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EPIGRAPH

”...quel giorno più non vi leggemmo avante.”

Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura,

ché la diritta via era smarrita.

”Nessun maggior dolore

che ricordarsi del tempo felice

ne la miseria...”

E quindi uscimmo a riveder le stelle.

—Dante Alighieri

”I would prefer not to.”

—Herman Melville
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ABSTRACT OF THE THESIS

Correlation Time of Ocean Ambient Noise Intensity in San Diego Bay
and Target Recognition in Acoustic Daylight Images

by

Adam J Wadsworth

Master of Science in Oceanography

University of California, San Diego, 2010

Professor Michael Buckingham, Chair

A method for passively detecting and imaging underwater targets using

ambient noise as the sole source of illumination (named acoustic daylight) was suc-

cessfully implemented in the form of the Acoustic Daylight Ocean Noise Imaging

System (ADONIS). In a series of imaging experiments conducted in San Diego Bay,

where the dominant source of high-frequency ambient noise is snapping shrimp,

a large quantity of ambient noise intensity data was collected with the ADONIS

(Epifanio, 1997). In a subset of the experimental data sets, fluctuations of time-

averaged ambient noise intensity exhibited a diurnal pattern consistent with the

increase in frequency of shrimp snapping near dawn and dusk. The same sub-

set of experimental data is revisited here and the correlation time is estimated

ix



and analysed for sequences of ambient noise data several minutes in length, with

the aim of detecting possible periodicities or other trends in the fluctuation of

the shrimp-dominated ambient noise field. Using videos formed from sequences

of acoustic daylight images along with other experimental information, candidate

segments of static-configuration ADONIS raw ambient noise data were isolated.

For each segment, the normalized intensity auto-correlation closely resembled the

delta function, the auto-correlation of white noise. No intensity fluctuation pat-

terns at timescales smaller than a few minutes were discernible, suggesting that

the shrimp do not communicate, synchronise, or exhibit any periodicities in their

snapping.

Also presented here is a ADONIS-specific target recognition algorithm based

on principal component analysis, along with basic experimental results using a

database of acoustic daylight images.
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Chapter 1

ADONIS Ambient Noise Intensity

Data

1.1 Description of the Data

Before performing any statistical analyses, a description of the ambient

noise intensity data is required. Among the set of seventy-one storage compact

discs are a number of files containing the raw data collected during the second set

of ORB experiments in the autumn of 1995. Each data file contains a sequence of

several thousand consecutive data frames representing several minutes (typically

between ten and thirty minutes) of ambient noise intensity data recorded by the

Acoustic Daylight Ocean Noise Imaging System (ADONIS) in San Diego Bay,

Southern California [Epifanio et. al., 1999].

Each data file in the set consists of a file header structure followed by a

sequence of frames, and each frame begins with its own short header structure.

The file header contains important information about the data sequence under

consideration, including: file size, date, time, data acquisition system (DAS) ver-

sion, input channel, amplifier gain, and data packing method. Additionally, the file

header often includes a character string containing a brief description of certain

important qualitative and quantitative aspects of the experiment, for example:

target type and location, environmental conditions, and scan and source details.

1
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Relevant header information for each of the thirteen data files under consideration

is recorded in Figure 1.1 and referred to throughout this document. Figure 1.2

describes the correspondence between data files in Figure 1.1 and the actual files

stored on the 71 compact discs.

Each data frame contains the ambient noise information for one forty mil-

lisecond recording cycle, for each of sixteen frequency bins with centre frequencies

spaced logarithmically between 8.5 kHz and 75.0 kHz, described in Figure 1.3.

Each of the sixteen frequency bins is sampled separately and consecutively for

about one millisecond each, with a gap of about 1.5 ms in between samples which

allows for the signal to settle before sampling. The forty millisecond sampling cycle

is repeated continuously for the entire length of the experiment so that the number

of cycles is equal to the total number of data frames captured by ADONIS. Each

of the 126 channels of the elliptical 11-by-14 ADONIS hydrophone array (shown in

Figure 1.4) is sampled simultaneously for each of the sixteen frequency bins during

each cycle [Epifanio, 1997]. Each frame, therefore, contains 2016 real-valued am-

bient noise intensities in units of amplitude in terms of analogue-to-digital (A/D)

counts. These 2016 data points are typically reshaped at a later stage into a more

spatially representative 16-by-126 data array. The data points are real-valued, as

the imaginary part has been lost in a squaring operation during the data acquisition

process.

1.2 Data Extraction and Processing

The thirteen files listed in Figure 1.1 were located among the 71 storage

CDs by matching file date, time and other details. Initially, the first fifteen thou-

sand frames (representing about ten minutes of acoustic noise data) along with the

header information of each of the thirteen files were extracted, stored as in MAT-

LAB variables, and then saved to a (as of 2010) forward-compatible MATLAB

workspace file (in .mat format). Later, additional sequences of frames contained

in select files were extracted in the same way, as necessary. This procedure was

conducted using a now-obsolete version of MATLAB (4.2d), run on a Macintosh
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machine (Mac OS X 10.2.4 (6J54), Power Mac G4 version 3.3, 2x512 MB RAM,

1.416 GHz, 167 MHz bus speed) in an emulated classic environment. This partic-

ular version of MATLAB was required in order to properly access the data files,

which were unreadable with other versions of the program. The program-specific

RAM had to be increased to the maximum 700000 kilobytes and the program

restarted before each extraction to avoid running out of memory. Several un-

successful attempts were made to extract the data with more recent versions of

MATLAB using both PC (Windows and emulated Mac environments) and Mac

machines before the correct and so far only workable environment-version pair able

to handle the data file structure was found. It should also be noted that substan-

tial time and effort were expended in the overall search for a workable method for

extracting the ADONIS data from storage CDs, which significantly reduced the

time available for other aspects of this project.

The data in each file was extracted twice: once to obtain a raw uncalibrated

data sequence, and once to obtain logarithmic calibrated data sequence. In the first

extraction, the data had its bad points removed and was linearized, but was kept

non-equalized and uncalibrated, and ultimately left in terms of the raw ambient

noise A/D count values. In the second extraction, the data was first linearized, then

equalized and ultimately calibrated into intensities with units of (dB re 1 µPa2/Hz).

By convention, an extracted raw data file will contain raw in its file name, and

the extracted data file linearized, equalized, and calibrated into intensities contain

cal in its file name. These conventions are useful in quickly identifying the type of

extraction in cases where the extracted data files name is explicitly stated.

The purpose of the linearization step is to limit the data values to below a

certain threshold representing the divide between linear and nonlinear data. For

calibrated data, this process ensures that no nonlinear data points are carried

over to the equalization and calibration steps which are valid only for linear data.

The nonlinear threshold is calculated based on header information (which in turn

is generated during data acquisition). The data has global extrema in the A/D

count range [0, 4095]. For data not being calibrated, the nonlinear threshold is

still enforced as a kind of clipping operation, whereby only data within the range
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[0, 4095] is considered valid. This range is evident in the raw ambient noise time

series plots presented in Figure 1.5. In addition, in order to avoid log(0) in the

calibration step described below, all values of zero (dead elements, true values of

zero, and others) are set to one. The final data range is therefore [1, 4095].

Equalization is performed by multiplying the data matrix by an equalization

matrix. The equalized data reflects the true value of the bin voltage observed at the

electronics output. The equalization data is stored as a matrix of constant values

in linear units. The manner by which these values are computed is described by

Epifanio [1997]. The voltage conversion and A/D gain values are incorporated into

the equalization matrix and the equalization values are created from actual ambient

noise data so that any channel variations due to reflector gain are corrected for

automatically. The equalization matrix values have a one-to-one correspondence

with the ADONIS hydrophone array channels.

The calibration is performed in log space on the equalized ambient noise

data. Neglecting the reflector, ADONIS can be considered a type of multi-channel

noise meter and so a modified noise meter calibration method is employed [Epi-

fanio, 1997]. The calibration matrix, C, as well as the dish-gain-per-bin matrix,

G, are subtracted from the scaled base-ten log of B, the equalized data (estimate

of the RMS energy amplitude), to give the equivalent noise power spectrum level,

or PSL:

PSL = 20log(B)− C −G, (1.1)

where the PSL is in units of (dB re 1 µPa2/Hz). This relationship is valid as

long as B2 is proportional to PSL, and as long as the amplitude of the input

ambient noise is low enough to keep the ADONIS electronics within the linear

operating region (consistent with the discussion on bad and nonlinear data earlier

in this section). It is ultimately the PSL values for the top three frequency bins

(bins 14 to 16, or equivalently 57 kHz to 75 kHz centre frequencies) that are

used to form meaningful acoustic daylight images of an underwater target. This

particular frequency range yields largest intensity difference ( 3dB after calibration)

between beams that intersect the target and beams that do not intersect the target.
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Beam pattern analysis reveals that the beam width for a source at 25m from

ADONIS ranges from 0.68 degrees at 75 kHz to 3.36 degrees at 10 kHz. It should

be noted that the beam width progression with frequency is not smooth; the beam

widths do not scale inversely with frequency [Epifanio, 1997]. Like the equalization

matrix, the calibration (C) and dish-gain-per-bin (G) matrices are predetermined

constants. These matrices are chosen based on the type of experiment and gain

information found in the data file header, and are then loaded and applied to the

data. The calibration and dish-gain-per-bin matrices are functions of all other

relevant parameters in the noise meter calibration method, for example: element

sensitivity, electronics and reflector gains, and equivalent solid angle for the beam.

In both extraction cases, the so-called bad frames were identified (and their

locations recorded) and were removed during extraction. A good frame is one with

a conversion pulse count of 2048 recorded in the frame header, while a bad frame

is one for which a spurious memory transfer occurred during the data acquisition

sequence, and is identified by a conversion pulse count of less than 2048. The bad

frames are therefore unreliable as data points and should be omitted from any

data analysis. The bad frames represent less than five percent of the frames in

each file and seem to be randomly distributed. A consequence of omitting the bad

frames is that the information contained in each bad forty millisecond interval will

be lost and the corresponding time interval is reduced to zero. In addition, the

entire time interval represented by the sequence of frames will be a few percent

smaller than the actual time interval during which the data was recorded. The

time distortion and the loss of information have the potential to change the auto-

correlation estimation calculation (which is time dependent) and thus adversely

affect the correlation time analysis. Similarly, the loss of information due to the

removal of nonlinear data (described in the linearization step above) may also

negatively affect the correlation time analysis.
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1.3 Isolating Useful Data Segments

Initially considered for correlation time analysis were segments of at least

fifteen thousand consecutive frames, representing at least the first ten minutes of

each of the thirteen ADONIS ambient noise data files described in Figure 1.1. The

minimum of ten minutes reflects both the length of time used by Epifanio [1997] in

his statistical analysis as well as a practical size given the maximum RAM available

in the old version (4.2d) of MATLAB used data extraction. Longer segments (up

to the total length of the experiment) were occasionally used (in the case of data

file number 15, for example), but were more difficult to obtain as they required

a post-extraction matching of two or more separately extracted data segments.

Only the raw ambient noise intensity data in units of A/D counts was used for the

correlation time analysis, since data calibrated in log space into units of decibels

is nonlinear and cannot produce a useful correlation time plot. For compactness

and comparison purposes, the auto-correlation curves for raw data from several

frequency bins were generally superimposed on a single plot.

To view the general behaviour of the intensity of the ambient noise over

time, a simple time-series plot of raw ambient noise data counts over time (in

seconds) was produced for each of the thirteen files listed in Figure 1.1. For illus-

tration and completeness purposes, a time-series plot for a single data file, number

fifteen, is shown in Figure 1.5, which may be considered typical in many respects

of all thirteen files time series plots. The ambient noise intensity data from each

of the sixteen frequency bins described in Figure 1.3 was examined; the intensity

trend was found to be similar for any given frequency bin. Only the top four fre-

quency bins, 13 through 16, are presented in Figure 1.5. All data presented in the

figures was recorded by a single hydrophone, number 12, which is approximately

at the centre of the hydrophone array. The numbered spatial configuration of the

hydrophone array is shown in Figure 1.4. Time-series plots were generated using

data from hydrophones at other locations (including, in particular: channels 26,

116, 90, and 73), and these turned out to be similar but not identical in overall

shape. The existence of a readily detectable difference in noise intensity among

hydrophones at different locations in the array is consistent with the intensity dif-
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ferences (on the order of 3 dB) readily observed among pixels of the calibrated

acoustic daylight images.

There are some features of note in the time-series in Figure 1.5. The ambient

noise intensity upper limit of 4095 A/D counts is evident throughout the time-

series, which is consistent with the linearisation step in the extraction restricting

the raw data to the range [1, 4095]. The hard upper threshold does not appear to

have affected a large percentage of the data points. Also, it is evident that there was

a non-trivial minimum ambient noise intensity on the order of 10 A/D counts (with

a typical range of 30 to 90 A/D counts) throughout the entire sequence indicating

a continuous non-zero minimum background noise level. As the snapping shrimp

were the single most significant high-intensity noise source, it is likely that the

shrimp contributed at least in part to this continuous minimum background noise

level.

The most significant feature evident in Figure 1.5 is the prominent spike in

minimum (and overall) noise intensity centered at approximately 620 seconds coin-

cides with the ADONIS hydrophone array being rotated (or scanned) horizontally

across the target. The data file header indicated there was a scan from left to right

across the target at some point during the experiment. Each of the first 18951 good

data frames, equalized and calibrated into intensities in dB during extraction, was

transformed into an individual acoustic daylight image by averaging the top three

frequency bins (57kHz to 75kHz). The sequence of 18951 images was then made

into an acoustic daylight video and the left to right scan across the target was

confirmed visually between (approximately) the 600 and 630 second marks. This

process was repeated for the other twelve data files as a means of locating and

confirming ADONIS scans across a target and other visually detectable events.

It can also be seen in Figure 1.5 that that the upper limit of 4095 A/D counts

affected only a small percentage of the data points during the first ten minutes

of data where the ADONIS is in a static configuration (that is, not scanning).

However, this hard threshold became quite significant when the ADONIS scanned

horizontally across the target. It is evident in the time series (and in particular for

frequency bins 13 through 16) that for several seconds during the scan represented
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by the intensity peak, every data point was cut off and assigned a value of 4095

A/D counts. In the video, this event was represented by a near-still image for

these several seconds, trivially displaying the constant intensity values represented

by the calibration and equalization matrices. The most likely explanation for this

abrupt departure from the static configuration is that the loud hydraulic device

driving the rotation of ADONIS temporarily overwhelmed the entire ambient noise

field. The acoustic image became completely saturated for several seconds during

the scan and the target was no longer visible during that time. This phenomenon

was not always so severe; in most of the experiments the scans resulted in a much

smaller jump in intensity and only rarely was there a significant period of time

where the intensity was continuously cut off for several seconds at the 4095 A/D

count limit.
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Table 8.1
Number

Filename in
Table 8.1

Storage CD
Number (out of 71)

Filename on
Storage CD

2 MM2(1) 65 MULTIMET.DAT

3 HoleyC 22
HOLEYCROSS.
DAT

4 MMscan 37 MULTIMET.DAT
5 Wood 13 MULTIWOO.DAT
7 Xscan 7 XSCAN_1.DAT
8 Sphere 26 FARSPHER.DAT
9 SandAir 42 SANDAIR1.DAT

10 FarPlus 47 FARPLUS6.DAT
11 FarX 53 FARX_3.DAT
13 FarC 48 FARCRUC1.DAT
14 NearD 17 NEARDRUM.DAT
15 MM2(2) 62 MULTIME6.DAT
16 3Drum 67 3DRUM-3.DAT

Figure 1.2: Chart showing the experimental correspondence between the data
files listed in Figure 1.1 and the data files among the 71 storage CDs.



11

 

Frequency Bin Centre Frequency (kHz)

1 8.5

2 10.0

3 11.7

4 13.8

5 16.0

6 18.6

7 21.3

8 24.6

9 28.3

10 32.6

11 37.5

12 43.1

13 49.5

14 57

15 64.4

16 75.0

 

Figure 1.3: Centre frequencies, corresponding to each of 16 logarithmically spaced
frequency bins, at which the intensity of the noise is sampled in each channel at
25 times per second (or approximately 4 ms per frame). This table is equivalent
to TABLE I in [Epifanio et al., 1999].
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    24 25 26 40 41 42     

  17 16 82 81 80 45 44 43 105 104   

 18 19 20 83 84 85 46 47 107 106 102 103  

79 78 23 22 21 87 86 48 49 108 109 101 100 99

74 75 76 77 15 14 13 51 50 111 110 119 118 117

73 72 8 9 10 11 12 52 53 112 113 114 115 116

5 6 7 71 70 69 68 55 54 120 59 58 57 56

4 3 2 64 65 66 67 123 122 121 60 61 62 63

 0 1 31 30 94 95 124 125 38 39 97 98  

  27 28 29* 93 92 91 37 36 35 96   

    88 89 90 32 33 34     

 

Figure 1.4: Spatial configuration of the receive-only hydrophones in the ADO-
NIS hydrophone array. The numbers listed correspond to the original channel or
multiplexer number associated with each hydrophone in the array. The order-
ing does not account for reversal of image (horizontal flipping) due to the dish.
Channel 29(*) is dead in the ORB 2 experiments [Epifanio, 1997]. Select channels
described in the statistical investigations are: 12 (center-mid), 26 (top-mid), 90
(bottom-mid), 116 (center-right), and 73 (center-left).
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Chapter 2

Correlation Time Analysis of

Ambient Noise Intensity

2.1 Auto-correlation Algorithm

In the correlation time analysis for the ADONIS ambient noise fluctuations,

the desired time correlation function is the special case of the cross-correlation: the

auto-correlation, in which the two input sequences being considered are the same.

In this case, the quantity being considered is a sequence of raw ambient noise inten-

sity data over time. The purpose of the auto-correlation in this case is to quantify

the similarity between noise observations in a single data set as a function of the

time separation (or time lag) between them. According to Buckingham [1983], a

continuous, time-dependent, random process represented by the real function x(t),

has a true auto-correlation:

Rxx(τ) = lim
T→∞

∫ T/2

−T/2
x(t+ τ)x(t)dt, (2.1)

where t represents time, τ = s− t represents a time lag or time separation between

two times, t and s, where t and s may be different or equal. Rxx(τ) is therefore the

auto-correlation between the process x at time t and the same process x at time s.

The auto-correlation at zero time, Rxx(0), will be the location of the biggest peak,

and is equal to the mean-square value of the process x(t). This is expected since

14
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two signals which are the same will be exactly correlated at the same time lag. At

no time lag are two identical signals better correlated than at τ = 0. A normalized

auto-correlation, where the auto-correlation at zero lag is identically one, will have

the maximum value of one at the origin. If x(t) contains a periodic component,

the (true) auto-correlation will also contain a periodic component with the same

period. However, if x(t) does not contain a periodic component, the (true) auto-

correlation will tend to zero as the time lag goes to infinity, that is, x(t+τ) becomes

increasingly uncorrelated with x(t) as the lag τ becomes larger. Also, the auto-

correlation of a real function is an even function, so one can expect a plot of the

auto-correlation function to be symmetric about the origin, t = 0, as is the case

with the analysis here.

Since any given ADONIS ambient noise data sequence (which is several

minutes in length) is a discrete, finite segment of one realisation of the theoret-

ically infinite-length process represented by the ocean’s ambient noise field, the

correlation time for the ambient noise intensity cannot be calculated using the real

auto-correlation described in 2.1. Instead, it must be estimated using a determin-

istic auto-correlation algorithm based on the true auto-correlation. The algorithm

used here is an efficient FFT-based cross-correlation algorithm that can handle

auto-correlation as a special case [Orfanidis, 1996], implemented as xcorr in the

standard MATLAB signal processing package. For a discrete real process x(t) of

time-length T defined as x(0), x(1), ..., x(T ), where each element is a sample of

the process x(t), the raw, discrete, non-normalized auto-correlation estimate is

computed for non-negative time lags τ in the following way:

Rxx(τ) =
T−τ−1∑
t=0

x(t+ τ)x(t). (2.2)

By the basic properties of the auto-correlation for the real process x(t), the auto-

correlation curve over time will be symmetric about t = 0, so Rxx(τ) = Rxx(−τ) for

all time lags. Given the special case where both input sequences are the process

x(t) of length T , the cross-correlation algorithm returns an output sequence of

values of length (2T −1) representing the corresponding auto-correlation sequence

estimate. The calculation involves an implementation of 2.1. The output sequence
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is c(τ) = Rxx(τ − T ), where τ = 1, ..., (2T − 1). The normalization scheme used

here for the auto-correlation is one where a normalization constant is calculated

based on the constant coefficients of the raw auto-correlation sequence values, and

each value in the sequence is divided by that normalization constant so that the

auto-correlations at zero lag (τ = t = 0) are identically unity (represented by a

steep spike about zero lag).

2.2 Auto-correlation of White Noise

As a consistency check and for the purpose of future comparison with am-

bient noise correlation time plots, a short experiment was undertaken involving

synthetic data and their auto-correlations. Four sequences of five hundred pseudo-

random numbers were generated using the Ziggurat algorithm [Marsaglia and

Tsang, 2000]. The first two sequences were formed from a uniform distribution

in [0, 1] and then multiplied by a constant (a = 2000) after being centered about

either f(t) = 0.5 (the regular configuration) shown in blue, or shifted by a constant

value of 0.5 (so as to be centered about f(t) = 0) shown in red. The second two

sequences were formed from a normal distribution with mean 0 and standard de-

viation 1 that was multiplied by a constant (a = 2000) after being centered about

either the origin (a mean of 0), shown in black, or one (a mean of greater than 0),

shown in green. These four curves are superimposed in Figure 2.1. Subsequently,

the auto-correlations of the random functions plotted in Figure 2.1 were plotted

and are presented in Figure 2.2.

It is evident that those sequences originally centered at a point above the

origin (that is, with a mean greater than zero) exhibited a distinct triangular win-

dowing effect. This windowing effect is characteristic of the auto-correlation of

a (finite) square pulse of positive constant value. The auto-correlations of the

green and blue curves of Figure 2.1 clearly exhibited such a triangular window-

ing effect. The curves representing these auto-correlations are illustrated using

the same colour scheme in Figure 2.2. Meanwhile, those functions that were cen-

tered about the origin (that is, with a mean of zero) exhibited no such triangular
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windowing effect. Moreover, they approximated the delta function that would be

expected of the auto-correlation of finite white noise. The curves representing these

auto-correlations are the red and black curves of Figure 2.2.

A basic conclusion drawn from this experiment is that subtracting the mean

from each point in the original time-series, so that the time-series is centered

about the horizontal origin, allows for the generation of an auto-correlation plot

devoid of any triangular windowing artifact. This allows the other features of the

correlation time to be more readily observed by inspection. Of particular interest

in the eventual correlation time analysis of the ambient noise data is the behaviour

of the curve near the origin (lag of zero), where the de-correlation is fastest. This

region can be better examined once the windowing artifact is removed.

2.3 Auto-correlation of Ambient Noise Intensity

Data

A correlation time analysis of ADONIS data file number fifteen of Figure 1.1

is examined in detail in this section, and is representative of the procedure used for

the analysis of the remaining thirteen experimental data files. The entire 34420-

frame ambient noise intensity sequence, whose original time-series plot is presented

in Figure 1.5, is again considered here. It is evident that the 34420-frame sequence

contains both sub-sequences where the ADONIS is in a static configuration (that

is, motionless), and sub-sequences where the ADONIS is scanning horizontally

across the target (that is, in motion). By way of acoustic daylight image video,

the non-static configuration sub-segments were verified as coinciding with the large

spikes in minimum intensity in the time-series plots, and the static configuration

sub-segments were those sections with relatively constant minimum intensity in

the time-series plots. It is important to note that the ADONIS scanning operation

was powered by a noisy hydraulic motor [Epifanio, 1997], which almost certainly

accounts for the aforementioned large intensity spikes (and departure from the

typical minimum ambient noise level of O(10) A/D counts).

The normalized auto-correlation algorithm developed in Section 2.1 and
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applied to random data in Section 2.2 was applied to data file fifteen by way of

using the entire 34420-frame ambient noise intensity sequence as the input se-

quence. A relevant subset of frequency bins was considered: three of the lower

frequencies (bins 1, 5, and 9), as well as the top four frequency bins (13 through

16) which are also those four frequencies depicted in Figure 1.5. Plots of the re-

sultant auto-correlations over time are presented in Figure 2.3. Of particular note

in the auto-correlation curves are the general triangular shapes of the curves and

their resemblance to the triangular windowing artifact depicted in the blue and

green curves in Figure 2.2. Also of note are the spikes in auto-correlation near 600

seconds and 1200 seconds, which roughly correspond to the temporal locations of

the spikes in ambient noise intensity (around scanning episodes) in the time series

plot in Figure 1.5. Finally, it is evident that the shape of the auto-correlation

curve in first minute around t = 0 deviates quite distinctly from a typical delta

function approximation, and looks to exhibit behaviour possibly approximating an

exponential decay. However, since it is known by way of ADONIS data file header

information as well as visually in the acoustic daylight video that segments of data

were contaminated by sharp bursts of the hydraulic motors high-intensity noise,

it is likely that the auto-correlation estimations for the time lags around t = 0

were significantly affected by the non-static configuration scanning events. It is

therefore imperative to compare the result described previously in this paragraph

with the auto-correlation results for static configuration segments only. Such a

segment is obtained using the method described in Section 1.3 (Isolating Useful

Data Segments).

The normalized auto-correlation curves over time of the initial 560 seconds

of ambient noise intensity contained in data file number 15 are presented in Fig-

ure 2.4. This 560 second segment was verified by acoustic daylight image video

to correspond to a period of time where the ADONIS is in a static configura-

tion, that is, not scanning horizontally across the target. The same representative

subset of the frequency bins (described in the previous paragraph) is considered.

The original time series is just the first 560 seconds of the time series plotted in

Figure 1.5. Again note the triangular shapes of the curves and their resemblance
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to the triangular windowing artifact depicted in the blue and green curves in Fig-

ure 2.2. This will be dealt with in the next paragraph. Note also the absence of

any spikes in auto-correlation evident in Figure 2.3. This almost certainly reflects

the absence of any scanning events during this 560 second segment, so the data

is largely representative of the ambient noise field in San Diego bay at the time,

which in turn is largely dominated by the shrimp snapping activity. Finally, note

the approximate delta-function shape of the auto-correlation curve near t = 0.

The possibly exponential-looking behaviour near t = 0 is completely absent, and

the normalized auto-correlation curves drop by about fifty percent after the first

forty millisecond time lag, that is, just one data frame period. This confirms the

result predicted in the previous paragraph.

Figure 2.4 presents the normalized auto-correlations of the mean-biased

initial 560 seconds of ambient noise intensity time series of data file number 15.

The mean bias is applied by subtracting overall mean value ( 531.84 A/D counts)

from each data point in each time series prior to auto-correlation. Figure 2.4 is

therefore the same as Figure 2.3 except for the mean-biased time-series input.

Note the approximate delta-function shape of entire auto-correlation curve in the

absence of any triangular windowing artifact. The removal of the mean before auto-

correlation is effective in eliminating the triangular windowing in the same manner

as for the random data presented in Figure 2.1 and Figure 2.2, and comparing

those two auto-correlation curves with the curve in Figure 2.4, it is clear that

the auto-correlation of a segment of static-configuration ADONIS ambient noise

intensity data closely resembles the zero-mean auto-correlation curves for white

noise (red and black) presented in Figure 2.2. It is reasonable to assume, therefore,

that the shrimp-snap-dominated ambient noise intensity fluctuations in San Diego

bay are simply white noise and exhibit no periodicities at timescales smaller than

the diurnal intensity increases around dusk and dawn demonstrated by Epifanio

[1997]. A basic conclusion that may be drawn from these results is that since

the shrimp seem to not exhibit any kind of synchronization or pattern that might

manifest itself as a periodic or other non-white-noise signal (which would appear

as something other than a delta function upon auto-correlation) it is very likely
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that the shrimp do not co-ordinate or communicate by snapping, or otherwise care

about each others’ snaps.

To help confirm the results, a horizontally-constrained zoom of Figure 2.5

is presented in Figure 2.6, which more clearly illustrates the behaviour of the

auto-correlation curve near t = 0. Note the extremely rapid de-correlation of the

ambient noise intensity over the a 0.04 second (or one frame) time lag. It is again

evident that the auto-correlation of the ambient noise intensity in the initial mean-

biased static-configuration segment of ADONIS data file number 15 very closely

resembles a finite approximate to the delta function, the auto-correlation of white

noise, which is equivalent to the auto-correlation curve for a random sequence of

numbers with a mean of zero described earlier in this section. This result is common

to several sections of ambient data from different files (representing experiments

on different days and at different times for different targets). The result also holds

for all 16 frequency bins (between 8.5 kHz and 75.0 kHz), and for hydrophones at

various locations in the array.

Some concerns exist about the validity of the results. First, it is possible

that the raw noise intensity data is not truly representative of shrimp snaps as the

dominant high-frequency ambient noise source, and instead is heavily contaminated

by white noise from the amplifier assemblies, the electronics, the hydraulic scanning

motor, and other sources (apparatus and environmental) not accounted for in the

subjective description of the experimental site. This is unlikely as the hydraulic

motor effect is removed by isolating only static-configuration data, and the other

noise sources have been very carefully analysed and checked by Epifanio over the

course of his doctoral work [1997]. Second, the application of a hard threshold

to the raw ambient noise intensity of 4095 A/D counts (the upper limit for linear

data) may remove too much information and hide some potential periodicities

at the highest intensity levels. Similarly, throwing away both nonlinear and bad

frames during extraction (which represent 5 percent of the total) may remove too

much information, introduce unacceptable data gaps, and otherwise render the

auto-correlation estimation calculation invalid by adulterating or distorting the

continuity of the time lag intervals. Since the bad frames seem to be randomly
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distributed throughout the data and represent such a small percentage of the data,

it is assumed here that the result of an auto-correlation representing white noise

would not be affected by reintroducing any of the removed data. Third, the small

noise recording time window afforded to each frequency bin (about 1ms out of

each 40ms recording cycle) may cause some aliasing or otherwise result in an

unacceptable loss of information. This is a valid concern, and might be addressed

by some more creative averaging or other pre-processing of the data prior to auto-

correlation, but the concern is mitigated somewhat in that the time-series curves

and auto-correlation curves for each frequency bin exhibit very similar behaviour

in each case, so any missed periodicities, for example, would need to be extremely

well-hidden in order to be concealed by the sampling process in the ADONIS

experiments.

Future data analysis on this same data set may help address some of the

issues addressed in the previous paragraph, and also help confirm the results out-

lined earlier. Figure 1.1 outlines the various experimental variables that have the

potential to significantly affect the time-series as well as correlation time behaviour

of the ambient noise field in San Diego Bay. Some such significant variables might

include: target shape, size, material distance from ADONIS, angular direction

from ADONIS, distance from sea floor; time of day (especially with respect to

the known diurnal variations in shrimp snapping), length of experiment, day of

the week; noise intensity, frequency and directionality of boat traffic and indus-

trial noise, marine mammal vocalizations (which have a directional dependence,

e.g. marine mammal pens at 180 degrees), and other potential significant noise

sources other than the known dominant shrimp snapping; tide behaviour and ef-

fects; wind, air and water temperature, precipitation, and other weather effects;

ADONIS scanning details including direction, duration and speed, depth; A/D

board gain (note file number 8 in Figure 1.1 has an A/D board gain of 1 instead of

the usual 8); the effect of occasional explicit introduction of a known-frequency ex-

perimental noise source and its characteristics; experimental synchronization with

the camera and ITC; and differences between data recorded spatially disparate

array hydrophones. Many of these variables have already implicitly been ruled out
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(through careful consideration in Epifanios [1997] as well as my own analysis) as

being able to significantly mask or distort the outcome of the experiment based

on the assumption of the shrimp snapping as the dominant ambient noise source

in San Diego Bay, but it certainly would not hurt to have additional objective

analysis in order to confirm the results present in this document.
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Chapter 3

Acoustic Daylight Image Target

Recognition

The primary method of object recognition described in this chapter is based

on the mathematics of principal component analysis, or PCA. PCA makes use of

the eigenvalue decomposition of a covariance matrix as a means to differentiate one

object from others based on its features, or principal components [Jolliffe, 2002].

This chapter describes the implementation of the PCA-based object recognition

procedure, as well as the results of various recognition experiments performed using

both original and modified ADONIS images as query and database image sets.

3.1 PCA Algorithm for ADONIS Images

A database of known acoustic daylight images is developed, consisting of

matrix representations of ADONIS image data in MATLAB (.mat) format. The

image data is extracted from the original data files, equalized from linearized am-

bient data and calibrated in the usual way. Each individual database image rep-

resents a temporal average of several dozen (usually 250) consecutive good frames

to ensure image stability given the temporally variable ambient noise field. Each

image is packaged into a 11-by-14 matrix, the spatial configuration of which is con-

sistent with the configuration of the ADONIS hydrophone array. In other words,

each pixel in the matrix corresponds either to a pixel in either the elliptical ADO-

29
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NIS array (where image information exists) or the non-array background (where

no image information exists). The values in each pixel correspond to the acoustic

daylight image intensity. Non-interpolated visual renderings (in .jpg format) with

identical filenames are included in the database folder to assist in manual identi-

fication of the array representations. The database is meant to contain distinct

ADONIS images of known objects that will matched to ADONIS images query of

unknown objects, using the recognition algorithm.

A query image in MATLAB (.mat) format, packaged into the same 11-by-14

matrix representation of the elliptical ADONIS array, is chosen for the recognition

procedure. An ideal image is one with visually similar characteristics to one of the

database images. Where possible, the query image should be created by averag-

ing a sequence of frames representing an object that is relatively clearly defined,

and has a possible injective relationship with one of the database objects. All

database images and query images must be represented in the same standard for-

mat. Specifically, the elliptical array within the 11-by-14 matrix with a uniform,

non-data (uniform) background outside the ellipse, and the values inside the ellipse

increase in value as the intensity of the acoustic daylight signal increases. Inside

the ellipse, the higher values represent the presence of a target object and lower

intensity values represent the lack of a target object in the surrounding water).

First, the set of deviations from the mean images is constructed in the fol-

lowing manner. The database image matrices (.mat files) are loaded into the

MATLAB workspace. The set of database image matrices is denoted: X =

[X1;X2; ...;Xn], where n is the number database images. The overall maximum

intensity value (over all image intensity values), Imax is obtained and all image in-

tensity values are normalized within the range [0, 1]. A mean normalized database

image, Xavg, is created by averaging all normalized database images into a single

11-by-14 matrix. The maximum intensity in Xavg is Imax/Imax = 1. A set of images

Y representing deviations from the mean is created by subtracting Xavg from each

image Xi in X, so that Y = [Y1;Y2; ...;Yn] = [X1−Xavg;X2−Xavg; ...;Xn−Xavg].

Second, each image in the database is projected onto the database’s univer-

sal eigenspace [Jolliffe, 2002]. The method is as follows. A positive definite square
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matrix representing the covariance Z = Y Y T is constructed. Z has eigenvalues λi

(a chosen finite set of which is [λ1, λ2, ..., λk]) and corresponding eigenvectors ei (a

chosen finite set of which is [e1; e2; ...; ek]). The set of eigenvectors ei (or, ’eigenim-

ages’) define the database’s universal eigenspace, E = [e1; e2; ...; ek]. Each database

image is then projected onto the universal eigenspace E. The set of images pro-

jected onto the universal eigenspace is represented by G = [g1, g2, ..., gn], and the

k-tuple for each projection of Xi onto E is: gi = ETYi = [e1; e2; ...; ek]
T [Xi−Xavg].

The eigenvalues and eigenvectors are then sorted in order of decreasing eigenvalue,

ensuring that the pairings between eigenvalue and eigenvector are maintained. The

value k is the number of eigenvalues computed (equal to the number of eigenvec-

tors computed), where λ1 is the (overall) largest eigenvalue and λk is the smallest

out of the finite set of eigenvalues computed (not necessarily the smallest overall

eigenvalue). The value of k can vary, but should be large enough so that the most

significant image features are accounted for, though not so large that too many

insignificant features skew the result.

Third, the recognition procedure is carried out for a chosen query image.

The query image is extracted, equalized, calibrated and packaged in the same way

as the database images, yielding an 11-by-14 matrix Q. Q is normalized in the same

manner as the database images. The deviation from the mean R = [Q −Xavg] is

calculated and R is projected onto the universal eigenspace E in the same manner

as the database images to yield F = [f1, f2, ..., fn]. G and F can be considered

vectors in Euclidean n-space. The recognition procedure identifies the best match

between the query image and the database images by finding the [f, g] pair with

the smallest Euclidean distance d between them in k-space (where k is less than or

equal to n): d = ((g1− f1)
2, (g2− f2)

2, ..., (gk− fk)2)1/2. The number of [f, g] pairs

is equal to k, the number of eigenvalue-eigenvector pairs calculated earlier. The

quality of the matches is in the reverse order of the Euclidean distance between the

set of [f, g] pairs. The query image and the top database image matches can then

be visually presented by displaying the top images in order of their corresponding

values of d.
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3.2 Recognition Experiments

A short experiment using the PCA algorithm performed on a subset five

ADONIS acoustic daylight images. Each image features a distinct type of target

object: the planar holey cross, a planar bar, the three suspended drums, a bottom

drum, and a sphere. The original versions of these images are shown in Figure 3.1 in

both their non-interpolated and interpolated forms. Recognition experiments are

performed on original non-interpolated image data and the interpolated images

are for post-processing enhancement only. The output format, unless otherwise

specified, consists of two rows of images, non-interpolated images in the top row

and their interpolated counterparts in the bottom row. The first column represents

the query image, and the rest of the columns (the number varies, but there are

typically three or four) are the best database image matches, in order of increasing

Euclidean distance. The database consists the five ADONIS images described

above, generally manipulated or differing in some way from the original images.

The number of top eigenvalues computed, k, may varied and can significantly

affect the computed Euclidean distance values; it can therefore significantly affect

the outcome of the experiment.

In an initial trivial experiment, the query image is the holey cross image and

the database consists of the aforementioned eleven images including the holey cross.

Predictably, the recognition algorithm selects the holey cross image as the best

match, with a Euclidean distance of zero. The number, k, of eigenvalues computed

in this trivial example is unimportant (as far as the top result is concerned), since

when given an query image that also exists in the database, the algorithm will

select that same image as the top match with a Euclidean distance of zero, given

any arbitrary integer k value greater than zero. In this case, k was set to one.

The next set of experiments involves various transformations of the five

images shown in Figure 3.1. The database consists of three sets of these five

images, hereafter referred to as the ”original set.” In the first experiment, the

effectiveness of the database on flipped images is examined. The first set is the

same as the original set, with the data averaged over the top three frequency

bins as before, except the data has been flipped left-to-right, that is, the leftmost
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column’s pixels are swapped with the rightmost column’s pixels while maintaining

row order, and so forth. The second set is again the same as the original set except

the data base been flipped top-to-bottom. The third set is the original set flipped

both left-to-right and then top-to-bottom. The query images are from the original

set, and k is set to ten. The results are presented in Figures 3.2 and 3.3. The

results generated for both bottom air drum and holey cross query images typify

results for the other three query images as well as for values of k beyond one (with

some minor variation in the ordering of second through fourth best results), so the

discussion here applies in general to the original set images when used as queries

to the flipped image database.

The results in Figure 3.2 demonstrate that the PCA recognition algorithm

performs reasonably well for ADONIS images like that of the bottom air drum

after various reflection mappings (flips) about perpendicular central axes. Indeed,

all three different flipped database versions of the bottom air drum feature in the

top four results (with k-space Euclidean distances of about 2.81, 4.47 and 5.28,

respectively), with only the third result giving a different object (the planar metal

bar, with a Euclidean distance of about 4.51). The prominent features of the bot-

tom air drum image include a centrally located horizontal ’band’ of high intensity

with two prominent adjacent ’dots’ of highest intensity within the greater ’band.’

Also prominent are the medium intensity ’halo’ regions above and below the high

intensity band which slowly degrade toward the outer boundaries of the elliptical

data region. All four bottom air drum images exhibit these features. The differ-

ence between the air drum image that comes up at the fourth-best match (twice

flipped: left-right and up-down) and the first two seems to be the homogeneous ar-

eas of medium to medium-high intensity both below and to the right of the target

in the twice flipped image, while the query image and the top two matches (once

flipped air drums) have the medium to medium-high intensity regions either above

or to the left of the target. The only non-air drum match, the metal bar, has the

medium-intensity regions above the target but not to the right. The metal bar

image also has a high-intensity target area in the same and of nearly the same size

as the high-intensity target area in the air drum images. It is likely for this reason
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that the metal bar is picked above the twice-flipped air drum image. A potential

solution to this problem might be to conduct some pre-processing in the form of a

threshold to keep the high-intensity target area and eliminate the medium intensity

’halo’ areas. This would essentially leave only the high-intensity targets, which,

under a future recognition experiment, yield all three air drum images as the top

three matches since the targets would all me more alike and in similar locations

while the metal bar image would have its target in a similar central location but

would be less alike since the target would have more of circular or square shape

rather than the centrally-located horizontal band shape of the air drum images.

The results in Figure 3.3 illustrate some of the major weaknesses of the PCA

recognition algorithm when applied to ADONIS images. While the algorithm does

pick one of the flipped holey cross images (the up-down flip), it then goes on to

pick various images of other targets as the the next three top matches. In fact, the

other two holey cross images (left-right and twice flipped) are not picked until the

end of the match order (fourteenth and fifteenth out of fifteen). The reason for this

is most likely due to the location of the highest intensity feature in the image: the

left panel of the cross. The ’dot’ representing its intensity peak is about fifteen to

thirty percent higher than the intensity of the other three holey cross panels, even

through all four panels have a much higher intensity than the rest of the image.

This type of high-intensity ’dot’ is found in all of the normalized database images.

As a result of the normalization, any high-intensity ’dot’ present in the middle-left

of the elliptical data region will closely resemble the high-intensity ’dot’ of the left

holey cross panel, evident in the query image and the first match, and will end

up curbing the k-space Euclidean distance heuristic dramatically. Indeed, it turns

out that all flipped versions of the four non-holey cross images, after normaliza-

tion, have such similar high-intensity ’dot’ features nearer to the location of the

left holey cross panel in the query image (centre or centre-left) than do the left-

right flipped holey cross images which end up having a dot to the far left-centre

of the elliptical data area. This centre-to-centre-left highest-intensity dot trumps

the Euclidean distance metric despite the presence of the three slightly-less high-

intensity dot pattern of the holey cross in the two left-right flipped images, which
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make these images (to the human eye) more similar to the query image than any

of the other non-holey cross database images. A potential remedy to this problem

would be to perform pre-processing in the form of an intensity equalization akin

to a basic intensity histogram equalization transformation. This would help make

all four high-intensity ’dot’ features representing the holey cross panels of approx-

imately equal intensity. This would give each of them approximately equal weight

as prominent features in the eigenvalue representation and therefore also in the

Euclidean distance heuristic calculation. Other modifications such as thresholding

and cropping (so that the target is more ’centred’ in the elliptical data area) would

most likely also contribute to more accurate matching in future experiments.
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(a) Bottom Air Drum 
[NI]

(b) Bottom Air Drum 
[I]

(c) Pl. Holey Cross 
[NI]

(d) Pl. Holey Cross [I]

(e) Planar Metal Bar 
[NI]

(f) Planar Metal Bar 
[I]

(g) 3 Susp. Drums 
[NI]

(h) 3 Susp. Drums [I]

(i) Sphere [NI] (j) Sphere [I]

  

 

Figure 3.1: The five images used in the initial recognition experiments; non-
interpolated [NI] and interpolated [I] forms.
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Figure 3.2: PCA recognition experiment results for a database containing flipped
(left-right, up-down, and both) versions of the original 5 images. The query image
is the bottom air drum.

Figure 3.3: PCA recognition experiment results for a database containing flipped
(left-right, up-down, and both) versions of the original 5 images. The query image
is the holey cross.
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