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Article

Oncogenic mutant RAS signaling activity is rescaled
by the ERK/MAPK pathway
Taryn E Gillies1,†, Michael Pargett1,†, Jillian M Silva2, Carolyn K Teragawa1, Frank McCormick2,3 &

John G Albeck1,*

Abstract

Activating mutations in RAS are present in ~ 30% of human
tumors, and the resulting aberrations in ERK/MAPK signaling play
a central role in oncogenesis. However, the form of these signaling
changes is uncertain, with activating RAS mutants linked to both
increased and decreased ERK activation in vivo. Rationally target-
ing the kinase activity of this pathway requires clarification of the
quantitative effects of RAS mutations. Here, we use live-cell imag-
ing in cells expressing only one RAS isoform to quantify ERK activ-
ity with a new level of accuracy. We find that despite large
differences in their biochemical activity, mutant KRAS isoforms
within cells have similar ranges of ERK output. We identify roles
for pathway-level effects, including variation in feedback strength
and feedforward modulation of phosphatase activity, that act to
rescale pathway sensitivity, ultimately resisting changes in the
dynamic range of ERK activity while preserving responsiveness to
growth factor stimuli. Our results reconcile seemingly inconsistent
reports within the literature and imply that the signaling changes
induced by RAS mutations early in oncogenesis are subtle.
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Introduction

The RAS GTPases act as molecular switches, alternating between an

inactive GDP-bound state and an active GTP-bound state. In the

active state, RAS proteins have a greatly increased binding affinity

for their effectors (Gremer et al, 2011), which in mammalian cells

drive multiple cell growth signaling pathways. The net signaling

activity of RAS in the cell represents a balance between two classes

of proteins: GTPase-activating proteins (GAPs), which inactivate

RAS by increasing its GTPase activity, and guanine nucleotide

exchange factors (GEFs), which catalyze the dissociation of GDP

and return RAS to the active GTP-bound state. Though RAS proteins

are considered binary switches on the molecular level, the collective

behavior of the thousands of RAS proteins present inside each cell is

analog in nature. The relative activity of GAPs vs. GEFs in the cell

determines the fraction of RAS molecules in the active state, which

in turn regulates the activity of downstream processes.

RAS mutations occur frequently in cancers, especially those of

the pancreas, lung, or colon (Fernandez-Medarde & Santos, 2011),

and typically have the effect of increasing the signaling output of

one of the RAS isoforms. Most oncogenic RAS mutations (85%)

occur in the KRAS isoform, with 11% in NRAS and 4% in HRAS

(An & Harper, 2018). Across all isoforms, 98% of oncogenic muta-

tions are located at G12, G13, and Q61 (Prior et al, 2012) and render

the RAS proteins GAP-insensitive to varying degrees. The net effect

of these mutations is to increase the fraction of RAS proteins in the

GTP-bound active state, which enhances their binding affinity to

effectors, including the RAF kinases (Gremer et al, 2011; Smith

et al, 2013; Hunter et al, 2015). RAF initiates a kinase cascade

involving MEK and ERK (Fig 1A), which plays a primary role in

tumor development and is a pharmacological target for cancer ther-

apy. ERK phosphorylates hundreds of downstream targets (Yoon &

Seger, 2006), many of which are transcription factors controlling cell

cycle progression and cell migration.

While RAS mutations are widely thought to initiate tumors by

enhancing the activity of RAF/MEK/ERK signaling to drive tumori-

genic cellular behaviors, this model is not consistent with all of the

data available. A number of observations deviate from this simple

linear view of RAS signaling. First, the observed frequency of RAS

mutations in cancer does not correlate with the strength of their

effect on RAS GTPase activity. Mutations of intermediate strength

are most prevalent, and the strongest mutations are found infre-

quently (Li et al, 2018). Second, the mutational status of RAS is

poorly correlated with average levels of active dually-phosphory-

lated ERK (ppERK) both in tumor cell lines (Omerovic et al, 2008;

Yeh et al, 2009) and in genetically engineered mouse models. In

fact, converting a wild-type Kras gene to an activating mutant can

actually reduce average ppERK levels, despite inducing tumor

formation (Tuveson et al, 2004). These data contrast with
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Figure 1. Platform for ERK activity measurement in MEF cell lines expressing a single RAS isoform.

A Schematic of EGF signaling through RAS to ERK, including the EKAR3 sensor. The detail image at right depicts the cycle of EKAR3 phosphorylation by ERK, binding and
unbinding of the internal WW domain to the phosphorylated threonine residue, and removal of the phosphate by phosphatases. Spontaneous association of the
fluorophores in the absence of phosphorylation contributes to background signal and is included in activity calculations.

B Construction scheme for cell lines bearing a single RAS isoform, using H/K/N-RAS knockouts.
C Diagram of the typical experiment timeline. Shaded regions indicate time windows that are averaged for each measurement.
D Sample calibration data for the EKAR3 reporter, consisting of Phos-Tag immunoblot for phospho-EKAR (upper) and live-cell imaging of reporter FRET activity (lower)

under matched conditions for 4 cell lines that span the full range of ERK activity levels. Ratiometric images of four individual nuclei from the KRASWT line, which
show the largest change from baseline to peak, are shown before and after stimulus as a representative example of the image data.

E Calibration curves for ERK activity. Fraction of EKAR3 phosphorylated is shown vs. the fraction in the associated conformation by FRET (left). The ERK to phosphatase
activity ratio (right) is derived from a model of EKAR3 (see Appendix Supplementary Methods). Each marker represents the mean value from one cell line with (filled
circle) or without (open circle) EGF treatment, from 3 replicate live-cell samples and 4 replicate immuno blot samples.
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observations that ectopic expression of RAS mutants does drive

strong over-activation of ERK, as would be expected from simple

amplification by RAF/MEK/ERK (Park et al, 2006; Konishi et al,

2007).

These contradictory observations could arise for various reasons,

including feedback in the RAS/ERK pathway (Courtois-Cox et al,

2006), oncogene-induced senescence (Sarkisian et al, 2007), addi-

tional mutations, or tissue- or cell type-specific effects (Brandt et al,

2019). However, these possibilities cannot be disentangled without

first addressing a major technical limitation inherent in the immuno-

blots and kinase assays that have been used almost exclusively to

date. Because immunoblot measurements are relative, not absolute,

it is not typically possible to compare the magnitude of ERK activa-

tion across datasets or studies. Furthermore, ERK activation has

been shown to be pulsatile and heterogeneous (Albeck et al, 2013;

Regot et al, 2014), so the relative differences observed when blot-

ting for active ERK could have multiple biochemical interpretations:

More ERK proteins may be active per cell, or cells with active ERK

may be more frequent in the population (Birtwistle et al, 2012;

Purvis & Lahav, 2013). Increases in the magnitude, frequency, or

duration of ERK activation pulses would all yield the same result via

immunoblot, though each of these signaling changes would imply

different effects on gene expression and warrant different

approaches for pathway directed therapy.

To clearly distinguish the forms of ERK activity that result from

RAS mutations, we combined live-cell and immunoblot techniques

to study a panel of cell lines each expressing only one wild type or

mutant isoform of human RAS in an isogenic background. To

unequivocally measure ERK activity, we employed a genetically

encoded Förster resonance energy transfer (FRET)-based sensor

(EKAR3) and calibrated it to deliver a quantitative linear readout of

ERK substrate phosphorylation. The live-cell sensor allows measure-

ment of cell-to-cell heterogeneity and signaling dynamics for a more

detailed view of ERK activity at the cellular level. Complementing

live-cell data with immunoblot measurements of RAS/ERK pathway

components and computational modeling, we found that ERK activ-

ity is strikingly constrained in cells expressing mutant KRAS. When

unstimulated, KRAS mutant cells exhibit only moderately elevated

ERK activity compared to the wild type, and when stimulated reach

peak activity no greater than the wild type. These findings outline a

new unified model for how elevated RAS activity is modulated by

downstream effectors and for which signaling characteristics may

be relevant in cancer.

Results

A platform to quantify ERK activity downstream of individual
RAS isoforms

To evaluate the cellular signaling capacity of each RAS isoform indi-

vidually, we utilized a panel of genetically engineered mouse

embryonic fibroblasts (MEFs) in which the genes for the three major

RAS isoforms (Hras, Kras, and Nras) have been functionally deleted

and complemented with a single constitutively expressed human

cDNA (Drosten et al, 2010; Fig 1B). Human proteins expressed are:

HRAS, KRAS, NRAS, KRASG12C, KRASG12D, KRASG12V, KRASQ61R, or

the oncogenic RAF gene BRAFV600E, in which case no RAS isoform

is expressed. In these cell lines, the signaling behavior of each RAS

protein isoform can be characterized in isolation both from other

isoforms and from locus-specific variations in transcriptional regula-

tion. To track the resulting signaling activity with high temporal

resolution, we transfected each MEF cell line with EKAR3, a live-cell

FRET-based ERK activity reporter (Harvey et al, 2008; Sparta et al,

2015). EKAR3 is directly phosphorylated by ERK, acting as a

synthetic substrate. Intramolecular binding of the reporter’s WW

domain to the phosphorylated residue in the substrate domain

induces a FRET interaction that can be visualized by observing

changes in the CFP/YFP ratio using time-lapse fluorescence micro-

scopy. This interaction is reversible by phosphatases, allowing the

reporter to indicate transient changes in the ERK:phosphatase activ-

ity ratio (Fig 1A). The resulting imaging data were analyzed with a

custom image analysis pipeline (see Materials and Methods), typi-

cally yielding 100–300 single-cell time series measurements of ERK

activity from each replicate of an experimental condition.

To enable accurate comparisons between the single RAS cell

lines, we developed a workflow to make quantitative live-cell

measurements of ERK activity (Fig 1C). Signaling activity in the

absence of external stimulation, a condition we term “baseline”,

was quantified in cells cultured with neither serum nor growth

factors for at least 16 h prior to imaging. Responses to receptor stim-

ulation were quantified by introducing growth factor after several

hours of baseline imaging. As a negative control for ERK reporter

measurements, we treated cells with the highly specific MEK inhi-

bitor PD0325901 (MEKi), which rapidly inhibited the EKAR3 signal

in all cell lines. In all live-cell experiments, a 100 nM MEKi treat-

ment was applied just prior to ending the experiment; this measures

the cell-specific residual EKAR3 signal, accounting for non-specific

fluorescence. The signal from the EKAR3 reporter was derived from

the intensity ratio of the cyan and yellow fluorescent channels

(CFP/YFP) and corrected for background as well as excitation and

filter spectra. The corrected EKAR3 signal linearly reflects the frac-

tion of reporter molecules in a FRET conformation, which is in turn

linearly related to the fraction of molecules phosphorylated by ERK

(Birtwistle et al, 2011). To calibrate, we used Phos-Tag

immunoblotting to quantify the fraction of the EKAR3 reporter that

is phosphorylated in various samples and conditions (Fig 1D) and

fit these values against the average corrected EKAR3 signal for the

same cell lines and conditions. For this calibration experiment, we

selected conditions which capture a wide range of ERK activity,

including the highest observed ERK activity measurement in

KRASWT stimulated with 10 ng/ml EGF. In concert with a mass

action model of substrate phosphorylation, this calibration yields a

linear measure of the ERK:phosphatase ratio (Fig 1E), i.e., the

concentration of active ERK divided by the concentration of any

active phosphatases that dephosphorylate the reporter (see

Appendix Supplementary Methods for details). As these competing

phosphatases also presumably act on endogenous ERK targets, the

ERK activity measurement reflects not just the levels of active ERK,

but the net effect of ERK on its substrates. These data confirm that

our ERK activity measurement remains linear across the ERK activ-

ity ranges investigated in this study.

To demonstrate the utility of this platform for assessing inhibitor

activity, we treated the panel of reporter cells with ARS-853, an inhi-

bitor specific to KRASG12C. Following treatment with ARS-853, ERK

activity decreased over the course of 60 min in KRASG12C MEFs, but
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not in any of the other KRAS cell lines (Fig 2A). Thus, allele-specific

drug responses can be identified and quantified using the reporter cell

panel. Furthermore, because ARS-853 inhibits the only KRAS isoform

present in KRASG12C cells, we used this condition to estimate the

RAS-independent background level of ERK activity. Following ARS-

853 treatment, EKAR3 signal decreased to a level approximately

equivalent to that of untreated KRASWT, followed by a small rebound.

This similarity suggests that the ERK activity contributed by RAS-

independent sources is near the minimal baseline value.

We next used our platform to perform a comprehensive survey

of the effects of various growth factors on each cell line. We stimu-

lated the MEF cell line panel with six growth factors known to acti-

vate RAS/ERK signaling: EGF, IGF, FGF, HGF, PDGF, and

amphiregulin. Two to three concentrations of each growth factor

were tested across three biological replicates, yielding activity

“traces” from approximately 400 cells per condition (Fig 2B). ERK

kinetics differed depending on the growth factor. For example, FGF

induced sustained ERK activity without pulsatile behavior, while
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Figure 2. Activity profiles of MEF cell lines expressing a single RAS isoform.

A Demonstration of the system measuring a cell line-specific response via ARS-853, a RAS activity inhibitor specific to the KRASG12C mutant. Traces are median values
from a representative experiment. Experiment was replicated 3 times.

B Graphical summary of single RAS isoform cell lines (labeled along bottom) stimulated by a panel of growth factors (labeled along left). Each panel of the matrix shows
the time series of ERK activity with the indicated growth factor spiked in after beginning imaging. All scales are equal; x-axis: time; y-axis: ERK activity. Lines indicate
median of single-cell measurements over time, and shaded regions denote the 25th–75th percentile region, across 3 replicate cultures (6 for no GF).

C Demonstration of RAS-independent activity from ligands other than EGF, evidenced by response in the BRAFV600E cell line lacking H/K/N-RAS. Traces are median
values from a representative experiment. Experiment was replicated 5 times.

Source data are available online for this figure.
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IGF induced a single ERK activity pulse, approximately 30–40 min

in duration, immediately following stimulation. The BRAFV600E cell

line showed moderate baseline ERK activity, consistent with previ-

ous studies in which this allele was expressed in MEFs at endoge-

nous levels (Mercer et al, 2005), but it was not expected to respond

to any growth factor stimulus because it lacked all RAS genes.

However, both FGF and IGF induced elevated ERK activity in

BRAFV600E cells (Fig 2C), indicating an ERK response that is not

mediated via HRAS, KRAS, or NRAS, which could occur through

other GTPases with the potential to activate RAF, such as RRAS or

RAP1. By contrast, EGF induced high amplitude ERK activity in both

mutant and wild-type RAS cells, without evidence of H/K/NRAS-

independent activity in the BRAFV600E cell line. The remaining

growth factors, PDGF, HGF, and amphiregulin, did not induce activ-

ity in BRAFV600E cells, but induced weaker or more transient ERK

responses than did EGF in RAS-expressing cells. We therefore focus

on EGF for the bulk of our subsequent analysis, because it induces a

strong ERK response without H/K/NRAS-independent effects.

RAS mutants only moderately elevate ERK activity, and only
without stimulation

With quantitative single-cell resolution available, we addressed the

question of how the RAS protein isoforms differ in their ERK activity

patterns. After growth factor withdrawal, cells were stimulated with

either media alone, or media with EGF to a final concentration of

10 ng/ml (Fig 3A–C). Across all cell lines, EGF stimulation initiated

a rapid ERK activity peak ~ 15 min after stimulation, followed by

attenuation over 1.5–2 h to reach a steady-state level (Fig 3B and

C), with HRASWT and NRASWT cells exhibiting slower attenuation

than any of the KRAS isoforms. Responses in single cells were quali-

tatively similar to the average, though each cell showed variation

over time (Fig 3C). To statistically compare responses across single

cells, we decomposed each single-cell ERK trace into parameters:

average baseline activity, peak stimulated activity, stimulated ampli-

tude, and average steady-state activity 2 h after stimulation. To

compare the tendency for sporadic and time-varying activity, we

sought a metric similar to the coefficient of variation (CV).

However, when used on time series data, the CV neglects time and

only reflects how far samples deviate from the mean regardless of

when they occurred. We instead compute a metric we term “volatil-

ity”. This is calculated by first differentiating the ERK activity per

cell, then taking the absolute value and averaging over the time

series. As with the CV, we scale volatility by the mean value for that

cell. This metric is the time-dependent equivalent of the CV in that

it is the mean-scaled average of deviations from the past time point,

where the CV is the mean-scaled average of deviations from the

mean. Low volatility indicates flatter more consistent activity, while

higher volatility indicates more pulses, or changes in activity level

over time.

Baseline ERK activity was detectable in all cells but varied in

magnitude among the RAS isoforms (Fig 3D). All KRAS mutant cell

lines, as well as HRASWT, exhibited significantly elevated baseline

ERK activity compared to KRASWT, with the highest levels observed

in KRASQ61R and KRASG12C. Mutant KRAS and BRAFV600E cells were

less volatile over time than KRASWT cells under baseline conditions

(Fig 3E). Minimal differences in volatility were detected between

HRASWT, KRASWT, and NRASWT cells (Fig 3E). The higher baseline

activity in mutant KRAS isoforms compared to wild type is qualita-

tively consistent with constitutively higher GTP loading of these

GTPase-deficient RAS proteins, which would also reduce variability

in RAS activation by obscuring minor spontaneous activation

events, such as autocrine signals.

The quantitative parameters of the ERK response to growth factor

stimulation, including the amplitude and duration of activity, play

an important part in shaping downstream cellular responses

(Ebisuya et al, 2005; Nakakuki et al, 2010). We therefore explored

the differences between these parameters in mutant and wild-type

KRAS cells. While the rise and fall of ERK activity occurred with

similar kinetics across all KRAS variants, the average peak ERK

activity in the KRAS mutant cell lines was unexpectedly equal to or

lower than KRASWT (Fig 3B). However, differences in the average

ERK activity could result from heterogeneity between cells, and

upon examination, we found that the percentage of cells with a

detectable ERK response to EGF was significantly reduced in KRAS

mutant lines (Fig 3F and G). KRASQ61R cells in particular exhibited

drastically reduced response rates. This reduced response could

arise from a functionally resistant subpopulation of cells, but could

also result from the difficulty of detecting smaller amplitude

responses in cells with elevated baseline activity. Therefore, to vali-

date the response measurement, we examined the correlation of

response frequency with baseline activity. While the response rate

does vary with average baseline activity for most mutants (Fig 3H),

correlation at the single-cell level is quite poor for all cell lines

(Fig 3I and J); many high baseline cells clearly respond and many

low baseline cells do not. Thus, the population-averaged peak ERK

activity is genuinely reduced in KRAS mutant cells by a lower proba-

bility of response for each cell.

To remove the bias introduced by non-responding cells and more

accurately compare average ERK responses, we filtered the ERK

activity dataset to include only cells with a distinguishable response

(Fig 3K–M). In this filtered dataset, the peak ERK responses in KRAS

mutant cells were still equivalent to or less than those of the

KRASWT cells (Fig 3K). Kinetics of the growth factor response also

remained similar after correction for non-responding cells (Fig 3L

and M). The only distinction observed was that steady-state ERK

activity 2 h after stimulation was higher in NRASWT and KRASG12V

cells, compared with KRASWT, implying a slower attenuation

(Fig 3L). Thus, even accounting for a reduced frequency of

response, KRAS mutant cells exhibit peak ERK activity no higher

than wild-type lines and show no other notable differences. The

similarity of peak ERK responses across mutants is unexpected

given the range of RAS GTPase activities represented in this panel of

cell lines and implies that the upper limit of ERK activity is subject

to tight regulation. Altogether, when individual cell variability is

accounted for, the only broadly consistent distinction between ERK

activity in KRASWT and mutant isoforms in this system is moderate

elevation of unstimulated activity.

Immediate feedback from ERK is distributed and relatively weak
in RAS mutants

The RAS-ERK pathway is subject to multiple feedback effects trig-

gered by ERK activity that could account for the strict moderation

of mutant RAS signaling. We therefore assessed the involvement

of these feedback loops by comparing activity at several points in
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Figure 3. Kinetic analysis of ERK activity for each RAS isoform in response to EGF stimulation.

A–E ERK activity in each of the 8 MEF cell lines, after growth factor withdrawal for 16–24 h, followed by stimulus consisting of (A) media only, or (B) 10 ng/ml EGF. (A,
B) Mean values over 3 replicate cultures. (C) Three example single-cell traces per cell line, randomly selected from 3 replicate experiments. (D) Average baseline
(pre-stimulus) ERK activity over 58 replicate cultures per cell line. Each dot represents the median value across cells in an experiment and vertical lines represent
the 25th–75th percentiles. Black horizontal bars denote the median across all replicates. Asterisks indicate significance by t-test (pFDR < 0.05). (E) Average volatility
(pre-stimulus) over 58 replicate cultures per cell line, reflecting the scale of variation over time, displayed as in D. Dots show medians and error bars show 25th–
75th percentiles. Asterisks indicate significance by t-test (pFDR < 0.05).

F–J Analysis of single-cell response likelihood after EGF stimulus. (F) Demonstration of many cells not responding to EGF stimulus in the Q61R cell line, in a
representative experiment. Black lines highlight one responder and one non-responder cell, with 200 individual cell traces shown. (G) Likelihood of single cells
responding to EGF stimulus, for each cell line, showing mean of 3 replicates with error bars showing one standard deviation. Asterisks indicate significance by t-
test (pFDR < 0.05). (H) Relationship between response likelihood and average baseline ERK activity as a possible correlate, for each cell line. Means taken over 3
replicate cultures. (I) Weakness of correlation between baseline ERK activity and response likelihood, measured by Tjur’s coefficient of discrimination (i.e.,
correlation coefficient for a binary response). Inset shows an example from the KRASG12D mutant, where dots are scattered per cell by baseline ERK activity (x-axis)
and whether that cell responded to EGF (binary y-axis). Orange line indicates the logistic fit. Correlations calculated from single-cell data from 3 replicate
experiments. (J) Scattered single-cell measurements of baseline ERK activity and amplitude of the change after EGF stimulus. Green triangles: cells that responded;
blue circles: cells that did not respond.

K–M Analysis of the response to EGF, by filtering to remove cells that do not respond, presented as in (D), with dots showing medians and error bars showing 25th–75th

percentiles. Asterisks indicate significance by t-test (pFDR < 0.05). Data from 3 independent culture replicates. (K) Peak ERK activity reached after EGF stimulus. (L)
Average ERK activity after 2 h in the presence of EGF. (M) Delay between EGF stimulus and peak ERK activity.

Data information: All t-tests herein were performed as detailed in Methods and Protocols, “Statistical Analysis: t-tests for Single-Cell Data”.
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the pathway in the absence or presence of the ERK inhibitor

SCH772984 (ERKi; Fig 4A; Morris et al, 2013). As an ATP competi-

tive inhibitor with an allosteric mode, ERKi suppresses both the

activity of ppERK and the phosphorylation of ERK by MEK (Chai-

kuad et al, 2014). Consistent with this allosteric inhibition, this

treatment had a partial effect on ERK phosphorylation (Fig 4A and

B). To test for ERK-mediated feedback effects, we treated KRASWT,

KRASG12C, and KRASQ61R cells with 100 nM ERKi 1 h prior to EGF

stimulation and measured the phosphorylated or active forms of

EGFR, RAS, AKT, and MEK by immunoblotting. In Fig 4B, the

comparison between untreated and ERKi-treated cells is shown

side by side (dark- and light-shaded bars, respectively) to empha-

size the effect of ERK-mediated feedback on each species. Treat-

ment with ERKi resulted in increased MEK dual phosphorylation

at Ser217/Ser221 (ppMEK) to different extents under both resting

and EGF-stimulated conditions in all three cell lines (Fig 4B), con-

firming the presence of feedback effects on pathway activity

upstream of MEK.

To explore which steps in the pathway are subject to ERK-

mediated feedback, we compared immunoblots of ppMEK, EGFR

phosphorylation at Tyr1068 (pEGFR), AKT phosphorylation at

Ser473 (pAKT), and RAS activation by pulldown of GTP-bound

RAS (RAF-RBD PD; Fig 4A and B). In unstimulated mutant and

wild-type KRAS cells, only ppMEK was elevated by ERKi treat-

ment, indicating a significant negative feedback effect due to ERK-

mediated inhibitory phosphorylation of RAF (Dougherty et al,

2005). Upon EGF stimulation of KRASWT cells, we observed the

expected increases in pEGFR, pAKT, ppMEK, and RAF-RBD bound

RAS. With the exception of pEGFR, all of these species were

further increased significantly by ERKi treatment, indicating that

under stimulated conditions, ERK-mediated negative feedback also

acts at the level of RAS and/or recruitment of GEFs and GAPs, but

not receptor activation. These data argue that ERK-mediated nega-

tive feedback is distributed throughout the pathway to constrain

ERK activation.

However, a different pattern was observed in stimulated mutant

KRASG12C and KRASQ61R cells. While pEGFR, pAKT, and ppMEK

were all significantly increased by EGF stimulation, no significant

increase was detected in RAF-RBD pulldown of RAS for either

mutant (Fig 4A and B). The increases in pEGFR and ppMEK, though

significant, were lower in magnitude in both KRASG12C and

KRASQ61R compared with KRASWT, indicating a decreased pathway

responsiveness relative to baseline, which is consistent with

reduced ERK activity responses for these cell lines (Fig 3). The EGF-

stimulated increase in ppERK in KRASG12C cells was similar to

KRASWT cells, but reduced in KRASQ61R cells, also consistent with

EGF-stimulated ERK activity measurements for these cell lines. As

in the KRASWT cells, negative feedback was assessed by the increase

in EGF-stimulated phosphorylation of each protein in the presence

of ERKi relative to the vehicle treatment. Unlike KRASWT cells,

RAF-RBD-bound RAS was not further increased by ERKi. Similarly,

ppMEK and pAKT were increased by ERKi treatment to a much

lesser degree in KRASG12C and KRASQ61R cells than in KRASWT.

These data suggest that ERK-mediated feedback is weaker in mutant

cells relative to wild type, although they do not rule out the possibil-

ity that in the mutant cells, one or more steps in the pathway

reaches saturation under these conditions, limiting the ERKi-driven

increase.

ERK activity is rescaled bidirectionally, independent of pathway
expression levels

The similarity in ERK activity between wild type and mutant KRAS

cells contrasts starkly with the conceptual model of RAS mutations

hyperactivating the pathway. As this difference is not clearly

explained by direct feedback effects from ERK, we employed a

mathematical modeling approach to more carefully consider other

variables that could account for it (Fig 5A). In a simple linear view

of RAS-to-ERK transduction, the mutant RAS GTPase activities being

50- to 800-fold lower than wild type would be expected to produce

correspondingly large changes in both pre-stimulus and stimulated

ERK activity. However, additional variables may modulate the

mutant activity. First, variation in expression level of pathway

components could compensate for the differences in RAS activity,

especially if expression levels become limiting. Second, the affinities

of GTP-bound RAS mutants for their effectors are not equivalent to

wild type; mutation lowers the affinity for RAF up to 7-fold (Hunter

et al, 2015). We therefore designed our modeling approach to

predict the expected increase in ERK activity based on known prop-

erties of KRAS mutants.

Our modeling approach requires the relative protein concentra-

tion for components of the pathway, which we evaluated using

immunoblots. Initial experiments indicated that the cell lines varied

both in the total amount of protein extracted by our protocol, and in

the abundance of typical loading control proteins such as actin. We

therefore employed an alternative approach to normalize each

sample by total protein (see Materials and Methods). Using this

approach, each cell line was assessed at baseline, peak (~ 15 min),

and steady state (~ 2 h) following a 10 ng/ml EGF stimulus

(Fig 5B). In these samples, we also measured the fraction of ERK

that is dually-phosphorylated via Phos-Tag immunoblot (Aoki et al,

2013). This measurement of ppERK confirmed the trends observed

by FRET measurements: EGF induced a peak in ppERK which then

diminished at steady state, and ppERK was elevated in mutant RAS

cells only under baseline conditions (Fig 5C and D). As expected,

measurements of ppERK were well correlated with the fraction of

dually-phosphorylated ERK (Fig EV1). This quantitative dataset

rules out two simple explanations for low ERK activity in KRAS

mutants. First, compared with KRASWT cells, total RAS levels were

higher in KRASG12C and KRASG12V lines, precluding the possibility

that the expression level of RAS was compensating for the excess

mutant activity (Fig 5B). Second, levels of BRAF, MEK, and ERK,

but not CRAF, varied significantly among cell lines, but without a

clear pattern or correlation structure. When total expression levels

were compared with ERK activity (via EKAR), no significant correla-

tions were found, suggesting that no individual component acts as a

limiting factor. Moreover, dually-phosphorylated ERK ranged from

only ~ 1 to ~ 30% of total ERK across all samples (Fig 5C), con-

firming that it does not reach saturation.

We parameterized our model using the measured protein levels,

along with the biochemical activity of wild type and mutant KRAS

proteins previously reported in vitro (Gremer et al, 2011; Smith

et al, 2013; Hunter et al, 2015; Appendix Table S1). As the goal of

our modeling approach was to identify potential explanations for

restrained ERK signaling in KRAS mutant cells, we omitted any

additional regulation, such as feedback. Effectively, the model sepa-

rates operation of the core GTPases and kinases of the cascade,
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which we term “internal” factors, from “external” factors that that

include feedbacks, adapters, scaffolding proteins, and/or phos-

phatases. By comparing model predictions against experimental

data, this approach identifies the differences attributable to external

factors. Using a steady-state solution of this model, we predicted the

baseline and EGF-stimulated steady-state levels of ppERK for the

isoforms for which biochemical data is available: KRASWT,

KRASG12C, KRASG12D, KRASG12V, and KRASQ61R (Fig 5E). These

simulations confirmed that the experimentally measured ppERK is

indeed much lower in KRAS mutants than expected, especially at

baseline. Conversely, the amplitude (fold change) in ppERK upon

stimulation is greater in the experimental system than in the model,

except for KRASQ61R where differences are indistinguishable

(Fig 5F). This analysis clarifies the role of the external factors in the

ERK pathway, revealing that they have a bidirectional effect: They

suppress ppERK under both baseline and stimulated conditions, but

also amplify the difference between these conditions. The external

factors therefore effectively increase the responsiveness of ERK to

growth factor stimulation.

To gain further insight into the relative importance of internal

and external factors modulating ERK activity, we extended our anal-

ysis to test whether ppERK correlates with expression level of path-

way components, using partial least squares regression (PLSR). We

fit both the simulated and measured ppERK against the measured

protein expression and the presence of EGF stimulation. PLSR

explained 75% of the variance in simulated ppERK, but only 55% of

the variance in experimentally measured ppERK (Fig 5G). In the

simulated ppERK data, we found significant correlations with the

abundance of RAS, MEK, and ERK proteins. In contrast, ppERK in

the experimental system was only significantly correlated with the

presence of growth factor stimulation (Fig 5H). Thus, another key

function of external factors is to confer robustness to expression

level variation in cascade components, extending previous observa-

tions that the regulation of ERK phosphorylation is robust to

changes in ERK expression level (Fritsche-Guenther et al, 2011).

Altogether, our model analysis reveals that external factors increase

the dynamic range of ERK response to EGF and that nearly all of this

control lies in mechanisms outside of the linear RAS-to-ERK kinase

cascade. This bidirectional effect on ERK activity and the moderate

strength of feedback observed in mutant KRAS cells (Fig 4) imply

that ERK activity in the cell is rescaled by mechanisms beyond

simple negative feedback (Dougherty et al, 2005; Amit et al, 2007).

Phosphatases dynamically shape the functional ERK output

Multiple phosphatases are dynamically regulated during growth

factor responses (Amit et al, 2007), some directly by ERK (Yoon &

Seger, 2006), raising the question of whether such regulation could

contribute to the observed rescaling of ERK dynamic range. While

phosphatase protein levels can be quantified, phosphatase activity

is typically difficult to assay, especially in living cells. However, our

experimental system provided a unique opportunity to estimate

phosphatase activity acting on ERK substrates by comparing the

datasets for ERK activity (measured by FRET, Figs 2 and 3) and the

abundance of active ERK molecules (measured by immunoblot,

Fig 4). While these measures are typically considered equivalent

under the assumption that phosphatase activity should be stable,

our measurements made under identical conditions reveal some dif-

ferences. For example, we observe significant variation in ppERK

across cell lines, while ERK activity is indistinguishable in the same

lines, especially at the steady-state time point (comparing Figs 3K

and L to 5D). As noted in our calibration of EKAR, the activity

measurement is a ratio of the concentrations of active ERK and any

phosphatases that act on ERK substrates. We therefore inferred how

this phosphatase activity varied by examining the correspondence

between ppERK and activity measurements (Fig 6A) and estimating

the relative phosphatase activity as the ratio of these values

(Fig 6B). All data used for these ratios fell within the linear range

for the respective measurements (see Figs 1E and EV1).

At baseline, phosphatase activity appears nearly uniform across

cell lines, except for the KRASWT measurement, which is likely an

outlier (Fig 6B). This consistency in phosphatase activity between

cell lines results in a significant linear correlation between ppERK

and ERK activity, as expected (Fig 6A). However, after stimulation,

both the slope and correlation are diminished, and variance in the

estimated phosphatase activity increases. By the steady-state time

point, estimated phosphatase activity rises significantly, as the dif-

ferent RAS cell lines settle to very similar levels of ERK activity

(Fig 3L) despite varying levels of ppERK (Fig 5D). This correlational

analysis implies that after stimulation, phosphatase activities and/or

levels are regulated in such a manner that they act to normalize the

levels of ERK activity, despite residual differences in concentration

of ppERK. However, the observation that apparent phosphatase

activity at steady state is uncorrelated to ppERK at baseline implies

dynamic complexity beyond simple regulation by ERK.

To corroborate the implied regulation of phosphatase activity,

we used an independent indicator of phosphatase activity, the decay

of EKAR FRET signal following MEK inhibition. Because all of our

experiments included MEK inhibitor as a final treatment, we were

able to fit decay curves for individual cells with single exponential

functions, whose time constant is in principle proportional to the

phosphatase activity acting on the reporter (Fig 6C). Across all cell

lines and treatments, a pattern emerges of increased phosphatase

activity in KRAS mutants and increases, with some treatments, in

cells expressing a wild-type RAS (Fig 6D), though the current

dataset lacks sufficient replication to establish statistical significance

◀ Figure 4. Analysis of ERK-dependent feedback in RAS mutants.

A, B Immunoblot analysis of RAS-ERK pathway activity at multiple levels in the absence or presence of ERK inhibition by 100 nM SCH772984 (ERKi). Lysates for the
indicated cell lines were collected at baseline, peak (15 min), and steady state (2 h) time points after treatment with 100 ng/ml EGF. (A) Sample blot imagery for
each measurement. (B) Quantified measurements, shown as fold change relative to the DMSO-treated baseline sample. Values for pEGFR, pAKT, ppMEK, and ppERK
were normalized to b-actin; data for RAF-RBD PD/Pan RAS were normalized to total Pan RAS. Bars represent the mean of triplicate measurements and error bars
the standard error of the mean. Mean fold change values are printed above each bar. Dark bars: DMSO-treated; light bars: ERKi-treated. x-axis indicates the
duration of EGF treatment. Asterisks indicate statistical significance by t-test (P < 0.05).

Source data are available online for this figure.
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across the many conditions. We performed a more focused statisti-

cal analysis of the decay rates, comparing each cell line to KRASWT

at baseline (Fig 6E), and comparing each treatment to the baseline

within KRASWT (Fig 6F). This analysis demonstrates significantly

elevated activity at baseline in several mutant cell lines, and with

FGF treatment in KRASWT, supporting the indication that phos-

phatases are differentially regulated. While these analyses are

specific to phosphatases acting at the level of ERK substrates, it is

likely that a similar mechanism is functionally relevant at the level

of ERK or MEK, contributing to the bidirectional modulation of ERK

activity in cell lines with severe KRAS mutations. We validated this

concept by immunoblot analysis examining DUSP6, a phosphatase

that acts on ERK1/2 (Fig 6G). The level of DUSP6 is consistently

elevated in the presence of ERK inhibitor, compared to baseline
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without growth factor. Furthermore, DUSP6 levels are rapidly and

transiently suppressed on stimulation with EGF in the KRASWT and

KRASG12C lines, an effect which appears at least partially mitigated

by ERK inhibition. While DUSP6 is known to be primarily specific

for ERK due to a direct binding interaction, its dynamic regulation

demonstrates that phosphatase expression can shift on a time scale

consistent with the inferred phosphatase activity. Additional work

will be needed to more clearly identify the phosphatases that act on

EKAR or on endogenous ERK substrates.

Discussion

Here, we used a single-cell approach to bring increased temporal

resolution and quantitative rigor to the question of how oncogenic

RAS mutants alter signaling behavior within the cell. Our analysis

provides two major conclusions. First, our systematic dataset recon-

ciles previously conflicting observations of ERK activity driven by

RAS mutations. Second, we find that mutant-driven ERK activity is

not simply suppressed by negative feedback as previously postu-

lated, but instead that multiple mechanisms cooperate to constrain

its dynamic range in response to stimuli.

A unified model of ERK activity as stimulated by growth factors
and mutant RAS activity

The canonical view is that RAS mutations hyperactivate the ERK/

MAPK cascade. Yet, several experimental models of the conversion

of a single Kras allele from wild type to GTPase-defective mutant

have found that this alteration results in no increase, or even a

decrease, in activated ERK (Guerra et al, 2003; Tuveson et al, 2004;

Konishi et al, 2007; Huang et al, 2014). While similar ERK signaling

could result from negative feedback that restrains mutant-driven

activity, it is less clear what mechanisms would result in lower ERK

activity.

Based on the data presented here, these differences can now be

attributed to the temporal and quantitative limitations of the meth-

ods previously used to measure ERK activation (primarily uncali-

brated ppERK immunoblots). Our dataset recapitulates the reported

attributes of mutant KRAS signaling that in isolation appear

contradictory: elevated baseline signaling, retained capacity for GF

stimulation, and reduced absolute peak upon stimulus. Additionally,

we find that RAS mutant cells have a reduced probability of

response that is independent of their current ERK activity, especially

in the case of the severe Q61R mutation. This tendency toward unre-

sponsiveness may contribute to the reduced ERK activation

observed in RAS mutant cells in the presence of serum or growth

factors.

In addition to reconciling previous observations, our analysis

also reveals a previously unquantified phenomenon, which is that

ERK activity remains unexpectedly responsive to growth factor stim-

ulation in cells carrying mutant KRAS (Fig 7). This responsiveness

arises because, while both baseline and peak GF-stimulated ERK

activity are limited in KRAS mutant cells, the relative strength of

suppression is greater at baseline than at peak. This observation is

consistent with the idea that dynamic range of a signaling pathway

is a physiologically important parameter (Janes et al, 2008) and that

mechanisms exist to buffer it from deleterious mutations. This effect

is only reliably observable through comparisons between isogenic

mutant and non-mutant cells using calibrated ERK activation

measurements, underscoring the importance of a quantitative,

systematic approach to complex signaling networks.

The MAPK pathway as a robust interpreter moderating mutant
RAS signaling

The consistency of ERK signaling in the context of RAS mutations or

changes in pathway expression has been attributed mainly to nega-

tive feedback from ERK (Courtois-Cox et al, 2006; Fritsche-Guenther

et al, 2011). However, our systematic analysis reveals a more

complex situation with differential suppression of ERK distributed

across multiple factors. ERK-mediated negative feedback plays a

significant role in restraining MEK activation, but that role appears

lesser in mutant KRAS cells rather than greater (Fig 4). At least two

models may explain the bidirectional rescaling of ERK signaling that

we observe. One possibility is that the RAF/MEK/ERK cascade could

act as fold change detector for variation in EGFR activity (Cohen-

Saidon et al, 2009). Fold change detector models are expected to

incorporate motifs such as an incoherent feedforward loop or a non-

linear integral feedback loop (Adler et al, 2017). An alternative

◀ Figure 5. Quantitative analysis of ERK phosphorylation in response to RAS mutation.

A Schematic of a model of the internal factors of the RAS-ERK pathway, showing parameters associated with each reaction. Shaded regions indicate portions of the
model for which parameter values are available from either (yellow) published biochemical assays or (blue) our immunoblot expression data (B–D).

B Immunoblot measurement of RAS-ERK pathway components in each cell line, at baseline (green circles), peak activity (15 min, red triangles), and steady-state
activity (2 h, blue diamonds), four replicates each. Overlaid plots indicate the median (horizontal bars) and 25th–75th percentiles (vertical whiskers) over all
conditions. Asterisks indicate statistical significance from the KRASWT cell line, by t-test (pFDR < 0.05).

C, D Phos-Tag immunoblot measurement of ERK fractional phosphorylation (C) and the relative concentration of dually-phosphorylated ERK (D), annotated as in (B),
but with median and percentile ranges indicated per treatment condition, for 4 replicate cultures. Sample blot imagery shows anti-ERK1/2 (below C) and anti-
ppERK1/2 (below D) for the same blot replicate. Asterisks indicate significance by t-test (pFDR < 0.05) from the KRASWT cell line measurement for each condition.

E, F Comparison of the internal RAS-ERK model to experimental data. (E) Relative ppERK as predicted by the internal model and measured by immunoblot for the 4
replicates collected, showing the median of the baseline and steady state after EGF treatment (E), and the amplitude of stimulation (F). Error bars show 25th–75th

percentiles.
G, H Partial least squares regression of both experimental ppERK measurements and predictions via the simple RAS-ERK model. Regression was based on presence/

absence of EGF, and expression levels of RAS, BRAF, CRAF, MEK, and ERK. (G) Percent of variance explained by each PLS model considered, based on how many
component terms are allowed. Stim only refers to a PLS model using experimental ppERK data, but only predicting based on the presence/absence of EGF. (H)
Weights assigned to each parameter in the PLS models. Gray shaded regions indicate the bounds of statistical significance, determined via bootstrapping with
scrambled data. Only values that extend beyond the gray regions are statistically significant from zero (P < 0.05).

Source data are available online for this figure.
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model is that the pathway is arranged for dose-response alignment

(Brent, 2009), which ideally employs push–pull mechanisms or

combines negative feedback with a comparator (Andrews et al,

2016). In both models, ERK-mediated negative feedback could play

a critical part but would operate in concert with additional regula-

tory interactions. Such models could explain the complex behavior

we observe of restraint of excessive activity from mutant KRAS that

also preserves and enhances the ability of the pathway to respond

to growth factor stimulus.

Another factor affecting the output of the pathway is the appar-

ent fine-tuning of phosphatase activity acting on ERK substrates. As

ERK phosphorylation is often used as a de facto measurement of its

activity, quantitative effects at the level of substrates have received

less attention. Nonetheless, the ability of ERK to maintain phospho-

rylation of its substrates is inherently limited by the opposing

process of dephosphorylation, making this a critical but understud-

ied control point. Our data imply that regulation of this process is

significant for an exogenous FRET-based substrate whose sequence

is based on the endogenous substrate Cdc25A, warranting further

study of this effect on endogenous substrates. This effect could be

mediated by direct control of phosphatase activity, or through

competition of substrates for the phosphatase (Rowland et al,

2015); future work will be needed to elucidate this mechanism.

Lastly, the potential for each RAS variant line to have been

subject to selection during the process of cell line construction and

propagation may play a significant role (Li et al, 2018). Cells receiv-

ing a RAS insertion that produces sufficiently high levels of expres-

sion to drive truly excessive ERK activity could be driven into

senescence and thus prevented from establishing a cell line. There-

fore, cells bearing epigenetic modifications or point mutations that

◀ Figure 6. Inference of phosphatase activity on ERK substrates.

A Correlation of ERK activity and ppERK concentration, median of 3 and 4 replicates, respectively, per condition. Error bars denote 25th–75th percentiles, including
single-cell distributions for ERK activity. Markers are color-coded by cell line, and marker shape indicates treatment (circle: baseline, triangle: peak, diamond: steady
state). Dotted lines show linear regression for each treatment; Pearson’s correlation coefficients (R), and associated P-values (P) are printed alongside.

B Estimate of substrate level phosphatase activity per cell line and treatment, calculated as ppERK/ERK activity. Asterisk indicates significance when comparing all
cell lines, by t-test (pFDR < 0.05).

C EKAR signal decay after MEK inhibition, example single-cell data (red x’s) fit to a decaying exponential model (blue lines), with decay rate constants (b) printed.
D Heatmap of median decay rate constants fit for each cell line and treatment.
E, F Statistical analysis of phosphatase activities observed by EKAR signal decay at (E) baseline (i.e., no GF treatment prior to MEKi) for all cell lines compared with

KRASWT, with 6 replicates, and (F) in KRASWT for all treatments, compared with no GF, with 3 replicates. Dots denote median values, and bars 25th–75th percentiles.
Asterisks indicate significance by t-test (pFDR < 0.05); t-tests performed as detailed in Methods and Protocols “Statistical Analysis: t-tests for Single-Cell Data”.

G Immunoblot analysis of DUSP6 levels, subject to stimulation by EGF and inhibition of ERK by 100 nM SCH772984. Bars represent the mean of triplicate
measurements and error bars the standard error of the mean. Asterisks indicate statistical significance by t-test (P < 0.05).

Source data are available online for this figure.
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Diagram depicts the activities we expect at various levels in the RAS/ERK pathway, as time series in our typical EGF stimulation experiment, extrapolated from our live-cell
data and immunoblot measurements. From left to right, columns depict the response in KRASWT, the expected response in KRASG12C cells (as an example KRAS mutant)
considering only the internal factors of the RAS-ERK pathway, and observed behavior of KRASG12C cells. Vertical bars indicate the dynamic range of the activity of that node in
the network, with the colored spectrum indicating signal levels from low (blue) to high (yellow-orange) and excessive (red).
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moderate the output of ERK could be overrepresented in the surviv-

ing population. While our analysis indicates that the expression

level of pathway components is insignificant in determining ERK

activity in the cell lines assayed, this rules out neither activity-modi-

fying mutations that do not alter expression, nor the existence of an

activity threshold above which cells are eliminated by selection.

Furthermore, while our limited immunoblot-based analysis was

unable to identify differences in expression that explain the diver-

gence of ERK signaling from the expected, a more precise and

comprehensive proteomic analysis could reveal overlooked correla-

tions (Shi et al, 2016). Naturally, the same caveats apply to the vast

majority of cell-based experiments on RAS signaling (including tran-

sient expression experiments that typically exceed at least one cell

cycle). Thus, experimental strategies in which RAS isoforms are

abruptly exchanged, and the resulting cellular changes monitored

with high temporal resolution, would be informative in understand-

ing the adaptation to a RAS mutation.

Constraints on RAS-driven signaling in oncogenesis

The ability of the ERK/MAPK pathway to constrain the quantitative

effects of mutant KRAS raises important questions for how these

mutations function in oncogenesis. In many cancers, RAS mutations

are thought to occur very early in oncogenesis, and therefore, the

homeostatic nature of the pathway likely plays a central role in

determining whether a RAS mutant cell progresses toward malig-

nancy (Li et al, 2018). Our data from cells with few other genetic

abnormalities can be a considered a model for signaling at this early

stage, unique from studies that have investigated mutant RAS in

fully developed cancers and focused on treatment of later-stage

disease. However, if mutations in RAS lead to only modest changes

in ERK signaling, how do they drive progression toward malig-

nancy? One potential model was that excess ERK activity could

engage lower-affinity substrates, expanding the effective ERK-driven

phosphoproteome to non-traditional targets. However, given the

constraints we observe on the magnitude of ERK signaling, it is

impractical for these KRAS mutant cells to promote phosphorylation

of non-typical ERK targets. Furthermore, KRAS mutant-bearing cells

do not show longer duration of peak ERK activity following stimulus

than those with KRASWT, so excess activation after growth factor

stimulus is also unlikely. Instead, our finding that the over-acti-

vating effect of KRAS mutants is limited to chronic baseline eleva-

tion implies (i) that chronic moderate signaling is sufficient to drive

deleterious phenotypes and (ii) that mutant cells are unlikely to

respond to normal low-level signaling.

A strong downstream effect from chronic moderate ERK activity is

consistent with current models of some effectors. The ERK target

gene Fra-1, a transcription factor whose expression is correlated with

cancer invasiveness (Tam et al, 2013), integrates ERK activity over

time (Gillies et al 2017). With its slow decay rate [half-life > 5 h

(Basbous et al, 2007)], Fra-1 can accumulate to relatively high levels

over a long period of moderately elevated ERK activity. Any ERK-

induced gene products with similar degradation kinetics will also

accumulate over time in cells with baseline ERK elevation. Conver-

sely, gene products subject to rapid degradation kinetics such as c-

Fos and Egr-1 would be only weakly elevated in RAS mutants,

compared to the large changes in expression driven by sporadic wild-

type activity. Products under negative regulation, such as those that

degrade rapidly even with extended activity (Wilson et al, 2017),

may actually be suppressed by chronic ERK activity. Thus, while

enhanced ERK kinase activity as an indicator of early RAS mutant

cells is difficult to detect without live-cell measurements, the resulting

expression profile—particularly the ratio between long-term and

short-term responsive genes—may be more informative.

While the damping of mutant RAS-driven signals at the level of

ERK may appear to be a tumor suppressive mechanism; this is not

necessarily the case. KRAS mutation frequencies in human cancer

and data from mouse models suggest that a limited quantitative

range of RAS signal (a “sweet spot”) is critical for the development

of tumors (Sarkisian et al, 2007; Li et al, 2018). Pathway constraints

could help RAS mutant cells to stay within this range and evade

senescence or cell death due to excessive ERK activation. This para-

dox raises the question of whether RAS mutations are more

common than downstream mutations (such as MEK or ERK) in

cancer and related syndromes such as RASopathies because they are

strong enough to induce increased ERK activity, or rather because

they are more constrained and able to escape selection by senes-

cence.

Materials and Methods

Reagents and Tools table

Reagent or resource Source Identifier

Antibodies

Anti-ERK1/2, Rabbit CST 9102

Anti-ERK1/2, Mouse CST 4696

Anti-phospho-ERK1/2(Y202/Y204), Rabbit CST 4370

Anti-MEK1/2, Mouse CST 4694

Anti-phospho-MEK1/2(S217/S221), Rabbit CST 9121

Anti-CRAF, Mouse CST 12552

Anti-BRAF, Mouse Invitrogen MA5-15495

Anit-panRAS, Mouse Cytoskeleton AESA02

Anti-phospho-AKT(S473) CST 4060
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Reagents and Tools table (continued)

Reagent or resource Source Identifier

Anti-beta-Actin Sigma-Aldrich A2228

Anti-Tubulin CST 3873

Anti-GAPDH CST 2118

IRDye 800CW Donkey anti-Rabbit IgG Licor 925-32213

IRDye 800CW Donkey anti-Mouse IgG Licor 926-32212

IRDye 680RD Donkey anti-Rabbit IgG Licor 926-68073

IRDye 680RD Donkey anti-Mouse IgG Licor 925-68072

Chemicals, peptides, and recombinant proteins

Amphiregulin Peprotech 100-55B

EGF Peprotech AF-100-15

FGF Peprotech 100-18B

HGF Peprotech 100-39

IGF-I Peprotech 100-11

PDGF-AB Peprotech 100-00AB

ARS-853 MedChemExpress HY-19706

PD0325901 Selleck Biochemicals S1036

SCH772984 Selleck Biochemicals S7101

Blasticidin Corning 30-100-R1

Bovine serum albumin Sigma-Aldrich A7906

Collagen I, rat tail Life Technologies A10483-01

Dextrose Fisher C6H1206

L-Glutamine Life Technologies 25030-081

Puromycin dihydrochloride Sigma-Aldrich P8833

DMEM Life Technologies 11965-092

Fetal bovine serum Gemini Bio-products 100-106

Penicillin streptomycin Life Technologies 15070-063

0.25% Trypsin-EDTA Life Technologies 25200-056

Tris Base Fisher BP152

Glycine (Crystalline Powder) Fisher BP381

Sodium dodecyl sulfate (SDS), Micropellets Fisher BP8200500

Ponceau S solution, suitable for
electrophoresis, 0.1% (w/v) in 5% acetic acid, 1L

Sigma-Aldrich P7170-1L

Bromophenol blue Sigma-Aldrich B5525

Dithiothreitol Fisher BP172

Critical commercial assays

Amaxa MEF 2 Nucleofector kit Lonza VPD-1005

Experimental models: cell lines

RAS-less MEF (Mouse Embryonic
Fibroblast) cell lines with transduced human
RAS or BRAFV600E

Gift from Dom Esposito,
Frederick National
Laboratory

HRASWT EKAR3 This paper Available on request

KRAS4BWT EKAR3 This paper Available on request

NRASWT EKAR3 This paper Available on request

KRASG12C EKAR3 This paper Available on request

KRASG12D EKAR3 This paper Available on request
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Reagents and Tools table (continued)

Reagent or resource Source Identifier

KRASG12V EKAR3 This paper Available on request

KRASQ61R EKAR3 This paper Available on request

BRAFV600E EKAR3 This paper Available on request

Recombinant DNA

Plasmid: pPBJ-EKAR3nls-puro Sparta et al (2015) Addgene # forthcoming

Software and Algorithms

NIS Elements AR ver. 4.20 Nikon RRID:SCR_014329

Bio-Formats ver. 5.1.1 (May 2015) OME RRID:SCR_000450

uTrack 2.0 Jaqaman et al (2008) http://www.utsouthwestern.edu/labs
/danuser/software/

MATLAB Mathworks SCR_001622

Other

Glass-Bottom Plates, #1.5 cover glass Cellvis P24-1.5H-N, P96-1.5H-N

12% Mini-PROTEAN® TGXTM Precast
Protein Gels, 15-well, 15 ll

Bio-Rad 4561046

SuperSep Phos-tag gels (50 lmol/l), 12.5%, 17 wells Wako-Chem 195-17991

GE Healthcare AmershamTM ProtranTM NC
Nitrocellulose Membranes: Rolls, 0.1 lm pore

Fisher 45-004-000

Methods and Protocols

Cell culture
Mouse embryonic fibroblasts expressing a single RAS isoform were

obtained from the Frederick National Laboratory of the National

Cancer Institute, Frederick, MD. Cells were authenticated through

Whole Exome Sequencing, PCR, and immuno blot methods at the

Frederick National Laboratory. Mycoplasma testing was performed

on a regular basis with negative results of no contamination. Cells

were cultured in DMEM supplemented with 0.2% bovine serum

albumin (BSA) and 2.5 lg/ml puromycin or 4 lg/ml blasticidin.

For imaging experiments, cells were cultured in a custom imaging

media composed of DMEM lacking phenol red, folate and ribo-

flavin, glucose, glutamine, and pyruvate, supplemented with 0.1%

BSA, 4 mM L-glutamine, and 25 mM glucose.

Reporter cell line construction
Cells were electroporated using a Lonza Nucleofector electroporator.

EKAR3 was stably integrated into cells using the piggyBAC trans-

posase system (Pargett et al, 2017). Positive integrants were

selected by fluorescence-based cell sorting.

Live-cell microscopy
Multi-well plates with #1.5 glass bottoms were coated with collagen

and seeded with reporter cell lines 1 day prior to imaging. Prepared

culture plates were imaged on a Nikon Ti-E inverted microscope with

a stage-top incubator to maintain the culture at 37°C and 5% CO2

throughout the experiment. Microscopy and image processing

performed as described in (Pargett et al, 2017). Imaging sites within

each well were selected and imaged sequentially at each acquisition

time, automated via the NIS Elements AR software. Images were

captured using a 20×/0.75 NA objective and an Andor Zyla 5.5 scMOS

camera. Filter sets used were Chroma #49001 (ET-CFP) and #49003

(ET-YFP).

Immunofluorescence microscopy
After growth and treatment as indicated on glass-bottom 96-well

plates, cells were fixed for 30 min at room temperature with a

freshly prepared solution of 12% paraformaldehyde in PBS and

permeabilized with 1% Triton X-100. Samples were then stained

with primary and secondary antibodies in PBS + 0.1% Triton X-

100 + 2% bovine serum albumin, and images were captured on a

Nikon Ti-E inverted microscope with a 20×/0.75 NA objective with

an Andor Zyla 5.5 scMOS camera.

Image processing
Imaging data were processed to segment and average pixels within

each identified cell’s nucleus and cytoplasm, using a custom proce-

dure written for MATLAB (Pargett et al, 2017). The procedure

accessed image data from ND2 files generated by NIS Elements,

using the Bio-Formats MATLAB toolbox, and tracked single-cell

positions over time using uTrack 2.0 (Jaqaman et al, 2008). The

resulting single-cell time series traces were filtered for quality

(minimum length of trace, maximum number of contiguous miss-

ing, or corrupt data points), and ratiometric reporter levels calcu-

lated. EKAR3 level was calculated as 1 � ((CFP/YFP)/RP) as,

where CFP and YFP are the pixel intensities of the cyan and yellow

channels, respectively, and RP is the ratio of total power collected

in cyan over that of yellow (each computed as the spectral prod-

ucts of relative excitation intensity, exposure time, molar extinc-

tion coefficient, quantum yield, light source spectrum, filter

transmissivities, and fluorophore absorption and emission spec-

tra). See Appendix Supplementary Methods for detailed interpreta-

tion of the EKAR3 signal.
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Immunoblotting
For immunoblot experiments, assaying pathway activity and feed-

back sensitivity (all blots in Fig 4), cells were seeded at a density

of 2.5 × 106 cells per 10 cm plate and starved of growth factor

for 6 h in imaging media. Cells were pre-treated with DMSO or

100 nM SCH772983 (Selleckchem) (Morris et al, 2013) for the last

hour of starvation. Cells were then stimulated with vehicle or

100 ng/ml EGF for 15 min or 2 h and lysed with Cell Lysis Buffer

(50 mM Tris pH 7.5, 10 mM MgCl2, 0.5 M NaCl, 2% Igepal)

(Cytoskeleton Inc.) containing protease and phosphatase inhibi-

tors (Pierce/Thermo Fisher Scientific). Lysates were clarified by

centrifugation at >5,000 g for 2 min at 4°C and snap-frozen in

liquid nitrogen with protein concentrations measured using the

BCA protein assay (Pierce/Thermo Fisher Scientific). For RAS

activation assays, 300 lg of total cell protein was used to pull-

down GTP-bound RAS/RAF-RBD complexes according to the

manufacturer’s instructions (Cytoskeleton). Activated RAS or

20 lg of total cell protein were separated using NuPAGE Novex

Bis-Tris gels (Invitrogen/Thermo Fisher Scientific) and transferred

to PVDF membrane using an iBlotTM 2 dry blotting system (Invit-

rogen/Thermo Fisher Scientific). Immunoblot data for this assay

were analyzed using the Odyssey� application software v3.030 as

described previously (Silva & McMahon, 2014). Statistical signifi-

cance was determined by t-test analyses of three independent

experiments.

For immunoblot analysis of pathway expression levels (all blots

in Fig 5), a different loading and normalization procedure was

followed to allow cell lines to be compared despite reproducible

differences in protein extraction efficiency and loading control

protein expression. We prepared four replicate samples of each

treatment (baseline, stimulation, or steady state) for each of the

eight cell lines. Cells were plated in 10 cm plates at a density

equivalent to that in our imaging experiments (1.7 × 106 cells,

~ 30,000 cells/cm2). Cultures to be stimulated were treated with

EGF at 10 ng/ml EGF for 15 min or 2 h, matching the timing of

peak activity in live-cell data. Cultures were lysed in 500 ll RIPA
buffer with protease and phosphatase inhibitors and clarified as

above. These lysates were assayed for protein content by DC

protein assay (Bio-Rad) and frozen. Immunoblotting was

performed using SDS–PAGE with 12.5% acrylamide or 4–15%

gradient gels (Bio-Rad, Cat #4561046, Cat #4561086). To include

the many samples in this dataset on the same scale via immuno-

blot, we loaded lysates based on volume and employed lane-to-

lane normalization by total protein load and blot-to-blot normaliza-

tion by including one sample, the “control”, from each blot

together on a reference blot. In this way, variations in staining effi-

ciency among membranes were accounted for by scaling all lanes

(per target protein) such that the control sample matched its inten-

sity on the reference blot. Normalization to protein load was

performed by Ponceau S stain and is applied for all samples prior

to normalization across blots, such that variation in the Ponceau

stain is also included in the reference blot. Intensity measurements

were performed using ImageJ, with background samples collected

adjacent to each band/region of interest.

Phos-Tag immunoblotting
We employed the Phos-Tag method using precast gels (SuperSep

Phos-Tag 12.5% Cat #195-17991, and 7.5% Cat #192-18001,

FUJIFILM Wako Chemicals). However, in accordance with previous

observations with these gels (Kinoshita-Kikuta et al, 2012) and the

observation that they likely have excess Phos-Tag reagent, we use

samples collected in EDTA-containing RIPA buffer and we

performed electrophoresis with Tris-Glycine running buffer (as with

above). Phos-Tag fractional phosphorylation measurements are

internally controlled and required neither cross-load or cross-blot

normalization. See Appendix for detailed Appendix Supplementary

Methods.

Statistical analysis
For all imaging experiments shown, a minimum of 100 cells were

imaged and tracked for each condition. Single-cell data points were

excluded as outliers if greater than six standard deviations from the

dataset mean. For all analyses, at least three independent experimental

replicates were performed. Where indicated, single-cell data were

normalized to the median value of the PD0325901-treated period. All

statistical and computational tasks were performed using MATLAB.

Each single-cell trace was normalized to the minimum value in a 1 h

window following treatment with 100 nM PD0325901. Baseline values

were calculated by taking the mean of the 2 h window prior to stimu-

lation for each cell. The mean was calculated from a 2 h window

following treatment with the specified growth factor or vehicle

control.

Statistical analysis: single-cell metrics

Volatility is calculated as the scaled mean absolute derivative, i.e.,

the sum of the absolute value of the derivative over a 2 h window

following stimulation, divided by the mean of the same window.

Responders were defined as cells with (i) post-stimulation ERK

activity that significantly increased at least 5% compared to the

average baseline value, and (ii) a higher maximum derivative at the

time of stimulation compared to the baseline region. Response rate

was defined as the time from stimulation to the peak ERK activity in

each responding cell.

Statistical analysis: t-tests for single-cell data

Unless otherwise indicated, each statistical comparison was made by

t-test with unequal variances, and false discovery rate was controlled

within each dataset via the Benjamini and Hochberg Step-Up proce-

dure (a = 0.05). Where replicates were available at the single-cell

level as well as across experiments, the variance of the mean for each

experiment was determined from single-cell samples and added to

variance across experiments. This corresponds to a linear error

model: ei = ecell + eexp, where there error (from the mean) of an indi-

vidual cell ei equals the sum of the errors arising from cell-to-cell vari-

ation ecell and from experiment variation eexp.

Data availability

All per cell fluorescence data and immunoblot images are provided

as source data files for each figure. Note that data presented graphi-

cally in Figs 1 and 3 are drawn from the large dataset associated

with Fig 2. Raw image data are available via BioStudies: https://

www.ebi.ac.uk/biostudies/studies/S-BSST511.

Expanded View for this article is available online.
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