process. The NERSC staff are well qualified to evaluate any
projections supplied by vendors as a result of having carried out extensive
technology assessments of prospective vendor systems for the timeframe of the
NERSC-6 project.

Third, the benchmarks will be used as an integral part of the system acceptance test and
part of a continuous measurement of hardware and software performance throughout the
operational lifetime of the NERSC-6 system.

The NERSC evaluation strategy uses benchmark programs of varying complexity,
ranging from kernels and microbenchmarks through stripped-down applications and full
applications. Each has its place: we use kernels and microbenchmarks to gain
understanding, but applications to evaluate effectiveness and performance.

The remainder of this document will concentrate on the NERSC-6 full application codes.
For each of the codes a few key characteristics are presented, most of which have been
obtained using the NERSC Integrated Performance Modeling (IPM) tool - an application
profiling layer that uses a unique hashing approach to allow a fixed memory footprint and
minimal CPU usage. Key characteristics measured include the type and frequency of
application-issued MPI calls, buffer sizes utilized for point-to-point and collective
communications, the communication topology of each application, and in some cases, a
time profile of the interprocessor communications. Another key parameter of a
completely different type is the computational intensity, the ratio of the number of
floating-point operations executed to the number of memory operations.

1 Patterson, D., CS252 Lecture Notes, University of California Berkeley, Spring, 1998.
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The Community Atmosphere Model (CAM) is the atmospheric component of the
Community Climate System Model (CCSM) developed at NCAR and elsewhere for the
weather and climate research communities. Although generally used in production
as part of a coupled system in CCSM, CAM can be run as a standalone (uncoupled)
model as it is at NERSC. The NERSC-6 benchmark runs CAM version 3.1 at D
resolution (about 0.5 degree) using a finite volume (FV) dynamical core. Two
problems are run using strong scaling at 56 and 240 cores.

Atmospheric models consist of two principal components, the dynamics and the
physics. The dynamics, for which the solver is referred to as the “dynamical core,”
are the large-scale part of a model, the atmospheric equations of motion affecting
wind, pressure and temperature that are resolved on the underlying grid. The
physics are characterized by subgrid-scale processes such as radiation, moisture
convection, friction, and boundary layer interactions that are taken into
consideration implicitly (via parameterizations).

In CAM3 as it is run at NERSC, the dynamics are solved using an explicit time
integration and finite-volume discretization that is local and entirely in physical
space. Hydrostatic equilibrium is assumed and a Lagrangian vertical coordinate is
used, which together effectively reduce the dimensionality from three to two.

Relationship to NERSC Workload

CAM is used for both short-term weather prediction and as part of a large climate
modeling effort to accurately detect and attribute climate change, predict future
climate, and engineer mitigation strategies. An example of a “breakthrough”
computation involving CAM might be its use in a fully coupled ocean/land/
atmosphere/ice climate simulation with 0.125-degree (approximately 12 kilometer)
resolution involving an ensemble of eight to ten independent runs. Doubling
horizontal resolution in CAM increases computational cost eightfold. The
computational cost of CAM in the CCSM, holding resolution constant, has increased
4x since 1996. More computational complexity is coming in the form of, for example,
super-parameterizations of moist processes, and ultimately elimination of
parameterization and use of grid-based methods.

Parallelization

The solution procedure for the FV dynamical core involves two parts: (1) dynamics
and tracer transport within each control volume and (2) remapping of prognostic
data from the Lagrangian frame back to the original vertical coordinate. The
remapping occurs on a time scale several times longer than that of the transport.

The version of CAM used by NERSC uses a formalism effectively containing two
different, two-dimensional domain decompositions. In the first, the dynamics is
decomposed over latitude and vertical level. Because this decomposition is
inappropriate for the remap phase, and for the vertical integration step for
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calculation of pressure, for which there exist vertical dependences, a longitude-
latitude decomposition is used for these phases of the computation. Optimized
transposes move data from the program structures required by one phase to the
other. One key to this yz to xy transpose scheme is having the number of processors
in the latitudinal direction be the same for both of the two-dimensional
decompositions.

Figure 6 presents the topological connectivity of communication for fv-CAM — each
point in the graph indicates processors exchanging messages, and the color
indicates the volume of data exchanged. Figures 7 and 8 give an indication of the
extent to which different communication primitives are used in the code and their
respective times on one system. Figures 9 and 10 give an indication of the sizes of
the MPI messages in an actual run on the NERSC Cray XT4 system Franklin.

FVCAMZD

Wait WaitAll

Figure 6. Communication topology and intensity for Figure 7. MPI call counts for fvCAM.
fvCAM.

MPI_Alltoally
MPI_Bcast
MPI_Waitall
MPI_Gatherw
MPI_Wait
MPI_Allreduce
MPI_Scatterw
MPI_Barrier
MPI_Isend
MPI_Recv
MPI_Irecw
MPI_Alltoall
MPI_Allgather
MPI_Comm_rank
Figure 8. Percent of time spent in various MPI routines for fvCAM on 240 processors on the NERSC Bassi system.
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Figure 9. MPI buffer size for point-to-point messages in fvCAM.
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Figure 10. MPI buffer size for collective messages in fvCAM.

Importance for NERSC-6

For NERSC-6 benchmarking, CAM offers the following characteristics: complexity
(relatively flat performance profile inhibits simple optimization); relatively low
computational intensity stresses on-node/processor data movement; relatively long
MPI messages stress interconnect point-to-point bandwidth; strong scaling and
decomposition method limit scalability; moderately sensitive to TLB performance
and VM page size.

Performance

Table 8 presents measured performance for CAM on several systems. The “GFLOPs”
column represents the aggregate computing rate, based on the reference floating-
point operation count from Franklin and the time on the specific machine. The
efficiency column (“Effic.”) represents the percentage of peak performance for the
number of cores used to run the benchmark.
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IBM IBM QC Opteron DC Opteron
Cores Power5 Bassi BG/P Cray XT4 Cray XT4
Jaguar Franklin
GFLOPs | Effic. GFLOPs Effic. GFLOPs Effic. GFLOPs Effic
56 30 7% 6 3% 32 7% 335 12%
240 100 6% 49 3% 143 7% 130.6 11%

Table 8. Measured Aggregate Performance and Percent of Peak for CAM

The GAMESS (General Atomic and Molecular Electronic Structure System) code
from the Gordon research group at the Department of Energy Ames Lab at [owa
State University is one of the most important tools available for various ab-initio
quantum chemistry simulations. Several kinds of SCF wavefunctions can be
computed with configuration interaction, second order perturbation theory, and
coupled-cluster approaches, as well as the density functional theory approximation.
A variety of molecular properties, ranging from simple dipole moments to
frequency-dependent hyper-polarizabilities may be computed. Many basis sets are
stored internally, together with effective core potentials, so all elements up to radon
may be included in molecules. The two benchmarks used here test DFT energy and
gradient, RHF energy, MP2 energy, and MP2 gradient.

Relationship to NERSC Workload

GAMESS is available and is used on all NERSC systems. It is most commonly used by
allocations from the BES area. As a benchmark, GAMESS represents a variety of
different conventional quantum chemistry codes that use Gaussian basis sets to
solve Hartree-Fock, MP2, coupled cluster equations. These codes also now include
the capability to perform density functional computations. Codes such as GAMESS
can be used to study relatively large molecules, in which case large processor
configurations can be used, but frequently they are also used to calculate many-
atomic configurations (e.g., to map out the potential manifold in a chemical reaction)
for small molecules.

Parallelization

GAMESS uses an SPMD approach but includes its own underlying communication
library, called the Distributed Data Interface (DDI), to present the abstraction of a
global shared memory with one-side data transfers even on systems with physically
distributed memory. In part, the DDI philosophy is to add more processors not just
for their compute performance but also to aggregate more total memory. In fact, on
systems where the hardware does not contain support for efficient one-sided
messages, an MPI implementation of DDI is used in which only one-half of the
processors allocated compute while the other half are essentially data movers.

Benchmark Problems

Rather than using GAMESS for scaling studies, two separate runs are done testing
different parts of the program. The NERSC “medium” case, run on 64 cores for

26



NERSC-5 and expected to run on 256 cores for NERSC-6, is a B3LYP(5)/6-311G(d,p)
calculation with a RHF SCF gradient. The “large” case, 384 cores for NERSC-5 and
expected to run on 1024 cores for NERSC-6, is a 6-311++G(d,p) MP2 computation on
a five-atom system with T symmetry.

Importance for NERSC-6

For NERSC-6 benchmarking, GAMESS offers the following characteristics:
complexity (relatively flat performance profile inhibits simple optimization but
built-in communication layer affords opportunity for key system-dependent
optimization); considerable stride-1 memory access; built-in communication layer
yields performance characteristics not visible from MPI (typical of Global Array
codes, for example).

Performance

Since the problem sets for NERSC-6 GAMESS have not been finalized, the data
presented in Table 9 are for the NERSC-5 problems. Performance is not expected to
differ significantly.

IBM IBM QC Opteron DC Opteron
Cores Power5 Bassi BG/P Cray XT4 Cray XT4
Jaguar Franklin
GFLOPs | Effic. GFLOPs Effic. GFLOPs Effic. GFLOPs Effic
64 26 5% 18 3% 23 7%
384 121 4% 39 2% 177 6% 214 11%

Table 9. Measured Aggregate Performance and Percent of Peak for GAMESS

GTC is a three-dimensional code used to study microturbulence in magnetically
confined toroidal fusion plasmas via the particle-in-cell (PIC) method. It solves the
gyro-averaged Vlasov equation in real space using global gyrokinetic techniques and
an electrostatic approximation. The Vlasov equation describes the evolution of a
system of particles under the effects of self-consistent electromagnetic fields. The
unknown is the flux, f(t,x,v), which is a function of time ¢, position x, and velocity v,
and represents the distribution function of particles (electrons, ions, etc.) in phase
space. This model assumes a collisionless plasma, i.e., the particles interact with one
another only through a self-consistent field and thus the algorithm scales as N
instead of N?, where N is the number of particles.

A “classical” PIC algorithm involves using the notion of discrete “particles” to sample
a charge distribution function. The particles interact via a grid, on which the
potential is calculated from charges “deposited” at the grid points. Four steps are
involved iteratively:

e “SCATTER,” or deposit, charges on the grid. A particle typically contributes to
many grid points and many particles contribute to any one grid point.
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* Solve the Poisson equation.
* “GATHER” forces on each particle from the resultant potential function.
e “PUSH” (move) the particles to new locations on the grid.

In GTC, point-charge particles are replaced by charged rings using a four-point gyro
averaging scheme, as shown in Figure 11.

Relation to NERSC Workload

GTC is used for fusion energy research via the DOE SciDAC program and for the
international fusion collaboration. Support for it comes from the DOE Office of
Fusion Energy Science. It is used for studying neoclassical and turbulent transport in
tokamaks and stellarators as well as for investigating hot-particle physics, toroidal
Alfven modes, and neoclassical tearing modes.

Classic PIC 4-point average GK
(W. Lee)

Figure 11. Representation of the charge accumulation to the grid in GTC.

Parallelization

In older versions of GTC, the primary parallel programming model was a 1-D
domain decomposition with each MPI process assigned a toroidal section and
MPI_SENDRECV used to shift particles moving between domains.

Newer versions of GTC, including the current NERSC-6 benchmark, use a fixed, 1-D
domain decomposition with 64 domains plus a particle-based decomposition. At
greater than 64 processors, each domain in the 1-D domain decomposition has more
than one processor associated with it, and each processor holds a fraction of the
total number of particles in that domain. This requires an all_reduce operation to
collect all of the charges from all particles in a given domain.

The communication topology of the NERSC-6 version of GTC, using the combination

toroidal domain/particle decomposition method, is shown in Figure 12. Figures 13,
14, and 15 show other communication characteristics.
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NERSC-6 version of GTC on Franklin.

on calls for the NERSC-6 version of GTC.

Importance for NERSC-6

For NERSC-6 benchmarking, GTC offers the following characteristics: charge
deposition in PIC codes utilizes indirect addresses and therefore stresses random
access to memory; particle-decomposition stresses collective communications with
small messages; point-to-point communications are strongly bandwidth bound;
runs adequately on relatively simple topology communication networks; important
loop constructs with large number of arrays leads to highly sensitive TLB behavior.

Performance

Table 10, which lists some measured performance data, suggests that GTC is capable
of achieving relatively high percentages of peak performance on some systems,
which is primarily due to a relatively high computational intensity and a low
percentage of communication contribution. It also seems that Opteron processors
have a performance advantage on this code.
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IBM IBM QC Opteron Cray DC Opteron
Cores Power5 Bassi BG/P XT4 Cray XT4
Jaguar Franklin
GFLOPs | Effic. GFLOPs Effic. GFLOPs Effic. GFLOPs Effic
512 428 11% 98 6% 511 12% 565 21%
2048 n/a 391 6% 2023 12% 2438 23%

Table 10. Measured Aggregate Performance and Percent of Peak for GTC.

IMPACT-T (Integrated Map and Particle Accelerator Tracking — Time) is one
member of a suite of computational tools for the prediction and performance
enhancement of accelerators. These tools are intended to predict the dynamics of
beams in the presence of optical elements and space charge forces, the calculation of
electromagnetic modes and wakefields of cavities, the cooling induced by co-moving
beams, and the acceleration of beams by intense fields in plasmas generated by
beams or lasers. The Impact-T code uses a parallel, relativistic PIC method for
simulating 3-D beam dynamics using time as the independent variable. (The design
of RF accelerators is normally performed using position, either the arc length or z-
direction, rather than the time, as the independent variable.) IMPACT-T includes
the arbitrary overlap of fields from a comprehensive set of beamline elements, can
model both standing and traveling wave structure, and can include a wide variety of
external magnetic focusing elements such as solenoids, dipoles, quadrupoles, etc.

IMPACT-T is unique in the accelerator modeling field in several ways. It uses space-
charge solvers based on an integrated Green function to efficiently and accurately
treat beams with large aspect ratios, and a shifted Green function to efficiently treat
image charge effects of a cathode. It uses energy binning in the space-charge
calculation to model beams with large energy spread. It also has a flexible data
structure (implemented in object-oriented Fortran) that allows particles to be
stored in containers with common characteristics; for photoinjector simulations the
containers represent multiple slices, but in other applications they could
correspond, e.g., to particles of different species.

While the core PIC method used in IMPACT-T is essentially the same as that used for
plasma simulation (see GTC, above), many details of the implementation differ; in
particular, the spectral/Green’s function potential solver (vs. the finite difference
method used in GTC) results in a significant global inter-processor communication
pattern.

Relationship to NERSC Workload

Past applications of the IMPACT code suite include the SNS linac modeling, the J-
PARC linac commissioning, the RIA driver linac design, the CERN superconducting
linac design, the LEDA halo experiment, the BNL photoinjector, and the FNAL
NICADD photoinjector. Recent code enhancements have expanded IMPACT’s
applicability, and it is now being used (along with other codes) on the LCLS project
and the FERMI@Elettra project. A recent DOE INCITE grant allowed IMPACT to be
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used in the design of free electron lasers.

Parallelization

A two-dimensional domain decomposition in the y-z directions is used along with a
dynamic load balancing scheme based on domain. The implementation uses MPI-1
message passing. For some problems, most of the communication due to particles
crossing processor boundaries is local; however, in the simulation of colliding
beams, particles can move a long distance and more than one pair of exchanges
might be required for a single particle update. Impact-T does not use a particle-field
parallel decomposition used by other PIC codes. Hockney’s FFT algorithm is used to
solve Poisson’s equation with open boundary conditions. In this algorithm, the
number of grid points is doubled in each dimension, with the charge density on the
original grid kept the same, and the charge density elsewhere is set to zero. Some
communication characteristics for IMPACT-T are presented in Tables 11 and 12 and
Figures 16-18.

MPI Event Buffer Size Cumulative Percent of
(Bytes) Total Wall Clock Time
MPI_Alltoallv 131K - 164K 15%
MPI_Send 8K 3%
MPI_Allreduce 4-8 4%

Table 11. Important MPI Message Buffer Sizes for IMPACT-T.

Routine Name Percent of Total Time Purpose

beambunchclass_kick2t_beambunch 32% Interpolate the space-charge
fields E and B in the lab frame
to individual particle + external

fields.
beamlineelemclass_getfldt_beamlineelem 29% Get external field
ptcimgerclass_ptsmv2_ptcimger 10% Move particles from one
processor to four neighboring
processors

Table 12. Profile of Top Subroutines in IMPACT-T on Cray XT4

Importance for NERSC-6

For NERSC-6 benchmarking, IMPACT-T offers the following characteristics: object-
oriented Fortran90 coding style presents compiler optimization challenges; FFT
Poisson solver stresses collective communications with moderate message sizes;
greater complexity than other PIC codes due to external fields, open boundary
conditions; relatively moderate computational intensity; fixed global problem size
causes smaller message sizes and increasing importance of MPI latency at higher
concurrencies.
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Figure 16. MPI Profile on 1024 cores of Franklin. Figure 17. MPI call counts.
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Figure 18. Message topology for IMPACT-T.

Performance

Although they’re both PIC codes, performance for IMPACT-T (Table 13) is quite
different from that of GTC, with IMPACT-T generally achieving a lower rate, due to
increased importance of global communications and a considerably lower
computational intensity.

IBM IBM QC Opteron Cray DC Opteron
Cores Power5 Bassi BG/P XT4 Cray XT4
Jaguar Franklin
GFLOPs | Effic. | GFLOPs | Effic. GFLOPs Effic. GFLOPs Effic
256 143 7% 34 4% 111 5% 130 10%
1024 n/a 174 5% 513 6% 638 12%

Table 13. Measured Aggregate Performance and Percent of Peak for IMPACT-T
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MAESTRO is used for simulating astrophysical flows such as those leading up to
ignition in Type la supernovae. It contains a new algorithm specifically designed to
neglect acoustic waves in the modeling of low Mach number convective fluids but
retain compressibility effects due to nuclear reactions and background stratification
that takes place in the centuries-long period prior to explosion. MAESTRO allows
for large time steps, finite-amplitude density and temperature perturbations, and
the hydrostatic evolution of the base state of the star.

The basic discretization in MAESTRO combines a symmetric operator-split
treatment of chemistry and transport with a density-weighted approximate
projection method to impose the evolution constraint. The resulting integration
proceeds on the time scale of the relatively slow advective transport. Faster
diffusion and chemistry processes are treated implicitly in time. This integration
scheme is embedded in an adaptive mesh refinement algorithm based on a
hierarchical system of rectangular non-overlapping grid patches at multiple levels
with different resolution; however, in the NERSC-6 benchmark the grid does not
adapt. A multigrid solver is used.

Parallelization

Parallelization in MAESTRO is via a 3-D domain decomposition in which data and
work are apportioned using a coarse-grained distribution strategy to balance the
load and minimize communication costs. Options for data distribution include a
knapsack algorithm, with an additional step to balance communications, and
Morton-ordering space-filling curves. Studies have shown that the time-to-solution
for the low Mach number algorithm is roughly two orders of magnitude faster than a
more traditional compressible reacting flow solver.

MAESTRO uses BoxLib, a foundation library of Fortran90 modules from LBNL that
facilitates development of block-structured finite difference algorithms with rich
data structures for describing operations that take place on data defined in regions
of index space that are unions of non-intersecting rectangles. It is particularly useful
in unsteady problems where the regions of interest may change in response to an
evolving solution.

The MAESTRO communication topology pattern (Figure 19) is quite unusual. Other
communication characteristics are shown in Figures 20-22.

Relationship to NERSC Workload

MAESTRO and the algorithms it represents are used in at least two areas at NERSC:
supernovae ignition and turbulent flame combustion studies having both SciDAC,
INCITE and base allocations.
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Importance for NERSC-6

For NERSC-6 benchmarking, MAESTRO offers the following characteristics: unusual
communication topology should stress simple topology interconnects and represent
characteristics associated with irregular or refined grids; very low computational
intensity stresses memory performance, especially latency; implicit solver
technology stresses global communications; wide range of message sizes from short
to relatively moderate.

Performance

Maestro achieves a relatively low overall rate on the systems shown in Table 14.
The computational intensity is very low, most likely as a result of non-floating-point
operation overhead required for the adaptive mesh framework. The data also
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suggest that MPI communications performance may be a bottleneck, since the
efficiency decreases for the larger problem of this weak-scaling set.

IBM IBM QC Opteron Cray DC Opteron
Cores Power5 Bassi BG/P XT4 Cray XT4
Jaguar Franklin
GFLOPs | Effic. GFLOPs Effic. GFLOPs Effic. GFLOPs Effic
512 178 5% 52%* 3% 230 5% 245 9%
2048 n/a 406 2% 437 1%

Table 14. Measured Aggregate Performance and Percent of Peak for MAESTRO

The benchmark code MILC represents part of a set of codes written by the MIMD
Lattice Computation (MILC) collaboration to study quantum chromodynamics
(QCD), the theory of the strong interactions of subatomic physics. It performs
simulations of four dimensional SU(3) lattice gauge theory on MIMD parallel
machines. Strong interactions are responsible for binding quarks into protons and
neutrons and holding them all together in the atomic nucleus.

The MILC collaboration has produced application codes to study several different
QCD research areas, only one of which, ks_dynamical simulations with conventional
dynamical Kogut-Susskind quarks, is used here.

QCD discretizes space and evaluates field variables on sites and links of a regular
hypercube lattice in four-dimensional space time. Each link between nearest
neighbors in this lattice is associated with a three-dimensional SU(3) complex
matrix for a given field.

QCD involves integrating an equation of motion for hundreds or thousands of time
steps that requires inverting a large, sparse matrix at each step of the integration.
The sparse matrix problem is solved using a conjugate gradient method, but because
the linear system is nearly singular, many CG iterations are required for
convergence. Within a processor, the four-dimensional nature of the problem
requires gathers from widely separated locations in memory. The matrix in the
linear system being solved contains sets of complex three-dimensional “link”
matrices, one per 4-D lattice link, but only links between odd sites and even sites are
non-zero. The inversion by CG requires repeated three-dimensional complex
matrix-vector multiplications, which reduces to a dot product of three pairs of
three-dimensional complex vectors. The code separates the real and imaginary
parts, producing six dot product pairs of six-dimensional real vectors. Each such dot
product consists of five multiply-add operations and one multiply.

Relationship to NERSC Workload

MILC has widespread physics community use and a large allocation of resources on
NERSC systems. Funded through High Energy Physics Theory, it supports research
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that addresses fundamental questions in high energy and nuclear physics and is
directly related to major experimental programs in these fields.

Parallelization

The primary parallel programming model for MILC is a 4-D domain decomposition
with each MPI process assigned an equal number of sub-lattices of contiguous sites.
In a four-dimensional problem, each site has eight nearest neighbors. The code is
organized so that message passing routines are compartmentalized from what is
built as a library of single-processor linear algebra routines. Many recent
production MILC runs have used the RHMC algorithm, which is an improvement in
the molecular dynamics evolution process for QCD that reduces computational cost
dramatically.

All three NERSC-6 MILC tests are set up to actually do two runs each. This is to
more accurately represent the work that the CG solve must do in actual QCD
simulations. The CG solver will take insufficient iterations to converge if one starts
with an ordered system, so we first do a short run with a few steps, with a larger
step size, and with a loose convergence criterion. This lets the lattice evolve from
totally ordered. In the NERSC-6 version of the code, this portion of the run is timed
as “INIT_TIME” and it takes about two minutes on the NERSC Cray XT4. Then,
starting with this “primed” lattice, we increase the accuracy for the CG solve, and the
iteration count per solve goes up to a more representative value. This is the portion
of the code that we time. Between 65,000 and 75,000 CG iterations are done
(depending on problem size).

The three NERSC-6 problems use weak scaling, and the only difference between the
three is the size of the lattice; i.e., there are no differences in steps per trajectory or
number of trajectories. In Table 15, the local lattice size is based on the target
concurrency. Note that these sizes were chosen as a compromise between
perceived science needs and a variety of practical considerations. Scaling studies
with larger concurrencies can easily be done using MILC. Estimates of QCD runs in
the time frame of the NERSC-6 system include some of the lattices in the NERSC-6
benchmark but also up to about 96’ x 192. Communication characteristics are
presented in Figures 23-26.

Target Concurrency Lattice Size (Global) Lattice Size (Local)
256 cores 32x32x32x36 8x8x8x9
1024 cores 64 x64x32x72 8x8x8x9
8192 cores 64 x 64 x 64 x 144 8x8x8x9

Table 15. NERSC-6 MILC lattice sizes.
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Importance for NERSC-6

For NERSC-6 benchmarking, MILC offers the following characteristics: CG solver
with small subgrid sizes used stresses interconnect with small messages for both
point-to-point and collective operations; extremely dependent on memory
bandwidth and prefetching; high computational intensity.

Performance

Table 16 shows that MILC, too, achieves a relatively high percentage of peak on
some systems. The dual-core Opteron results include some code tuned for that
system, but quad-core Opteron code is not yet available. The increasing effect of
communications on larger concurrencies is obvious from the Franklin and Jaguar
results on this weak scaled problem.

IBM IBM QC Opteron Cray DC Opteron
Cores Power5 Bassi BG/P XT4 Cray XT4
Jaguar Franklin
GFLOPs | Effic. GFLOPs Effic. GFLOPs Effic. GFLOPs Effic
256 488 25% 113 13% 203 9% 291 22%
1024 n/a 456 13% 513 6% 1101 21%
8192 n/a n/a 3179 5% 5783 14%

Table 16. Measured Aggregate Performance and Percent of Peak for MILC

The benchmark code PARATEC (PARAllel Total Energy Code) performs ab initio
quantum-mechanical total energy calculations using pseudopotentials and a plane
wave basis set. Total energy minimization of electrons is done with a self-consistent
field (SCF) method. Force calculations are also done to relax the atoms into
equilibrium positions. PARATEC uses an all-band (unconstrained) conjugate
gradient (CG) approach to solve the Kohn-Sham equations of density functional
theory (DFT) and obtain the ground-state electron wavefunctions. In solving the
Kohn-Sham equations using a plane wave basis, part of the calculation is carried out
in Fourier space, where the wavefunction for each electron is represented by a
sphere of points, and the remainder is in real space. Specialized parallel three-
dimensional FFTs are used to transform the wavefunctions between real and
Fourier space; and a key optimization in PARATEC is to transform only the non-zero
grid elements.

The code can use optimized libraries for both basic linear algebra and fast Fourier
tranforms; but due to its global communication requirements, architectures with a
poor balance between bisection bandwidth and computational rate will suffer
performance degradation at higher concurrencies on PARATEC. Nevertheless, due
to favorable scaling, high computational intensity and other optimizations, the code
generally achieves a high percentage of peak performance on both superscalar and
vector systems.
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In the benchmark problems supplied here, 20 conjugate gradient iterations are
performed; however, a real run might typically do up to 60.

Relationship to NERSC Workload

A recent survey of NERSC ERCAP requests for materials science applications
showed that DFT codes similar to PARATEC accounted for nearly 80% of all HPC
cycles delivered to the Materials Science community. Supported by DOE BES,
PARATEC is an excellent proxy to the application requirements of the entire
Materials Science community. PARATEC simulations can also be used to predict
nuclear magnetic resonance shifts. The overall goal is to simulate the synthesis and
predict the properties of multi-component nanosystems.

Parallelization

In a plane-wave simulation, a grid of points represents each electron’s
wavefunction. Parallel decomposition can be over n(g), the number of grid points
per electron (typically 0(100,000) per electron), n(i), the number of electrons
(typically O(800) per system simulated), or n(k), a number of sampling points (O(1-
10)).

PARATEC uses MPI and parallelizes over grid points, thereby achieving a fine-grain
level of parallelism. In Fourier space, each electron’s wavefunction grid forms a
sphere. Figure 27 depicts a visualization of the parallel data layout on three
processors. Each processor holds several columns, which are lines along the z-axis
of the FFT grid. Load balancing is important because much of the compute-intensive
part of the calculation is carried out in Fourier space. To get good load balancing, the
columns are first assigned to processors in descending length order and then to
processors containing the fewest points.

The real-space data layout of the wavefunctions is on a standard Cartesian grid,
where each processor holds a contiguous part of the space arranged in columns,
shown in Figure 27b. Custom three-dimensional FFTs transform between these two
data layouts. Data are arranged in columns as the three-dimensional FFT is
performed, by taking one-dimensional FFTs along the z, y, and x directions with
parallel data transposes between each set of one-dimensional FFTs. These
transposes require global inter-processor communication and represent the most
important impediment to high scalability. The communication topology for
PARATEC is shown below.

The FFT portion of the code scales approximately as n2log(n), and the dense linear
algebra portion scales approximately as n®; therefore, the overall computation-to-
communication ratio scales as n, where n is the number of atoms in the simulation.

In general, the speed at which the FFT proceeds dominates the runtime. Table 19,

below, compares the speed of the FFT and BLAS-dominated Projector portions of
the code for various machines. The data show that PARATEC is an extremely useful
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benchmark for discriminating between machines based on both computation and

communication speed. Communication characteristics are shown in Figures 28-30
and in Table 17.
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Figure 27. A three-processor example of PARATEC's parallel
data layout for the wavefunctions of each electron in (a) Figure 28. MPI call counts for
Fourier space and (b) real space. PARATEC.
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Message Buffer Size Count on 256 Cores Count on 1024 Cores
Total Message Count 428,318 1,940,665
16 < MsgSz < 256 114,432
256 < MsgSz < 4 KB 20,337 1,799,211
4 KB < MsgSz < 64 KB 403,917 4,611
64 KB < MsgSz< 1 MB 1,256 22,412
1 MB < MsgSz< 16 MB 2,808

Table 17. Important MPI Message Buffer Sizes for PARATEC (from IPM on 256 cores, Franklin)

Importance for NERSC-6

For NERSC-6 benchmarking PARATEC offers the following characteristics: hand-
coded spectral solver with all-to-all data transpositions stresses global
communications bandwidth; mostly point-to-point messages, and since in a single 3-
D FFT the size of the data packets scales as the inverse of the inverse of the square
of the number of processors, relatively short messages; can be very memory-
capacity limited; tuning parameter offers opportunity to trade memory usage for
interprocessor communication intensity; requires quality implementation of system
libraries (FFTW/SCALAPACK/BLACS/BLAS); use of BLAS3 and 1-D FFT libraries
results in high cache reuse and high percentage of per-processor peak performance;
fixed global problem size causes smaller message sizes and increasing importance of
MPI latency at higher concurrencies; moderately sensitive to TLB performance.

Performance

Tables 18 and 19 show performance data for PARATEC. The code calculates its own
floating-point operation rate for two key components, the “Projector” portion of the
code, which is dominated by BLAS3 routines, and the FFTs, which use tuned system
libraries but depend on global communications. The comparison among systems,
especially the dual-core and quad-core Cray XT4 systems, is quite interesting.

IBM IBM QC Opteron Cray DC Opteron
Cores Power5 Bassi BG/P XT4 Cray XT4
Jaguar Franklin
GFLOPs | Effic. GFLOPs Effic. GFLOPs Effic. GFLOPs Effic
256 30 7% 517 665 31% 729 55%
1024 n/a 710 20% 2044 24% 2234 42%

Table 18. Measured Aggregate Performance and Percent of Peak for PARATEC
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Machine FFT Rate Projector Rate Overall Rate
(MFLOPS/core) (MFLOPS/core) (Agg. GFLOPS)
Franklin 213 1045 729
Jaguar 129 1581 665
BG/P 377 561 517
HLRB-II 694 993 890
Bassi 1028 1287 1213

Table 19. Performance Profile for PARATEC (256 cores)

Table 20 presents a summary of a few of the important characteristics for the codes.
In addition to doing a good job of representing key science areas within the NERSC
Office of Science workload, the codes provide a good range of architectural “stress
points” such as computational intensity, and MPI message intensity, type, and size.
As such, the codes provide an effective way of differentiating between systems and
will be useful for all three goals related to the NERSC-6 project. Finally, the codes
provide a strong suite of SCALABLE benchmarks, capable of being run at a wide
range of concurrencies.

Code

CAM | GAMESS GTC IMPACT-T | MAESTRO | MILC | PARATEC

Cl* 0.67 0.61 1.15 0.77 0.24 1.39 1.50
Cray XT4 %

peak per core 13% 12% 24% 14% 5% 14% 44%
(largest case)

Cray XT4 % MPI | 5g9; 4% 9% 20% 120% 27%
medium

Cray XT4 % MPI 359 6% 40% 23% 64%
large

Cray XT4 % MPI n/a n/a n/a n/a n/a 30% n/a
extra large

Cray XT4 avg 113 K n/a 1 MB 35 KB 2K 16 KB 34 KB

msg size med

Table 20 Comparison of Computational Characteristics for NERSC-6 Benchmarks.
*Cl is the computational intensity, the ratio of the number of floating-point operations to the number of
memory operations.
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