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The work summarized in this thesis focuses on the recording and analysis of

data from micro-ECoG arrays implanted in vivo. The electrode arrays with diameters

on the order of tens of microns and grid pitches on the order of hundreds of microns

are recording from the surface of the brain at a novel scale. The research summarized

in this work is aimed at the successful implantation and recording of these arrays and

subsequent analysis of the properties of the electric potentials on the brain surface as

measured at this considerably smaller than usual scale.
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Chapter 1

Introduction

1.1 Background

Technologies that enable the recording or stimulation of brain activity have

made interfacing with the brain a rapidly growing field of research and application

development. Electrical recording has long been a staple of neuroscience, but electrodes

and other recording methods have found clinical uses and, more recently, are the main

tool in brain-computer interfaces (BCI). Electrical recording and stimulation is a natural

choice for brain interfaces because brain activity is principally electrochemical, but other

modalities have been developed that make use of the complex structure of the brain and

interactions to either directly or indirectly sense or stimulate activity. Magnetic resonance

imaging (MRI) uses nuclear magnetic resonance (NMR) to image the body and it’s

variant functional MRI (fMRI) is able to record neural activity through detecting changes

in blood flow and oxygenation that correlated with local (on the order of millimeters)

changes in neural activity. On the opposite extreme is the use of genetically encoded

calcium indicators (GECI), one of many optically based tools, that allow the activity of

individual neurons to be detected by causing changes in fluorescence.

Each modality has benefits and drawbacks and the application generally drives the

choice of technology. There are four categories that are sometimes used to summarize the
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properties of an interfacing technology: spatial resolution, temporal resolution, level of

invasiveness, and portability. We would like to always increase resolution and portability

and decrease invasiveness, but in practice improving one area is at the cost of other

ones. Ideally we could use non-invasive techniques, that don’t require any medical

procedure, but for the most part a non-invasive recording has much lower spatial and/or

temporal resolution than its invasive counterpart or invasive recordings generally. The

most common non-invasive recording modalities are electroencephalography (EEG),

magnetoencephalography (MEG), and fMRI. Roughly, EEG and MEG have limited

spatial resolution but high temporal resolution, and fMRI has limited temporal resolution

(as a hemodynamic signal) but potentially high spatial resolution.

Invasive recordings, with their much higher resolution, offer the ability to record

individual action potentials. Recordings of action potentials (also called units or spikes)

have long been a mainstay of neuroscience research as they are a primary unit of neural

computation, and this is where state-of-the-art optical techniques are making high quality

simultaneous recording of, and precise stimulation of, many neurons possible. The

drawback of most optical techniques, due to the fact the brain does not inherently produce

strong optical signals, is that to create light-sensitive or light-emitting neurons substances

must be injected into the brain tissue and/or the animal must be genetically modified.

This has meant for human research involving invasive procedures electrical recording

has remained the most common modality.

1.2 Electrophysiology

Due to the assortment of different electrode types and where they are placed rela-

tive to the brain there are many different types of electrophysiological signals. Common

types include EEG on the scalp, penetrating electrodes (in human often called stereo

EEG or SEEG), or intracranial electrodes outside the brain tissue (electroencephalogra-

2



phy or ECoG). Essentially there are two ”channels” that can be present in the electric

potential: unit activity (action potentials) and field potentials (FP). Each type has fur-

ther subdivisions depending on how they are recorded. For example units that can be

individually identified are sometimes called single unit activity (SUA) while aggregate

action potentials that are not separated is called multi-unit activity (MUA). Recording

of SUA, and to a lesser extent, MUA requires the electrode to be small and located near

spiking neurons, and therefore have only been consistently present when recorded with

electrodes that penetrate into the brain.

The other portion of the electrophysiological signal, which has been termed the

field potential (FP), is always present as evidenced by our ability even to record electrical

activity through the scalp and skull (EEG). This is also where one of the common

names for these signals comes from: local field potentials (LFP) were the term for the

relatively slow fluctuations that are in the background of SUA that was being measured

by penetrating microelectrodes. LFP was often ignored in these recordings in favor of

SUA which could be used to measure activity of precisely located neurons that could

even sometimes be identified by the shape of the units.

In contrast the LFP had, and generally continues to have, no definite physiological

basis which is well understood with which to interpret the signal. Mechanism that

generate FP are understood, but there are too many unknowns about the underlying

activity for a given FP signal to be decomposed and explained. The sources are highly

distributed and interconnected, confounding simple explanations of even features of FP

let alone FP in general. This is a near constant difficulty in FP recording at all scales, from

inside to brain to EEG. This is largely the case due to FP being anything but local, and is

why sometimes more general terms like FP or extracellular FP are used for intracranial

signals. In fact, it is customary to refer to and differentiate between FP signals based on

the modality of electrophysiology used to record them, and the name of the modality

3



is often interchangeably used with the term for the signals themselves such as EEG or

ECoG. The fundamental property that all have in common is that the potentials are the

aggregate activity of thousands to millions, or even more, neurons that is all recorded by

a single electrode by conduction of the potentials through the conductive tissues of and

around the brain.

What differentiates the modalities and defines each one’s signal characteristics

is how much tissue the potentials must propagate through to reach the electrode. An

electrode deep in cortex near several neurons will record those few relatively strongly

and may even record units from them. Even more neurons within around 50 microns will

have weaker signals and may have detectable MUA. If the electrode is moved just outside

of the brain on the surface it may be too far from any individual neurons to selectively

record them, and it will record from maybe hundreds or thousands of relatively close

neurons that all contribute roughly equally with lesser contributions from deeper or

more distant neurons. For an EEG electrode it is more appropriate to think of the signal

originating from brain regions made up of millions of neurons rather than individual

neurons.

Different types of electrophysiology exhibit the previously mentioned tradeoff; as

the placement of the electrodes becomes more invasive the resolution increases. Temporal

resolution of electrical recording is extremely high as the potential propagate effectively

instantaneously compared to the time scales of neural activity, but the spatial resolution is

defined by how large an area an electrode selectively records from. While any electrode

can record very distant activity, the spatial specificity comes from the relative contribution

of more distant neurons relative to the most strongly recorded neuron. Lack of specificity

combined with attenuation of the potential as the distance of the electrode increases

causes the degradation of spatial resolution as it takes increasingly larger populations of

neurons to generate detectable signals and the precise origin of those signals becomes

4



more difficult to determine.

The spatial resolution is limited by volume conduction of the potentials to the

electrode, but it can be improved by the use of arrays of electrodes. In addition to

providing more simultaneous recordings, additional electrodes can improve spatial dis-

crimination in a number of ways. Differences between electrodes can help separate local

and nonlocal potentials, neighboring electrodes can localize with more precision, and an

entire array can be incorporated using physical or physiological based analyses. Arrays

are used in all types of electrophysiology: tetrodes are four closely spaced electrodes

used to discriminate spiking activity, EEG is practically always recorded with many

channels due to the relative ease of adding electrodes, and clinical ECoG arrays come in

grids and strips with to improve localization accuracy and coverage.

Improvements in recording hardware and electrode fabrication technology allow

for smaller, better, and more electrodes to be incorporated into arrays. The benefit for

EEG can be somewhat improved localization, but volume conduction through the skull

limits spatial resolution and even at hundred electrodes is past the point of diminishing

returns. Invasive recordings on the other hand, have high enough spatial resolution

that makes scaling more beneficial. For example, it would take a seemingly unlimited

number of channels to tile the brain with penetrating electrodes, and even with the

relatively large spacing of clinical electrodes of 1 cm it would take hundreds of electrodes

to cover human cortex (without even taking into account coverage of sulcal folds).

Next-generation invasive electrophysiology will likely record from several hundred or

thousands of microelectrodes simultaneously and reliably.

1.3 Electrocorticography

In a few ways ECoG is particularly suited to increasing channel counts. In

addition to high enough resolution to take advantage of more dense arrays than EEG,
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ECoG can provide broad cortical coverage less invasively than penetrating electrode

arrays. High channel counts for penetrating arrays allow for high densities of electrodes

to be placed vertically on the shank, and this is advantageous because they have such high

resolution that even tens of microns may provide independent signals. The functional

structure of cortex is arranged in vertical columns. Each column is roughly a functional

unit, and function varies laterally. Depth arrays provide high resolution within a column,

but to record from broad and functionally distinct arrays requires multiple insertions.

ECoG is able to provide broad lateral coverage without increasing invasiveness as it lies

on the surface. This will become increasingly useful when channel counts are increased

enough to allow for both high electrode density and large coverage.

An crucial question in ECoG research is how useful it is at smaller scales. Tra-

ditionally ECoG is not considered capable of recording SUA or MUA, and it is usually

farther removed from the sources of interest than penetrating arrays which further reduces

the effective resolution. Analogous to the case EEG, this raises the question of how small

to make the spacing between electrodes due to the inherent limits of resolution caused

by volume conduction. ECoG differs, however, in that shrinking the array with a fixed

channel count will diminish coverage. Increasing channel counts in EEG is less of a

technical challenge and the coverage area is already effectively the whole head. This

makes understanding of the micro-scale spatial features and variation of the potentials

recorded by ECoG doubly important; cortical coverage is a strength of ECoG and with

limited channel counts any increase in density is directly at the expense of coverage.

1.4 PEDOT Microelectrode Arrays

The tool which we used to investigate sub-millimeter scale ECoG, or micro-ECoG,

was electrode microarrays fabricated by the Integrated Electronics and Biointerfaces

Laboratory (iebl.ucsd.edu) headed by Professor Shadi Dayeh at UC San Diego. A princi-
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pal difficulty in using smaller electrode contact sizes is that it increases the impedance

of the electrode. IEBL develops devices with surfaces tailored to biological recordings

including drastic reduction in impedance relative to using untreated metal surfaces. This

allows contacts down to even tens of microns in diameter to maintain impedances (at the

standard 1 kHz) roughly around 100 kΩ. The typical contact sizes used in the arrays in

this work was 20 or 50 microns.

The arrays were laid out in square grids with the type of microarray used in

human having intere-electrode spacing of 0.4 mm and the primary type of array used in

rodent having spacing 0.2 mm. The 0.4 mm spacing is the same spacing as between the

penetrating shanks that make up the 10x10 Utah array common to many BCI studies.

For reference, standard clinical grids have spacing of around 10 mm, the term micro-

ECoG has been applied for spacing of 3 mm. Millimeter or sub-millimeter usually is

seen only in arrays used for small mammals such as rodents. The electrodes we used

are an order of magnitude more closely spaced but this is important for understanding

by putting the surface potentials ”under the microscope”. From a signal processing

perspective, the spatial bandwidth of the surface potentials is unknown and therefore the

sampling theorem cannot be applied until higher spatial frequencies are recorded. It is

already known that spatial variation of potentials along the surface of cortex is smaller

than vertically/perpendicular. ECoG therefore runs the risk of oversampling at scales

larger than intracortical electrodes, and this is made even more important by the reduced

coverage caused by increasing the density of an array design.

We set out to answer these questions regarding the spatial properties of surface

potentials at sub-millimeter scales. Would the arrays be straightforwardly oversampling,

especially in human cortex? The arrays allow us to quantify and visualize the potentials

at much smaller scale than most ECoG recordings. The smaller contacts may be sensitive

to different phenomena such as spiking activity, or the more closely spaced contacts may
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detect spatiotemporal dynamics not seen on typical ECoG grids.
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Chapter 2

Recording System and Initial Testing

2.1 Introduction

Both the electrode arrays and the recording hardware were new and needed to be

developed in parallel. There are many requirements of the components to record high

quality signals in vivo. From the ability of the electrodes to be placed and remain in good

contact with the brain to the system’s robustness to interference, damage, and ease of use

during surgery, each component plays a role in the quality of the recording.

Open source electrophysiology hardware has made the cost of the equipment

necessary for recording significantly cheaper. Commercial electrophysiology systems

can cost several thousand, or even tens of thousands of dollars while the reduction in

price for open source systems can be about tenfold. This allows researchers much easier

access to high quality recording (Siegle et al., 2015), and a notable example is Open

Ephys (open-ephys.com) which has been taken up by many labs across the world.

In order to record from human patients the system has to have additional protec-

tion in the case of malfunction which is not typically part of open source systems given

their bare bones and modular nature. In this work we modified the system and developed

procedures to allow it to be brought into the clinic to allow recording of 256 channels at

up to 20 KHz with 16 bit resolution in human subjects in the operating room.
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Electrocorticography (ECoG) is commonly used clinically and experimentally

because it has drastically better resolution than EEG, MEG, or fMRI (Schalk et al., 2008).

It is used for more precise localization, for example of the seizure onset zone in epilepsy

or to map eloquent cortex prior to tissue resection. Improving ECoG can help improve

patient outcomes for over 100,000 neurosurgical cases per year (Taplin et al., 2016),

and in driving brain-computer interfaces (BCI) (Schalk et al., 2008; Sahin et al., 2009;

Canolty et al., 2006; Mesgarani et al., 2014; Vansteensel et al., 2016; Wang et al., 2013;

Chestek et al., 2013).

There is a lot of room for improvement of ECoG electrodes in terms of channel

counts and sizes, spatial resolution, mechanical and electrical properties, and biocompati-

bility (Horton and Adams, 2005; Rubehn et al., 2009). Some of these can be achieved by

altering the materials at the interface with the tissue (Vetter et al., 2004; Buzsáki, 2004;

House et al., 2006; Hatsopoulos and Donoghue, 2009; Lagoa et al., 2006), by embedding

the electrodes in conformable substrates (Green et al., 2012; Abidian and Martin, 2009;

Cogan et al., 2016). We aim for our electrode arrays to improve on all these areas by the

use of micro-fabricated arrays with surface-modified metallic electrodes (Cogan, 2008;

Merrill et al., 2005; Polikov et al., 2005; Kim et al., 2010b; Heim et al., 2012; Park et al.,

2010) or metallic electrodes with conductive polymer coatings (Rivnay et al., 2016; ?;

Abidian et al., 2009; Ludwig et al., 2006) embedded in a biocompatible and extremely

flexible parylene C substrate. The conductive polymer used is PEDOT:PSS for its low

electrochemical impedance (Rivnay et al., 2016; Abidian and Martin, 2008), its chemical

stability (Groenendaal et al., 2000), and its biocompatibility (Asplund et al., 2009; Kim

et al., 2010a).

Our goal is to validate the ability of the micro-ECoG arrays and recording system

to record neural activity with high fidelity, and to further investigate the properties

and potential advantages of high density ECoG. We show the use of the the system
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for recording intraoperatively from human subjects and that we see benefits in various

features of the neural signal at this scale including modulation of high gamma activity at

the scale of the arrays’ sub-millimeter electrode pitch.

2.2 System Design

The system of built around hardware made by Intan Technologies (Los Angeles,

CA). The Intan system is low cost while still having hundreds of channels and custom

designed circuitry for recording small biopotentials. Their hardware is the basis for the

open source systems Open Ephys and Willow and is used in commercial systems as well.

2.2.1 Hardware

For the recording system to be clinic compatible it has to be electrically and

mechanical isolated from the patient to prevent and in the case of malfunction. The board

was electrically isolated (Figure 2.1c) using inductive iCoupler technology (ADUM6000

& 4401 series) from Analog Devices (Norwood, MA) to comply with the standard for

safety and effectiveness of electrical medical equipment IEC-60601 and the UL-1577

isolation standard.

Noise is also a greater concern in the clinical environment due to the presence

of other various and necessary electrical equipment which can introduce noise into the

electrophysiology system. The Intan system is designed with these kind of interference

in mind by having small amplifiers (RHD2164 headstage Figure 2.1b) that can be placed

as close as possible to the subject and digitize the signals as early as possible in the chain

of wires leading between the brain and the acquisition system (Figure 2.4).

An added benefit of amplifying and digitizing the signals close to the brain is

that there are fewer wires for the clinicians to handle as the digitized signals leave each

headstage through one cable. Figure 3 shows our clinical setup using a 6 foot digital
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cable (Figure 2.1b) to between the headstage and acquisition board. The size of the

acquisition hardware (25 x 18 cm) allows it to be placed on a small movable table such as

the Mayo. The data acquisition hardware includes of an enclosure that houses the power

isolator and the Intan RHD2000 acquisition board (Figure 2.1d) and a laptop to monitor

and store the signals. All of the electronic components are housed in plastic enclosures

to avoid short circuits caused by saline solution or bodily fluids coming in contact with

any components of the system.

Table 2.1. List of variously used common ephys systems, (Siegle et al., 2015; Newman
et al., 2013; Kinney et al., 2015)

System Ch Fs, Bit Depth Isolated
Blackrock Cerebus 128 30 KHz, 16 b Y
TDT PZ2 256 50 KHz, 18 b Y
Open Ephys 256 30 KHz, 16 b N
NeuroRighter 64 1 MHz, 16 b N
Nspike 127 30 KHz, 16 b N
UCSD 256 20 KHz, 16 b Y
Willow 1024 30 KHz, 16 b N

2.2.2 Software

To interface with this system, we use a slightly modified version of Intans com-

piled software or Open Ephys GUI. Without the modification, the software will not

recognize the hardware due to additional time delay in the SPI signal path caused by the

isolator and cabling. This also limits the sampling rate to up 20 kHz as opposed to 30 kHz,

which is the highest sampling rate for RHD2164 and RHD2132. Compatible software

along with design files, schematics and documentation for this system are available for

download at github.com/tnel-tbd.com.
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2.2.3 Device Fabrication

The devices were fabricated by the Integrated Electronics and Biointerfaces

Laboratory (iebl.ucsd.edu) headed by Professor Shadi Dayeh at UC San Diego. The

substrate for the devices is parylene C which was deposited by chemical vapor deposition.

The metal leads were made of a 10 nm Ti adhesion layer and 100 nm Au contact

layer deposited with an electron beam evaporator and the contacts were coated with

PEDOT-PSS. Full methods are available in Ganji et al. (2017b)

2.3 Experiment

2.3.1 Pre-Operative Methods

Prior to surgery, the recording electrode and parts of our recording system that are

in or close to the sterile field must be sterilized - a process which attempts to eliminate

all microorganisms (Figure 2.4). The recording electrode was sterilized with steam

sterilization at 132◦ C for 10 minutes and the electrode adapter, headstages, and cables

were sterilized using a low temperature process called Sterrad at 50◦ C for 45 minutes,

which is compatible with electronic components. Sterrad uses a combination of hydrogen

peroxide vapor and low temperature gas plasma to eliminate toxic residue. We packaged

the adapter and headstages in 3D printed cases made of PLA plastic to reduce the risk of

damage during handling and sterilization. After multiple iterations, we found no visible

deficits in the electronics and they remain fully functionally. On the other hand, thin film

devices have been damaged, necessitating extra care during packaging. We found that

damage typically occurs near the bonding interface where the device substrate (4 um

parylene C) and the anisotropic conductive film (ACF) & flat flexible cable (FFC) mate.

By fixing the more rigid ACF / FFC cable with Kapton tape and allowing the parylene C

substrate to freely move, damage of risk is reduced.
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To validate the performance of our ephys system we recorded from a patient

undergoing neurosurgery, both during heavy anesthesia and while performing an auditory

lexical decision task. The task consists of monitoring a stream of spoken and noise-

vocoded bi-phoneme phrases (taw, koo). During the surgery, the patient is woken up

from heavy anesthesia to perform clinical mapping of language abilities.

2.3.2 Intra-Operative Methods

The intra-operative methods consist of three major steps: testing electrodes,

implanting electrodes and performing task with the patient. The sterile equipment and

electrodes are unpacked and connected to data acquisition hardware, while carefully

ensuring sterility is not broken. A small bucket of saline is prepared where the devices

and a handheld signal generator (HPG1 Velleman) are placed. A differential signal

between the small sites and large sites (reference) is measured with ground connected

via a separate needle electrode. The electrode adapter has switches to connect any

combination of the large sites to reference, which is done to maximize signal to noise. We

found that connecting two neighboring large sites to reference provided the best signal

by visual inspection. After reference selection, we perform an impedance test using this

built-in capability of the RHD2164. The thin film device used in this case yielded 77%

(46/60 electrodes) less than 30 kΩ. The electrode device was placed on top of arachnoid

mater. The location of the implant was posterior superior temporal gyrus. Approximately

20 minutes total of baseline activity, task activity and anesthetized activity were recorded.

2.3.3 Electrophysiology

Patients S1-S3 undergoing clinical mapping of eloquent cortex provided informed

consent to have the microarray placed on their pial surface and to participate in a 10 min

task. The PEDOT microarray was placed on the STG: anterior STG for S2 and posterior
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STG for S1 and S3. UC San Diego Health Institutional Review Board (IRB) reviewed

and approved study protocol.

Patient S4 provided informed consent to have microarray placed on their pial

while unconscious. The electrode was implanted on the lateral surface of the temporal

lobe across the superior and middle temporal gyrus. The Partners Human Research

Committee reviewed and approved the IRB protocol at Brigham and Women’s Hospital.

S2 read visual words, repeated auditory words, and named visual pictures. S3 saw

a three-letter string (GUH, SEE) and then heard an auditory two-phoneme combination,

making a decision whether the visual and auditory stimuli matched. Interspersed were

visual control trials in which a false font was followed by a real auditory stimulus and

auditory control trials in which a real letter string was followed by a six-band noise-

vocoded two-phoneme combination.

The clinic compatible, open source electrophysiology (ephys) system was used

based on Intan technology (Los Angeles, CA) to record acutely during neurosurgery. The

details of the system have been published32 and the design files and software are freely

available on https://github.com/TNEL-UCSD/nacq and are briefly discussed below.

The system was capable of recording 256 channels at 20 kHz and featured 5 kV

RMS power isolation. The purpose of an isolator was to protect the patient from hardware

malfunctions and/or power surges. The system consisted of an adapter, amplifier and

digitizer (Intan RHD2164), power isolator, and USB buffering board (RHD2000). The

adapter had switches, which could connect a subset of electrodes to reference (REF)

or ground (GND). Typically, two macrodots were connected to REF while GND was

connected to an external needle probe (The Electrode Store, Buckley, WA) that was

inserted in the scalp near the craniotomy. The signals were then amplified and digitized

by the RHD2164, passed through the power isolator, then buffered and sent via USB to a

laptop.
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Since ephys components were within several feet of the surgical site, these

components were sterilized via standard methods at each of the participating hospitals.

The adapter and RHD2164 were sterilized using an electronics friendly process called

Sterrad. Sterrad was a low-temperature sterilization method that uses hydrogen peroxide

plasma to eliminate microbes. It was found that there were no obvious effects to the

hardware in the first three to five sterilization runs.

The clinical recording system was an Xltek with 128 channels (Natus Neurology,

Pleasanton, CA). For patients S1-S3, the sampling frequency was 500 Hz (70 Hz cutoff)

and for S4, it was 250 Hz (83.33 Hz cutoff). Clinical signals were referenced using a

bi-polar configuration, which enhanced signal differences between recording channels.

On the other hand, research electrodes were measured with a unipolar configuration

which resulted in measuring signals with less differences.

2.3.4 Analysis and Statistical Methods

The following software and toolboxes were used: MATLAB, EEGLAB, and the

Fieldtrip, Chronux toolboxes.

Time series, power spectral densities under various conditions and spectral fea-

tures before and after auditory stimuli were examined. Recorded data was sampled

at 20kHz and filtered with lower and upper cutoff frequencies at 0.1 and 7500 Hz re-

spectively. Data was analyzed by writing custom Matlab software and using EEGLAB

(Delorme and Makeig, 2004).

In Figure 2.8, power spectral densities were estimated using Welch’s method

(pwelch) using a Kaiser Window of length 0.75 s with β = 4. An entire time period of 10

s was used with 50% between windows. Pointwise c.i.s were computed using the Matlab

pwelch function and the expression for c.i. was equation 5.3.64 on page 280 in Manolakis

et al.33 Power in the 10-50 Hz band was obtained by forward and reverse filtering the
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signal with a third-order IIR Butterworth filter and then the resultant was squared. To

determine statistical significants, the two epochs were windows into 0.5 s nonoverlapping

segments. Power was estimated for all windows across the two conditions and then run

through Wilcoxon signed rank sum test to determine significance. The absolute median

difference of the PSD estimate was computed over the 10-50 Hz to gauge separability

across frequencies. The time-frequency plot was generated using short-time Fourier

transform method with Slepian tapers (mtspecgramc from the Chronux toolbox). The

moving window was of length 400 ms and step 40 ms. A time-bandwidth product of 5

and 5 tapers were used. The power was converted to units of dB then z-scored across to

highlight temporal dynamics.

Figure 2.9 uses the same method to compute PSDs as Figure 2.8. The only

difference was that a time period of 20 s was used.

For the analysis in Figure 2.10, the data were low-pass filtered at 400 Hz and

then downsampled to 1000 Hz (Oostenveld et al., 2011). To remove noise, the average

signal of the microdot electrodes was subtracted from each channel (average re-reference)

and each channel was then bandstopped around line noise and its harmonics. Next, the

data were epoched to the onset of stimulus presentation (visual word/picture/auditory

word onset for S2, visual word onset for S3) and for each trial the baseline from 300

to 0 ms was subtracted. Trials judged to have artifactually high amplitude or variances

were removed from the data set. To investigate differences between stimulus classes

in the high-frequency band, amplitude was obtained using a fourth-order Butterworth

bandpass filter from 70 to 170 Hz and then taking the analytic amplitude from the Hilbert

transform and smoothed with a moving window. ANOVAs were run between stimuli

classes and corrected for multiple comparisons with false-discovery rate (Benjamini

and Hochberg, 1995). S2 had 60 trials for each condition (visual word, auditory word,

visual picture). S3 had 157 trials for the human voice and 80 trials for noise-vocoded
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stimulus. For the time-frequency plots, epochs were transformed from the time domain

to the time-frequency domain using the complex Morlet wavelet transform. For the HFB

frequencies, constant temporal and frequency resolution across target frequencies were

obtained by adjusting the wavelet widths according to the target frequency. The wavelet

widths increased linearly from 14 to 38 resulting in a constant temporal resolution of 16

ms.

2.4 Results

2.4.1 Initial Testing Results

A sample of the downsampled time series shows delta, theta and alpha oscillations

(Figure 2.5c). Power spectral densities on a 16 s time window shows a clear distinction

for two different states: performing task and heavily anesthetized. In the anesthetized

state, there is a shift upwards in power between 0-50 Hz, with a bump around 15 Hz due

to spindling, which is consistent with previous work with Propofol anesthesia (Murphy

et al., 2011; Breshears et al., 2010). Plotted in Figure 2.6 is an exemplary channel.

ECoG signals from auditory stimulus trials were bandpassed at 15-30Hz (β ), and

at 70-110 Hz (high-γ). Channels with obvious noise and high impedance were removed

from this analysis leaving 46 channels. Additionally, we aggregated all stimuli types and

both large and small electrodes together for this analysis. The root mean square (RMS)

of the signals in 400 ms windows before and after a stimulus presentation was computed.

The pre-stimulus and peri-stimulus windows begin 400 ms before the stimulus onset

and 250ms after onset, respectively. 4 out of 46 channels showed a significant decrease

after onset in β , and 33 out of 46 showed a significant increase in high-γ (p < 0.05

Bonferroni corrected) as expected (Edwards et al., 2009). Data from the channels with

the most significant differences in β and high-γ are plotted in Figure 2.7. Future studies
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will explore these site-specific differences in more detail.

2.4.2 Human Electrocorticography

Having shown the favorable characteristics of our PEDOT:PSS electrodes com-

pared to Pt electrodes, next we assessed our electrodes’ ability to measure human elec-

trophysiological activity. We performed intraoperative recordings in both anesthetized

patients and patients undergoing clinical mapping of eloquent cortex during epilepsy and

tumor resection surgery. The recordings reported consist of testing with four individuals:

three at UC San Diego (UCSD) Thornton Hospital (La Jolla, CA) and one at Brigham

and Women’s (BW) Hospital (Boston, MA). At UCSD, we performed recordings using

PEDOT:PSS from Subject 1 (S1) both while awake and while unconscious, and from

Subjects 2 and 3 (S2 and S3) while performing a cognitive task. At BW, Subject 4 (S4)

was unconscious during the recordings.

As an initial analysis, we demonstrate that PEDOT records comparable activity

to current clinical electrodes (Figure 2.8). Here we compare electrophysiology from

the macrodot Pt (clinical electrodes), versus the macrodot and microdot PEDOT:PSS

electrodes during two different states for S1 when the electrodes were implanted on the

anterior superior temporal gyrus (STG). The first state is awake and is engaged in an

audio-visual task (see the Experimental Section for details) versus the second state of

anesthesia with Propofol and Dexmedetomidine. As expected there were readily observ-

able differences in electrophysiological recordings between the two states as illustrated in

power spectral densities (PSD) (Figure 2.8a-c), time-frequency plots and time series (Fig-

ure 3d-g). There is markedly higher power in the anesthetized condition and in particular

in the 12-17 Hz range, indicative of spindle-like activity (Figure 2.8a-c). Spindling has

been reported in deeply anesthetized patients under the drug Dexmedetomidine (Huuppo-

nen et al., 2008). Time-frequency plots also appear to show spindling and other dynamic
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neural activity (Figure 2.8d,e). Clinical ECoG using standard of care electrodes (3 mm Pt)

were recorded alongside PEDOT ECoG. A PSD of a clinical electrode shows comparable

effects to those measured by the PEDOT electrodes: (1) increased power during the

anesthetized condition and (2) a prominent peak around the alpha range for the task

condition. Each electrode showed a significant difference in power in the 10-50 Hz band

(Figure 2.8a-c). However, there is variation in the PSD difference magnitude between

the clinical and PEDOT for these measurements. The absolute median difference across

10-50 Hz frequencies is 2.4, 6.2, and 7.8 dB for clinical-, macro-, and microelectrode,

respectively. Furthermore, the 95% pointwise confidence intervals (c.i.s) for the two PSD

conditions begin to overlap at successively high frequencies: 30, 42, and 44 Hz, for a

clinical, macro, and microelectrode, respectively (Figure 2.8a-c); it is important to note

that these simultaneous recordings were made from different cortical sites, centimeters

apart, which is likely a source of variation in the measured physiological response across

electrode types. The critical observation is that the expected physiological modulation

observed in the clinical ECoG is also seen in micro PEDOT electrode.

Another example of consistent physiological effects observed across electrode

types is shown in Figure 2.9. S4 was undergoing a standard nondominant temporal

lobe resection. Prior to removal, clinical and PEDOT electrodes were placed on the

lateral surface of the temporal lobe across the superior and middle temporal gyrus.

After recording under usual anesthetic conditions, a dose of Methohexital (Brevital) was

administrated with the intention of increasing epileptiform activity Kofke et al. (1997);

Wyler et al. (1987). As expected, this caused a noticable increase in epileptiform activity

after several minutes as illustrated in the time traces across the electrode types (Figure

2.9a,b). The time traces are taken over two windows: T1 which was shortly after the

Methohexital dose and T2 which occurred 200 s after T1. PSDs for T1 and T2are plotted

for clinical, PEDOT macro, and micro (Figure 2.9c-e, respectively) showing the same
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trend: more activity in T2. However, when computing the difference in power for the

10-50 Hz band, only the PEDOT electrodes showed a significant difference. Again, the

measured variation can also be explained by differences in neural activity across several

centimeters of cortex. As with the previous subject, the PEDOT microelectrode shows a

significant difference between baseline and increased epileptiform activity demonstrating

their potential clinical utility.

To further examine spatial specificity, we analyzed stimulus-locked cognitive

activity in two patients. Recordings were made from the anterior STG for S2 (Figure

2.10a) and from the posterior STG for S3 (Figure 2.10d) while each was awake for the

clinical mapping of eloquent cortex. While awake, each also performed a short task (see

the Experimental Section). S2 verbally responded on >95% of naming trials and S3

made a correct match/mismatch decision on 98% of trials.

Spectrograms demonstrated increases in high-frequency power specific to certain

stimuli classes: auditory words for S2 (Figure 2.10c) and noise-vocoded stimuli for S3

(Figure 2.10f) Souza and Rosen (2009). The most consistent difference across electrodes

was in the fre- quency ranges commonly referred to as high-gamma, here defined as

70-170 Hz (Figure 2.10c,f shows the responses for three neighboring example channels

from each subject). This high-frequency band amplitude (HFB) is highly correlated with

population neuronal firing rates Ray et al. (2008). To better assess this HFB response, we

looked at the response averages across electrodes.

Of the 56 microcontacts, 42 in S2 and 34 in S3 were functional, as determined by

impedance <60,000 ohms. While reference autoclave experiments here and Uguz et al.

(2016) showed negligible influence on the microarray impedances (Figure ??), some of

the microarray dots displayed higher impedances after transportation and autoclave by

hospital personal as determined by impedance measurements just prior to the recordings

and is attributed to issues in handling the arrays rather than the autoclave process itself.
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In S2, 16 of 42 good electrodes demonstrated a significant (p < 0.05 false-discovery

rate corrected) increase to auditory words relative to visual words and pictures (38% of

electrodes). In S3, 31 of 34 electrodes demonstrated a significant increase (p < 0.05

false-discovery rate corrected) to auditory noise-vocoded trials relative to human voice

trials (91% of electrodes). S3 also saw a visual bigram prior to the auditory stimulus,

but showed no significant response across electrodes to visual stimuli. Figure 2.10b,e

shows the HFB of the six example electrodes chosen from a 3 x 2 portion of the grid,

demonstrating that the presence of an effect and the variability of the effect size can vary

across distances as small as 400 µm

2.5 Discussion

Electrophysiology in the operating room imposes additional constraints, but we

have demonstrated the ability of a modified affordable open source electrophysiology

system to be used in the clinic. It meets the standards of safety required in the clinic

while being able to record hundreds of channels with high enough quality for detection

of action potentials and other high frequency, small amplitude biopotentials. The system

is modular, built on Intan Technology components and custom ones to allow it to be

changed for different needs or purposes.

The system was brought into the clinic and we were able to validate the signals

using basic spectral features. This important step will allow the system to begin being

used for more complex studies that will more fully take advantage of the microelectrode

arrays and better understand their capabilities.

In parallel with testing the system we were able to demonstrate the use of the

PEDOT:PSS microarrays for recording baseline and stimulus-related human neural

activity. We show there are spatial variations at sub-millimeter scale of the signal

including relevant features such as high gamma activity. It is important to understand
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the spatial aspects due to the use of ECoG in localization and the relatively high spatial

specificity of signals used in brain-computer interfaces. Improving resolution will allow

ECoG to further improve patient outcomes by better mapping important cortical regions

prior to resection (Kim et al., 2010b; Heim et al., 2012; Park et al., 2010; Green et al.,

2008; Abidian et al., 2010; Cui et al., 2001) and BCI performance due to the small

cortical regions critical to high-performance BCI. Our work shows the advantage high

density grids have over typical clinical grids. Although in our device this benefit is at

the cost of cortical coverage due to the similar channel counts, as hardware enables an

increasing number of channels to be recorded simultaneously the tradeoff will be less

severe and ECoG can maintain reasonable coverage while also having higher than the

current standard electrode density. Nonetheless future high channel arrays will have to

be designed with this tradeoff in mind and understand how much benefit there is to using

electrodes arrays at micro scales.

Chapter 2, in part, is a reprint of the material as it appears in A Clinic Compatible,

Open Source Electrophysiology System in Engineering in Medicine and Biology Society

(EMBC), 2016. Hermiz, John; Rogers, Nick; Kaestner, Erik; Ganji, Mehran; Cleary,

Dan; Snider, Joseph; Barba, David; Dayeh, Shadi; Halgren, Eric; Gilja, Vikash. The

dissertation author was a co-investigator and co-author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Development and

Translation of PEDOT: PSS Microelectrodes for Intraoperative Monitoring in Advanced

Functional Materials, 2017. Ganji, Mehran; Kaestner, Erik; Hermiz, John; Rogers, Nich-

las; Tanaka, Atsunori; Cleary, Daniel; Lee, Sang Heon; Snider, Joseph; Halgren, Milan;

Cosgrove, Garth Rees; Carter, Bob S.; Barba, David; Uguz, Ilke; Malliaras, George G.;

Cash, Sydney S.; Gilja, Vikash; Halgren, Eric; Dayeh, Shadi A. The dissertation author

was a co-investigator and co-author of this paper.
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Figure 2.1. a) Electrode adapters: (left) connects to flat flexible cables (FFC) of 32
or 64 channels with 0.5 mm pitch and features switches that allows the user to short
various electrodes to reference; (right) can connect up to four 16 channel standard pig tail
connectors. Both adapters mate to Intan RHD2164 or RHD 2132 headstages using an
Omnetics connector (part : A79032-001). B) (left) Intan RHD2164 headstage and (right)
Intan SPI cable C) (left) Custom power isolator that can handle 4 RHD2164 headstages
or up to 256 channels and (right) accompanying adapter. (D) Intan RHD2000 acquisition
board. Reproduced from Hermiz et al. (2016).
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Figure 2.2. The power isolator and RHD2000 Board are housed in grey enclosure. Two
RHD2164 headstages are connected to the system to the electrode adapter housed in 3D
printed cases. Reproduced from Hermiz et al. (2016).
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Figure 2.3. a) A picture of the fabricated electrophysiology PEDOT:PSS device on thin
film parylene C layer showing the location of microarrays with 56 microdots at the top
of the probe and above the 6 macro REF electrodes. Optical microscope image of the
microelectrodes after b) Ti/Au deposition and lift-off process, c) selective parylene C
oxygen plasma etching to expose the gold electrodes, and d) definition of PEDOT:PSS
layer on top of only the metal microelectrode sites (scale bars 400 µm). e) Top view
SEM image of the circular PEDOT:PSS microelectrode with 50 µm diameter. The white
contrast in the lower right of the image is the result of elec- tron charging on parylene C
and does not signify a morphological detail. The dashed white box highlights the location
of FIB cut. f) Slanted view SEM image showing the cross-section of the device and the
stacked layers highlighting conformal and intimate contact between the different layers
of the device and exposure of PEDOT:PSS as the only electrochemical interface. g) 3D
AFM topography image of a 5 x 5 µm scan area of PEDOT:PSS film after autoclave
sterilization showing smooth and uniform morphology (compared to before sterilization,
not shown) and the absence of voids in the film. Reproduced from Ganji et al. (2017b).
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Figure 2.4. Electrode device, adapter, headstage and part of the SPI cable are in the
sterile field. Audio and visual stimuli are presented through a Microsoft Pro Surface
3. Stimuli trigger is sent wirelessly to a receiver that connects to an analog to digital
channel of the acquisition system. Reproduced from Hermiz et al. (2016)
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Figure 2.5. a) Thin film electrode device with 6 large sites (D = 3 mm) and 56 small
sites (D = 40 um) - black scale bar is 1cm. The device substrate is parylene C and
the electrodes are coated with PEDOT:PSS. A zoomed in microscopic image of the
small sites is also shown - white scale bar is 400 um b) Electrode device was implanted
in auditory association cortex. Also shown are clinical strip electrodes. c) Raw time
series downsampled to 2kHz showing delta (purple), theta (green) and alpha (orange)
oscillations - scale bars are 1 s and 250 uV. Reproduced from Hermiz et al. (2016)
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Figure 2.6. a) Power spectral density on 16-sec time series while patient was anesthetized
(blue) and awake and performing an audio task (red). Shown as insets are snippets of the
raw time series with scale bar 1 s and 250 uV. Reproduced from Hermiz et al. (2016).
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Figure 2.7. Mean β and high-γ RMS before (blue) and after (red) stimuli onset are
plotted along two y-axes. The most significant differences are shown. Error bars represent
S.E.M with n = 59. Asterisk denote significant decrease and increase (p ¡ 0.05 paired
t-test, one tail, Bonferroni correction). Reproduced from Hermiz et al. (2016).
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Figure 2.8. Power spectral densities (PSDs) between the two conditions (awake vs
unconscious) for a) clinical electrode, b) PEDOT macro, and c) microdot. Inset of (a)
shows optical image of clinical Pt macrodot and panels (b) and (c) show optical image of
PEDOT:PSS macrodot and an array of 56 microdots (scale bars 1 mm). The dark blue
and red lines are average PSD estimates from overlapping time windows and the lightly
colored shaded regions are the 95% pointwise c.i. (see the Experimental Section). Power
over the 10-50 Hz band shows significant differences between the two conditions for all
electrodes: 8.9 x 105 (clinical), 1 x 104 (macro), and 8.9 x 105 (micro) (Wilcoxon signed
rank test). The absolute median difference between 10-50 Hz of the estimate power
density is 2.4, 6.2, and 7.8 dB for clinical-, macro-, and microelectrode, respectively. The
dashed black line at 30, 42, and 44 Hz for (a)-(c) mark the frequency at which the c.i.s
start to overlap for frequencies >15 Hz. Time-frequency and corresponding time series
are shown for a sample 5 s window for the unconscious (d and e) and awake condition
(f and g). The rectangles highlight increases in beta (20-30 Hz) and spindling activity
(12-17 Hz). Color axis represents standard deviations away from the mean for each
frequency. The time window per condition for macro and micro are nearly identical.
Reproduced from Ganji et al. (2017b).
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Figure 2.9. a) Simultaneously captured ECoG traces from clinical, PEDOT macro, and
micro electrodes shortly after Methohexital dose (T1) and b) 200 s after T1, (T2). Inset in
(a) shows the clinical and PEDOT ECoG probes implanted over the superior and middle
temporal gyrus. Inset in (b) shows which microelectrodes are plotted for (a) and (b).
Power spectral densities of a c) clinical, d) macro, and e) micro electrode taken from
T1 (red) and T2 (blue). The dark blue and red lines are average PSD estimates from
overlapping time windows and the lightly colored shaded regions are the 95% pointwise
c.i. (see the Experimental Section). Power in the 10-50 Hz band show significant
differences only for PEDOT electrodes: 0.010 (clinical), 5.5 x 106 (macro), and 4.3 x
106 (micro) (Wilcoxon signed rank test). The noise spectra around 60 Hz frequency was
filtered out with a notch filter for all devices. The dashed red vertical line in (c) indicates
the upper passband cutoff frequency for the clinical system. Insets from (c)-(e) show an
interictal epileptic discharge (IED) captured concurrently across the three electrode types.
Scale bars are 200 µV (vertical) and 50 ms (horizontal). Reproduced from Ganji et al.
(2017b).
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Figure 2.10. a,d) Electrode placement from the two subjects who performed cognitive
tasks. Activity from six neighboring electrodes (3 x 2 electrodes) from the 8 x 7 elec-
trode array is displayed to illustrate high-frequency amplitude variation. The white box
highlights device placement (device partially obscured in subject 1 by the dural flap).
b,e) High-frequency amplitude for the 3 x 2 channels confirming significant differences
in Hilbert analytic amplitude from 70-170 Hz between stimuli classes (shaded regions
are anova fdr-corrected significant differences). For subject 2, the blue vertical line
indicates stimulus onset. For subject 3, the red vertical line indicates visual stimuli
onset (to which no response was found across the electrodes) and blue line indicates
auditory stimulus onset. c,f) Time-frequency plots from three of the example channels (3
x 1) in response to different stimuli classes demonstrating strong differences in higher
frequencies. Displayed is trial-averaged power determined by wavelets. Reproduced
from Ganji et al. (2017b).

33



Chapter 3

Spatial Characterization of Surface
Potentials at the Sub-Millimeter Scale

3.1 Introduction

Electrical recording from the brain surface, known as electrocorticography (ECoG),

is becoming more common due to technological advances that enable recording from

large cortical surface area with high temporal resolution and far better spatial resolution

than non-invasive EEG (Nakasato et al., 1994; Ramon and Holmes, 2014). ECoG has

also been used as an alternative to penetrating intracortical recording electrodes in brain-

computer-interface (BCI) applications (Chao et al., 2010; Schalk and Leuthardt, 2011;

Krusienski et al., 2011; Wang et al., 2013; Thakor, 2013; Rouse et al., 2016; Slutzky

et al., 2010) due to its less invasive nature and long-term stability that are important

features for driving drive BCIs (Chao et al., 2010). Electrodes designed for BCI will

typically have more closely spaced electrodes to target specific cortical regions compared

to clinical ECoG, in which large cortical coverage is important. Recently, high density

ECoG grids have become more common, and many questions on the properties, uses,

and design of these grids, e.g., what is the optimal spacing for the electrodes (Rouse

et al., 2016; Slutzky et al., 2010; Wang et al., 2017; Hermiz et al., 2018), remain to be

answered.
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Recording hardware sets an upper limit on the number of channels that can be

simultaneously recorded. This creates a tradeoff in designing ECoG electrode grids

between coverage and resolution. Clinical grids are typically on the larger coverage side,

with 1 centimeter being a typical pitch between electrodes. BCI and research applications

have pushed for more resolution in order to place more electrodes near cortical regions

of interest (Chao et al., 2010; Wang et al., 2013; Rouse et al., 2016; Slutzky et al., 2010;

Wang et al., 2017; Menon et al., 1996; Leopold et al., 2003; Kellis et al., 2016; Muller

et al., 2016; O’Neill et al., 2016; Takaura et al., 2016). A challenge of scaling down the

size of ECoG grids is that low impedance electrodes improve signal quality, but electrode

impedances increase as the contact area decreases (Ganji et al., 2017a). Combining

fabrication techniques that allow for smaller, more closely spaced ECoG contacts with

novel materials that can significantly reduce impedance makes very small contact sizes

feasible. In the present study, we used electrodes coated with PEDOT:PSS on gold traces

embedded in a parylene-C substrate (Ganji et al., 2017b,c) with contact diameter as

small as 20 microns and pitches as low as 200 microns. Hereafter, we will refer to these

ECoG electrode grids as micro-ECoG. Previous work has shown that recordings with

micro-ECoG electrodes are more similar to intracortical recordings than to the recordings

from larger clinical ECoG electrode grids (Kellis et al., 2016).

The primary signal of interest in ECoG recordings is the lower frequency compo-

nent (less than 200-500 Hz) called the local field potential or LFP. LFP is an uncertain

signal in that its precise physiological and spatial origins are poorly understood (Obien

et al., 2015; Herreras, 2016). Much of the difficulty both in studying and using LFP is due

to its lack of spatial specificity, that is, the potentials are an aggregate of nearby activity –

in contrast to single- or multi-unit electrophysiological signals which are indicative of

action potentials very near the recording site (?). The spatial extent of LFP is itself an

area of study (Kajikawa and Schroeder, 2011; Lindén et al., 2011; Łeski et al., 2013)
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with a dependence on the geometry and activity of the region generating the signal. The

spread of the potentials manifests itself in ECoG as similar signals being recorded on

different electrodes. This feature of the potentials at different electrodes can be used

to interpret the signals (Stam et al., 2007; Casimo et al., 2016) or guide the design of

electrode grids to optimally sample the cortical surface.

To quantify the similarity between electrodes, previous studies examined the

correlation or coherence of EEG, ECoG, and intracortical electrodes as a function of

inter-electrode distance by averaging the correlation or coherence across many pairs

separated by the same distance (Rouse et al., 2016; Leopold et al., 2003; Kellis et al.,

2016; Muller et al., 2016; Casimo et al., 2016; Bullock and McClune, 1989; Bullock

et al., 1995; Nunez et al., 1997). Most of these studies are in human or nonhuman

primate, with some early investigations on smaller mammals, reptiles, and invertebrates.

In ECoG recordings these studies have shown a consistent nearly monotonic decrease in

the correlation as the electrode separation increases that exhibits a roughly exponential

shape. Also consistent across the studies is a dependence of the correlation/coherence on

the frequency band examined.

It is expected that the correlation/coherence would tend to zero (or bias level)

at large distances, and this can be seen in EEG and clinical ECoG Kellis et al. (2016);

Bullock et al. (1995); Nunez et al. (1997). On the other hand, the correlation should

approach 1 as the separation approaches 0. This is the case because the brain is a conduc-

tive medium, and for finite sources distant from the electrode in a volume conductor the

potential will be the sum of all of the sources with amplitudes attenuated with distance.

The distance at which the similarity will effectively approach 1 will depend on both

the geometry of the sources and the properties of the medium. An example of this is

discussed in (Bullock and McClune, 1989; Maier et al., 2010), where ECoG correlation

between submillimeter-spaced electrodes is mostly close to 1 while correlation between
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even more closely spaced intracortical electrode pairs is frequently much lower than 1.

This sub-millimeter regime in ECoG is largely unexplored, and at the smallest distances

in most previous studies the correlation or coherence is significantly below 1, meaning

there is still room to explore smaller electrode spacing.

On the other hand, for practical purposes recording ECoG at the scale in which

the neighboring pairs measure very close to the same signal is not optimal because this

would mean a large amount of redundancy between channels. The spacing should be

guided by the spatial extent of features of interest. It has been suggested that contacts

should be less than 5 mm apart for adequate sampling of gamma band in human ECoG

(Menon et al., 1996), that for BMI applications subdural electrodes in humans be spaced

1.7 mm apart and in rat 0.6 mm apart Slutzky et al. (2010), and that by halving the spacing

of electrodes from 3.5 to 1.68 mm implanted in minipig, more and separate response

peaks could reliably be identified in Wang et al. (2017). The optimal separation will

depend on factors such as species, location, and the nature of the activity of interest, but

in general it will be difficult experimentally to recognize the optimal spatial resolution

for a specific application until it is exceeded. However, we expect there may be an

approximate resolution to use as a rule of thumb for each species.

We analyze the similarity of micro-ECoG with inter-electrode spacings down to

0.4 mm in human recordings and 0.2 mm in mouse. In agreement with past studies, we

found that on average the signals were more similar for more closely spaced electrodes.

With exceptions, higher frequency components of the signal showed a larger decrease in

similarity with distance.

We also investigated the nature of the pairwise correlation between electrodes

across the electrode grid. For a group of closely spaced electrodes to be correlated to

each other there must be parts of their signals that are common between each channel

pair, and parts that are independent to each electrode. The relative size, distribution, and
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properties of these signals determines the correlation between each pair of electrodes

across the whole array. There are several analyses that are tailored to finding common

signals across multiple channels commonly used on electrophysiological data such as

principal component analysis (PCA), factor analysis, or independent component analysis

(ICA). We modeled the effect of the properties of the components on the correlation

structure, and then used ICA on the data to identify and separate common signals and

find how they are distributed across the grid. We found that there are smoothly distributed

sources present in the data, and due to the linearity of the ICA decomposition, show that

the spatially coherent ICA components account for much of the correlation structure in

the data.

3.2 Methods

3.2.1 Human Intra-Operative Recording

The details of the electrodes, their preparation, their implantation, and the record-

ing setup are given in Ganji et al. (2017a,b,c); Uguz et al. (2016). Subjects who were

undergoing awake craniotomy surgeries were chosen for recording. The entire section

of hardware up to the amplifiers had to be sterilized due to its proximity to the surgical

field. The electronics underwent STERRAD sterilization, and it was important to ensure

that the devices would remain intact after autoclave sterilization (Uguz et al., 2016). The

electrode grid was placed over STG, with larger electrodes within a few centimeters

of the grid used as reference electrodes. The ground electrode was placed in the scalp.

Recording was sampled at 20 kS/s, with a built-in high pass filter at 0.1 Hz and low pass

filter at 7500 Hz. The UC San Diego Health Institutional Review Board (IRB) reviewed

and approved the study protocol.
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3.2.2 Mouse Acute Recording

ICR mice weighing 25-35 g were used in the experiments. All procedures

were in accordance with a protocol approved by the Institutional Animal Care and

Use Committees of UC San Diego (protocol S07360). The mice were placed on a

heating pad and anesthetized with isoflurane. A femoral artery was catheterized for

monitoring and injection, and a tracheotomy was performed for ventilation of the mice.

After fixing the skull to a holder using dental acrylic, a craniotomy and durotomy were

performed over the right whisker barrel and surrounding cortex. A well was formed

around the craniotomy using dental acrylic, and the exposure was kept filled with artificial

CSF until the electrode array was placed. Prior to recording the mice were administered

pancuronium and artificially ventilated, and prior to stimulus trials the mice were switched

to alpha-chloralose anesthesia. The exposure was dried prior to the electrode placement,

and then covered with 0.7% agarose made with artificial CSF. The electrodes arrays used

were arranged in square grids with either 0.2 or 0.25 mm spacing, and either 50 micron

or variable diameter contact sizes. The reference electrode was silver-chloride ball placed

between muscle tissue exposed for the craniotomy. Whisker flick stimuli were presented

every 2 seconds, and recordings included both spontaneous epochs as well as periods

with stimulation.

3.2.3 Recording and Pre-processing

All data was recorded with an Intan RHD2000 system, and the recordings were

sampled at 20 kS/s with a high pass filter at 0.1 Hz and low pass filter at 7500 Hz.

Channels that by visual inspection were highly contaminated with noise were assumed to

be from damaged electrodes removed from further analysis.

Data was then downsampled to 4 kS/s, and 6 FIR bandpass filters were applied,

chosen such that they span about 0.6 octaves, have no overlap, not include 60 Hz, and
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roughly correspond to physiological bands (theta, alpha, beta, gamma, high gamma): 6-9

Hz, 10-15 Hz, 20-30 Hz, 35-50 Hz, 70-110 Hz, and 130-200 Hz.

Windows of time where the reference signal was more than 35 uV from zero, any

one channel was outside +/- 4 mV, or the signal in the highest band was more than 20

times the RMS in that band were marked as potential artifacts and excluded along with

750 ms prior and 1.25 s after. Regions that were not removed in this way but were shorter

than 6 seconds were also excluded.

3.2.4 Distance-Averaged Correlation

The data was segmented into continuous 2 s windows. For each window corre-

lation was calculated using Pearsons correlation coefficient for every possible pair of

electrodes on the grid. Each channel pair also has an associated inter-electrode distance,

and the correlation vs. distance plots are the result of averaging the pairwise correlations

with all equally spaced pairs. For a subject the average correlation is calculated by

pooling all correlations across time and averaging the values by distance.

3.2.5 Component Analysis and Modeling

PCA and ICA decompose the data matrix, s, into linear combinations of compo-

nents, z, with the transformation, mixing, or weight matrix, W,

s = Wz (3.1)

The components are all uncorrelated with every other component. Therefore, the mixing

matrix obtained from either ICA or PCA can be used to whiten the data – which is to

linearly transform the data such that the covariance matrix of the transformed data is the

identity matrix. PCA is commonly used as for whitening data, and for our purpose ICA

can be defined such that it is a whitening transform due to the ambiguity in the scaling
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of the components. The components can be arbitrarily scaled so long as the weights are

scaled inversely such that the original data is unchanged. We make use of this choice to

conveniently express the covariance of the data as a function of the weights

cov(s) = covWz =Wcov(z)WT =WIW T =WW T (3.2)

Using this result, the correlation matrix can be computed directly from the mixing matrix.

For the model we can start with mixing matrices with each components weights being

drawn from a two-dimensional Gaussian

Wi,j = A je
−(x j−xi)

2+(y j−yi)
2

2σ2
j (3.3)

where i is the channel with position (xi yi), and j is the component with location (xj ,yj)

and standard deviation σ . For our model we sample the components on a 10x15 square

grid with 150 components, one per channel, whose center positions are drawn from a

uniform random distribution on the 2D space covered by the grid plus one fifth of the

standard deviation of the component for which the center is being determined on either

side. The amplitudes of each component are drawn from a uniform random distribution

between 0.5 and 1.5, sorted in descending order and then scaled by e-0.1 k , where k is

1,2,3 corresponding to the first, second, third, etc. amplitude. This is to mimic the trend

of decreasing variance for components typically obtained from PCA and ICA. Once the

mixing matrix is determined the covariance, , is given as before by

Σ =WW T (3.4)
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The properties of products of Gaussians allows the covariance elements to be rewritten

as

Σi, j =
N

∑
k=1

Wi,kWj,k =
N

∑
k=1

e−
(xk−xi)

2
+(xk−x j)

2
+(yk−yi)

2
+(yk−y j)

2

2σ2

=
N

∑
k=1

e−
2(xk−

1
2(xi+x j))

2

2σ2 e−
2(yk−

1
2(yi+y j))

2

2σ2 e−
1
2(xi−x j)

2
+ 1

2(yi−y j)
2

2σ2

(3.5)

Separating the terms that involve the distance between channels i and j gives

Σi, j = e
−

d2
i j

2(
√

2σ)2
N

∑
k=1

e−
2(xk−

1
2(xi+x j))

2

2σ2 e−
2(yk−

1
2(yi+y j))

2

2σ2 = Fi, j e
−

d2
i j

2(
√

2σ)2
(3.6)

Each element is the product of a Gaussian function of the distance between channels and

Fi,j, a sum over 2D Gaussian functions of the component positions centered at the average

location of two electrode positions, which given a fixed set of component locations, is a

function of the two electrodes positions. For uniformly distributed component positions

xk, Fi,j looks like a discrete approximation of the integral over xk of the 2D Gaussian. In

the limit of an infinite number of components uniformly distributed across a sufficiently

large area it becomes proportional to the integral

Fi, j ∝

∫
∞

−∞

∫
∞

−∞

e−
2(xk−

1
2(xi+x j))

2

2σ2 e−
2(yk−

1
2(yi+y j))

2

2σ2 dxkdyk = F0 (3.7)

and given that this integral is not a function of the center position of the Gaussian, in

this limit F is a constant regardless of the positions of channels i and j. In this limit the

correlation matrix is exactly a Gaussian function of the distance between the channel

pairs with a standard deviation square-root of 2 larger than the standard deviation of the

42



components that generated it:

ri, j =
F0e
−

d2
i j

2(
√

2σ)2√
(F0)(F0)

= e
−

d2
i j

2(
√

2σ)2
(3.8)

For the above form of the correlation to be valid doesnt require that F is near the

limit of infinite components, rather that F is not a function of the electrode pair i and j.

For the correlation to take the form above on average is an even weaker condition that

F can be a weak function of the electrode pair in relation to the distance term so that

the small factors multiplying the distance term will tend to cancel when averaged over

equidistant pairs and multiple DACs.

To include the effect of noise specific to each channel, and uncorrelated from the

activity or noise on the other channels, a new component has to be created for each noise

element because every component is required to be uncorrelated to all other components.

This results in a diagonal matrix of weights which we model as each having the same

amplitude, , across channels

Wnoisei, j = εδi j (3.9)

Where ij is the Kronecker delta, not the distance used previously. The effect of a reference

electrode which is added to all channels can be modeled as a single component with a

constant weight vector across all channels

Wre f = ρ (3.10)

so that the modified mixing matrix is the original mixing matrix with additional columns
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for the noise and reference

W ′ =

W Wnoise Wre f

=


ε 0 ρ

W 0 ε ρ

. . . ...

 (3.11)

The modified covariance matrix is now given by

Σ
′
i, j = Σi, j + εδi j + ρ (3.12)

and its modified correlation matrix r is given by

r′i, j =
Σi, j + εδi j +ρ√

(Σi,i + ε +ρ)
(
Σ j, j + ε +ρ

) (3.13)

3.2.6 Independent Component Analysis

ICA was applied using the runica() function from EEGLab (Delorme and Makeig,

2004) to the same filtered and segmented 2 second windows that were used to compute the

DAC. The built-in PCA option was used to apply PCA prior to ICA as a dimensionality

reduction technique, and the extended-ICA option was used. For human data with 56

channel grids the first 30 components were kept, and for mice with 32 channel grids the

first 20 components were kept. In both cases the excluded components accounted for less

than 5% of the variance in the data, and usually were close to 1

Component mixing matrices were fit using least squares fitting function lsqcurve-

fit() in MATLAB to a two-dimensional circular Gaussian function with 5 parameters

Ae
(x−B)2+(y−C)2

2D2 +E (3.14)
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with lower and upper bounds such that A be positive, B and C to force the center to lie

within 40 grid pitches on either side, D to fit to Gaussians that have standard deviations

larger than a single grid pitch.

The median width parameter D was chosen instead of the mean due to the distri-

bution of values being skewed towards zero. In order to calculate the 95% confidence

interval of the median a bootstrap with 5,000 resamples was used. Only widths corre-

sponding to components with R2 over 0.7 to exclude components for which a Gaussian

is not a good representation and the value of D may not be meaningful.

The individual contribution of each component to the overall covariance matrix

can be found by re-calculating the covariance using only the desired component. Any

entry in the covariance matrix is a sum over weights corresponding to all components.

Σi, j =
N

∑
c=1

Wi,cWj,c (3.15)

Therefore, we define the reduced covariance corresponding to a single component, c,

as just the terms involving that component. The sum of all of the reduced covariance

matrices is therefore the full covariance matrix.

Σ
c
i, j =Wi,cWj,c (3.16)

The corresponding reduced correlation matrix cannot be calculated as usual

ri, j =
Σi, j√
Σi,iΣ j, j

(3.17)

because all of the reduced correlation matrices would be identity matrices. Rather the

reduced correlation is calculated using the reduced covariance in the numerator, and the
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full covariance in the denominator,

rc
i, j =

Σc
i, j√

Σi,iΣ j, j
(3.18)

so that the sum of all components of the reduced correlation matrices is equal to the full

correlation matrix.

The reduced correlations can be averaged by distance in the same manner as the

full one. The contribution of each component to the variance, correlation, and drop in the

correlation can be calculated using the reduced covariance and correlation. The variances

of the channels are the diagonal entries of the covariance matrix, and we will define the

overall variance (across channels) as the trace of the covariance matrix. The variance

across channels for a given component is then given by

Varc =
N

∑
i=1

Wi,cWi,c (3.19)

such that the overall variance is the sum over components, and the percentage of the

variance explained by each component is the component variance divided by the overall

variance.

We also want to know the contribution of each component to the DAC. The

contribution to the DAC is a similar measure to the contribution to the variance, but

the contribution to the drop in the DAC is more relevant for explaining the shape of

the correlation vs. distance curve. To calculate these, the DAC curve for each reduced

correlation matrix is calculated in the same manner as for correlation matrices. The drop

in the DAC due to each component is calculated by subtracting the zero-distance value

of the DAC from all the values, and it retains the desired property that the sum over all

components is equal to the drop in the full DAC.
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To summarize the amount each component contributes to the drop in the DAC

into a single quantity, the percentage explained is calculated at each distance, and then

averaged over all distances. With this, each component can be assigned a percentage of

the total variance, total DAC, and total drop in the DAC.

3.2.7 Common Average Reference

The common average reference can be computed with the matrix

1
N

J (3.20)

Where N is the number of electrodes and J is NxN matrix of ones. The product of this

matrix with s computes the average signal and is subtracted from the original signal to

yield the CAR version of the signal

sCAR = s− s̄ = s− 1
N

Js =
[

I− 1
N

J
]

s =Cs (3.21)

The covariance of the signals after CAR is then

cov(sCAR) =C cov(s) CT (3.22)

The effect on the component-based representation is

sCAR =Cs =CWz (3.23)

It is important to note that this modification of the weight matrix applies to the weight

matrix obtained without the change of reference. When CAR is applied to the data the

temporal components identified by a whitening algorithm such as PCA are not necessarily
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the same.

3.3 Results

3.3.1 Distance-Averaged Correlation

Human subjects (n=2) were implanted with a grid of 56 electrodes with 0.4 mm

center-to-center distance referenced to another larger (3 mm diameter) ECoG electrode a

few centimeters away, and mice (n=2) were implanted with 32-electrode square grids with

0.2 mm or 0.25 mm spacing with a subcutaneous reference near the skull. After removing

poor channels and potential artifacts, the signals were bandpass filtered into 6 different

bands, and separated into non-overlapping 2.0 second windows (527 windows for subject

1, 326 for subject 2, 1,486 for mouse 1, and 893 for mouse 2). The Pearson correlation

coefficient (referred to as simply correlation) was calculated for each window between all

pairs of channels on the ECoG grids for each filter. After averaging correlations across

equidistant electrode pairs as in Łeski et al. (2013) which we will call distance-averaged

correlation (DAC), we see that the correlation between pairs of channels decreases on

average as the distance between the electrodes increases (Figure 3.1). The values of

correlation in Figure 3.1 are averages of correlation calculated in 2 second segments

of the data across all segments and channel pairs that share the same spacing. We

find similar values to previous studies of the correlation as a function of electrode

distance (Kellis et al., 2016; Muller et al., 2016; Bullock et al., 1995). Correlation was

analyzed separately for different frequency bands due to the 1/f nature of the signal power,

and that the presence of distinct processes present in different bands are common in

electrophysiology studies. Also, it is a well-known feature of ECoG that common activity

in lower frequencies tends to appear over larger regions than high frequency activity.

We find a similar trend in the correlation plots with some exceptions between adjacent
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frequency bands, and that between the two commonly used bands in electrophysiology

studies, beta (15-30 Hz), and high gamma (70-110+ Hz), the difference is quite large as

expected.

The differences between the results in human and mouse is also large (Figure

3.1B inset). In mouse the correlations fall below 0.5 within 1.5 mm while in human even

the highest frequencies are correlated above 0.5 up to around 2 mm. The low frequencies

in human are noticeably more correlated across distances of a few millimeters. The

values within the 2.0 second time windows vary considerably but are concentrated near

the mean values (Figure 3.1C,D).

Figure 3.1. (A) Results for a human subject 1. Each color represents a frequency
band. Error bars are 95% confidence interval of the mean across all time windows and
equidistant electrode pairs. (B) DAC for mouse 1. Inset shows (A) and (B) plotted on the
same scale for comparison between human (green) and mouse (blue) DAC. (C-D) The
distribution across time obtained by averaging only within each window. Boxplot of the
distributions of the correlation values over time for one human and one mouse subject in
the 35-50 Hz band. The distributions are across all 2.0 s windows with each value the
average at each distance of the correlation. Reproduced from Rogers et al. (2019).
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3.3.2 Component Modeling

Correlation is a measure of to what degree two signals are similar, but an alter-

native approach to view the similarity is to look for commonality among all the signals

simultaneously rather than an aggregate of pair-wise comparisons. There are a few meth-

ods which are commonly used in electrophysiology for identifying common signals that

are present on multiple channels: principal component analysis (PCA), factor analysis,

and independent component analysis (ICA). All are built around the assumption that there

exists a set of signals that are present in the data with various amplitudes across all of the

channels. ICA and factor analysis were developed to find underlying signals while PCA

was not. Factor analysis assumes the components are drawn from a Gaussian distribution

(across time samples, not channels), which does not describe the data, especially the

sinusoidal signals obtained after bandpass filtering. We used ICA because we expect it to

best find the underlying signals, and it is commonly used for this purpose. An important

point in using ICA (as well as PCA and FA) is that the geometry of the recordings is

not an input to the algorithm. The inputs are a set of time series (in this case) with no

particular ordering, arrangement, or any other information relating the channels to one

another. Therefore, an orderly spatial arrangement of the ICA results has been taken as

an indication of the efficacy of ICA in separating sources, and is compelling in many

cases.

To explore the connection between the ICA/PCA decomposition of the data

into components and the correlation we start with a model how the spatial extent of

the components affects the DAC. Component weights are modeled as two-dimensional

Gaussian distributions sampled on a square grid of electrodes. The resulting correlation

vs. distance curves are well-approximated by Gaussians, and we find a direct correlation

between the width of the component Gaussians and the standard deviation parameter
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of the fit of the correlation vs. distance curve as shown in Figure 3.2. The relationship

between the two is linear in the limit that there are many components that are sufficiently

sampled by the grid of electrodes. The addition of uncorrelated noise to all channels

decreases all correlation values by a factor, and the effect of having a reference signal

added to every channel is to increase all correlation values. The effect of the noise is

more apparent at small distances where even with the Gaussian components, the apparent

y-intercept of the DAC drops as noise is added. On the other hand, the reference has the

effect of raising the asymptotic value of the DAC for large distances.

We also directly connected the components to the DAC through the weight

matrices (mixing matrices in ICA). Applying the ICA unmixing matrix (the inverse of

the mixing matrix) to the data will decorrelate the data, and the unmixing matrix can

be arbitrarily rescaled, therefore it is always possible for all of the components to have

unit variance. This makes the ICA unmixing matrix a whitening, or sphering, matrix

which is straightforwardly connected to the covariance matrix of the data because when

multiplied by its transpose it must equal the covariance matrix. This allows a reduced,

single-component covariance matrix to be calculated for each component of the mixing

matrix separately, and the contribution of each component to the DAC can then be

calculated.

3.3.3 ICA Decomposition of the Recordings

ICA is applied (using the EEGlab implementation, see Methods) to the same

filtered 2 second windows as were used in the DAC calculation. The mixing matrices,

when plotted in the arrangement of the electrodes, show readily apparent spatial patterns

throughout the recordings as shown in Figure 3.3. As a way to quantify the spatial

patterns in the component weights in the mixing matrices, we fit the weights as they are

laid out on the brain to a circular two-dimensional Gaussian function. The goodness-of-fit
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Figure 3.2. (A) The DAC curves for different Gaussian standard deviations averaged
over 200 iterations of randomly generated components (in arbitrary units) (B) The results
of Gaussian fits to the DAC from (A). The black dots are the standard deviation of the
fit, and the red dashed line is the theoretical value of square root of 2 larger than the
component standard deviation. The R2 values are plotted in blue to indicate where the fit
is no longer appropriate. (C,D) The effect on the DAC of adding uncorrelated noise and
a reference signal, respectively, to the Gaussian components. Reproduced from Rogers
et al. (2019).

gives a rough assessment of the smoothness of the mapped weights and their spatial

gradients (see Figure 3.4). Of the parameters of the fit, the one with we expect to have

the most relevance to the correlation is the standard deviation, or width, of the Gaussian.

Larger widths would correspond to larger correlated areas, and as a result, a higher

correlation at larger distances. This effect can be seen when comparing the median width

values for each frequency band independently. As shown In Figure 3.5, the median

Gaussian width decreases with frequency in agreement with the frequency dependence

of the DAC, and that the components tend to be more Gaussian for lower frequencies. At

the highest frequencies there is a marked decrease in the goodness of fit that may be due

to lower signal-to-noise ratios expected as the 1/f decrease in the signal approaches the

noise floor of the hardware.
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Figure 3.3. On the left is an image of the electrode grid with the channels included in the
analysis highlighted. An example of the output of ICA for a two second window from
a human subject after a bandpass filter between 20 and 30 Hz. The left column is the
weights associated with each component for the first 12 of 30 components plotted in the
arrangement of the electrodes on the device. The right column are the components, or
time series identified by ICA after normalizing to have variance of 1. The maps must be
scaled inversely, and the overall amplitude of the component can be seen in the magnitude
of the weights. Reproduced from Rogers et al. (2019).

By comparing the contributions of each ICA component to its Gaussian fit we find

if and how the DAC curves are influenced by the spatial distribution of the component

weights. The spatial distribution of the weights must explain the DAC curves, but to

determine whether the Gaussian fits have any significance for the DAC in real data, the

contribution of the components is plotted as a function of the R2 values of their fits in

Figure 3.6. The higher R2 components account for a disproportionately large amount

of the drop in the DAC with distance, and therefore the particular shape of the DAC is

mostly attributable to the more Gaussian components. The correlation and variance are

concentrated in more Gaussian components which shows that the larger, more significant

components are generally roughly Gaussian (Supplement Fig 1).

As a control, PCA is substituted for ICA, and because it can also be rescaled into
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Figure 3.4. Examples of components with various R2 values (top), and their corre-
sponding least-squares circular Gaussian fits (bottom). Reproduced from Rogers et al.
(2019).

a whitening matrix, all of the analyses can be carried out in the same manner for PCA as

for ICA. PCA is not a source separation algorithm like ICA, but in the case where there

are sources that account for most of the variation these sources will show up in the first

principal components. This can be seen in the R2 histograms in where the components

are concentrated near 0, but there is also a smaller number of components very near 1.0

that account for much of the variance. These are the first few PCA components which

are larger and more Gaussian. These more spatially Gaussian principal components

account for much of the drop in correlation, so using PCA for comparison both shows

the effectiveness of ICA in finding local sources, and that again, the more Gaussian

components are more strongly tied to the drop in the DAC with distance.

The location of the reference electrode can have a large impact on the correlation

values as shown in Fig 2D (Nunez et al., 1997; Fein et al., 1988; Zaveri et al., 2000; Hu

et al., 2010). The reference electrode subtracts the same signal from all of the recording

channels and this will act to increase the correlation between any two channels if the

reference is sufficiently uncorrelated with the signals. In mouse the reference electrode

was placed subcutaneously and not on the skull, while in human the reference was

multiple contacts within 10 cm of the of the micro-ECoG grid on the cortical surface.

The latter are more likely to be active at the frequencies of interest, and even correlated
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with the unipolar signals measured at the grid. The reference electrode placement should

always be taken into account when interpreting correlation or other measures of signal

similarity, and that the relatively close reference used in the human subjects is not an

ideal placement for studying DAC. Consequently, the DAC curves we obtained in Figure

3.1 should not be interpreted as the DAC corresponding to unipolar potentials (potentials

measured against a theoretical reference potential of zero) which would be the ideal

for studying spatial correlation across the brain. Using the methods in Hu et al. (2007)

we attempted to identify the reference signal in the human recordings, but a signal that

matched the criteria was not found. Additionally, the reference will ideally be identified

by ICA as a component with the same weight on every channel across the grid. In

practice this is unlikely, but it may be identified in part and represented by components

with relatively flat weights. In fact, this method was used in Whitmore and Lin (2016).

In our case it may be correlated with the unipolar surface potentials at the grid and could

be mixed in with components of those.

Figure 3.5. The histograms are calculated separately for each subject and each frequency
band across all 2.0 s windows. (A-B) R2 for two human subjects. (C-D) R2 for two mice.
(E) The median width parameter of the Gaussian function for fits with R2 greater than
0.7 for all 4 subjects as a function of frequency band. The error bars are 95% confidence
intervals obtained by a bootstrap analysis. Reproduced from Rogers et al. (2019).

A common method in ECoG to remove the true reference is to use the common
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average reference (CAR), at the expense of introducing a virtual reference which is also

unknown. When ICA is applied after CAR, and fits are recalculated the distribution

of R2 values is nearly unchanged. While the mean Gaussian widths are significantly

different after CAR (two-sample Kolmogorov-Smirnov test p > 0.05), they follow the

unreferenced values closely but are slightly larger (19 +/- 9 %). This shows that the

references that were used did not have a large effect on the components and their spatial

properties. The large difference between the original and CAR correlations can be

understood through the effect of the CAR matrix discussed in the Methods. The amount

subtracted from each component is uniform across all the channels and is equal to the

average weight. Therefore, the shapes of the components are unchanged, but they are

shifted such that they mean weight of each component across channels is zero. Reference

effects are removed in this way due to their representation as a uniform component across

all channels. This shifting of the weights can be seen in the data through the offset term

of the Gaussian fit becoming strictly negative after CAR.

Figure 3.6. The percentage of the DAC drop explained by each component is averaged
across components with similar (binned) R2 values. Therefore, each bar represents the
average percentage of the DAC drop explained by components as a function of their
values of R2, and are shown for 3 different frequencies and for each subject (A-D) as in
Figure 4. The dashed red line represents the percentage that would be explained by each
component if all components contributed equally. Reproduced from Rogers et al. (2019).
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3.3.4 Localized Response Modeling

In Hermiz et al. (2018) modeling and experimental analyses were performed to

determine if and when higher density grids outperform lower density grids. An illustrative

model was developed to determine under what conditions a higher density grid might

outperform a lower density grid. Analytical results for the simple 2-channel case and

numerical results for higher dimensional cases are presented (Fig 3.8).

Figure 3.7. (A) Spatial representation of signal fall-off length s(arbitrary units) using
generated data from the model. Note, that dark red maps to the maximum value and dark
blue maps to the minimum value. For more visualizations of signal and noise fall-off
length, λ see Fig S1 (B) Illustration of which regions in the parameter space σs- λ where
higher density grids outperform lower density grids. There are two regions: I, σs,is large
and λ is small or II, σs is small and λ is large. (C-F) 2-channel feature space where the
MVN for various random variables are plotted - dots are means and the ellipses are 1
standard deviation. The distribution of channel measurements from the non-preferred
stimulus, xnp are blue and the distribution from the preferred stimulus, xp are red. (C)
Illustrates effect I: given a small λ , a larger σs will increase separation between xp and
xnp. Note small λ corresponds to little correlation and thus a circular distribution. (D)
Illustrates effect II: given a large λ , a smaller swill increase separation. Note large λ

corresponds to large correlation and thus a skewed distribution along the y axis. (E-F)
Illustrates when 2 channels spaced far apart (low density) can be better than when spaced
close together (high density). In this case, σs must be large and λ must be relatively
small. Reproduced from Hermiz et al. (2018).

We developed a simple model that assumes measurements belong two types of

stimuli, preferred, xp and non-preferred, xnp and are generated from multivariate normal
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(MVN) distributions: xp = (s,Σ) and xnp = N(0,Σ). The signal of interest, s is assumed to

peak at a specific electrode, xctr and fall off exponentially with a characteristic length, σs.

In all analyses, the electrode xctr is a member of all grids and is the center most electrode.

When there is an even number of electrodes, then xctr is the left center most electrode.

Please note that in these simulations, the peak location of the signal is not modeled as

randomly related to electrode location, as would be the case in actual recordings. Had our

model permitted response peaks between electrodes, then tight electrode spacing would

be highly advantageous, inasmuch as it would make it more likely that the response peak

would be directly measured. However, for our current purpose, we only focus on the case

where the peak activation is centered on the grid. Noise correlation is also modeled as a

decaying exponential with characteristic length, λ . That is, electrodes closer together

will have more correlations whereas channels farther apart will have less. Here, noise

can be interpreted as spontaneous neural activity that is independent of the stimulus.

We used the model to find parameters for which the higher density grids would

outperform the lower density grids. Details can be found in Hermiz et al. (2018), but

the results for 3x3 grids with different spacing which is the simplest case for testing the

effect of density are shown in Fig 3.8.

3.4 Discussion

The results of our study indicate high degree of variability of the DAC, both

within any set of data, as Figure 1 shows, and between datasets due to external factors

such as where on the cortex the electrodes are placed. There is large variation across the

2.0 second windows as shown in Figure 3.1, that may reflect changes in ongoing activity.

In fact, it has been shown that there are task-related changes in the DAC (Leopold et al.,

2003; Muller et al., 2016; Manganotti et al., 1998), however we did not find there to be

task- or state-related changes in the DAC in the human recordings.
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Figure 3.8. (A-D) Numerical results from (5,1) vs (3,2) and (3,1) vs (3,2). The no-
tation (a,b) refers to a grid that has a by a channels and has a pitch of b. (A-B) As SNR
increases, the difference of squared Mahalanobis distance (∆d2

m) increases or decreases,
depending on σs, λ and which grids are compared. (C-D) 3d plots showing ∆d2

m for
a grid of sand λ values. (C) For (5,1) - (3,2), there are no values for which ∆d2

m < 0,
given the domain; and as expected, ∆d2

m >> 0, when σs,is large and λ is small or vice
versa. (D) For (3,1) - (3,2), d2m< 0, when roughly, σs > 5 and 1 < λ < 2, which is
expected. Again, ∆d2

m >> 0 when σs,is large and λ is small or vice versa. The color axis
ranges from -1 (dark blue) to 1 (dark red) and is used to represent sign. Reproduced from
Hermiz et al. (2018).

The particular curve of the DAC may change between time windows, recording

epochs, subjects, and species, but a robust feature in our recordings and previous studies

is the frequency dependence of the spatial correlation. This agrees with past studies

that the responses in lower frequency bands are more spread out than in higher bands

(Leopold et al., 2003; Takaura et al., 2016; Łeski et al., 2013; Maier et al., 2010; Miller

et al., 2007) and is evident in similar studies that used coherence instead of correlation,

which is an inherently frequency dependent similarity metric. The coherence is plotted as

a function of frequency, and in for ECoG data almost completely monotonically decreases

with frequency (Leopold et al., 2003; Kellis et al., 2016; Muller et al., 2016).

The geometry of the ICA component weights offers a possible explanation of this

frequency dependence. Two ways by which neighboring electrodes can be correlated

are by volume conduction and coactivation of populations close to each electrode which

produce distinct, but correlated potentials (Dubey and Ray, 2016; Parabucki and Lampl,

2017). In many cases there is a degree of both which contributes to the correlation, but

for large distances where volume conduction is assumed to be negligible the presence of
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correlation is used as an indication of connectivity (Casimo et al., 2016). On the other

hand, at the sub-millimeter scale we expect volume conduction may play a larger role.

The presence of a single-peaked, radially symmetric, and smooth ICA weights map is

consistent with volume conduction of the potentials, and the Gaussian fits show that

many of the components fit this description. Coactivating regions could also be described

by this shape but are not limited to it; there could be distinct, separated peaks, plateaus,

or checkerboard-patterned regions.

The large and consistent difference in the DAC between human and mouse can

also be explained by either larger coactivated areas of cortex or a larger effect of volume

conduction in human cortex. The spread of a signal due to volume conduction in brain

tissue would be the same in either species assuming they have similar conductivities,

but human cortex has neurons with larger lateral spread of their dendritic and axonal

trees and is roughly twice as thick as mouse cortex. The effect of volume conduction

on deeper sources will spread the potentials they cause more widely across the cortical

surface. Additionally, the size of functionally distinct cortical regions is larger in humans,

and we are again left with the ambiguity between the two possible factors: the size of the

correlated activity, and its spatial spread as in Łeski et al. (2013).

In our analysis the choice of ICA as the particular form of whitening and 2

dimensional Gaussians as the function used for fitting are not the only choices that could

have been used, but they were chosen for simplicity and applicability to this analysis. As

a fitting function, a 2-dimensional Gaussian was chosen for its simplicity and flexibility,

and not due to any assumption that the components would take this particular form. The

purpose of the fit is to identify smoothly varying component weights. The function

is smooth on a small scale, with the only peak being the center, so that neighbor-to-

neighbor oscillations in the weights will degrade the fit. It is also able to describe radially

symmetric peaked distributions as well as flat linear gradients by being fit to a very
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wide Gaussian with its center far from the electrode grid. Alternatives more tailored to

quantify the smoothness could be used such as taking the second spatial derivative of

the component weights and finding smooth gradients and peaks by taking first spatial

derivatives. These are harder to implement and interpret, and the high R2 values when

using ICA and low ones from PCA show the fitting approach is able to describe the

components while not being so flexible that it can be fit to any component weights.

Another reason for using the Gaussian fits is that they provide a single parameter

that characterizes the size of the regions that contain the components. The mean width

of the fits of each frequency band decreases with increasing frequency, and this may be

due to the effect that frequency has on the spatial spread of LFP. Additionally, the fits

provide another method of removing distant volume conducted activity similar to the

ICA approach used in Whitmore and Lin (2016) by using both the center location of the

Gaussian along with the width to identify components of the signals that are far from the

grid location. This kind of ICA-based method as an alternative to standard re-referencing

schemes has been proposed in Michelmann et al. (2018).

On the other hand, the DAC curves are not fit to Gaussians for the data despite the

modeling results that showed that Gaussian components have Gaussian DACs. We expect

that using the same model, but with other peaked, but not necessarily radially symmetric

distributions, will still result in monotonically decreasing DAC curves with a different

shape. Additionally, the effect of noise and reference will add a predictable modification

to the curve but adds additional unknown parameters. These may be estimated but this is

confounded by the unknown effect of the actual non-Gaussian shape of the components,

and the fit becomes more difficult to implement and interpret.

The component mixing matrix weights analysis requires any whitening matrix

to separate the components, but ICA was chosen for this purpose. Commonly used

whitening transformations are not intended to perform source separation, but ICA can be

61



both a whitening and a blind source separation algorithm. PCA and factor analysis have

been used for finding common sources in the data, but the assumptions about the data of

ICA are more well suited to finding sources in electrophysiology, hence its popularity.

Factor analysis is designed to find similar localized sources but is not easily modified to

be a whitening transformation and its assumption of normally distributed components is

incompatible with the sinusoidal nature of narrow bandpass filtered signals.

There are drawbacks to calculating ICA in separate frequency bands, as any

broadband processes or ones that span frequency ranges between or across multiple

bands will not be as accurately identified or be recognized as part of the same component.

Still, ICA was calculated by frequency band so as to be calculated on the exact same

windows and signals as the correlation, and due to the 1/f power spectrum typical

of electrophysiology. The first consideration is necessary specifically for linking the

correlation and the component mixing matrix through the covariance matrix, while the

second is a general problem in applying ICA to LFP. ICA may less accurately separate

sources whose power is concentrated in higher frequencies due to the much larger power

present in lower frequencies biasing ICA towards identifying sources concentrated in

those. In addition, if PCA is applied as a pre-processing step, the components that contain

some high frequency sources may even be discarded.

ICA was applied only to small time windows in addition to narrow frequency

bands. This has similar drawbacks in terms of the effectiveness of ICA because it limits

the number of observations which ICA can use to identify source. For the same reason as

before, consistency with the segments analyzed for correlation, the 2 second windows are

needed. Also, this length of time may be appropriate because the components were found

to vary even between adjacent windows. However, there is some consistency in the ICA

mixing matrices across time – that is very similar components show up repeatedly, but not

consistently. This suggests that the time scale of the duration of stable components may
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be 2 seconds or less, and perhaps ICA would be better suited to even shorter windows for

this data in future work to avoid temporal fluctuations in source strengths which does not

fit the assumption in ICA of time-invariant mixing matrices.

The curve generated by averaging the correlation over many contacts offers some

guidance as to how the signals will be related for a given electrode spacing, but it is more

straightforward to choose a spacing when given a measure of the spatial extent of the

activity. The two are linked, and as has been shown previously with the correlation, the

frequency has a strong effect on the spread of potentials measured at the surface of the

brain. Electrodes spaced less than a millimeter apart are more suited to higher frequencies

or to smaller animals than humans, but even with very limited cortical coverage volume

conduction still allows activity that is not directly under the grid to be recorded.

Chapter 3 is a reprint of the material as it appears in Correlation Structure in

Micro-ECoG Recordings is Described by Spatially Coherent Components in PLoS

Computational Biology, 2019. Rogers, Nicholas; Hermiz, John; Ganji, Mehran; Kaestner,

Erik; Kılıç, Kıvılcım ; Hossain, Lorraine; Thunemann, Martin; Cleary, Daniel R; Carter,

Bob S; Barba, David; Devor, Anna; Halgren, Eric; Dayeh, Shadi A; Gilja, Vikash. The

dissertation author was the primary investigator and author of this material.

Chapter 3, in part, is a reprint of the material as it appears in Sub-Millimeter

ECoG Pitch In Human Enables Higher Fidelity Cognitive Neural State Estimation in

NeuroImage, 2018. Hermiz, John; Rogers, Nicholas; Kaestner, Erik; Ganji, Mehran;

Cleary, Daniel R; Carter, Bob S; Barba, David; Dayeh, Shadi A; Halgren, Eric; Gilja,

Vikash. The dissertation author was a co-investigator and co-author of this paper.
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Chapter 4

Volume Conduction in Electrophysiol-
ogy

4.1 The Brain as a Volume Conductor

Potentials generated by the brain can be recorded without probes inside the

cellular membrane due to brain and surrounding tissues being electrically conductive.

Changes in membrane potentials are detected as extracellular potentials when ions flow

across the membrane such as during an action potential.

4.1.1 Static Conductivity and Permittivity

The properties considered in this section are macroscopic properties of the tissues.

They are measured by directly by electrodes that are much larger than the cellular

structures in the brain that contribute on the microscopic scale to the conductivity and

permittivity. For the purposes of electrophysiology well above cellular scale these

empirically determined bulk properties will be the relevant ones to consider.

The brain is assumed to be Ohmic, that is it has a linear relationship between the

electric field and the current. In circuits this is represented by the familiar I =V/R. In

the bulk of a conductive material the currents are instead current densities, J, a vector

quantity representing the flow of charges at a point in space. In a region the current
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density is a vector field like the electric field. In this form Ohm’s law is given by

J = σE

In an anisotropic medium σ is represented by a tensor, but in an isotropic medium it is a

scalar.

The conductivity in gray matter is around 0.2-0.4 S/m. In general the conductivity

of a material is frequency-dependent, and becomes interrelated with the permittivity.

The polarization due to external electric fields in brain tissue can also be consid-

ered linear medium for fields generated by biological phenomena. For most biological

tissue the magnetic permeability is effectively equal to the magnetic permeability of free

space µ0. On the other hand, the permittivity can be several orders of magnitude larger

than the permittivity of free space, and is estimated to be around 107 or 108 times larger

than that of free space.

4.1.2 Time/Frequency Dependence

When a time-varying external field is applied to a material it will generate currents

and cause polarization within the material. The polarization will cancel part of the external

field, described by the susceptibility and permittivity, and in the case of sinusoidal fields

will be the result of sinusoidal motion of charges within the material. This also describes

the conductivity in the presence of sinusoidal fields. In the frequency domain these

relationships are described by

D(ω) = ε(ω)E(ω)

J(ω) = σ(ω)E(ω)
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These expressions may describe two separate phenomena: the polarization of

charges that are confined and the motion (or resistance to motion) of mobile charge

carriers. With both viewed as currents,

J(ω) = Jm(ω)+Jp(ω) = σ(ω)E(ω)+ iωε(ω)E(ω)

where the total current is the sum of the motions of the mobile and polarized

charges. In biological tissue, the distinction between the two classes of charges is not so

clear, and in practice, measurement of the tissue may not distinguish between the two

effects. They are often combined into one quantity

J = (σ + iωε)E = iωε
∗E = σ

∗E

that can either be described by the complex permittivity or complex conductivity,

which are different representations of the same phenomenon, and are related by

σ
∗(ω) = iωε

∗(ω)

So long as they remain in the linear regime, either of these completely describe

the response of the system to external charges and fields, but it must be remembered that

σ∗ represents any current flow including bound charges and ε∗ no longer represents only

the polarization of those bound charges. It is customary that the terms ”conductivity” and

”permittivity” refer to the real part of the respective complex quantity.

The brain, like many biological tissues, has dielectric properties of a solution of

ions as charge carriers surrounded by/surrounding many cells. The static conductivity

of most kinds of tissue is relatively low, about an order of magnitude smaller than that

of sea water (∼ 5 S/m). The permittivity is characterized by very large values at low
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frequencies that quickly decrease at higher frequencies.

Although there is not a strong consensus about the values of the complex dielectric

constant in the brain, there is some understanding of the processes in biological tissue

that generate the shape of the measured values. The permittivity (not complex) is the

result of multiple relaxation processes, and these result in the characteristic shape of

the permittivity. At the time scales of interest for electrophysiological recording the

dominant effect is believed to be counterion polarization which is the diffusion of ions at

the double layers formed at cell membranes or any other insulating boundary as the field

changes back and forth.

It is common to describe the complex permittivity with an expression of the form

ε
∗(ω) = ε∞ +

σdc

iω
+∑

n

An

1+(iωτn)1−αn

where each term in the sum is a relaxation described by a time constant τn, and

the first two terms are the permittivity at frequencies above the fastest relaxation and

the static conductivity. The form of the relaxation above is the Cole-Cole equation, and

reduces to Debye relaxation when α is zero.

Data for gray matter are shown in Figure 1, and the authors subsequently fit the

data to the form above with their fit parameters given in Table 4.1 and plotted in Fig 4.1.

ε∞ σdc A1 τ1 (ms) α1 A2 τ2 (µs) α2
4.0 0.02 4.5×107 5.3 0.0 2×105 106 0.22

A3 τ3 (ns) α3 A4 τ4 (ps) α4
400 8 0.15 45 8 0.1

Table 4.1. Cole-Cole fit parameters from Gabriel et al. (1996)

The first term in the sum will account for most of the time-dependent effects

observed in electrophysiological recordings. Based purely on the slowest time constant

of 5 ms, it would be expected that events on time scales in the millisecond range begin
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Figure 4.1. Conductivity and permittivity of excised gray matter. Parameters from from
Gabriel et al. (1996).

to experience time delays, but slower signals will be effectively unchanged in time, and

faster signals will experience significant distortion.

4.2 Current Sources and their Potentials

4.2.1 New

Current source density is based on the assumption of the brain as a volume

conductor, a linear Ohmic medium with conductivity σ

J f = σE

However, it is simpler to include the effect of the conductivity through the complex

permittivity. In a linear isotropic medium we have Maxwell’s equation in the Lorenz
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gauge in the form

−∇
2
φ +µε

∗∂ 2φ

∂ t2 =
ρ f

ε∗

−∇
2A+µε

∗∂ 2A
∂ t2 = µJ f

It is important to note that by using the complex permittivity the free currents do not

include the induced volume conduction currents as those are now considered bound

charges/currents. With the tissue properties given in the last section and at the frequencies

of interest (less than 10 kHz) the time derivatives become negligible. In electrophysiology

we are interested in the potential with solution given by

−ε
∗
∇

2
φ =−(ε + σ

iω
)∇2

φ = ρ f (4.1)

which reproduces the standard form of the solution from CSD when the capacitive

permittivity term can be neglected and the transmembrane currents are represented as

sources and sinks of charge density.

−σ∇
2
φ = iωρ f =

∂ρ f

∂ t
= It

For separable sources the solutions for the potential are also separable in Eq. 4.1.

Therefore the Laplacian equation in space is unchanged and given the large permittivity

values at low frequencies the permittivity term should not be neglected in all cases.

Identical to Eq. 4.1 but in more famililar form then the general equation for the potential

is

−σ
∗
∇

2
φ = It (4.2)

For the purpose of recording FP the frequencies of interest only range up to about

500 Hz. The frequency dependent effects of the complex conductivity can be summarized
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in a Bode plot (Fig 4.2) of the transfer function 1/σ∗ applied to the temporal component

of the transmembrane currents. So long as the the gain and phase do not vary significantly

over the range of frequencies of interest the temporal effect will be negligible. There is

some distortion that will be caused around 100 Hz shown by the dip in the phase, but this

will result in a minor distortion of the wave form of the FP.

Figure 4.2. Bode plot of the transfer function of the complex conductivity of gray matter.
Parameters from from Gabriel et al. (1996).

4.2.2 Solutions near the Cortical Surface - ECoG Model

To simplify the geometry involved we will treat the cortical surface as having no

curvature, and that the cortex is uniform, isotropic, and extends infinitely far down. We

set z = 0 at the cortical surface, and assume there is a conductive medium with uniform

thickness above the cortical surface. We assume that above the 2nd medium is a perfect
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insulator which approximates air in recordings where the cortex is exposed.

σ = σ1, z < 0

σ = σ2, 0 <z < T

σ = 0, z > T

We wish to find the solution to a point source inside the cortex at a depth D. The potential

in each region is a solution to

∇
2V1 =−

1
σ1

δ (x)δ (y)δ (z+D), z < 0

∇
2V2 = 0, 0 <z < T

V3 = 0, z > T

The horizontal extent of the medium is considered infinite, and at the potential should go

to zero for for locations distant from the origin. The potential must have no discontinuities,

and therefore must match at the boundaries. Charge conservation relates the normal

derivatives of the potentials at the boundaries.

V (r→ ∞) = 0

V1(z = 0) =V2(z = 0)

V2(z = T ) =V3(z = T ) = 0
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σ1
∂V1

∂ z
(z = 0) = σ2

∂V2

∂ z
(z = 0)

∂V2

∂ z
(z = T ) = 0

We choose to use cylindrical coordinates due to the radial symmetry present

in the source distribution, and the planar boundary conditions along the z axis. Using

separation of variables, the solutions to Laplace’s equation in cylindrical coordinates are

given by linear combinations of the products of Bessel functions of r, and exponential

or sinusoid functions of z. Symmetry of the source restricts the solutions to having no

angular dependence, and significantly simplifies the general form of the solution by only

allowing Bessel functions of order 0. In both media the boundary conditions require that

the potential is finite everywhere and approaches 0 for large distances. Therefore the

radial component of the complementary solutions can only be Bessel functions of the

first kind with order 0, J0. The particular solution for V1 is the sum of the well-known

solution to Laplace’s equation for a delta function and the complementary solution.

V1 =
1

4πσ1
√

r2 +(z+D)2
+
∫

∞

0

[
A1(k)ekz +B1(k)e−kz

]
J0(kr)dk

The general solution above will satisfy Laplace’s equation everywhere except at the point

source, where it will equal the delta function source. The boundary conditions can be

satisfied by finding the appropriate A1(k), and B2 must be zero for the solution to remain

finite as z→−∞. In the 2nd medium there are no sources, and the solutions are the

homogeneous solutions, as above.

V2 =
∫

∞

0

[
A2(k)ekz +B2(k)e−kz

]
J0(kr)dk

The condition at the top, z = T , that V2 = 0, requires that B2(k) = e2kT A2(k). The
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boundary conditions at z = 0 combined with the identities

∫
∞

0
J0(kr)J0(k′r)rdr =

1
k

δ (k− k′)∫
∞

0

(
r2 + x2)−1/2

J0(kr)rdr =
e−kx

k∫
∞

0

(
r2 + x2)−3/2

J0(kr)rdr = e−kx

determine the potentials, and results in solutions for the coefficients as

A1(k) =
σ1
(
1+ e2kT)+σ2

(
1− e2kT)

σ1
(
1+ e2kT

)
−σ2

(
1− e2kT

)e−kD

A2(k) =
2σ1

σ1
(
1+ e2kT

)
−σ2

(
1− e2kT

)e−kD

B2(k) =
2σ1e2kT

σ1
(
1+ e2kT

)
−σ2

(
1− e2kT

)e−kD

The integrals that make up the solutions can be evaluated using

∫
∞

0
e−kxe±kzJ0(kr)dk =

1√
r2 +(z∓ x)2

.

The coefficients can be written as sums using the series

1
x+ c

=
∞

∑
n=0

(−1)nc1−nxn for |x|< |c|.

By breaking the the integrals into sums and evaluating them we obtain a much simpler
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form for the potentials.

V1 (r,z,φ) =
1

4πσ1

] 1√
r2 +(z+D)2

+
α√

r2 +(Z−D)2

+
∞

∑
n=0

(−α)n 1−α2√
r2 +(z−D−2(n+1)T )2

(4.3)

V2 (r,z,φ) =

1
4πσ1

∞

∑
n=0

(−α)n (1+α)

 1√
r2 +(z+D+2nT )2

+
1√

r2 +(z−D−2(n+1)T )2


(4.4)

The constant α reflects the relative conductivity difference between the two media.

α =
σ1−σ2

σ1 +σ2

The form of the solution of that of using the method of images with an infinite number of

images charge due to the presence of 3 layers.
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Chapter 5

Implications of Boundary Effects for
ECoG Array Design

5.1 Introduction

Electrical activity of the brain is measured using various modalities such as

electroencephalography (EEG), electrocorticography (ECoG), and penetrating electrodes

all of which have characteristics determined largely by the relative location of the

electrodes to the various tissues of the head. Electrodes inserted into the brain can

record the activity of individual neurons, while the spatial resolution of EEG is severely

reduced by the volume conduction of the potentials through the cerebrospinal fluid (CSF),

skull, and scalp. Correspondingly, it is an often-used approximation in intracortical

electrophysiology to ignore tissue boundaries and to assume the medium is of infinite

extent and homogeneous (Mitzdorf, 1985; Tenke and Kayser, 2012). However, when

modeling EEG, the CSF layer, skull, and scalp must be included and the way geometry

of the tissue and electrodes has a large effect on the recordings or models (Vorwerk et al.,

2014; Tenke and Kayser, 2012; Rice et al., 2013).

Despite the electric potentials measured by the electrodes not being conducted

through the skull, intracranial electrophysiology is subject to the effects of many tissue

boundaries and properties. This has motivated studies on the effect of electrical potentials
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caused by tissue properties (Brodnick et al., 2019; Rice et al., 2013; Goto et al., 2010;

Slutzky et al., 2010; Einevoll et al., 2007; Pettersen et al., 2006), the presence of the

electrode and its effect on the surrounding tissue (Ollikainen et al., 2000; Blanche et al.,

2005; Moffitt and McIntyre, 2005), or a combination of both effects (Hill et al., 2018;

Ness et al., 2015; von Ellenrieder et al., 2012; Zhang et al., 2006). The scale of the

effects ranges from changes local to the electrode that alter the amplitude of single

action potentials to whole-head EEG models altered by the presence of an insulating,

subdurally implanted ECoG grid, and often the geometry is complex enough to entail use

of finite-element methods (FEM) in order to obtain solutions.

The modality of electrophysiology perhaps most able to both control and benefit

from its own effect on the potentials is electrocorticography (ECoG). The materials and

geometry of the ECoG device determine the boundary conditions at the brain surface

and this allows the devices to be designed in such a way to modify the signals that are

recorded. The effect of the design and placement of ECoG electrodes on recorded action

potentials was characterized in (Hill et al., 2018). The effect on ECoG is also two-fold

in that in addition to altering the boundary, the potentials are recorded on the boundary

which is the location where they are most affected by its presence. This broader effect

can be seen from predicted changes in EEG in Zhang et al. (2006) and ECoG Ness et al.

(2015) as well as when the boundary conditions changes arent caused by the presence of

an ECoG array (Pettersen et al., 2006; Einevoll et al., 2007). We propose a planar model

with three layers to allow for an intervening layer between the electrodes and the brain

tissue with the goal of applying it to predict the effects of various intracranial electrode

and experimental designs. The region of interest is small enough when using relatively

shallow laminar electrodes or micro-ECoG arrays to allow us to create an analytically

tractable model by assuming that the curvature of the brain surface can be neglected and

that the lateral extent of the exposed cortex is large enough to avoid lateral edge effects.
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In addition, we performed experiments to measure the predicted effect by implant-

ing a laminar electrode array into the whisker barrel cortex of anesthetized mice. This

experiment allows convenient control of the boundary by use of a saline bath as well as

providing the depth profile of any measured difference between conditions, and the effect

of boundary condition has been previously predicted (Nicholson and Freeman, 1975;

Pettersen et al., 2006) and described (Einevoll et al., 2007). To quantify how the change

at the brain surface impacts the potentials the averaged evoked response to whisker

stimulation in the somatosensory cortex of mice was compared between conditions where

the brain surface was dry (insulating) and when it was covered in artificial CSF (ACSF)

which is roughly five times more conductive than brain tissue.

5.2 Methods

5.2.1 Three-Layer Model

We propose a planar three-layer model as an approximation of the geometry of

intracranial electrophysiology near the brain surface. For sufficiently small electrode

arrays we approximate the brain surface as flat and having no lower boundary as a lower

half plane with homogenous isotropic conductivity 0.4 S/m (Goto et al., 2010). The

brain is modeled as being covered by a uniformly thick layer of another material which

is bounded from above by a completely insulating layer. In an acute experiment this

represents the CSF (1.79 S/m (Latikka and Eskola, 2019)) layer above the brain which is

open to air, and for a chronic experiment this approximates an arbitrarily thick layer of

fluid or tissue covered by the insulating electrode array or approximating the skull which

is relatively insulating (between one and two orders of magnitude less conductive than

brain tissue (Vorwerk et al., 2014)) (Fig 5.1).

The sources of electric potentials in the brain are transmembrane currents [Plon-
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sey1964]. A small, localized transmembrane current, I, generates a potential throughout

the volume of tissue with conductivity σ that has the familiar form a point charge in

electrostatics,

V =
I

4πσr
(5.1)

where r is the distance from the source current and the conductivity replaces the permit-

tivity. The effect of the boundaries can be described by the modified Greens function for

the three-layer model (see Chapter 3 for derivation) which includes the usual source term

as well as image sources whose magnitude and location are determined by the material

properties and geometry.

V1 (r,z,φ) =
1

4πσ1

 1√
r2 +(z+D)2

+
α√

r2 +(Z−D)2

+
∞

∑
n=0

(−α)n 1−α2√
r2 +(z−D−2(n+1)T )2

(5.2)

V2 (r,z,φ) =

1
4πσ1

∞

∑
n=0

(−α)n (1+α)

 1√
r2 +(z+D+2nT )2

+
1√

r2 +(z−D−2(n+1)T )2


(5.3)

where D is the depth of the source, T is the thickness of the intervening layer, σ1

is the conductivity of the brain, σ2 is the conductivity of the intervening layer, and α is

the quantity

α =
σ1−σ2

σ1 +σ2
(5.4)

The parameters can be altered to match a variety of conditions including no intervening
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layer as T approaches 0, no boundary condition as T approaches infinity, arbitrarily thick

layers of either more or less conducting layers above the brain. The two experimental

conditions are both modeled as having ACSF with the same conductivity as CSF (1.79

S/m) as the covering layer, but with the dry condition having a depth, T , of 0.001 mm

and the ACSF condition having a depth of 5 mm.

5.2.2 Experimental Procedure

All animal work procedures were in accordance with a protocol approved by the

Institutional Animal Care and Use Committees of UC San Diego (protocol S07360).

Adult mice were anesthetized with isoflurane and placed on a heating pad. A

femoral artery was catheterized, and a tracheotomy was performed. An incision was

made in the scalp to expose the skull. A ball electrode (Ag/Cl) was inserted behind

the skull under the scalp to be used as the reference electrode. The skull was fixed to

the experimental frame with dental acrylic, and the acrylic was further used to build

a well around and extending above the exposed skull. A craniotomy and durotomy

are made above right whisker barrel cortex, roughly 3 mm in diameter. The well was

filled with artificial CSF (ACSF) to prevent the exposed cortex from drying. The mice

were put on artificial respiration prior to administration of pancuronium while blood

pressure and CO2 were monitored. Anesthesia was switched to alpha-chloralose prior to

stimulation, and the electrode array was inserted with its location was determined either

by single channel microelectrode (FHC, Inc., ME, USA) recording of evoked responses

to whisker stimulation or based on stereotactic coordinates estimated from previous

recordings. Single or multiple whiskers were stimulated using a wire loop deflected with

a piezoelectric actuator by placing the loop around the intended whiskers and deflecting

the piezoelectric crystal with a 3-4 A sinusoidal pulse.

A set of trials consisted of 30-80 repetitions of the stimulus evenly spaced at 2
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s intervals. Sets were paired by condition; first with the well above the exposure filled

with ACSF, then repeated after the exposure was dried by wicking away the ACSF with a

Kimwipe (Kimberly-Clark, TX, USA). The precise depth of the ACSF was not controlled

between or within experiments, but the well would be filled several millimeters above

the cortical surface immediately after each dry set. The model suggests that the effect of

increasing the depth of the saline layer is negligible once the depth is greater than around

1 mm.

The electrodes were laminar arrays with 22 contacts spaced 100 µm apart were

used to record MUA and LFP. The electrodes were inserted perpendicular to the cortical

surface in or near whisker barrel cortex (Fig 5.1a).

Potentials were recorded using an Intan RHD2000 series amplifier and acquisition

board (Intan Technologies, CA, USA) connected to the electrode array using a custom-

built connector. The potentials were sampled at 20 kHz and were recorded simultaneously

with the stimulus triggers.

5.2.3 Signal processing and Trial Selection

Multi-unit activity (MUA) was calculated by applying a high pass filter to the raw

signal at 350 Hz and computing the amplitude of the Hilbert transform of the signal. The

local field potential (LFP) was obtained using the raw signal downsampled to 4 kHz and

only filtered using a notch filter at 60 Hz for line noise removal.

The most superficial electrode was determined from the data by visual inspection

of the correlation matrix across electrodes of each ACSF trial. The first channel that was

not nearly perfectly correlated (Pearson correlation coefficient slightly less than 1.0) with

all channels located above it was determined to be the first, most shallow electrode in

contact with the brain.

Trial averages were computed for each set rather than averaged across sets with
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Figure 5.1. (A) Schematic of the experiment with the laminar electrode inserted per-
pendicular to the surface and with the well either filled with ACSF or dried to vary the
boundary condition. (B) Grand averages (n=43, each condition) of the evoked responses
of both MUA and LFP signals. Trials covered with ACSF (blue) and dry (red).

the same stimulus so that the comparison between the two boundary conditions was

always made between an ACSF set and the successive dry set.

For each set a baseline MUA level was calculated by averaging the MUA signal

from 0.09 to 0.01 s prior to the stimulus and subtracting this mean baseline level from the

whole signal. The amplitude of a response was characterized by integrating the power

of the signal over the duration of the response. For MUA this was calculated by taking

the mean of the MUA signal after baseline removal from 0.01 to 0.09 s. For LFP the

response amplitude was determined by taking the root-mean-square value of the signal

between 0.01 and 0.4 s.

Many sets of trials were recorded in which the stimulation did not evoke an

average response large enough to make a comparison between the two conditions. Sets

were removed from further analysis if the MUA, after baseline subtraction, did not

exceed 0.4 (a.u.) on any channel. After exclusion 43 pairs of ACSF/dry sets of trials
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were included.

The comparison between the two conditions was computed as the ratio of the

amplitude of the subsequent trials on a per trial, per electrode basis, and the effect as

a function of depth was quantified by taking the median across trials for each contact

depth. Significance of the median ratio being greater than or less than one was assessed

by using two one-sided sign tests (above 1 and below 1) for the distribution of ratios on

each contact.

The uncertainty in the depth of the first contact and the true locations of the current

sources of the potentials prevents a direct quantitative comparison of the predicted and

measured ratios.

5.2.4 Model Predictions

MUA was modeled by placing a source 50 µm laterally displaced from the

electrode location (Xing et al., 2009; Blanche et al., 2005; Moffitt and McIntyre, 2005).

This was accomplished by moving the sources for each electrode such that the relative

location between the source and electrode is always the same. Sources are modeled as

uniform 30 um spherical current sources or sinks to keep the potential bounded near the

source, but to retain the potential of a point source outside of the 30 µm sphere.

A simple model to account for unknown and distributed sources of the LFP is

that they are produced by a line of vertical line of sources. This was approximated by 50

sources along the z axis spanning between 0.05 and 3 mm deep and 200 µm laterally

displaced from the shank of the electrode. Due to the simplicity of the source geometry

relative to real LFP, noise is added before taking the ratio which crudely includes the

noise which would be due to all other sources not included the modeled source.

A more realistic model is a current dipole with a sink and source pair. Their

locations were chosen using an approximation of the actual sources based on current
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source density (CSD) analysis applied to the LFP. The actual current sources and sinks

are expected to be spatially distributed and time-varying, but we chose to model only the

largest sources and sinks visible as the only source/sink pair which were at depths 0.25

and 1.4 mm. The pair was modeled as being laterally displaced 0.4 mm from the shank

of the electrodes to represent the average effective distance to the various responsive

whisker barrels as the whisker being stimulated was varied. As with the line source,

additive noise is added prior to calculating the ratio between conditions.

The sensitivity of the electrodes was chosen as the metric which summarizes

the effect of the boundaries and source locations and configurations (von Ellenrieder

et al., 2012). It is a measure of the amplitude of the potential measured at fixed electrode

location as a function of the position of a unit source, and accordingly it is measured

in units V/A. The construction of sensitivity profiles is common in electrophysiology

as the first step of many source localization algorithms that is carried out by modeling

the magnitude of potentials induced at an electrode from locations of interest within the

brain (Jonmohamadi et al., 2014). In our simple geometry this map is provided by the

Greens functions for this boundary value problem.

The sensitivity calculated this way is not true sensitivity of the electrodes which

would include electrode effects such as electrode-tissue interface and the size and shape of

that interface, and it is important to emphasize that this model represents effects of volume

conduction given the geometry and properties of the tissue and surrounding media. Two

aspects of the sensitivity profiles of the electrodes that are important considerations for

design and interpretation of the potentials are the signal-to-noise ratio (SNR) and spatial

specificity of the profile. With an estimate of the noise level present in the recordings and

the size of the current source of interest the sensitivity can be used to identify locations

from which the response can be reliably measured. Narrow sensitivity profiles may

be desirable if we are interested in identifying the locations from which the potential
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originates, or broad profiles if detection is of more interest than localization.

To show the effect of altering the brain surface boundary conditions on the SNR

we model a typical source for illustrative purposes. Based on our recordings and previous

current density estimates (Riera et al., 2012; Higley and Contreras, 2007; Szymanski

et al., 2011; Kajikawa and Schroeder, 2014) The source is assumed to be a current density

of 40 µA/mm3 over a region of volume 0.0062 mm3 (volume of a 0.2 mm cube) which

results in a source strength of 0.25 µA. We model the amplitude required to clearly detect

this response strongly at an electrode as 100 µV. This defines a threshold sensitivity

of about 400 V/A from which we can identify the cortical locations with respect to an

electrode that would be expected to produce a clear response given our criteria. It has

been shown that an intervening saline layer can broaden laterally the sensitivity profile of

surface electrodes (Hill et al., 2018; Ness et al., 2015). In the plane defined by a given

depth the sensitivity has circular symmetry with a single peak directly under the electrode.

To characterize this effect and the sensitivity profile, we compute the half width at half

maximum (HWHM) of the sensitivity as a function of source depth.

5.3 Results

5.3.1 Model Predictions

In order to make use of the model for predicting the effect of the boundary

condition on the laminar recordings we must have an estimate of both the location of

the electrode and the location of the sources being measured. The MUA model was

constructed by placing the only sources 50 µm from the position of the virtual electrode.

In an infinite medium this would mean uniform amplitudes at all depths due to the sources

always being measured locally with no outside effects. With the presence of a boundary

condition the effects are limited to the boundary region due to deeper electrodes only

84



measuring deeper sources which are less affected by the boundary (Fig 5.2).

The location of LFP generating sources is not as easy to generalize as MUA and

will always depend on the neuroanatomy and type of activity. A general model of the

sources of LFP is a uniform vertical line charge, parallel to the electrodes and offset by

200 µm. This representation weights all cortical layers as contributing current sources to

the potential equally and places the average effective distance to be near the electrode.

As shown in Fig 5.2, the predicted effect of the boundary condition is also largest at the

boundary, but decays much more slowly with depth than the more local MUA effect.

A more physically plausible model uses charge balanced sources (dipoles) which

include an equal number of current sources and sinks, and we used a simplified model that

includes just one source/sink pair placed based on an estimate from the experimentally

measured responses. Fig 5.2 shows that the effect on the amplitude is much larger near

the surface, but that due to the change of depth at which the potential is zero there is a

jump in the ratio between conditions. Similar to the line source, the effect decays much

more slowly with depth, but abruptly shifts to a small amplification near the depth of the

deeper current.

5.3.2 Experimental Results

The effect was determined by the ratio of the amplitude of the evoked responses

in the ACSF-filled condition and the dry condition. To quantify the magnitude of the

response for each condition pair, the trial averages were integrated over the duration

of the evoked response. MUA signal is non-negative and the MUA responses are

monophasic lending to a straightforward comparison of the magnitude of the average

stimulus-evoked response. The evoked LFP has multiple positive and negative peaks and

simply integrating the response allows for temporal cancellation to alter the measured

ratio. Instead the RMS value over the window is used to estimate the overall magnitude
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Figure 5.2. (A) Potentials as a function of depth are modeled by assuming a source
configuration. Depth profiles are plotted for an infinite medium and one bounded by
ACSF or an insulator. (B) The ratios between the ACSF and insulating (dry) condition
predicted by the model as a function of electrode depth

of the LFP response to account for the relative amplitude of various oscillatory peaks

but is still an imperfect measure due to spatial cancellation that may result from the

configuration of current sources. Fig 5.1 shows the grand average of the responses across

all sets of trials for both MUA and LFP which both show the most difference between

conditions near the surface with LFP differences extended to all depths.

The ratio of the responses was calculated per matched set of trials for each

electrode depth. The distribution of ratios of the response magnitudes for both MUA

and LFP, shown in Fig 5.3, showed clear attenuation for the ACSF sets relative to dry

ones at the surface The median ratio of the MUA amplitude was significantly less than 1

(one-sided sign test p ¡ 0.05) for the first three most shallow contacts. The ratio of the

LFP amplitude showed significant relative amplification of the dry condition for the first

7 contacts and attenuation at contacts 13 through 18 excluding contact 15.
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Figure 5.3. Distributions of response magnitude ratio of all condition-pair sets of trials.
For each approximate electrode depth all of the pairs (gray) and the quartiles (black)
and median (red) of the distribution were plotted. Location of * denotes the median is
significantly (p¡0.05) above (top) or below (bottom) 1

5.3.3 Implications for Electrocorticography

We use the spatial map of the sensitivity of the electrodes a method to compare

the effects of electrode array designs and locations. These maps provide the input/output

relationship between the location of a given source and the measured potential at the

electrode, or the gain of the electrode as a function of source location.

The counterintuitive amplification that occurs at deep electrodes which are mea-

suring a dipole source can be understood by examining the sensitivity profile of a depth

electrode as a complement to the method of modeling the sources first. Fig 5.4 shows

that the boundary condition effect more strongly effects sources located closer to the

boundary while the more distant side is mostly unaffected. The attenuation of the shallow

source causes less cancellation of the potential caused by the deeper sink. The effect of

the boundary condition on an intracortical electrode is not uniform, significantly impacts

the sensitivity for sources in any direction relative to the electrode and is largest near the

surface.

When recording from an ECoG array the boundary condition is changed by the
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Figure 5.4. (A) Lateral cross-section of the sensitivity of an electrode 0.5 mm deep.
Comparison between the sensitivity without the presence of a boundary, with a conducting
(ACSF) boundary, or an insulating (dry) boundary at the cortical surface. The 400 V/A
threshold shown in gray. (B) The ratio of the ACSF and dry sensitivities from (A).

presence or lack of an insulating backing. The ratio between the two types of array

designs shown in Fig 5.5 is nearly uniform and is modified by the properties of the tissue

that covers the array. Unlike a penetrating electrode, the contacts are always at or above

the brain surface, so their sensitivity is always altered significantly by the boundary

effects. The level of attenuation is determined mostly by the conductivity ratio term α

which determines the strength and relative sign of the image sources. The approximate

sensitivity ratio is the ratio of the total source (real + image) between the two conditions

Ratio =
1+αc

1+αi
(5.5)
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For the insulating boundary α is +1 representing an image source of the same

sign, for tissue of similar conductivity to cortex α is roughly 0, and for CSF α is about

-2/3. The resulting ratios of approximately 0.5 and 0.33 can be seen in Fig 5 as the

attenuation that results from the model and is nearly uniform.

Figure 5.5. (A) The design of the array and tissue in which it is implanted affect the
sensitivity. Solid (insulating) arrays shown on left and minimal (no insulation) arrays on
the right which can be covered by tissue or relatively conductive CSF. (B) Side-by-side
comparison of effect of array type on sensitivity for CSF (top) and tissue (bottom). (C)
Sensitivity ratio between array types for CSF or tissue above array.

The array may not always lie directly on the pial surface. The array may be

implanted above the dura or during chronic implantation scar tissue may grow under the

array. When the array is not at the surface the ratio will no longer be uniform?. The effect
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of the distance of separation, s, from the cortical surface and the boundary conditions

is summarized in two ways: the size of the region above a threshold sensitivity which

captures the effect on the magnitude of the sensitivity, and the HWHM as a function of

depth that describes the shape of the sensitivity profile.

The amplification or attenuation caused by the boundary is described by the

change in size or shape of the region in which the sensitivity is above some threshold

value. Any threshold value is able to show changes in sensitivity, similar to choosing a

single isopotential line to plot instead of the entire contour, and for comparison across

conditions 400 V/A is chosen based on the threshold at which a typical source would

have an amplitude of 100 µV (Fig 5.6). The lack of an insulating layer at the ECoG

array dramatically attenuates the signal for any thickness of intervening tissue, shrinking

the responsive region. The effect is more pronounced when the material the array is

implanted in is more conductive. The effect of increasing the separation of the array

from the surface to also attenuate the signals, but the region shrinks less laterally than

vertically indicating the effect is larger for deeper sources than lateral ones.

The horizontal broadening of the sensitivity profile is also an important character-

istic of the potentials recorded by the electrode. Individually, with a broad sensitivity the

electrodes may record larger responses from distant sources, but within an array it may

be undesirable for the overlap in the sensitivities of neighboring electrodes to be large.

The signals recorded by neighboring electrodes would record similar activity, whereas

with an exceptionally narrow, even cylindrical, sensitivity each electrode records a more

distinct region of sources. This broadening, caused either by the depth of the sources

or by changes in the materials or array, was summarized using the half-width at half

maximum (HWHM) of the sensitivity as the lateral displacement is varied at fixed depth.

At every depth these lateral slices have a peak directly under the contact, and the HWHM

defines the radius at which the sensitivity decreases by half. Volume conduction causes
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the profile to inevitably broaden as the sources become deeper, and separation of the

contacts from the surface further increases the volume of tissue between the electrode and

cortex. The Fig 5.6 shows that increasing the source depth always leads to an increase

in HWHM as expected, and that increasing the separation between the array the surface

increases the HWHM by a nearly constant amount across all source depths.

Figure 5.6. (A) The sensitivity with a separation, s, between the surface affects each
condition differently. (B) Side-by-side comparison of the shape of the region with
sensitivity greater than 400 V/A for various separation distances. (C) Half width at half
maximum of the sensitivity as a function of source depth at the same separations as (B).

5.4 Discussion

5.4.1 Laminar Electrode Effects

The model and the experimental results suggest that the effect of CSF compared

to an insulating layer above the cortical surface is limited to contacts near the surface.

This agrees with the modeling of single units in Hill et al. (2018) which predicts smaller

peak-to-peak amplitudes by about a factor of four when the electrode is small and has no

insulating layer.

There are clear differences in the evoked LFP response to both conditions. In our

LFP and in [Einevoll2007] the effect is not constrained to the surface but is most apparent

in the appearance of an early positive deflection near the surface. The broad influence

of boundary was realized in an early CSD study in which the experimental application
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of insulating mineral oil to the surface was accounted for in the authors semi-infinite,

2-layer model by simply multiplying all the potentials uniformly by a factor of two

(Nicholson and Freeman, 1975). When penetrating arrays are recorded immersed in

saline simultaneously with insulating ECoG arrays in our experience there are noticeable

differences between the surface recordings including the presence of an early positive

potential similar to the change shown in Fig 5.1b.

When conductive media are above the surface the changes in LFP due to the

boundary are more difficult to model or quantify. The current sources creating the

potentials need to be mapped in order to predict the changes precisely. This could be ac-

complished from the recorded LFP, but accurate source localization in electrophysiology

is itself the subject of study, and furthermore the effect of the boundary would itself need

to be incorporated into the localization model. In the model this is accounted for either

by use of a spatially neutral line source as an approximation of perhaps the average of

many heterogeneous responses across trials, regions, or even species.

By choosing source locations that were motivated by the recorded potentials the

model prediction is in better agreement with the experimental result that there is amplifi-

cation rather than attenuation caused by the more conducting boundary. This is explained

by the greater attenuation of the source or sink closer to the surface of a dipole pair which

acts to mask its contribution to the potential at a deeper electrode thereby reducing its

cancellation of the potential of the deeper source/sink. The qualitative difference between

the two models of LFP highlight the importance of source configuration. Sensitivity

provides an electrode-centric rather than source-centric view of volume conduction, but

the importance of the source configuration should not be neglected. This can be seen in

EEG sensitivity models in which the assumed sources are dipoles rather than monopoles

and this results in a different, but complementary, profile despite describing the same

phenomenon.
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5.4.2 ECoG Model

It is conventional wisdom that electrode sensitivities are largest near the contact

and that minimizing the separation of surface electrodes from the surface improves the

recordings, but our model predicts that the type and relative positioning of the boundary

influenced by an ECoG array has effects that are much broader than just edge effects.

The modeled effect is large and predicts that there is a strong advantage in embedding the

electrodes in large insulating substrates as predicted by [Hill2018] for spiking activity, but

that this holds true for LFP recordings as well. The nearly spatially uniform attenuation

is due to the electrodes always recording from the boundary where the edge effects apply.

The factor of 2 attenuation caused by the ACSF well at the top contact of the laminar

array for both MUA and LFP agrees with the model assuming the LFP is largely caused

by deeper sources.

It is often the case that is undesirable or not possible for ECoG arrays to be

implanted in contact with the pial surface, and our three-layer model allows for the effect

of an intervening layer to be included. The conductivity and separation values as well as

the use 400 V/A threshold and HWHM were chosen to demonstrate the main predictions

for common scenarios, and the values can easily be modified to fit other experimental

settings. The use of a threshold sensitivity has value in allowing a notion of signal-to-

noise ratio (SNR) to be included in the sensitivity analysis. The sensitivity profile alone

seems to suggest that every source will be recorded by an electrode, and it is only a

matter of the amplitude of the potential. This may be true in principle, but in practice

any constellation of sources of interest create potentials that exist in a background of

other activity that is temporally and spatially interrelated and complex [Herreras2016]

(neural or artifact) that can be categorized as noise. With an understanding of the level of

this noise and the magnitude of the current sources of the desired activity, the sensitivity
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threshold can be estimated to identify responsive regions in the brain.

The HWHM of the sensitivity also has practical application for array design

because it defines the electrode spacing at which a source directly under one electrode

will cause a potential with half the amplitude at a nearest neighbor electrode within an

array. With an application in mind, this provides a heuristic approach to layout ECoG

electrodes to perhaps minimize signal redundancy or, conversely, ensure a desired signal

is recorded strongly by multiple electrodes.

As an example, in Schendel et al. (2014) ECoG arrays with different amounts of

insulation are implanted chronically. Their results show the footprint of the array impacts

the growth of scar tissue above and below the array. Using these measured thicknesses,

we can model the relative sensitivity of the two designs (Fig 5.7). For these particular

parameters the model favors the use of the mesh array due to the larger sensitivity near

the surface and only modest attenuation at larger distances. The success of recording

micro-ECoG through a thinned skull [Brodnick2019] also motivates extending the model

to 4 layers to make predictions about the properties of thinned skull ECoG. Still, intuition

gained from our model suggests the limitation of that method is not the very thin layer of

bone, rather it is the much thicker layers of tissue and conductive CSF between the array

and cortical surface (similar to the effect on EEG in Rice et al. (2013)).

Figure 5.7. Comparison of two electrode array designs which impact scar tissue for-
mation as shown in Schendel et al. (2014). Using scar tissue thickness reported by the
authors the model predicts the sensitivity ratio between the two arrays after tissue growth
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In our model the near uniformity is also a consequence of the simplifying assump-

tions of infinite depth and lateral extent of the grey matter. Even in our simple model

the scale of the effect as a function of depth is limited by the thickness of the middle

layer of CSF/tissue. For sources much deeper than this thickness the boundary begins to

appear increasingly like a simple insulating boundary, and the ratio approaches 1.0. The

thickness of the tissue/CSF layer is often much thicker than cortex, where the sources

of interest are concentrated in micro-ECoG, but this does suggest that arrays lacking

insulation may record LFPs that are largely unaffected if they are covered by a layer of

material that is thinner than the depth of the sources of interest.

The approximations limit the application of our results to sources whose depth

is much less than the extent of the insulation of the array, the size of the craniotomy, or

the radius of curvature of the cortical surface. If limited to applications of micro-ECoG

and measuring cortical activity, the latter approximations will generally be valid. We

can apply scaling arguments to the results of Hill et al. (2018) to understand the effect

of finite insulating are on deeper sources. Using FEM models to vary the size of the

insulation area around the electrode and they predicted that for a 20 µm deep source it

takes 30 µm of lateral insulation to maintain 95% of the fully insulated amplitude. Under

the approximation that the array is covered by a very deep layer of CSF and in a very

large craniotomy these results suggest that the size of the insulating layer has a small

impact as long as the insulation extends in any direction more than 50% farther than the

depth of the sources.

As ECoG arrays continue to be developed their design has been influenced largely

by mechanical, physiological, and optical considerations. Electrode arrays affect the

electrical conduction of the signals, and there is a complex interplay between all these

factors in determining the qualities of the recordings. The impact of implanting the

devices, which may be minor, of limited extent, and/or difficult to modify in other
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modalities, is significant in ECoG and should be a major consideration in the design of

the arrays.

Chapter 5, in full, is a reprint of the material as submitted in Theoretical and

Experimental Analysis of the Impact of Brain Surface Boundary Conditions and Implica-

tions for Electrocorticography to Frontiers in Neuroscience in 2019. Rogers, Nicholas;

Thunemann, Martin; Devor, Anna; Gilja, Vikash. The dissertation author was the primary

investigator and author of this material.
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Chapter 6

Concluding Remarks

Building on custom electrodes and open source electrophysiology systems has

allowed us to test novel arrays in a variety of settings. The small size of the electrodes

make them well suited to use in rodent model, and an added benefit of their use in mouse

is their transparency and low profile allows them to be combined with optical techniques.

The trend in human ECoG applied to BCI is towards smaller electrodes, and we expect

in the near future these arrays will begin to be applied to BCI research.

The recording system presented in this dissertation has been adapted and is being

used by multiple labs across multiple universities in human, rodent, porcine, and primate

models. The diverse uses owe to the flexibility (mechanical and in terms of design) of

the IEBL-fabricated electrodes.

Chapter 3 provides a guideline to aid design of future ECoG arrays. Spatial

variation of the potentials depends strongly on frequency and species as previously

understood, but this variation can be understood intuitively in terms of regularly shaped

regions of temporal patterns of the potential. These regions are also explanatory of the

correlation or coherence that is usually used to describe the spatial variation present

in ECoG. The results show there may even be room to further shrink arrays even with

less than 100 channels for arrays that can be precisely located on small cortical targets.

Especially so because higher frequencies such as beta around 20 Hz and gamma above
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50 Hz tend to be especially informative and have more high spatial frequency variation.

The goal of chapter 5 is in addition to also provide design guidelines, to also

explain the properties of ECoG recording in terms of volume conduction in a quantitative

way. Researchers have good intuition for how volume conduction attenuates potentials in

general, but it becomes more difficult take into account the effect of multiple boundaries

and complicated geometry in our thinking. The relative amplitude of potentials recorded

along a laminar electrode between boundary conditions is an example of simple, but not

necessarily intuitive effects.

Successful array design will take into consideration an understanding of empirical

studies, physical, and physiological knowledge. Combining empirical results about the

signals and physical understanding of volume conduction and its effects on the signals

with an understanding of the brain will better allow for array design to be best suited for

the application. Knowledge of cortical regions of interest, their size, their connections,

the type of signals they produce, or models of their activity is the missing piece from the

general aspects considered in this work. Concretely, this is exemplified in the sensitivity

profiles which on their own are instructive, but to truly guide electrode design need to

be combined with at least a rough idea of the locations and interrelations between the

sources of neural activity. More broadly, we have presented tools and guidelines, but

design trade-offs remain the main aspect that must be balanced and optimized for each

application. However, our work has shown that fractions of a millimeter is within the

range of practical pitches to be considered in future designs, and it remains to be seen if

future studies will show benefits to the use of even smaller arrays.
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