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ABSTRACT

Data-Driven Modeling and High-Performance Control of Multirotor Unmanned Aerial

Vehicles in Challenging Environments

Multirotor unmanned aerial vehicles (UAVs) have gained significant popularity in recent years

due to their high maneuverability and vertical take-off and landing capability. The new roles

require that the future multirotor UAVs will need to fly in a variety of challenging environments

and the flight performance may significantly degrade due to the shift from nominal flight con-

ditions. As their usage expands to increasingly challenging environments, the need for reliable

and high-performance flight behavior becomes more pressing. The dissertation addresses these

difficulties through a series of research efforts aimed at improving the overall flight performance

of multirotor UAVs in challenging conditions.

First, an experimental study was conducted to identify a data-driven ground effect model

for a small quadcopter, which takes into account the interference among the rotors and was

validated through flight experiments. An adaptive control scheme was then developed to counter

the model uncertainty resulting from the complex aerodynamics, leading to improved command

tracking performance when the UAV is in the ground effect region. The effectiveness of the

developed controller was demonstrated on a real quadcopter, with results showing superior

performance compared to a traditional PID controller.

Second, the effect of wind on a hovering octocopter was investigated and modeled through

field experiments. A data-driven approach was used to model the wind effects on the bare

airframe by directly measuring the wind and including it as a control input. A state space

model that explicitly considers the wind effect was identified from real flight data using a sys-

tem identification approach. The validation results show that a significant error reduction can

be achieved by considering wind effects and adding a correction term. The identified model

can serve as a foundation for the future development of model-based controllers for outdoor

multirotor aircraft, enhancing their flight performance in windy conditions.

Lastly, a vision-based control solution was developed in order to navigate the UAVs inside

complex, unstructured, and GPS-denied environments. The proposed solution leverages imita-

xi



tion learning and a variational autoencoder neural network to enable the autonomous agent to

learn reactive strategies from human experience effectively and efficiently. The learning frame-

work and the developed controller were demonstrated in simulated riverine environments first

and then validated in a real orchard on a custom-built quadcopter, with results outperforming

existing baseline algorithms. The proposed vision-based control solution is expected to signifi-

cantly enhance the performance of multirotor UAVs in complex and GPS-denied environments,

where traditional navigation methods may not be applicable.
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Chapter 1

Introduction

1.1 Motivation
Multirotor unmanned aerial vehicles are becoming increasingly popular over the past few years

due to their high maneuverability and vertical take-off and landing capabilities. They have

been used in a wide range of military missions, such as intelligence, surveillance, and recon-

naissance [3, 4], and various civilian missions, for example, remote inspection [5], precision

agriculture [6], search and rescue [7], aerial photography [8], site surveying [9], transportation

and delivery [10, 11, 12]. However, these new roles require that the future UAVs will need

to fly in many challenging environments (e.g., see examples in Fig. 1.1) which the flight per-

formance may significantly degrade due to the shift from nominal flight conditions. Flying in

(a) Flying over a wildfire. (b) Flying in an underground mine.

Figure 1.1: Examples of UAV operating in challenging environments [1, 2].

1



those challenging environments or conditions may generate unexpected and unsafe behaviors

and, sometimes, lead to crashes and property damage. As a result, how to provide high per-

formance and reliable behaviors when the UAV is operating under challenging environments is

gaining more and more attention. Three challenges are introduced in detail and explain why the

proposed research is necessary.

The first challenge that most UAVs are facing is when the vehicle is flying near the ground

(see Fig. 1.2). The operation of these aerial vehicles at low altitudes and near the ground raises

safety concerns because an accident is likely to happen when a UAV leaves or enters the ground

effect region. The ground effect can also introduce uncertainty into the thrust generated by the

propulsion system, which can negatively affect flight behaviors. To improve safety and per-

formance, it is crucial to understand the fundamental relationship between the UAV dynamics

and the nearby surfaces and objects. Besides, developing a comprehensive controller that ac-

counts for the ground effect is necessary to optimize the UAV’s performance during missions

that require it to operate in proximity to the ground.

Figure 1.2: Example of multirotor UAVs taking off and landing in ground effect regions.

The second major challenge in the field of multirotor UAVs is to ensure reliable flight perfor-

mance in outdoor environments with unpredictable environmental disturbances, such as strong

winds (see Fig. 1.3). The forces and moments acting on a multirotor UAV can significantly

change due to the complex aerodynamics, which can result in reduced overall flight perfor-
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mance. Thus, it is crucial to investigate and model the effects of wind on multirotor UAVs to

improve the control system’s effectiveness. By thoroughly understanding the wind effects, we

can better equip the control system to handle environmental disturbances and ensure reliable

and efficient flight performance.

Figure 1.3: Examples of multirotor UAV operating in windy conditions.

Figure 1.4: Examples of multirotor UAV operating in GPS-denied natural environments.

The third challenge is how to enable a UAV to fly in complex and GPS-denied natural en-

vironments (e.g., under the canopy in heavy foliage or riverine) effectively and efficiently (see

Fig. 1.4). It is critical that the UAV should be able to navigate in these environments and avoid
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obstacles with less human assistance. This is especially useful when, for example, the UAV is

serving as a wingman for the Marine Corps, providing reconnaissance information about ter-

rain, friendly troops, and potential threats. Currently, flying in those complex and unknown

environments remains a big challenge and requires significant input from human pilots. One

possible solution is to rely on exteroceptive sensors, such as cameras, and develop advanced

control strategies that allow the UAV to navigate autonomously with minimal human interven-

tions. The use of artificial intelligence and machine learning algorithms can be particularly

valuable in addressing this challenge. By incorporating these technologies, we can enable the

effective and efficient use of multirotor UAVs in those complex and GPS-denied environments.

1.2 Background
The following provides a summary of the literature related to the aforementioned topics and

challenges. Detailed discussions and developments of the methodology to address each chal-

lenge are presented in the corresponding chapters.

1.2.1 Multirotor UAV Modeling

Compared to traditional fixed-wing aircraft, the modeling of multirotor UAVs is not as well-

developed and researched. Physical-based first-principle approaches, such as the blade element

theory and momentum theory [13], have been used to determine the forces and moments gener-

ated at the rotor plane of a multirotor aircraft [14, 15, 16]. However, these analytical equations

were developed based on full-scale aircraft and have not been fully validated for small mul-

tirotor UAVs. Modeling the complex interactions between multiple rotors and between rotors

and the aircraft body, particularly under environmental disturbances, is challenging and often

inaccurate. Another physical-based strategy for modeling the complex flow between rotors and

bodies is through the use of computational fluid dynamics (CFD) [17]. CFD models provide

valuable insights into the aeromechanics of multirotor UAVs, but they are complex and compu-

tationally expensive, making them more suitable for simulation and analysis rather than flight

control design.

Data-driven approaches have become increasingly popular for modeling multirotor UAVs

due to their greater flexibility and wider range of capabilities when compared to traditional
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physical-based approaches. Although wind tunnel experiments have been a long-standing method

for measuring the aerodynamic properties of fixed-wing and rotary-wing aircraft, their use in

modeling multirotor UAVs has been limited. Recent research by NASA Ames has sought to

quantify the lift and drag changes of a few commercial multirotor UAVs at different wind speeds

and attitudes [18], demonstrating the potential for wind tunnel experiments to contribute to the

modeling of multirotor UAVs. However, wind tunnels can be expensive to use, and the data

obtained has limitations. One significant limitation is that wind tunnel experiments alone can-

not accurately determine the dynamic characteristics of the aircraft, and free flight tests are

necessary to obtain a more accurate model of the aircraft.

System identification is another appealing data-driven approach that has been successfully

used in the modeling of full-scale fixed-wing and rotary-wing airplanes [19]. In this approach,

the aircraft to be identified must execute specific maneuvers to enable effective excitation of its

dynamics. The model parameters of the aircraft can then be estimated by analyzing the flight

data collected in either the time domain or frequency domain [20, 21, 22, 23]. This approach

has also been applied to the modeling of small UAVs [24, 25, 26]. Small UAVs usually have

unique configurations, and the aerodynamic interactions between their various components can

be quite complicated. The system identification approach is a useful tool for modeling these

complex interactions and can provide valuable insights into the behavior of multirotor UAVs

during flight operations.

Considering those complex aerodynamic effects, the ground effect is a phenomenon that has

potential benefits and dangers for most aerial vehicles, including multirotor UAVs. When op-

erating near the ground or other flat surfaces, ground effect increases the efficiency of the rotor

system by decreasing the downward velocity of air and reducing induced drag. This allows ve-

hicles to hover with less power. However, extra caution must be taken when entering or exiting

the ground effect region to avoid sudden changes in thrust that can result in accidents. Mathe-

matical models for ground effect on fixed-wing aircraft and helicopters have been developed in

literature [27, 28, 29], but ground effect on multirotor UAVs is not as well-studied. While an

approximated ground effect model for a single rotor has been proposed [30] and is commonly

used [31, 32, 33, 34], it is not suitable for multirotor UAVs due to the unique airflow around
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multiple lifting rotors [35, 36, 37]. This brings the motivation of developing a ground effect

model specifically for multirotor UAVs.

Wind and turbulence can greatly impact the stability, speed, and maneuverability of mul-

tirotor UAVs, especially when flying outdoors. Gusts of wind can cause the UAV to become

unstable, making it challenging for multirotor UAVs to maintain stability since they require

precise control of their propellers. Wind can also reduce the UAV’s speed and maneuverability,

making it less effective for certain applications. The Dryden spectral model, commonly used

for fixed-wing airplanes [38], assumes a “frozen-field” and may not be suitable for low-speed

rotorcraft since the mean wind speed becomes dominant [39]. Existing research has used blade

element theory and momentum theory to derive the forces and the moments generated at the

rotor plane of a multirotor aircraft [16]. The blade flapping effect has also been studied and

adapted for multirotor aircraft [40, 41]. However, these methods may not be suitable since they

are derived from a single-rotor model. Recently, researchers proposed a method called con-

trol equivalent turbulence inputs (CETI) to model the turbulence on a low-speed helicopter and

treated the turbulence as an equivalent control input [42]. This approach has proven successful

in capturing turbulence effects on a UH-60 helicopter [43] and a 3DR Iris+ quadrotor [44]. An

approach of directly modeling wind as a control input and explicitly deriving its effect on mul-

tirotor UAV dynamics can be a useful approach for developing control systems that are robust

to varying wind conditions.

1.2.2 Multirotor UAV Advanced Control

The field of multirotor UAV control has made significant progress in recent years. For basic

control tasks like hovering and slow movement, proportional–integral–derivative (PID) [45]

and linear quadratic regulator (LQR) [46] controllers have been successfully implemented. For

more complex maneuvers, advanced controllers that consider the aircraft’s non-linearity have

been developed [47, 48, 49]. Model predictive control (MPC) schemes have been utilized to

achieve better flight performance while satisfying system constraints [50]. Despite their suc-

cess in controlled conditions, these controllers struggle in the presence of model uncertainties,

spurring renewed interest in adaptive control techniques. Adaptive control handles uncertain-

ties by varying gains in-flight according to an adaptive law. The model reference adaptive
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control [51, 52] and L1 adaptive control [53] approaches have been commonly studied. For

example, the authors in [54] proposed an adaptive tracking controller for a quadcopter based on

output feedback linearization to solve the problem of center of gravity shifting in flight. Simi-

larly, researchers focused on altitude control for quadcopters have implemented model reference

adaptive control to retain performance when the mass of quadcopter changes in-flight [55]. In

certain instances, such as aircraft damage, adaptive control has shown promising results towards

recovering stability and control [56].

For autonomous navigation tasks in UAVs, a common approach is to break the system into

different modules, including perception, planning, and control [57]. Each module can be tackled

separately. For example, a global or local map of the environment can be built from perception

sensors and the robot’s state is estimated simultaneously. A feasible path or trajectory can

then be planned sequentially within the map to approach the target point and avoid obstacles.

A tracking algorithm will control the robot to follow the planned path. While this modular

design scheme has been explored extensively in the literature, it has some drawbacks, such

as a high computation load and discrepancies between the planning and deployment due to the

hierarchical task decomposition [58]. The question arises whether this modular design structure

is necessary. As we know, humans can fly a drone purely relying on visual inputs (e.g., first-

person-view camera). They map the visual input directly to control commands and are able to

provide good reactive behaviors in unknown environments [59]. A similar reactive strategy can

be developed without a need for global planning, and such a visuomotor control policy can be

trained using modern learning-based approaches.

Among these approaches, reinforcement learning (RL) finds the optimal policy by maxi-

mizing a reward function. RL has been successfully applied in a wide range of applications.

For example, [60] used deep Q-network to train an agent playing Atari games based on pixel in-

puts. [61] trained a deep neural network with proximal policy optimization (PPO) to fly drones

across race tracks at fast speed. Recently, [62] solved the autonomous car racing problem

using a soft actor-critic (SAC) algorithm and the policy achieved super-human performance.

[63] successfully trained quadruped locomotion in real world with deep reinforcement learning.

Nevertheless, RL is notorious for its bad sample complexity. Generally, it requires a substantial
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amount of data to obtain good results and the training may converge slowly. The trial-and-error

learning process also causes severe problems for safety-critical systems.

Imitation learning (IL), on the other hand, learns sequential decision-making policies from

expert demonstrations [64, 65]. The author in [66] successfully trained a drone to fly inside

low-altitude forests and perform tree avoidance with imitation learning. Although the early

stage of IL was limited to relatively low-dimensional problems, the rise of deep learning tech-

niques in recent years has provided powerful solutions through the appealing properties of deep

neural networks and enable the scaling of IL to more complex and high-dimensional prob-

lems [67, 68, 69]. Imitation learning is attractive for applications where interaction with the

real environment could be dangerous (e.g., safety-critical systems) and the training data are

available from experts. It can overcome many of the limitations of reinforcement learning for

the learning agent. For example, it can significantly reduce the sample complexity and elimi-

nate the need for hand-crafted rewards, enabling the agent to learn a good policy directly from

expert demonstrated dataset.

1.3 Contributions
The contribution of this dissertation are as follows:

• A linear ground effect model for a mini quadcopter was obtained through ground experi-

ments and validated in flight. The influence of separation distances between rotors on the

ground effect was studied through experiments and a transition from linear to quadratic

model was observed when the rotor distance becomes large enough.

• A control architecture that utilizes MRAC was developed and implemented on a real

quadcopter. The MRAC was added to the altitude control loop to overcome the ground

effect and its performance was evaluated through a set of flight experiments. The con-

troller dramatically outperforms a traditional position controller in tracking the altitude

command when the vehicle is in the ground effect region.

• A data-driven approach was developed to model the effects of wind on multirotor UAVs.

The wind can be included as a control input to the state-space model of the bare-airframe
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dynamics, which is obtained by a system identification approach in the frequency domain.

• The effects of wind on UAV dynamics, particularly with respect to different wind speeds,

have been studied and validated from outdoor experiments on an octocopter with mea-

sured wind data. Additional discussions on how wind speed affects the damping ratio

and the natural frequency of the pitch mode of the bare-airframe model are also provided.

These insights can help improve the development of model-based controllers to optimize

the performance of outdoor multirotor UAVs.

• An imitation learning framework was proposed and used to train vison-based navigation

policies for UAVs operating in complex and GPS-denied environments. The system relies

solely on a forward-facing camera to perform reactive maneuvers and guide the UAV

through the environment.

• A variational autoencoder (VAE)-based was developed and the performance was com-

pared against different vision-based controllers trained from 15 human subjects in the

simulated riverine environments. Based on the results, it has been found that the pro-

posed VAE-based controller outperforms the other controllers with a lower intervention

rate from the pilot and a longer traveling distance.

• The performance of the above learning framework and vision-based control solution were

verified in real orchard environments on a custom-built quadcopter platform. The VAE-

based controller demonstrated superior performance to the existing baseline algorithms

and the learned policy achieved a longer flying distance with less human assistance.

• The trained control policy was further evaluated in novel environments that the agent

had never encountered during the training to test its generalization ability. The results

demonstrate that the proposed vision-based algorithm is able to generalize well to these

novel environments, with strong performance observed in both simulation and real-world

experiments.
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1.4 Dissertation Outline
The rest of the dissertation is structured as follows: Chapter 2 describes the effort to model

the ground effect on a small quadcopter platform. The ground effect model is compared with

existing models and further explored with respect to different rotor distance configurations. The

design of an adaptive controller is also introduced in Chapter 2 followed by flight experiment

results which evaluate its performance. Chapter 3 presents the effort to model the wind effects

on a real multirotor platform outdoors. This chapter consists of the hardware description, sys-

tem identification methodology, parameter identification results, and procedures to model the

wind effect. The identified model and verification results are provided. In the next two chap-

ters, a vision-based controller trained with imitation learning method is introduced and detailed

explained. The results in simulated riverine environments are provided in Chapter 4. The pro-

posed method is verified in real-world orchards with comparisons to existing baselines and these

results are presented in Chapter 5. Lastly, Chapter 6 summarizes the conclusions and provides

recommendations for future research.
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Chapter 2

Mitigating Multirotor UAV Ground Effect
using Adaptive Control

Mitigating ground effect becomes a big challenge for autonomous aerial vehicles when they

are flying in close proximity to the ground. This chapter aims to develop a precise model of

ground effect on mini quadcopters, provide an advanced control algorithm to counter the model

uncertainty and, as a result, improve the command tracking performance when the vehicle is in

the ground effect region. The mathematical model of ground effect has been established through

a series of experiments and validated by a flight test. The experiments show that the total thrust

generated by rotors increases linearly as the vehicle gets closer to the ground, which is different

from the commonly-used ground effect model for a single rotor vehicle. In addition, the model

switches from a piecewise linear to a quadratic function when the rotor to rotor distance is

increased. A control architecture that utilizes the model reference adaptive controller (MRAC)

has also been designed, where MRAC is added to the altitude loop. The performance of the

proposed control algorithm has been evaluated through a set of flight tests on a mini quadcopter

platform and compared with a traditional proportional-integral-derivative (PID) controller. The

results demonstrate that MRAC dramatically improves the tracking performance of altitude

command and can reduce the rise time by 80% under the ground effect.
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2.1 Introduction
Multirotor aerial vehicles become popular over the past few years due to their high maneuver-

ability and vertical takeoff and landing capability. There are growing interests in using this

hardware platform for transportation and delivery services [70, 10, 11]. Small multirotor un-

manned aerial vehicles, e.g. quadcopters, have also been widely used in aerial photography and

site surveying in which these vehicles are flying in proximity to humans. On the other hand,

the high popularity of these aerial vehicles raise concerns about the safety, especially when they

are flying at very low altitude and near the ground. For a rotorcraft, an accident is likely to

happen during takeoff and landing phases when the vehicle enters or leaves the ground effect

region [30], which may cause property damages as well as vehicle crashes. In this work, the

ground effect on a mini quadcopter is studied and a solution is introduced to guarantee the safe

operation and good performance when the vehicle is flying near the ground.

Ground effect on aerial vehicles is a widely studied topic due to its potential benefits and

dangers, and the effect varies significantly in flights due to several factors, including the dis-

tance from ground, type of ground, and vehicle’s speed. It is at close proximity to the ground

where the efficiency of the rotor system increases [71]. The ground effect can be viewed as

the momentum change in a control volume that is bounded with streamlines. The streamlines

near the ground are turning around and changing the vertical direction to the rotor disk to the

parallel direction with the ground. These streamlines near the ground are similar to a jet flow

in which the flow velocity is increased with the reduced exit area. The increased velocity at the

exit of the control volume translates to the increased thrust on the rotor disk in the context of

the control volume theory. The vehicles that take the advantage of ground effect have been de-

signed in [72, 73]. Meanwhile, there are a lot of accidents due to ground effect, from incidents

to fatal accidents [74, 75, 76, 77, 78]. When analyzing the ground effect, an empirical model

is preferred than a computational fluid dynamics (CFD) modeling, which can be very complex

for a multirotor due to the flow interaction between the rotors. Besides, a CFD simulation is not

suitable for real-time control because the computation has to be repeated at different operating

conditions which can be extremely time-consuming. Thus, a data-driven model is adopted in

this work. In this chapter, a test platform is first built and a mathematical model of ground
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effect is obtained on a mini quadcopter through experiments. Considering the small size of a

mini quadcopter, the ground effects are studied under different separation distances between the

rotors. The results are compared to the single rotor model described in Eqn. (2.1). The obtained

model is validated by a flight test and used for designing the control algorithm to mitigate the

ground effect.

A model reference adaptive controller (MRAC) is proposed in this work which helps to

handle the thrust uncertainty caused by the ground effect. The MRAC is added to the z direc-

tion along with the original PID position controller in the outer loop. Two different reference

models have been selected to match the system uncertainty. One is a polynomial function and

the other one is a set of radial basis functions. The performances are evaluated through a series

of flight tests and the results are compared to a pure PID controller. The major contribution of

this work is that first a linear ground effect model for a mini quadcopter is obtained through

experiments. The influence of separation distances between rotors on the ground effect is stud-

ied and a transition from linear to quadratic model is observed when the rotor distance is long

enough. Then, a control architecture which utilizes MRAC is developed and implemented on

a real platform. The MRAC is added to the altitude loop to overcome the ground effect and its

performance is evaluated through a set of flight tests. It is demonstrated that the proposed adap-

tive controller dramatically outperforms a traditional position controller in tracking the altitude

command when the vehicle is in the ground effect region.

2.2 Related Work
The mathematical model of ground effect has been well developed for fixed-wing aircrafts [79]

and helicopters [29, 80]. The fundamental ground effect model for a single rotor has been

proposed by Cheeseman [30] such that

F
F0

=
1

1− ( R
4Z )

2 (2.1)

where F is the actual thrust in the ground effect region, F0 is the nominal thrust outside the

ground effect region, R is the radius of the rotor disk, and Z is the distance of the rotor plane

above the ground. The equation holds true at a constant rotor speed. However, it was developed

for a single-rotor helicopter and may not be suitable for multirotor aircraft. There have been
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many researches showing that the ground effect on quadcopters is stronger than what Cheese-

man’s model predicts [35, 81]. When two rotors are close to each other, the interaction between

airflows will induce a stronger ground effect which is called the fountain effect [36, 82, 83]. A

simulation of this effect on quadrotors was presented by Sanchez-Cuevas et al. through com-

putational fluid dynamics [84]. Danjun in [85] proposed a coefficient ρ in Cheeseman’s model

to correct the difference between a quadcopter and a helicopter, considering the unpredictable

airflow influences among the rotors

F
F0

=
1

1−ρ( R
4Z )

2 (2.2)

They found out the ground effect is stronger than that in Eqn. (2.1) and still measurable

when Z/R = 4, compared to the result from Cheeseman’s model which states that the ground

effect is significant up to Z/R = 1.5. The author in [86] presented another model to capture a

wider range of the height
F
F0

= ae−Z/b +1 (2.3)

where a and b are coefficients that depend on the geometry of the blade as well as the separation

distance between two rotors. They claimed that the maximum ground effect ratio has a finite

value 1.7 when Z/R approaches zero. In [84], a complex ground effect model on quadrotors

has been characterized and validated through experimental tests. They also identified the partial

ground effect which the ground effect only occurs on part of the rotors. Besides, visual feedback

was used in [87] to model the external disturbance during the experiment and a support vector

regression was utilized to predict the ground effect force. Bernard in [88] characterized the

ground effect in a dynamic sense for quadrotors. They accessed the effect of distance from

ground on the dynamics of individual rotor as well as the overall attitude motion of the platform.

However, none of these papers study the ground effect on a mini quadcopter, which has a much

smaller separation distance between the rotors and may induce more interference of airflow in

proximity to the ground.

The simple tasks on quadcopters, such as stabilizing at a stationary point or moving at low

speed, have been successfully implemented by linearizing the system and applying a PID [45]

or a LQR controller [89]. The PID controller has also been successfully tested on a multirotor
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aerial platform while its overhanging robotic arm is moving [90]. By using a multi-layer control

architecture and nonlinear controls considering its nonlinear nature, the trajectory following

and aggressive maneuvering problems have also been addressed recently [47, 48]. Although

these controllers perform really well in designed conditions, they suffer performance losses in

the presence of model uncertainties. It is because these controllers have constant parameters

designed for determined models and conditions, thus any changes to the model will cause a

performance degradation.

The concerns about uncertainty bring renewed interests in adaptive control techniques [91,

92], of which the gain is able to vary in flight according to adaptive laws. In [93], the optimal

path tracking problem has been solved by using a linear quadratic tracking (LQT) algorithm

with a varying gain in time. The proposed algorithm is robust to model uncertainty and external

disturbance. Raffo in [94] used a nonlinear H∞ controller with the assistance of a model predic-

tive controller to solve path-following problems, under structural and parametric uncertainties.

In [54], an adaptive tracking controller was applied on a quadcopter and they proved its great

tracking performance with the center of gravity (CoG) shifted in flight. The adaptive controller

has already been used to address the model uncertainty caused by the ground effect. In [95], a

nonlinear adaptive backstepping controller was used to control the altitude of a small-scale he-

licopter during takeoff and landing while a horizontal wind gust is present. In [86], the authors

designed an adaptive nonlinear disturbance observer (ANDO) to enhance the PID controller.

The settling time with ANDO implemented was largely reduced in the simulation, however, the

experimental validation is lacking. Also, the ANDO was added into the inner loop which may

cause an issue for the platform with limited computing power. Researchers in [55] implemented

an MRAC to assist an existing PI heave-velocity stabilizer, where changes in mass greatly re-

duced the system performance. Their result shows that the proposed controller is able to retain

its performance when the mass of quadcopter changes in flight.
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2.3 Hardware Description
2.3.1 Test Quadcopter

The aerial vehicle platform is the Crazyflie 2.0 designed by Bitcraze equipped with customized

components as displayed in Fig. 2.1. The laser-cut frame is made of a 1/16′′ thickness acetal

resin sheet which provides enough strength. The reflective markers, together with the Optitrack,

a motion capture system, are used to track the vehicle’s position and orientation. The reflective

markers are attached through plastic slotted screws which are glued to the designed holes on the

base frame. The entire structure is tightened with rubber bands at four arms. The Crazyflie 2.0

communicates with the computer over a Crazyradio PA radio. The control over the vehicle can

be extended through a modified firmware onboard.

A 3D model was created in Solidworks after measuring the dimension and weight of each

piece. The total mass m and the length of arm L were read directly, while the moment of inertia

Ixx, Iyy and Izz, were calculated using the Solidworks Toolbox. The values of these parameters

are provided in Table. 2.1. The motor force constant k f has an important role in studying the

ground effect and thus was determined from an experiment. In the experiment, the throttle was

increased manually from 0% to 100% in an increment of 10%. The corresponding motor signal

(pulse-width modulation signal, PWM) and the thrust generated by one rotor were recorded. A

linear model was fitted to the data and related the PWM signal to the thrust. The slope of the

linear model was determined as k f . The motor moment constant km was obtained from [96] and

related to the PWM signal as well. The motor constant ratio γ was calculated by km/k f .

2.3.2 Ground Effect Test Rig

In a ground test, the total thrust is measured by a digital scale, on which the quadcopter is placed

upside down with a 3D-printed support. The support elevates the quadcopter from the scale by

three times the diameter of its rotor, such that the intake air flows freely without interference.

The scale is placed on a flat platform and an ultrasonic sensor is attached to its upper surface.

The ultrasonic sensor is used to measure the distance from the platform to the reference ground.

The data collection and filtering are processed through a microcontroller (Arduino UNO) con-

nected to the sensor. The ultrasonic sensor is calibrated before each experiment. The ground
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Figure 2.1: The modified Crazyflie 2.0 quadcopter with reflective markers and a laser-cut frame.

Table 2.1: The modified Crazyflie 2.0 parameters.

Parameter Description Value

m Mass with markers and frame 0.3812 kg

L Distance from rotor to center line 0.035 m

Ixx Moment of inertia along x-axis 2.661×10−5 kg-m2

Iyy Moment of inertia along y-axis 2.858×10−5 kg-m2

Izz Moment of inertia along z-axis 5.799×10−5 kg-m2

k f Motor force constant 2.083×10−6 N

km Motor moment constant 7.707×10−9 N-m

γ Motor constant ratio 3.700×10−3 N-m/N
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Figure 2.2: The test rig used to acquire the thrust generated by the quadcopter.

effect test rig is shown in Fig. 2.2. To emulate a ground effect in-flight and measure the corre-

sponding thrust, the test rig is placed under a long flat table and atop a 3D-printed platform jack.

The height of the platform jack can be adjusted by turning the knob on it. Since the quadcopter

is placed inversely and the thrust is acting downwards, the long table emulates the reference

ground and the ground effect, as a result, is able to be measured at different heights by adjusting

the platform jack. A sketch of the above platform is shown in Fig. 2.3.

2.4 Ground Effect Modeling
This section presents a modeling result of the ground effect on the modified Crazyflie 2.0. Most

of the existing models on quadcopters are still based on the single rotor relation described in

Eqn. (2.1). This section verifies its correctness on a real quadcopter and introduces a ground
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Figure 2.3: A sketch of the experiment setup used to emulate and measure the ground effect.

effect model generated from a set of ground tests and flight test validations. Note that the

material of ground can impact the ground effect. For the purpose of this study, we have focused

on the ground effect on hard surfaces. Future work will explore the ground effect on other

materials, such as grass or soft surfaces.

2.4.1 Experiment Design

Before the ground experiment, two working assumptions have been made to let the emulation

of the in-flight condition work in a ground test:

Hypothesis 1 (Working hypothesis) Small objects placed at the center of the quadcopter have

minimal effect on the airflow since it is away from the rotors.

Hypothesis 2 (Working hypothesis) Ground effect is affected mainly by the distance from the

ground, not the vehicle’s vertical velocity. Therefore, tests conducted statically on the ground

have the same result as those done dynamically in flight.

With the above two working hypotheses, the platform described in Section 2.3.2 has been

successfully used to measure the thrust F at different distances above the ground. The reading

from ultrasonic sensor Zsensor is converted to Zactually based on the calibration result. Zactually is

then subtracted by the distance between the ultrasonic sensor and the rotor plane to obtain the

distance from the rotors to the table, Z. The PWM value was set to a fixed value (i.e., hovering)

during the experiment. The distance was adjusted at an increment of 1 cm and the data was
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Figure 2.4: Fitting result with 2 rotors active.

recorded until the distance reaches 20 cm. After that, the test platform was relocated and the

thrust F0 outside the ground effect was measured. The radius of the rotor R can be measured

directly. The experiment was conducted in two different situations, one is when only two motors

(motor 1 and 3, rotate counterclockwise) are active and the other one is when all four motors

are active. Due to the size of the landing gear, the minimum value of Z/R is slightly higher than

1.

2.4.2 Modeling Results

The normalized thrust and distance, F/F0 and Z/R, are computed based on experimental results

and the results are plotted in Fig. 2.4 and 2.5. Fig. 2.4 shows the result for 2-propeller case (M2

and M4 spinning in the same direction), while Fig. 2.5 is the result for 4-propeller case. For both

configurations, as the vehicle approaches the ground, F/F0 increases from 1 to 1.15 and higher.

That means more thrust is generated at close proximity to the ground and is an indication of the

ground effect. It is observed that there is an exponential trend for the 2-propeller case, where

the vehicle experiences a 5% increase in thrust while it is 2 times its rotor’s radius away from

the ground. A similar model to Eqn. (2.2) is fitted to the dataset, which is

F
F0

=
1

1−3.315( R
4Z )

2 (2.4)
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Figure 2.5: Fitting result with 4 rotors active.

On the other hand, the 4-propeller case shows a linear trend, and the vehicle only needs to

reach 3 times of its rotor radius to experience the same magnitude of increase in thrust. The

fitted linear model is

F
F0

=

−0.0373Z
R +1.1651, if Z

R < 4.42

1.0000, Otherwise
(2.5)

The two fitted models as well as the single rotor model are put together in Fig. 2.6 for a

comparison. Though the 2-rotor case shows a similar exponential pattern as the single rotor

relation, the quadcopter has been found to experience more ground effect (higher value of F/F0

indicates a more ground effect experienced), while the 4-rotor case shows a totally different

pattern from the other two. The possible explanation, from an aerodynamic perspective, is that

when the rotors are in close proximity, the jet flow from a rotor near the ground is blocked

by the opposite jet flow from the other rotor. The blockage creates a re-circulation between

multiple rotors so that the exit velocity in the control volume is reduced. This re-circulation and

disturbance of flows are considered as the interactional aerodynamics between multiple rotor

wakes and it becomes much stronger for four rotors compared with two rotors. The significant

reduction in the lift near the ground for four rotors is revealed as the linear behavior in the

ground effect. In order to confirm that the discrepancy is caused by the actual aerodynamics,
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Figure 2.6: Comparison of three ground effect models.

not the experiment error, flight tests have been conducted to verify the data collected in the

ground experiment.

The flight test is designed to let a quadcopter start from a height of Z/R ≈ 10, which is

outside of the ground effect region and then descend to the ground slowly and through multiple

steps. During each step, the vehicle hovers for 10 seconds at a certain altitude. The Motor’s

PWM signal, altitude, and weight of the vehicle are recorded during the test. To ensure that

the vehicle is hovering stably without any vertical motion, only the data from the second half

of the 10-second duration is being used, where the net force is approximately zero. The total

thrust with ground effect, F , in this case, is the weight of the vehicle. The total thrust without

ground effect, F0, is calculated by using the recorded PWM and the theoretical thrust equation

as follows:

F0 =
4

∑
i=1

(k f ×PWMi), (2.6)

where k f is the motor force constant in Table. 2.1. The in-flight relation of F/F0 and Z/R is

plotted in Fig. 2.7 and compared with the ground test result. It has been found that the flight

test result agrees well with the ground test result in which they both show a linear pattern when

Z/R is smaller than 4.4, and the thrust both increase when the vehicle gets closer to the ground.

Considering the dimension of the quadcopter used in the experiment, the geometry of it
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Figure 2.7: The comparison of in-flight test result and on-ground test result, where× represents
the flight test data and O represents the ground test data.

Table 2.2: The goodness of fit of each model with two rotors active.

Quadratic

Rotor distance increment RMSE R square Correction coefficient

0mm 0.0151 0.8893 3.315

10mm 0.0161 0.8740 3.166

20mm 0.0115 0.9143 2.977

30mm 0.0130 0.9221 3.097

40mm 0.0116 0.9204 2.829

50mm 0.0136 0.8889 2.788

23



Table 2.3: The goodness of fit of each model with four rotors active.

Quadratic Piecewise Linear

Rotor distance increment RMSE R square RMSE R square

0mm (Piecewise linear) 0.0233 0.7246 0.0103 0.9451

10mm (Piecewise linear) 0.0139 0.8364 0.0103 0.9084

20mm (Piecewise linear) 0.0133 0.8210 0.0109 0.8779

30mm (Quadratic) 0.0099 0.9083 0.0118 0.8654

40mm (Quadratic) 0.0114 0.8962 0.0129 0.8634

50mm (Quadratic) 0.0071 0.9475 0.0086 0.9215

may have a large effect on the total generated thrust. Therefore, another set of experiments has

been conducted to discover the effect of different rotor distances on a small-size quadcopter.

Additional 3D printed parts are used to extend the motor arm length while keeping the geometry

under the rotor plane the same, so it will only change the separation distance between rotors.

The arm length is increased by 5mm, 10mm, 15mm, 20mm, and 25mm, in another word, the

rotor distance is increased by 10mm, 20mm, 30mm, 40mm, and 50mm, respectively. Then

the thrust and distance to the ground are measured in a similar way as what has been done

in previous sections and the results are compared with the original platform (0mm represents

the original platform). The equation and correction coefficient in Eqn. (2.2) are used to fit

the two rotor data. The goodness of fit of each model is given in Table. 2.2, where a larger

correction coefficient indicates a stronger ground effect. As can be seen, when the arm length

increases, the ground effect becomes less significant (except the 15mm data point). The fitted ρ

decreases from 3.3 to 2.7 when the distance between the rotors becomes larger and the results

are presented in the Table. The results for 10mm and 50 mm are plotted in Fig. 2.8 in which

only two rotors are active.

For the four-rotor case, the errors fitted by two models were compared: 1) a quadratic

function similar to Eqn. (2.2) and 2) a piecewise linear function similar to Eqn. (2.5), and the

one with a larger R2 was chosen as the fitted model for different rotor distances. The goodness

of fit of each model is provided in Table. 2.3. Based on the result, when the rotor distance
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(a)

(b)

Figure 2.8: Increase the rotor distance by 10mm (a) Experimental result with 2 rotors active.
(b) Experimental result with 4 rotors active.

increment is smaller than 30mm, a piecewise linear model fits better than the quadratic one.

However, the difference between the two models becomes smaller and smaller when the rotor

distance increment gets closer to 30mm. When the length is equal and greater than 30mm, the

ground effect translates from piecewise linear to a quadratic model. The results for 10mm and
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(a)

(b)

Figure 2.9: Increase the rotor distance by 50mm (a) Experimental result with 2 rotors active.
(b) Experimental result with 4 rotors active.

50 mm are plotted in Fig. 2.9 when four rotors are active.

By increasing the separation distance between the rotors, it’s been found out that the relation

between ground effect and distance above ground becomes quadratic when the rotor separation

distance is large enough and the interactional aerodynamic effect is significantly reduced. In
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order to understand the detailed physics of the ground effect for multiple rotors and interactional

aerodynamics, high-fidelity computational fluid dynamics (CFD) simulations are suggested to

be performed for multiple rotors in close proximity to each other.

2.5 Controller Design
In this section, a set of nonlinear equations obtained from Newton-Euler equations are linearized

about the hovering state and used to decouple the system. A multi-layer control architecture is

proposed to stabilize the vehicle and satisfy the waypoint tracking requirement. In the inner

loop, an LQR full-state feedback controller plus a feedforward controller are used to stabilize

the quadcopter as well as track the attitude command. In the outer loop, a PID controller is

designed for position control in x, y, and z, while an MRAC is added to the z loop to mitigate

the ground effect when the vehicle is in close proximity to the ground.

2.5.1 Equations of Motion

The nonlinear dynamics equations of the quadcopter are obtained from Newton-Euler equa-

tions:

F = m · v̇ (2.7)

M = I · ω̇ +ω× (I ·ω) (2.8)

where F is the external force acting on the vehicle, ⇕ is the mass of the body, v is the velocity

vector, M is the external moments, I is the 3×3 moment of inertia matrix and ω is the angular

velocity vector. The cross product terms in moment of inertia matrix I here are assumed to be

all zeros (only use Ixx, Iyy and Izz). The nonlinear differential equations are linearized about the

hovering equilibrium state, and thus the position dynamics and attitude dynamics are decoupled

successfully. The attitude dynamics is provided in Eqn. (2.9) and the position dynamics is given

in Eqn. (2.10).
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·


φ

θ
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 (2.10)

where p, q, r are body angular rate; φ , θ , ψ are Tait-Bryan angles, which represent for roll,

pitch and yaw, respectively; x, y, z are 3D positions in vehicle frame; vx, vy, vz are three

velocities in vehicle frame; T is the total thrust in body frame; m1, m2, m3, m4 are the PWM

signals for four motors, I3×3 is a 3×3 identity matrix.

2.5.2 Attitude Controller

A full-state LQR feedback controller is used to stabilize the vehicle and reject the disturbances.

The LQR feedback controller takes the vehicle’s current Tait-Bryan angles φ ,θ ,ψ and body

angular rate p,q,r as inputs and outputs the motors control signals. The LQR algorithm mini-

mized the quadratic cost function shown in Eqn. (2.11), where x = [p,q,r,φ ,θ ,ψ] is the state

vector, ulqr = [PWM1,PWM2,PWM3,PWM4] is the input vector, Q and R are two weighting

matrices.

J =
∫

∞

0

(
xT ·Q ·x+ulqr

T ·R ·ulqr
)

dt (2.11)

The feedback control law ulqr = −Klqrx, is calculated from Klqr = R−1BT P, where P is

achieved by solving a Riccati equation. However, with only the feedback control, the vehicle

is not able to track the attitude command, thus a simple feedforward controller is added to the
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Table 2.4: The parameters used in the attitude controller.

Parameter Description Value

Q Weighting matrix on states 100 ·

I3×3 03×3

03×3 10 · I3×3


R Weighting matrix on control inputs 10−6 · I4×4

kφ Feedforward gain for roll 15811.3883

kθ Feedforward gain for pitch 15811.3883

kψ Feedforward gain for yaw 15811.3883

kT Feedforward gain for thrust 1.000

loop. The feedforward controller receives command vector, ycmd = [φc,θc,ψc,Tc] and outputs

the desired PWM signals, ufwd = M ·ycmd, where the mapping matrix M has the form of:

M =


−kφ kθ kψ kT

−kφ −kθ −kψ kT

kφ −kθ kψ kT

kφ kθ −kψ kT

 (2.12)

where kφ ,kθ ,kψ ,kT are the attitude loop feedforward gains for roll, pitch, yaw angle and throttle,

respectively. The combination of the feedback and feedforward controllers leads to a total

control output in Eqn. (2.13).

uatt = ulqr +ufwd (2.13)

The feedforward gains can be calculated by enforcing the closed-loop DC gains equal to one

in order to ensure the command following. The feedforward gains, kφ ,kθ ,kψ , should be equal to

the inverse of corresponding DC gains of diagonal entries for the closed-loop transfer function

matrix. Note that the attitude dynamic equations do not include thrust, so kT is set to one. Using

the attitude dynamics model in Eqn. (2.9), an attitude controller is created in Matlab. The system

is simulated with a step input and different weighting matrices Q and R have been tried and the

one with the best performance was selected based on the system crossover frequency, steady

state error, and the overshoot. The final values of the parameters are provided in Table. 2.4.
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2.5.3 Position Controller

The position controller consists of a traditional PID controller plus an MRAC. The PID con-

troller takes position errors and commanded yaw angle [xe, ye, ze, ψc] as inputs, and outputs the

desired Tait-Bryan angles and thrust [φc,θc,ψc,Tc]. The relation is given as follows:

upid = Kp · e(t)+Ki ·
∫ t

0
e(τ)dτ +Kd ·

de(t)
dt

(2.14)

where e= [xe,ye,ze]
T and upid = [φc,θc,ψc,Tc]

T . Since the heading angle has nothing to do with

the position, no controller is put on controlling the yaw angle. The values of Kp, Ki, and Kd are

tuned using the Matlab PID tuner and the values of them are given in Table. 2.5. The model

created in Matlab includes the position dynamics coming from Eqn. (2.10), a second-order

actuator model, which has a bandwidth of 10Hz and a damping ratio of 1, and the desired PID

controller. In order to accelerate the tuning process, the inner loop is neglected here since the

DC gain of the inner loop has a much faster frequency than the outer loop. The best coefficients

are selected to achieve zero steady-state errors as well as overshoots.

Although a pure PID controller usually performs well under nominal flight conditions, it

suffers when the quadcopter is in proximity to the ground due to the ground effect. Thus, a

model reference adaptive controller is added to the position control loop. The MRAC has the

advantage of adjustable parameters and a mechanism to update those parameters online, which

ensures that the system states follow the model states even with the presence of uncertainties

and external disturbances. In MRAC, an unknown matched system uncertainty, F(x) is selected

and added to the original linearized system (Eqn. (2.15)), which can be written as a linear

combination of N provided locally Lipschitz-continuous basis functions, Φ(x), with unknown

constant coefficients, Θ in Eqn. (2.16).

ẋ = A ·x+B · (u+F(x)) (2.15)

F (x) = Θ
T ·Φ(x) (2.16)

A reference model is defined as a system (xref, ucmd) with desired performance, and the

state tracking error, is the difference between the real model states and reference model states.

The control input is calculated to mitigate the system uncertainty as follows,

uadp =−Θ̂
T ·Φ(x) (2.17)
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Table 2.5: The parameters used in the position controller.

x direction y direction z direction

Kp 0.388869225 0.388869225 42692.2

Ki -0.074870430 -0.074870430 8219.7

Kd -0.504936570 -0.504936570 55434.8

where Θ̂ is the estimated unknown constant coefficients for the matched uncertainty. And a

radially unbounded quadratic Lyapunov function candidate is selected to be:

V (e,∆Θ) = eT ·P · e+ trace
(
∆Θ

T ·Γ−1
Θ
·∆Θ

)
(2.18)

where ∆Θ = Θ̂−Θ, P is the solution to algebraic Lyapunov equation for the reference model

(P ·Are f +AT
re f ·P = −Q), and ΓΘ is the rate of adaption. By differentiating Eqn. (2.18) on

both sides, and keep V̇ < 0 satisfied to ensure Lyapunov stability, the adaptive law is derived in

Eqn. (2.19) and updated on-line at each time step. Then the adaptive control input is calculated

by Eqn. (2.17) (a detailed derivation can be found in Appendix. A).

˙̂
Θ = ΓΘ ·Φ(x) · eT ·P ·B (2.19)

Notice that the ground effect has the most effect in the z (vertical) direction, thus the MRAC

is only considered in the altitude loop and the closed-loop model is expected to perform like a

PID altitude controller, thus x = [z,vz] and ucmd = [zc]. The reference model is found through a

system identification approach by assuming that the system behaves consistently with or without

the presence of ground effect. The states are recorded when the quadcopter is hovering at

different heights (except the ground effect region), and a second-order state space model is

used to fit the data by using the Matlab System Identification Toolbox. The identified model is

provided in Eqn. (2.20) and used as the reference model for a desired performance. ż

v̇z

=

 0 1

−5.416 −7.027

 ·
 z

vz

+

−0.1145

6.273

 · zc (2.20)

With the reference model determined, the system states dependent functions, Φ(x) also

needs to be decided to be used in Eqn. (2.16), which F (x) represents for the ground effect.

Two potential F (x) functions are considered here:
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Figure 2.10: The control architecture of the system.

1. Polynomial Function: Since a linear relation is obtained between the thrust in the ground

effect region and the distance from the ground in Section 2.4, which can be written in the

form of F = θ1Z +θ0. One simple way to select the regressor and coefficient is that

Φ(x) = [Z, 1]T (2.21)

Θ = [θ1, θ0]
T (2.22)

The Θ will be estimated online by adaptive law using Eqn. (2.19). ΓΘ = 10−3 · I2×2, and

Q = [100, 0; 0, 1] are selected to ensure that the system states follow the reference states

without oscillation.

2. Radial Basis Function (RBF): A RBF φ(x,c) is a real-valued function symmetric about

its center c. And a linear combination of these functions can be used to approximate the

given function in different fields [97, 98]. A series of Gaussian RBFs along with a bias

term is used here to approximate the ground effect, where

φ (x,c) = e−ε2(x−c)2
(2.23)

The center c of RBF is selected to be [0 m, 0.2 m, 0.4 m, 0.6 m, 0.8 m, 1.0 m], which is

the height above ground and covers the entire flight envelope. ε is chosen to be 6.67. The

regressors and coefficients are shown as follows,

Φ(⃗x) = [φ(z, 0), φ(z, 0.2), φ(z, 0.4), φ(z, 0.6), φ(z, 0.8), φ(z, 1.0), 1]T (2.24)

Θ = [θ6, θ5, θ4, θ3, θ2, θ1, θ0]
T (2.25)

ΓΘ = 10−3 · I7×7, and Q = [100, 0; 0, 1] are selected.
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Figure 2.11: System diagram of the flight experiment.

The control output from the position controller will be the sum of PID output and MRAC output

in Eqn. (2.26). As a result, the combination of the proposed position controller and attitude

controller forms the complete control architecture. The complete control architecture is shown

in Fig. 2.10 and its performance is tested and described in the next section.

upos = upid +uadp (2.26)

2.6 Fight Experiment Setup
The proposed control architecture has been implemented on the test quadcopter and the system

diagram is provided in Fig. 2.11. The system composes of two major parts, a ground station

and a Crazyflie 2.0, while they are connected through a CrazyRadio PA running at 2.4GHz.

The attitude controller is written in a C program and has been flashed to the microcomputer on

Crazyflie. The attitude control algorithm is running onboard at 500Hz and sends PWM com-

mands to four motors. The embedded system also includes an IMU data processing unit, and

a state estimator (a complementary filter) provided by the stock firmware running at 1000Hz,

which form the inner loop altogether. In the outer loop, a waypoint generator and the position

controller are implemented in a Robot Operating System (ROS) running on a Linux computer.

ROS is able to handle the interface between the components and communication with the vehi-

cle. The position controller is implemented in C and runs at 200Hz. The commanded state is

created by a waypoint generator implemented in Python and running at 50Hz. The estimated

positions and yaw angle are returned by the OptiTrack motion capture system, which is running

at 240Hz.

A series of experiments have been conducted to evaluate the proposed control architecture.
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Figure 2.12: The altitude response when the vehicle is completely outside the ground effect
region.

Two different uncertainty models (a linear model and an RBF model) have been implemented

in our experiments and the performances are compared to a pure PID controller. The results are

presented as follows.

2.7 Flight Experiment Results
To verify that the MRAC has the same performance as a pure PID controller when the vehicle is

outside the ground effect region, an experiment was first conducted to see the altitude response

when it’s high enough above the ground. The vehicle was commanded to take off at 0.5m

(Z/R ≈ 22) above the ground and hover for a certain time to ensure it has reached a steady

state. A target position of 6.2cm higher than the current position was sent to simulate the

takeoff pattern for 20 seconds and then the vehicle was commanded to descend back to 0.5m to

simulate the landing pattern for the next 20 seconds. The corresponding altitude response was

recorded. The response is plotted in Fig. 2.12. As can be seen, the three controllers have similar

altitude responses when the vehicle is completely outside the ground effect region.

To see the influence of ground effect on the altitude tracking performance, the same exper-

iment was repeated. But this time, the vehicle was commanded to take off to 6.2cm (Z/R≈ 4)

above the ground and then land multiple times so that the entire flight is under the ground ef-
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(a)

(b)

Figure 2.13: (a) The altitude response and (b) absolute error when the vehicle is under the
ground effect.
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fect. The altitude tracking performance is plotted in Fig. 2.13 (a), where the vehicle’s altitude

responses for all three controllers are compared against the target altitude and reference altitude

used by MRAC (The initial takeoff is removed). A figure of the absolute error is also provided

in Fig. 2.13 (b). The shaded region represents for a takeoff phase and the non-shaded region

represents for a landing phase. Based on the two figures, it can be found out that a pure PID con-

troller is not able to track the command well in the given time period due to the ground effect.

The drone is more than 1cm away from the target altitude at the end of each takeoff and landing

phase with a pure PID controller and, as a result, a manual intervention is necessary to bring the

vehicle down at the very end of the experiment. As a comparison, both MRAC controllers help

to mitigate the ground effect significantly and allow the vehicle to reach the target altitude with

an absolute error smaller than 0.25cm. It can also land the vehicle stably and safely without

any human intervention. A video demonstrating different controller performances can be found

here: https://www.youtube.com/watch?v=y926-YTZKis.

The performance at different altitudes is displayed in Fig. 2.14, in which the vehicle was

commanded to hover at different distances above the ground. The time length between two se-

quential commands was selected to be 10 seconds and the tracking performances are compared

among three controllers. The altitude response is plotted in Fig. 2.14 (a) and the calculated

mean absolute error at different heights is plotted in Fig. 2.14 (b). As noticed, the MRAC and

PID controllers both follow the command well when the vehicle is outside the ground effect

region. The PID controller then starts losing its tracking performance when the altitude is lower

than 6cm and, as a result, the vehicle can not reach the target position in the given time. The

PID controller keeps suffering from the ground effect until it climbs above 10cm and regains its

normal performance eventually. As a comparison, two MRAC controllers track the targets well

for the entire trajectory and the MRAC with RBFs has a smaller mean absolute error than the

MRAC with a linear model. The result also validates the previous conclusion that the ground

effect on the test platform is significant when Z/R≤ 4.4.

To quantify the performance of each controller, another set of experiments has been con-

ducted in which the vehicle was commanded to fly at different altitudes and the vehicle response

was recorded during the takeoff and landing phases. The heights selected are 6.2cm (Z/R≈ 4),
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(a)

(b)

Figure 2.14: (a) The altitude response and (b) corresponding mean absolute error at different
heights.
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4.2cm (Z/R ≈ 3) and 2.2cm (Z/R ≈ 2) above the ground so that all of them are in the ground

effect region. The maximum recording time for two MRACs was 20 seconds while the PID

controller was selected to be 40 seconds in order to capture its full transient response. For each

commanded altitude, three experiments were conducted. The average and standard deviation at

each time step are calculated and an average trajectory for each pattern is generated. The aver-

age trajectories are plotted in Fig. 2.15 to 2.17, where the solid lines represent for the average

trajectories and the shaded regions represent for the standard deviation. The performance in-

dices for each altitude are extracted and provided in Table. 2.6 to 2.8, which include the steady

state error with respect to the step command (SSE), the mean squared error with respect to the

reference model (MSE) for two MRAC controllers, rise time, overshoot and the settling time.

Note that since the altitude cannot be lower than the ground, no overshoot will occur during

the landing phase. Also, since the settling time for the PID controller exceeds the maximum

recording time, the value for it is not calculated.

Comparing the performance indices in three tables, the MRAC controllers have less steady-

state error than the PID controller for both takeoff and landing phases. The rise time and settling

time for a PID controller is quite long in the ground effect region compared to the response in

Fig. 2.12 and, as a result, it is unable to track the altitude command well. The situation becomes

even worse when the commanded altitude is closer to the ground. Meanwhile, the MRAC

reduces the rise time by at least 80% compared to a PID controller and thus allows the vehicle

to take off and land the vehicle in time. What’s more, the MRAC w/ RBF has at least a 45%

smaller MSE and 15% shorter rise time than the MRAC w/ linear, thus standing out among all

three controllers. Although the MRAC w/ RBF shows the best performance, it needs to compute

seven parameters online, compared to MRAC w/ linear which only needs to update two during

the flight. The additional computational load puts some constraints on its use, for example, on

an embedded system that has limited power. In that case, a linear model MRAC can be utilized

since it still improves the system performance significantly while it has fewer requirements for

computing power.
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(a)

(b)

Figure 2.15: Average takeoff and landing trajectories with different control algorithms for
Z/R≈ 4.

2.7.1 Discussion

In the experiment setup, the wind is not considered because the drone was flying indoors. How-

ever, the wind can cause additional aerodynamic forces and needs to be considered if flying

outside and becomes more important when the wind speed is high. Modeling the wind effect

will be discussed in the next chapter. In addition, a motion capture system is used to retrieve

the real-time position of the vehicle. The motion capture system can achieve a centimeter-level

accuracy. But for a standard drone which only has the GPS and barometer, the poorer altitude

accuracy may degrade the performance of the controller. By incorporating an ultrasonic or 1D

laser rangefinder, accurate height measurements above ground level can be obtained without

interference from rotor airflow.

In addition, the MRAC is only added to the z direction because the tracking performance
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(a)

(b)

Figure 2.16: Average takeoff and landing trajectories with different control algorithms for
Z/R≈ 3.

of altitude command is the main focus of this work. However, MRAC can also be added to the

other axes if the vehicle is doing some close-ground maneuvers and with a non-zero attitude

angle. Considering that a non-zero attitude angle will completely change the ground effect

model and the controller design, this will be left as future work.
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(a)

(b)

Figure 2.17: Average takeoff and landing trajectories with different control algorithms for
Z/R≈ 2.
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Table 2.6: Performance index for Z/R = 4.

PID MRAC w/ Linear MRAC w/ RBF

Taking off:

SSE (cm) 0.65 ± 0.13 0.23 ± 0.04 0.27 ± 0.05

MSE (cm) | 0.79 ± 0.21 0.32 ± 0.25

Rise time (sec) 22.40 ± 0.96 4.53 ± 0.85 2.99 ± 0.68

Overshoot (%) | 4.55 ± 0.92 5.02 ± 0.73

Settling time (sec) | 6.95 ± 1.23 5.00 ± 1.08

Landing:

SSE (cm) 1.03 ± 0.19 0.10 ± 0.02 0.12 ± 0.03

MSE (cm) | 1.10 ± 0.44 0.60 ± 0.35

Rise time (sec) 25.72 ± 1.03 4.99 ± 0.59 3.86 ± 0.62

Overshoot (%) | | |

Settling time (sec) | 7.40 ± 1.43 5.40 ± 1.12
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Table 2.7: Performance index for Z/R = 3.

PID MRAC w/ Linear MRAC w/ RBF

Taking off:

SSE (cm) 0.40 ± 0.11 0.19 ± 0.05 0.18 ± 0.04

MSE (cm) | 0.43 ± 0.17 0.18 ± 0.10

Rise time (sec) 25.86 ± 1.79 4.58 ± 0.97 3.15 ± 0.88

Overshoot (%) | 7.58 ± 0.98 7.02 ± 1.01

Settling time (sec) | 19.91 ± 1.95 19.18 ± 1.34

Landing:

SSE (cm) 0.63 ± 0.11 0.10 ± 0.02 0.09 ± 0.02

MSE (cm) | 0.44 ± 0.10 0.23 ± 0.05

Rise time (sec) 27.62 ± 1.44 5.23 ± 0.86 3.53 ± 0.90

Overshoot (%) | | |

Settling time (sec) | 11.09 ± 1.83 10.25 ± 1.19
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Table 2.8: Performance index for Z/R = 2.

PID MRAC w/ Linear MRAC w/ RBF

Taking off:

SSE (cm) 0.26 ± 0.04 0.15 ± 0.01 0.23 ± 0.03

MSE (cm) | 0.16 ± 0.03 0.09 ± 0.02

Rise time (sec) 31.07 ± 1.99 4.90 ± 1.07 3.50 ± 0.93

Overshoot (%) | 11.40 ± 1.11 18.62 ± 1.56

Settling time (sec) | 19.23 ± 0.99 19.94 ± 1.72

Landing:

SSE (cm) 0.57 ± 0.08 0.09 ± 0.01 0.12 ± 0.02

MSE (cm) | 0.18 ± 0.05 0.08 ± 0.02

Rise time (sec) | 4.11 ± 0.76 3.51 ± 0.97

Overshoot (%) | | |

Settling time (sec) | 13.17 ± 1.30 13.88 ± 1.24
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2.8 Summary
In this chapter, the model of ground effect on mini quadcopters is studied first. Different from

the single rotor model which indicates a quadratic relation, the experimental result shows that

the thrust generated by rotors to hover in the sky has a linear relation with the distance from

the ground surface. The thrust will increase as the vehicle gets closer to the ground. Also, the

model will switch from the linear relation to a quadratic function when the separation distance

between rotors is large enough and the transition was observed from the experiment. A model

reference adaptive controller is then developed and used to mitigate the ground effect in the

control architecture. The control architecture consists of an LQR feedback + feedforward atti-

tude controller, and a PID + MRAC position controller. The MRAC is added to the altitude loop

to improve the altitude tracking performance. When designing the MRAC, two different uncer-

tainty models are considered to approximate the ground effect function. One is a linear model

and the other one is a set of RBFs. The performance of the controller is evaluated through a

series of flight tests on a mini quadcopter and compared to a pure PID position controller. Based

on the experiment result, the adaptive controller outperforms a traditional PID controller which

is not able to either reach the target altitude during take-off or touchdown during landing in

time. The vehicle with MRAC implemented can track the altitude command well and reduce

the rise time by at least 80% of a pure PID controller. Furthermore, the result shows that the

MRAC with RBFs has a better performance than the MRAC with a linear model as it has a 45%

smaller mean square error and a 15% shorter rise time.
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Chapter 3

System Identification of Wind Effects on
Multirotor UAV Dynamics

Multirotor airplanes are widely used in many outdoor applications, e.g., agriculture, transporta-

tion, and public safety, where winds might be strong and prevalent. However, the effects of

wind on multirotor aircraft are still not fully understood yet. The objective of this chapter is to

investigate and model wind effects on a real hovering octocopter. The wind is directly measured

and considered as one of the inputs to the bare-airframe model. Then a series of models, each

corresponding to a different wind condition, are identified from real flight data through a system

identification approach. The time-domain validation results show that an average of 15% error

reduction can be achieved by considering wind effects, captured by a wind correction term.

The identified models will play an important role in the future development of model-based

controllers for outdoor multirotor aircraft.

3.1 Introduction
Multirotor UAVs are becoming increasingly popular over the past few years due to their high

maneuverability and vertical takeoff and landing capability. They have been widely used in

many outdoor applications, such as aerial photography, infrastructure inspection, agriculture

monitoring, transportation, public safety, and delivery services [9, 6]. When flying in outdoor

environments, such multirotor airplanes may be subject to the influences of various environmen-

tal disturbances, particularly winds. A strong wind may cause dramatic changes in the forces
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and moments acting on a multirotor UAV, which, if not taken care of properly, can significantly

degrade the overall UAV flight performance. Therefore, the effects of wind on multirotor UAVs

need to be formally investigated and modeled, which is the objective of this work.

In this work, a system identification approach is used to investigate and model the wind

effects on an octocopter platform based on data collected from real flight experiments. Wind

speeds and orientations are directly measured from a high-precision wind sensor and treated as

an additional input entering the bare-airframe model. A series of linearized state-space models,

each corresponding to a different wind condition, are identified in the frequency domain with

Comprehensive Identification from Frequency Response (CIFER®) software. In addition, the

eigenvalues and modes of the identified models are calculated and compared to evaluate the

wind effects on aircraft dynamics. Finally, the identified models are validated with real flight

doublet tests. The major contributions of this work are as follows: 1) this work is the first

instance where the system identification approach has been used to model the wind effects on

multirotor airplanes. The wind is directly measured and considered as one of the inputs to the

model and 2) similarly, it is believed that this work is also the first instance where the effects

of wind on multirotor airplanes, particularly with respect to different wind speeds, have been

studied and validated from outdoor experiments with real wind data. Analysis and discussion

on how the wind speeds affect the damping ratio and the natural frequency of the pitch mode of

the bare-airframe model are provided. Such kind of insights will play an important role in the

future development of model-based controllers for outdoor multirotor aircraft.

3.2 Related Work
Existing approaches to analyze and model aerodynamic effects, including wind effects, on mul-

tirotor aircraft can be roughly classified into four categories. The first category is through

principle-based methods. The blade element theory and the momentum theory are widely

used to derive the forces and the moments generated at the rotor plane of a multirotor airplane

[14, 15, 16]. The blade flapping effect, which is significant in helicopters, has also be stud-

ied and adapted for multirotor aircraft [40, 99, 41]. These first-principle approaches all make

assumptions that are mostly derived from single-rotor aircraft. Moreover, these approaches
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regularly neglect the inferences between different rotors, as well as between the rotors and the

vehicle airframe. Flight experiments are required to validate such assumptions and subsequently

the derived models. Recent work in [100] presents a way to model the downwash effect during

proximity flight of two quadrotors by using the velocity field model and the result is validated

in flight experiments.

Computational fluid dynamics (CFD) simulations is another option to study this complex

aerodynamic effect. High-fidelity CFD simulations have been carried out to investigate aerody-

namic interactions on a small quadrotor in [17]. However, such simulations are computationally

expensive and cannot directly produce an analytic model, necessary for the purpose of either

dynamic characteristics analysis or controller design.

The third option is by performing wind tunnel experiments. NASA Ames has conducted

several wind tunnel experiments to determine the forces and the moments of a range of com-

mercial multirotor airplanes under different wind speeds and attitudes [18]. However, the cost

of such wind tunnel experiments is very high. Furthermore, at least with the wind tunnel used

in [18], only static forces and moments can be measured at fixed conditions. Dynamic charac-

teristics still remain indeterminable from such wind tunnel experiments and free flight tests are

required to obtain the actual dynamic aircraft model.

Lastly, many researchers are using the system identification approach to solve the prob-

lem. System identification has been used successfully in the modeling of full-scale fixed-wing

and rotary-wing airplanes [19]. The to-be-identified airplane needs to execute designated ma-

neuvers to enable effective excitation on its dynamics. Then the airplane’s model parame-

ters can be estimated by analyzing the gathered flight data in either a time domain or a fre-

quency domain [20, 21, 22, 23]. This approach has also been applied to the modeling of small

UAVs [24, 25, 26], which usually have unique configurations and the aerodynamic interactions

between their various components can be very complicated. When evaluating the turbulence

effects on fixed-wing airplanes, the Dryden spectral model, which assumes a “frozen-field”, is

normally used [38]. However, the Dryden model is not suitable for a low-speed rotorcraft as

the mean wind speed becomes dominant [39]. The authors in [42] proposed a method called

control equivalent turbulence inputs (CETI) to model the turbulence on a low-speed helicopter
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Figure 3.1: The octocopter platform used for the flight experiment.

and treated the turbulence as an equivalent control input. This approach has been proven to

capture the effects caused by the turbulence on a UH-60 helicopter in [43] and a 3DR Iris+

quadrotor in [44]. Nevertheless, the wind speeds in these cases were not measured directly but

inferred. More importantly, they assumed the mean wind is constant temporally and therefore

didn’t consider the effects of wind changes on the rotorcraft dynamics.

3.3 Flight Test Data Collection
This chapter introduces the UAV platform as well as the wind sensor used in flight experiments.

A working hypothesis regarding the wind distribution is proposed which provides the necessary

rationale for the experiment design. It also describes the flight experiment design and how the

data on both the UAV and the wind are collected.

3.3.1 Hardware Description

A photo of the UAV platform is provided in Fig. 3.1. It is a retrofitted octocopter, of which

the main body is built from a DJI Spreading Wings S1000+. The Pixhawk Cube is selected
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as the flight controller due to its fully programmable capability. A FrySky X8R receiver and a

Taranis X9D Plus transmitter are used as the RC pair. A Here+ RTK GPS is used to provide

precise position and velocity estimation of the UAV and a telemetry radio is installed to monitor

the real-time flight status. Each propeller of the octocopter has a diameter of 38.1 cm and a

maximum thrust of 2.8 kg. The octocopter has a motor-to-motor distance of 104.5 cm and a

takeoff weight of 7.0 kg. A 16,000 mAh 6S lithium polymer battery is used, which can provide

a flight duration of around 20 minutes.

Model 91000 ResponseONE ultrasonic anemometer is selected as the wind sensor to mea-

sure horizontal winds in the field. The anemometer has an accuracy of ±0.3 m/s in speed

measurement and ±2 degrees in direction measurement. The sensor is mounted on top of a

telescopic antenna mast and has a distance of 4.6 m above the ground. Since winds in the ver-

tical direction are less significant than those in the horizontal direction, the vertical winds are

ignored in the flight experiments. Fig. 3.2 shows the setup of the outdoor flight experiments.

3.3.2 Wind Distribution Hypothesis

The winds ideally should be measured at the exact location of the UAV to precisely study the

its effect on the UAV dynamic. However, this can not be achieved easily in practice due to the

limited payload and space on the aircraft. Therefore, one hypothesis is made as follows:

Hypothesis 3 (Working hypothesis) After considering transport delay, the wind at the loca-

tion of the UAV is roughly the same as the wind at the location of the wind sensor, as long as

the UAV and the wind sensor are at the same height and not far away from each other.

Such a hypothesis is in accordance with Taylor’s hypothesis, which states that an eddy,

satisfying σM < 0.5M with M being the wind speed and σM being the standard deviation of

the wind speed, has negligible change as it advects past a sensor [101]. In order to test the

Hypothesis 3, two identical wind sensors were used to compare their wind measurements under

two different scenarios, as shown in Fig. 3.3: a) the sensors are positioned along the wind

direction and b) the sensors are positioned perpendicular to the wind direction. They are placed

at the same height (4.6 m) above the ground. The wind speed and direction measurements from

the two sensors are plotted in Fig. 3.4. A transport delay has been considered in scenario a) to
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Figure 3.2: Outdoor flight experiment setup.

Table 3.1: The RMSEs of two sensor readings under different scenarios.

Along wind direction Perpendicular to wind direction

RMSE of wind speed 0.1558 m/s 0.2223 m/s

RMSE of wind direction 1.7190 deg 2.2723 deg

account for the wind traveling time. The root-mean-square errors (RMSEs) between the two

wind sensor readings are calculated for both scenarios and the results are provided in Table 3.1.

It can be observed that the RMSEs are very small compared to the mean wind speed and the

mean direction. It also reflects the fact that winds change more rapidly temporally than spatially

[101]. Thus the Hypothesis 3 is tested. Besides, it’s observed that the difference along the wind

direction is smaller than the one perpendicular to the wind direction.

Based on the hypothesis and the observations, the UAV is commended to hover at a position

a distance of 4.6 m away from a single wind sensor and along the wind direction during the

flight experiments. The measured wind speed and direction by the wind sensor will be regarded
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Figure 3.3: Schematic illustration of the two wind sensor relative positions of which the sensors
are positioned a) along the wind direction and b) perpendicular to the wind direction.

as wind data at the location of the UAV after taking a transport delay into consideration. The

wind sensor is placed upstream of the UAV so that the downwash from UAV propellers does

not affect the wind measurements. Moreover, the UAV is commanded to fly at the same height

as the wind sensor therefore the vertical distribution of the wind can be ignored.

3.3.3 Flight Test Methodology

The goal of the modeling effort is to identify the bare-airframe model under the effects of

wind. The bare-airframe model is a model consisting of the mixer, actuators, and the vehicle,

as shown in Fig. 3.5. The mixer generates the command for each motor based on the controller

output. The commands are then executed by actuators which include ESCs, motors, and rotors,

resulting in different forces and torques and eventually changing the state of the vehicle. The

bare airframe is known to be unstable, therefore a control system must be enabled during the

flight. The pilot command δpilot and the computer-generated command δauto are injected into

the control system, resulting in four inputs to the mixer: 1) δlat , the roll control, 2) δlon, the pitch

control, 3) δyaw, the yaw control, and 4) δthr, the throttle control. The controller script here is
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(a)

(b)

Figure 3.4: Example readings of the two wind sensors a) along the wind direction and b) per-
pendicular to the wind direction.

customized to provide position feedback keeping the UAV roughly a 4.6 m clearance above the

ground and to ensure that the ground effect does not contribute to the identified model [102].

The measured wind as described in Section 3.3.2 is treated as an additional control input, 5)

δwind , into the bare-airframe model.
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Figure 3.5: Schematic diagram of the bare-airframe model identification framework.

The onboard inertial measurement unit (IMU) measures the translational accelerations and

the angular rates of the UAV, while the RTK GPS and the magnetic compass measure the global

position and the heading angle, respectively. All these measurements pass through an extended

Kalman filter, resulting in the following set of estimated states: 1) the roll, pitch, yaw Euler

angles {φ , θ , ψ}, 2) the roll, pitch, yaw angular velocities {p, q, r} in the body frame, 3) the

linear velocities {vn, ve, vd} in the inertial frame where the subscripts n, e, d represent for the

north, east, downward directions, and 4) the linear accelerations {ax, ay, az} in the body frame

where the subscripts x, y, z align with the vehicle’s body axes. All these states, together with the

mixer inputs {δlat , δlon, δyaw, δthr} which are the magnitudes of latitude, longitude, yaw, and

throttle commands normalized to 0~100%, were logged at 100 Hz. The horizontal wind speeds

(vw
n , vw

e ) in the north and east directions were recorded at 20 Hz by the wind sensor, where the

superscript w represents the variable related to wind. They were re-sampled to 100 Hz through

the fourth-order spline interpolation in order to be consistent with the estimated states sampling

rate. Moreover, the airspeed in the body frame can be calculated with

Vb = Rb
i (Vi−Vi, wind) (3.1)

Where Vb = [u, v, w]T is the body translational velocity vector and {u, v, w} are three velocities

aligning with the vehicle’s body axes. Vi = [vn, ve, vd]
T and Vi, wind = [vw

n , vw
e , 0]T are the

inertial velocity and the inertial wind speed vectors, respectively. Rb
i is the rotation matrix from

the inertial frame to the body frame.

Two different types of computer-generated commands (signals) were applied in the flight

experiments. The first one is a frequency sweep signal for the frequency-domain identification

purpose. A frequency sweep signal spans a frequency range of 0.1-10 Hz with a fade-in added
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(a)

(b)

Figure 3.6: Example longitudinal axis flight data with (a) frequency sweep and (b) doublet
signals under the calm wind condition.

in the low-frequency portion to avoid sharp inputs to the motors [19]. The second one is a

doublet signal for the time-domain model validation purpose. A doublet signal is a two-sided

pulse with the same magnitude in both the positive and the negative directions. Two sets of

55



example flight data in the longitudinal axis, one with frequency sweep and the other one with

doublet signals injected, are shown in Fig. 3.6.

Each data collection session is defined as a trial and each trial corresponds to one particular

signal (frequency-sweep or doublet), one particular axis (longitudinal, lateral, directional, or

throttle), and one particular wind condition (calm, light, and strong). During the data collec-

tion, each trial started and ended at roughly the same trim condition and lasted 34 seconds for

the frequency-sweep signals and 5 seconds for the doublet signals. The duration is carefully

selected to capture enough spectral contents and ensure the vehicle’s attitude controls do not

degrade as the battery weakens [103]). Before each trial, the magnitudes of the to-be-injected

signal, whether frequency-sweep or doublet, was determined to sufficiently and effectively ex-

cite the multirotor UAV dynamics, e.g., ensuring a good signal-to-noise ratio.

5 trials have been conducted for each signal-axis-wind combination. Therefore, the total

trial number is 5× 2× 4× 3 = 120. To capture the effects of wind on UAV dynamics in a

wider range, the experiments were conducted in three days with different wind conditions: a

calm wind day (with an average wind speed of 0.9 m/s), a light wind day (with an average

wind speed of 2.7 m/s) and a strong wind day (with an average wind speed of 5.4 m/s) and

a total of 5× 2× 4 = 40 trials on each day. Use the Beaufort Scale [104] to categorize the

wind conditions, the three wind speeds fall into Force 0, Force 2, and Force 4, respectively.

It is noted that the proposed method can be extended to different wind conditions. The three

wind conditions surveyed here are the common wind speeds in the testing field and higher wind

speeds are possible but could rarely be seen during the data collection season, so they were not

included in the experiments.

3.4 System Identification Methodology
The general procedure prescribed in the book [19] are followed to perform the comprehensive

identification of the UAV dynamics and wind effects based on the data collected from the flight

experiments. It involves collecting frequency sweep data, identifying a state model with con-

ditioned responses in the frequency domain, and verifying the model in the time domain. This

system identification methodology is used to identify three state-space models under three wind
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conditions as described in the previous chapter.

3.4.1 Model Structure

The six-DOF flight-dynamics equations of motion [105] are used to derive the state-space model

of the bare airframe. In addition, a first-order actuator model is explicitly considered to capture

the high-frequency roll-off in angular rate frequency responses:

δ ′(s)
δ (s)

=
1

Tas+1
(3.2)

where δ is the original control signal, δ ′ is the lagged control signal after considering the first-

order dynamics, and Ta is the time constant. To reflect such effect of actuator dynamics, three

additional states δ ′lat , δ ′lon, and δ ′thr are added to the original rigid body state vector, resulting

the final state vector of the state-space model being

x = [u, v, w, p, q, r, φ , θ , ψ, δ
′
lat , δ

′
lon, δ

′
thr]

T (3.3)

The input (control) vector to the state-space model includes two parts. The first part is the

control signals u = [δlat , δlon, δyaw, δthr]
T from the flight control system, and the second part

is the wind, modeled as an additional input, uw = [δ w
lat , δ w

lon, δ w
thr]

T . Moreover, the time delay

in each control axis is explicitly included in the state-space model to account for unmodeled

high-frequency dynamics. The final state-space model has the formula of:

Mẋ = Fx+Guu(t− τu)+Gwuw(t− τw)

y = H0x+H1ẋ
(3.4)

where M is an identity matrix and F is the state derivative matrix as follows:

F =



Xu Xv Xw Xp Xq−W0 Xr+V0 0 −gcosθ0 0 Xlat Xlon Xthr
Yu Yv Yw Yp+W0 Yq Yr−U0 gcosφ0 cosθ0 −gsinφ0 sinθ0 0 Ylat Ylon Ythr
Zu Zv Zw Zp−V0 Zq+U0 Zr −gsinφ0 cosθ0 −gcosφ0 sinθ0 0 Zlat Zlon Zthr
Lu Lv Lw Lp Lq Lr 0 0 0 Llat Llon Lthr
Mu Mv Mw Mp Mq Mr 0 0 0 Mlat Mlon Mthr
Nu Nv Nw Np Nq Nr 0 0 0 Nlat Nlon Nthr
0 0 0 1 sinφ0 tanθ0 cosφ0 tanθ0 0 0 0 0 0 0
0 0 0 0 cosφ0 −sinφ0 0 0 0 0 0 0
0 0 0 0 sinφ0 secθ0 cosφ0 secθ0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1/Ta 0 0
0 0 0 0 0 0 0 0 0 0 −1/Ta 0
0 0 0 0 0 0 0 0 0 0 0 −1/Ta


(3.5)
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with [U0, V0, W0, φ0, θ0]
T being the trim conditions, Gu and Gw are the control derivative

matrices with respect to the controller and the wind, respectively, as follows:

Gu =



0 0 Xyaw 0
0 0 Yyaw 0
0 0 Zyaw 0
0 0 Lyaw 0
0 0 Myaw 0
0 0 Nyaw 0
0 0 0 0
0 0 0 0
0 0 0 0

1/Ta 0 0 0
0 1/Ta 0 0
0 0 0 1/Ta


, Gw =



Xw,lat Xw,lon Xw,thr
Yw,lat Yw,lon Yw,thr
Zw,lat Zw,lon Zw,thr
Lw,lat Lw,lon Lw,thr
Mw,lat Mw,lon Mw,thr
Nw,lat Nw,lon Nw,thr

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


(3.6)

where τu = [τlat , τlon, τyaw, τthr]
T and τw = [τw

lat , τw
lon, τw

thr]
T are the time delays corresponding

to the control input and the wind, respectively. y = [u, v, w, p, q, r, ax, ay, az]
T is the observed

output, and H0 and H1 are the measurement matrices, allowing the measurement vector y to be

expressed in terms of the state vector x and its derivative ẋ. The H0 and H1 can be derived using

the following two observations: 1) the body translational and angular velocities can be directly

found in the state vector, and 2) the accelerometer measurements are of the form:

ax = u̇+W0q−V0r+(gcosθ0)θ

ay = v̇+U0r−W0 p− (gcosθ0)φ

az = ẇ+V0 p−U0q+(gsinθ0)θ

(3.7)

A detailed derivation is provided in Appendix B. The state-space model structure in Eqn. (3.4)

can be further reduced by analyzing the coherence of each input and output pair from the flight

experiment data. A practical reduction procedure is implemented by following the guideline

specified in [19],

γ̂
2
xy ≥ 0.5

log(ωmax/ωmin)≥ 0.3
(3.8)

where γ̂2
xy is the coherence value between an input x (an element of u) and an output y (an

element of y), and ωmin and ωmax are the minimum and maximum frequencies of the fitting

range, respectively. Only those responses that meet both requirements will be used in the model

parameter identification step.
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3.4.2 Model Parameter Identification

The parameters of the determined model in Eqn. (3.4) are estimated by minimizing the follow-

ing cost function:

J =
nT F

∑
l=1

{
20
nω

ωnω

∑
ω1

Wγ

[
Wg(|T̂c|− |T |)2 +Wp(∠T̂c−∠T )2]}

l

(3.9)

where nT F is the number of different frequency-response pairs, nω is the number of frequency

points in each frequency range (ω1, ωnω
), Wγ , Wg, and Wp are the weighting functions, and

T̂c and T are the frequency responses obtained from the flight data and the identification solu-

tion, respectively. The cost function is derived from minimizing the summed cost for the nT F

transfer functions with high coherency values and for each transfer function, the weighted sum

of the square errors of both magnitude and phase are minimized at different frequency points.

The optimization problem in Eqn. (3.9) is solved by the secant method [106] which has been

proven robust for the model structures involving large numbers of identification parameters and

frequency-response pairs [19]. A CR ≤ 20% (Cramer-Rao Bound) and I ≤ 10% (Insensitiv-

ity) are considered acceptable for each identified parameter. Finally, an overall average cost

function that achieves Jave ≤ 150 is considered as achieving an acceptable level of accuracy.

It should be pointed out that, different from the computer-generated command δauto that

is pre-determined to sufficiently excite the UAV dynamics, the wind in natural outdoor envi-

ronments is uncontrollable and cannot be designed. In order to identify the wind effect (Gw)

separately from the flight control input (Gu), a working hypothesis is made here that:

Hypothesis 4 (Working hypothesis) The parameters of F and Gu matrices are decoupled from

the parameters of Gw matrix.

With this hypothesis, the effect of wind can be identified in two steps: 1) identifying the

parameters in F and Gu matrices without considering the wind term Gu, and 2) the identifi-

cation of parameters in Gw matrix, by considering the residual after removing the effects due

to the F and Gu matrices. Later in this chapter, it will turn out that this hypothesis offers an

approximation that leads to a model not only captures the wind effects mathematically but also

fits the flight data reasonably well.
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Table 3.2: Trim states under different wind conditions.

Calm Wind Light Wind Strong Wind

U0 0 m/s 2.24 m/s 4.12 m/s

W0 0 m/s -0.08 m/s -0.22 m/s

θ0 0 deg -2.35 deg -4.36 deg

3.5 System Identification Results
Three bare-airframe models are identified at different wind conditions (i.e., calm, light, and

strong) as mentioned in Section 3.3.3. The trim states are obtained by forcing the aircraft to

hover in the wind for 30 seconds without any pilot input. These trim states are averaged and

presented in Table 3.2. Since in all trials, the pilot commanded the UAV to fly in a direction

roughly facing the wind, meaning that the wind is in the longitudinal axis of the vehicle, there-

fore both φ0 and V0 become zeros. Notice that a higher wind speed in the longitudinal direction

increases both the trim pitch angle θ0 and the trim forward speed U0. Notice that the calm wind

speed is relatively small compared to the other two, so all three trim values are assumed to be

zeros under the calm wind condition. These trim values are used in Eqn. (3.5).

3.5.1 Calm Wind Results

The described system identification methods are performed on the data collected on the calm

wind day first. All off-axis responses are found to have low coherence values and thus not

used in the identification process. This also indicates that the UAV dynamic is well-decoupled.

The on-axis angular rate and accelerometer frequency responses along the longitudinal axis

are provided in Fig. 3.7. The high coherence value indicates a good linearity of the model.

Moreover, a first-order actuator model in Eqn. (3.2) can successfully capture the roll-off at the

high-frequency range for the angular rate response. The lateral response has a similar perfor-

mance. The finalized lateral and longitudinal models are

v̇ = Yvv+gθ +Ylatδ
′
lat(t− τlat)

ṗ = Lvv+Llatδ
′
lat(t− τlat)

(3.10)
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Figure 3.7: Transfer function responses along the longitudinal axis under the calm wind condi-
tion.

Figure 3.8: Transfer function responses along the yaw and heave axes under the calm wind
condition.

and
u̇ = Xuu−gθ +Xlonδ

′
lon(t− τlon)

q̇ = Muu+Mlonδ
′
lon(t− τlon)

(3.11)
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The frequency responses of the yaw and heave axes are provided in Fig. 3.8, which show

that a first-order model is again adequate to capture the dynamics along each of the two axes.

However, the yaw damping Nr and the heave damping Zw both have high CR% values and thus

are dropped in the finalized models. This indicates that the heave and the yaw rate dampings

are not identifiable from the sweep signals currently injected into the bare airframe. Other

excitations are needed to capture the value of these two terms. The equivalent time delay τthr is

found to be unrelated and thus taken as zero, which means that the first-order actuator model is

sufficient to capture the delay in the vertical axis. The finalized yaw and heave models are

ṙ = Nyaw δyaw(t− τyaw) (3.12)

and

ẇ = Zthr δ
′
thr(t) (3.13)

Eqn. (3.10),(3.11),(3.12),(3.13) together complete the bare-airframe model under the calm

wind condition. The identified parameters of these equations are provided in Table 3.3. From

the result, the CR%s and I%s for all parameters are all within the guideline prescribed in [19].

Table 3.4 shows the cost function values for all frequency responses used in the identification.

The average cost calculated according to Eqn. (3.9) is equal to 50.3972 which shows a high

accuracy of the identified model for the calm wind condition.

3.5.2 Light and Strong Wind Results

The longitudinal frequency responses under light and strong wind conditions are provided in

Fig. 3.9 and Fig. 3.10, respectively. It can be seen that the coherence in the low-frequency

range is affected by the wind. Based on the hypothesis made in Section. 3.4.2, the parameters

in F and Gu matrices are first determined by following the same procedure in the calm wind

condition. The identified parameter values are provided in Table 3.3. It is observed that such a

model, i.e., a model with only the F and Gu matrices, has a higher cost value than the one under

the calm wind condition, indicating that the wind affects the longitudinal dynamic response.

When the wind speed becomes higher, the yaw angular rate damping Nr becomes significant,

therefore the Nr is added back to the strong wind model. Moreover, the wind is found to have a
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Table 3.3: Identified state and control derivative values.

Parameter
Calm Wind Light Wind Strong Wind

Value CR% I% Value CR% I% Value CR% I%

Xu -0.3172 6.258 1.919 -0.2423 6.056 1.571 -0.5008 15.18 4.727

Mu 0.7690 5.633 1.544 0.7099 5.414 1.324 1.267 17.29 3.444

Xlon -0.0985 5.056 1.959 -0.0976 4.879 1.831 -0.0870 4.729 2.144

Mlon 0.5251 3.456 1.070 0.5413 3.141 0.9887 0.4523 3.011 1.308

Yv -0.2787 5.777 1.637 -0.3905 7.201 2.028 -0.2519 12.04 4.192

Lv -0.7406 5.219 1.339 -0.7984 6.293 1.728 -0.7344 8.950 2.322

Ylat 0.1185 5.196 1.873 0.1193 4.772 1.961 0.1194 5.081 2.300

Llat 0.6226 3.385 0.9863 0.6472 2.984 1.096 0.6597 3.181 1.338

Nr - - - - - - -0.2543 19.89 9.634

Nyaw 0.0744 4.795 2.175 0.0719 3.829 1.894 0.0631 4.213 2.107

Zthr -0.8712 3.824 1.881 -0.8777 3.764 1.882 -0.8531 3.796 1.898

Ta 0.0458 5.526 1.800 0.0458 - - 0.0458 - -

τlat 0.0194 8.514 3.805 0.0160 7.081 3.533 0.0216 6.608 3.201

τlon 0.0201 9.002 4.061 0.0220 10.30 5.140 0.0193 7.607 3.798

τyaw 0.0133 23.94 8.764 - - - - - -

τthr - - - 0.0205 15.79 9.90 0.0168 21.80 8.90

limited effect on the yaw and heave dynamics compared to ones in the latitude and longitudinal

axes.

The residual is defined as the difference between the actual UAV response and the predicted

response by only considering the F and Gu terms:

Residual = y−H0x−H1(Fx+Guu(t− τu)) (3.14)

which can be accounted by the Gwuw term in Eqn. (3.4). A one-step prediction is performed

at each time step by using the partial model identified in Table. 3.3 (i.e., the model with the F

and Gu matrices but not the Gw matrix) and the state vector recorded from flight experiments.
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Table 3.4: Transfer function cost.

Response
Cost

Calm Wind Light Wind Strong Wind

v/δlat 80.94107 51.15984 89.13262

p/δlat 53.81091 29.39847 61.59804

ay/δlat 54.45253 41.03815 109.67281

u/δlon 80.77869 71.62726 78.71678

w/δlon - 61.98955 74.27301

q/δlon 41.51912 66.48181 51.47652

ax/δlon 34.19383 43.78340 74.21771

r/δyaw 27.11832 74.95789 65.65873

az/δthr 30.32688 13.72616 41.08481

Average 50.3927 50.4625 71.7590

Figure 3.9: Transfer function responses in the longitudinal axis under the light wind condition.

Since the body translational velocities and the angular rates are directly measured, only the ac-

celerometer measurements are left during the residual calculations. Sample residuals of ax and

az under light and strong wind conditions are plotted in Fig. 3.11 and 3.12, respectively. These
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Figure 3.10: Transfer function responses in the longitudinal axis under the strong wind condi-
tion.

Figure 3.11: Residuals of ax and az under the light wind condition.

residuals are then used to identify the parameters in the Gw matrix. Due to the symmetrical

configuration of the UAV platform (which can be verified from the calm wind results), the wind

is assumed to have the same effect along the longitudinal and the lateral axes. Therefore, there

are four parameters need to be identified, which are Xw,lon, Zw,lon, τw
lon, and τw

thr. The identified

values are provided in Table 3.5.
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Figure 3.12: Residuals of ax and az under the strong wind condition.

Table 3.5: Identified parameters in Gw matrix.

Parameter
Light Wind Strong Wind

Value CR% I% Value CR% I%

Xw,lon -0.1486 4.222 2.111 -0.3560 10.28 5.667

Zw,lon 0.8451 4.736 2.368 1.323 18.98 9.302

τw
lon 0.0178 3.262 1.508 0.0132 25.45 11.990

τw
thr 0.0386 7.677 1.980 0.0203 18.97 13.234

3.5.3 Time Domain Verification

The doublet response (the data collected for such response is not used in the system identifica-

tion process but only for the verification purpose) for the model identified under the calm wind

condition is provided in Fig. 3.13. It shows excellent agreement between the model output and

the flight data.

The doublet responses for the two models identified under the light wind condition, one

without the wind correction term (i.e., Gwuw) and the other one with the wind correction term

are shown in Fig. 3.14. The similar doublet responses for the two models identified under the

strong wind condition are shown in Fig.3.15. Furthermore, the RMSE values under different
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Figure 3.13: Time-domain validation under the calm wind condition.

Figure 3.14: Time-domain validation under the light wind condition with and without the wind
correction.

wind conditions using different models are given in Table 3.6. The validation result shows that

when measuring and considering the wind correction term, Gwuw into the state-space model,

the RMSE of ax can be reduced by 13% under the light wind and 16% under the strong wind

condition. Meanwhile, the RMSE of az is reduced by 15% under the light wind and 7% under

the strong wind. All these results show that the predictive power of the identified model is

significantly improved by considering the wind effects explicitly.
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Figure 3.15: Time-domain validation under the strong wind condition with and without the
wind correction.

Table 3.6: RMSEs under different wind conditions and with different models.

RMSE(ax) RMSE(az)

calm wind, no wind correction 0.0624 0.1454

light wind, no wind correction 0.2757 0.4270

light wind, with wind correction 0.2399 0.3629

strong wind, no wind correction 0.4129 0.6248

strong wind, with wind correction 0.3480 0.5781
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Table 3.7: Eigenvalues and modes under different wind conditions.

λ# Calm Wind Light Wind Strong Wind Mode Description

1-2
1.3498 ± 2.4937i

(ζ =-0.4760, ω=2.8355)

1.3640 ± 2.5037i

(ζ =-0.4784, ω=2.8511)

1.3769 ± 2.5698i

(ζ =-0.4723, ω=2.9154)
unstable roll mode

3 -2.9783 -2.9798 -3.0134 damped roll mode

4-5
1.3532 ± 2.5202i

(ζ =-0.4730, ω= 2.8605)

1.5091 ± 2.8193i

(ζ =-0.4719, ω=3.1978)

1.6551 ± 2.9815i

(ζ =-0.4854, ω=3.4101)
unstable pitch mode

6 -3.0235 -3.4688 -3.9398 damped pitch mode

7 - - -0.2543 damped yaw mode
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Figure 3.16: Plots of eigenvalues along the longitudinal and lateral axes under different wind
conditions.

3.6 Eigenvalue Analysis
The eigenvalues of the bare-airframe models identified under different wind conditions are cal-

culated. These eigenvalues, together with their corresponding dynamics modes, are shown in

Table. 3.7. There are two unstable poles in both the lateral and the longitudinal dynamics, indi-

cating that the bare-airframe multirotor airplane itself is inherently unstable, therefore demon-

strating the necessity of a control system in the loop. Furthermore, it can be observed that the

eigenvalues in the pitch and roll modes are very close to each other, which indicates the high

symmetry of the UAV platform. The results regarding eigenvalues and dynamics modes show

that when a multirotor UAV is hovering under a windy condition, either with a light or strong

wind, its dynamics characteristics are significantly affected by the wind. The wind effects can

be summarized as follows:

1. Both the damping ratio and the natural frequency of the longitudinal dynamics increase

as the wind speed increases. For instance, the natural frequency is increased by 12% and

20% under light and strong wind conditions, respectively, as compared to that under the

calm wind condition.
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2. There exists a damped real pole in both the longitudinal and the lateral dynamics. Such a

pole is moved further left as wind speed increases.

3. The time-to-double amplitude T2 decreases as the wind speed increases. For this aircraft,

T2 changes from 0.51 second (under the calm wind) to 0.46 second (under the light wind)

and 0.42 second (under the strong wind). This means that the bare airframe becomes

more unstable as the wind speed increases and a more robust control system is required

to stabilize the vehicle.

4. The eigenvalues in the roll mode remain unchanged with respect to the wind speed as

long as the wind direction is aligned with the vehicle’s longitudinal axis, indicating that

the wind has a less significant effect on the dynamics in the lateral axis.

5. The wind has a limited effect on the yaw response of a multirotor UAV under hovering

conditions. A damped yaw mode is only observed when the UAV is under strong wind

conditions.

All these findings are helpful in the design of a control system for outdoor multirotor UAVs.

3.7 Discussion
The study in this chapter provides a natural starting point for the systematic understanding of

wind effects on multirotor UAVs. The experimental results show that some aerodynamic forces

and moments are directly affected by the wind and these effects can be partially accounted for

by considering the wind as one of the control inputs entering the bare-airframe model. Such

additional aerodynamic forces can arise from: 1) the drag force acting on the rotor plane, 2) the

thrust changes generated by the rotors, 3) the interactions between the rotors, and 4) the interac-

tions between the rotors and the body. In order to obtain a more comprehensive understanding

of the wind effects on multirotor dynamics, a multi-pronged methodology should be adopted.

First, further analysis can be conducted by combining first-principle models and the system

identification results. For example, by explicitly calculating the blade flapping and the induced

drag from existing literature [107] and comparing such first-principle-based results to flight ex-

periment data, the discrepancies can be explored to improve existing models. The discovery of
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such discrepancies can also improve the understanding of the complex aerodynamic effects of

wind on multirotor aircraft. Second, since the wind in natural environments is uncontrollable,

forced oscillation wind tunnel experiments [108] can be conducted to allow systematically in-

jecting winds with proper spectral content to sufficiently excite multirotor UAV dynamics. For

instance, a frequency sweep wind can be generated by such type of wind tunnels to excite a

multirotor UAV and then a similar approach as presented in this chapter can be used to identify

the wind effects on multirotor UAV dynamics.

3.8 Summary
A system identification approach was performed in this chapter to identify the wind effect on

multirotor UAV dynamics near a hovering condition. In the flight experiment, the wind was

directly measured by a wind sensor and treated as one of the control inputs into the linearized

state-space model. The validation result in the time domain shows that, by explicitly considering

the wind effect, such a treatment can reduce the prediction error on the acceleration and angular

velocities by 15% on average. It is believed that the identified model can offer us unique insights

into the effects of wind on multirotor dynamics and the design and development of model-based

flight control systems in the future.
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Chapter 4

Vision-based Control of UAV in Simulated
Riverine Environments Using Imitation
Learning

There have been many researchers studying how to enable UAVs to navigate in complex and

natural environments autonomously. In this chapter, an imitation learning framework is devel-

oped and used to train navigation policies for the UAV flying inside complex and GPS-denied

riverine environments. The UAV relies on a forward-pointing camera to perform reactive ma-

neuvers and navigate itself in 2D space by adapting the heading. The performances among a

linear regression-based controller, an end-to-end neural network controller, and a variational

autoencoder (VAE)-based controller trained with data aggregation method are compared in the

simulation environments. The results show that the VAE-based controller outperforms the other

two controllers in both training and testing environments and is able to navigate the UAV with

a longer traveling distance and a lower intervention rate from the pilots.

4.1 Introduction
Multirotor unmanned aerial vehicles have achieved considerable success in the past few years

due to their high maneuverability and vertical take-off and landing capabilities. Modern UAVs

have been deployed in a wide range of applications such as remote inspection, precision agricul-

ture, search and rescue, aerial photography, site surveying, and package delivery [5, 6, 7, 8, 9].
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Figure 4.1: A drone flying in GPS-denied riverine environments requires a navigation policy.

Despite its success, autonomous navigation of UAVs with obstacle avoidance capability in out-

door environments remains a challenge especially when the environment becomes complex

and unknown (e.g., GPS-denied riverine environments involve heavy foliage/forest canopy, see

Fig. 4.1). In this chapter, a navigation policy is developed which allows the UAV to fly in

riverine environments solely relying on visual inputs and is trained with the machine learn-

ing algorithm. The drone is able to navigate itself autonomously while avoiding collision with

nearby obstacles in the simulation environments.

Traditional approaches to navigating a robot in complex and GPS-denied environments usu-

ally integrate the visual-inertial odometry (VIO) or simultaneous localization and mapping

(SLAM) techniques [109, 110] with trajectory planning. The procedure consists of localiz-

ing the agent with perception sensors (e.g., LiDAR, camera), building a map of the global or

local environment, and planning feasible trajectories within the map. The optimal trajectory is

then mapped to the control commands of the robot in order to reach the goal points as well as

avoid collisions. While these planning-based approaches have been widely adopted by many

scholars [111, 112], the algorithm itself can be very computationally intensive and does not

guarantee performance when the environment is non-static. The separation of perception and

control may also cause unexpected behaviors as pointed out in [69]. In this chapter, a reactive
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controller is designed in which the control commands are directly calculated from the visual

inputs. The proposed controller is able to provide feasible solutions to UAV navigation inside

complex riverine environments efficiently and effectively.

Learning-based approaches have achieved great success in solving sequential decision-

making problems, for example, in the field of autonomous driving [113] and playing computer

games [60]. Among them, reinforcement learning (RL) has gained much attention due to its

strong capability and compelling results [58, 114]. Although proven successful in many tasks,

the RL approach is known to be sample inefficient and requires a substantial amount of data

in order to achieve good results, which makes it unsuitable for many safety-critical systems in

the real world. On the other hand, imitation learning (IL) [64, 65], also called learning from

demonstrations (LfD), is another attractive approach for a robot to learn a safe control strategy

by mimicking an expert’s behavior based on the demonstrations. The IL approach overcomes

many of the limitations of reinforcement learning and thus is adopted to learn a navigation pol-

icy in this work. Human knowledge can be largely utilized and let the autonomous agent learn a

good behavior directly and more efficiently from human demonstrators instead of the expensive

trial-and-error methods used in reinforcement learning.

In this chapter, a learning pipeline is built and several vision-based policies are proposed

which allow the UAV to fly inside GPS-denied riverine environments. The controller computes

yaw rate commands directly from the visual inputs of a front-facing camera and navigates the

UAV in two-dimensional space with a fixed altitude. The UAV should learn good behavior

through the training data given by the human pilot and demonstrate its performance in novel

environments that the agent has never seen before. To overcome the issues of classical su-

pervised learning, an intervention-based data aggregation (DAgger) algorithm is adopted and

different control policies are trained that are able to command the UAV to perform reactive

maneuvers in the simulation environments. The performance of a VAE-based controller with

a linear regression-based controller and an end-to-end neural network controller trained from

15 human subjects are compared in the simulation. The performance of different controllers

is evaluated by deploying them in novel environments which the agent has never seen during

the training. The simulation results show that the VAE-based controller outperforms the linear
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regression-based controller and end-to-end neural network controller with a lower intervention

rate from the pilots and a longer distance traveled by itself. The VAE-based controller also

generalizes well to novel environments.

It’s noted that while this work focuses on the problem of UAV navigation in riverine envi-

ronments, the proposed method can be applied to other complex environments (see Chapter 5)

which require vision-based solutions and human demonstrations can be collected to benefit the

training and therefore allows the agent to learn good behaviors.

4.2 Related Work
There has been a wide variety of work done on navigating a UAV in challenging environments

while assuring collision avoidance in the literature. A motion capture system is generally used

indoors to get the accurate state of the UAV and then trajectory optimization-based methods

can be applied to achieve safe maneuvers in cluttered indoor environments [115, 116]. For

outdoor environments, the GPS and other exteroceptive sensors are commonly used to estimate

the position of the robot [117, 118]. However, in real-world scenarios when the UAV is flying

in heavy vegetation, foliage, and forest canopy, the GPS signals will be significantly degraded

or fully absent, and therefore advanced navigation policy is necessary.

Early researchers have attempted to navigate a rotorcraft inside riverine environments but

still required intermittent GPS signal [118, 119]. Recent techniques which have been evolved by

researchers to allow UAV navigating inside GPS-denied environments involve lidar-based and

vision-based approaches. Carrying a lidar on multirotor aircraft may heavily impact the flight

time due to a limited payload and power source [120], therefore making vision-based approach

a popular choice [111, 121, 122, 123, 124, 125]. Two main categories of vision-based solu-

tions include planning-based approaches [126, 127] and reactive approaches [124, 66]. For

planning-based approaches, visual-inertial odometry [109] or simultaneous localization and

mapping [110] are commonly used to localize the agent and build a map of the unknown envi-

ronment. Path planning is performed after retaining a map of the environment and the optimal

trajectory is selected to maneuver the robot [128, 129]. The drawback of this technique is that

the state estimation may introduce bias into the system, and an incorrect map or localization re-
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sult will significantly impact the planning performance and therefore leads to unsafe behaviors.

Besides, planning-based approaches require a lot of processing power not only for the 3D map-

ping, but also calculating the optimal trajectory from the candidates [130, 131]. Visual-teach-

and-repeat (VT&R) is another appealing method which allows the robot to operate in challeng-

ing environments relying on only visual inputs [132]. In the teaching pass, a human operator

or a high-level mission planner provides a demonstrated path, and the map and keyframes from

the visual odometry are recorded. In the repeating pass, the robot will localize and plan a path

to track the pose of keyframes accordingly. The VT&R has been tested successfully in indoor

environments [133] and outdoor long-range rover autonomy by using stereo camera [132] and

monocular vision [134], and can also deal with the seasonal changes of the environments [135].

However, the VT&R requires the robots to repeat a previously traversed route since it utilizes

the maps built in the teaching phase. This method is useful under the scenario that the opera-

tion environments remain the same, such as a UAV emergency return-to-launch during a GPS

failure [136]. However, the VT&R does not work in new environments in which no route has

been demonstrated before, therefore cannot provide a generalizable performance.

On the other hand, a reactive approach directly generates motion commands based on sen-

sor readings which can generally provide faster responses and require fewer computational

resources. Existing researches have shown that a reactive controller is able to navigate a UAV

in the forest [124, 66] and urban environments [69] successfully with visual inputs, and can

generalize well to the new scenes different from the training environments. Traditional meth-

ods calculating optical flow [111, 137] or stereo vision [123, 138] provide depth estimation

in unknown environments. However, these techniques request powerful computing resources

and add extra delay to the navigation tasks [124]. Since the success of deep neural network

(DNN) in ImageNet image classification competition [139], increasing efforts have been spent

on adopting DNN to learn low-dimensional control commands from high-dimensional image

inputs with deep learning algorithms. Even though the training of deep learning methods takes

a long time to converge due to its data-driven nature, the deep neural network structure allows

it to generate control action directly from raw image data, and therefore, the total execution

time is shorter than the classical perception, planning and control framework. The RL is one
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popular choice and a lot of work has been done in recent years. For example, Mnih et al. [60]

used deep Q-network to train an agent playing Atari games based just on pixel image inputs

and achieved super-human level performance. Levine et al. [140] used guided policy search

with deep convolutional neural networks to train a robotic visuomotor policy that can perform

a range of real-world manipulation tasks on unmodeled objects. However, the RL algorithm

is known to be sample inefficient and requires a costly data collection procedure. This causes

severe problems for training with a safety-critical system. In contrast, IL is another appeal-

ing approach that allows the agent to learn the expert’s behaviors from demonstrations and has

proven to be useful for many real-world problems. For example, Bojarski et al. [113] proposed

an end-to-end learning approach for self-driving cars and tested it on the road. Giusti et al. [68]

used the imitation learning approach for UAVs to traverse forest trails based on monocular vi-

sual perception of trees and foliage. These advantages make IL a good alternative to learning

safe behaviors while expert demonstrations are available.

Classical behavioral cloning solves the IL as a supervised learning problem which assumes

that the data is independent and identically distributed. This assumption does not hold on real-

world data, therefore even small errors may compound over time and lead the agent to a state

that it has never seen during the training. This shifted distribution may cause catastrophic

failures when the agent does not know how to recover [141]. To overcome these problems, Ross

et al. [142] proposed a non-regret online learning approach called data aggregation (DAgger)

which learns optimal policy through multiple iterations. The DAgger solves the distribution

shift issue by rolling out the learned policy in environments and collecting new data from the

learner’s own distribution. However, the DAgger has its own drawbacks, for example, the agent

is allowed to execute the policy that is not fully trained while the expert does not have sufficient

control authority. Human experts also lack feedback from the system trained which is likely to

degrade the quality of the provided labels [143]. Considering these two facts, in this work, an

intervention-based DAgger algorithm is deployed so that the human pilot can always take over

the control when the UAV has reached an unsafe region and provide recovery actions. Relevant

work [144, 145, 146] have shown that the intervention-based approach can learn a policy more

effectively and achieve better performance.
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4.3 Methodology
The proposed method is introduced in this section. It starts with introducing the simulation

environments designated for the training, then talks about different options for the vision-based

control policies and describes the imitation learning framework.

4.3.1 Simulated Riverine Environments

The synthetic environments used to train the navigation policies are created in Unreal Engine

4. The drone simulator is powered by the Microsoft AirSim [147] which provides useful tools

for low-level UAV controls and computer vision and can be directly integrated into the Unreal

Engine. High-fidelity riverine environments are designed in the Engine to simulate the real-

world looks of rivers and foliage used for the training. These custom riverine environments or

maps are divided into three difficulty levels (i.e., easy, medium, and hard). In the easiest maps,

rivers are wider and straighter while in the hardest maps, rivers are narrower and more curved.

This variety avoids the issue of over-fitting to the specificity of the simulation environments or

maps. Example maps are displayed in Fig.4.2.

(a) (b) (c)

Figure 4.2: A subset of the environments used for training with different difficulty levels: (a)
easy; (b) medium; (c) hard.

4.3.2 Controller Design

Different from other research which assumes that the pilot has global observability of the en-

vironment, here the pilot is allowed to share the same observability as the agent and only rely

on the onboard camera to command the drone. For the vision-based navigation, three different

controller options have been considered: 1) a linear regression-based controller, 2) an end-to-
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Figure 4.3: System diagram of the linear regression-based controller.

end neural network controller, and 3) a variational autoencoder-based controller, and each of

them is introduced in sequence.

4.3.2.1 Linear Regression-Based Controller

The design of the linear regression-based controller is inspired by the work in [111] and [66].

The raw image from the camera is first passed through a feature extraction script defined by

human experts and tuned manually. The features extracted from the raw images are common

visual features used in navigation (e.g., ground or aerial vehicles) and popular methods in the

literature on computer vision. The reason for investigating the performance of this controller is

that first it has proven to work on real UAV platforms [66], and second, unlike other complicated

methods which use neural networks, this type of controller is more hand-crafted, easier to tune,

and also converges faster. The raw RGB image which has a resolution of 320×240 is first split

into 6 vertical and 8 horizontal windows without overlap. The sliding windows not only help

to accelerate the computation but also provide better results empirically since not all regions

of the image have equal importance in making the decision for navigation. The visual features

are calculated for each small window. Four visual features are extracted from the image in this

work, which are:

(1) Hough Transform: Hough transform is used to calculate the dominant lines in each win-

dow. A Hough transform is applied to a window across 15 angles. This yields a matrix

whose columns represent the angles and whose rows represent the pixel width of the im-

age. The rows are then reduced by averaging every five rows. Finally, the largest two
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values for each angle are selected and arranged into a 30-element vector and used as the

Hough transformed features for the window.

(2) Law’s Masks: Law’s masks are used to get information about the textures in the image.

The masks are selected based on their effectiveness in traditional machine vision applica-

tions which are L5E5, L5S5, L5R5, E5E5, E5S5, E5R5, S5S5, S5R5, R5R5. L represents

the level, E represents the edge, R represents the ripple and S represents the spot. Each

window is first converted to YCrCb colorspace and the Y channel is filtered with all the

masks. The filtered windows are then averaged to get the 9-element feature vector.

(3) Structure Tensor: Structure tensors represent the structures and shapes in a window. The

coherency and orientation angle at each point in a window is first calculated and then the

coherency value is accumulated with a 15-bin histogram for the entire window based on

the angles. This yields features in the form of a 15-element vector.

(4) Optical Flow: Optical flow feature shows the motion in the current frame compared to

the previous one and works as a depth estimation to the image. Here the dense optical

flow is calculated and the maximum, minimum, and averaged magnitude of the optical

flow in each window are taken to form a 3-element vector as the flow features.

The collected feature vectors for each window are stacked and form a big vector X for the

whole image. The feature vector is normalized to have zero means and unit variances to balance

the contributions of different visual features. After that, ridge regression is performed on the

data collected from the human demonstrations and calculates the weight of different feature

elements. The controller outputs the control command and sends it to the drone. The structure

of the linear regression-based controller can be visualized in Fig. 4.3.

4.3.2.2 End-to-End Neural Network Controller

The second controller considered is a pure end-to-end controller composed of neural networks.

The end-to-end training combines perception and control so the control policy is trained all at

once. The control command is generated autonomously from the pixel values read from the

camera. The design of the end-to-end network is similar to the one in [69]. However, the
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prediction on the probability of collision is removed in the final layer and it takes RGB images

as the inputs instead of grayscale images in the original paper (see Fig. 4.5). The architecture of

the network is a single convolutional neural network consisting of a ResNet-8 with 3 residual

blocks followed by dropout and ReLU activation functions. The output is then passed to a fully-

connected layer to carry out yaw angular velocity prediction. The dimension of the input image

is 64×64 and the output is the control command to the UAV.

Figure 4.4: The architecture of end-to-end neural network.

The structure of the end-to-end neural network is displayed in Fig. 4.4. When deciding the

network structure for the end-to-end controller, other popular models have also been considered,

such as the ResNet-34, ResNet-50 [148], and VGG-16 [149]. To decide which model fit here

the best, different models were trained on the same dataset and it has been found that the neural

network in Fig. 4.4 can achieve an equivalent performance while it has a much smaller network

size as well as fewer parameters to tune compared with the other candidates, therefore the

training time is significantly reduced. As a result, this simple, lightweight, and powerful neural

network was used as one of the three controllers.

4.3.2.3 Variational Autoencoder (VAE)-Based Controller

The third controller considered is based on the variational autoencoder. The VAE is known to

have a good capability to compress the data from high-dimensional space into low-dimensional

space [150]. The extracted low-dimensional result, also called latent variables, normally rep-

resents some dominant aspects of the original images (e.g., position, scale, rotation, lighting).
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The steps to training the VAE-based controller are twofold: First, a VAE model is trained based

on the image data collected from the simulation environments. After the results of the VAE

network are satisfying, the encoder network is taken out from the VAE network and used to

compute latent representations. The latent representations are regarded as the input to the con-

troller network which is composed of a neural network. Next, the controller network is trained

by freezing the parameter values in the pre-trained encoder network and only the weights in the

controller network are updated based on the gradients.

L = Eq(z|X)[log(p(X |z))]−β DKL[q(z|X)||p(z)] (4.1)

Different types of VAE algorithms have been considered at the early stage, which include

the vanilla-VAE [150], β -VAEh [151], β -VAEb [152], factor-VAE [153], and VAE-GAN [154].

Empirically, it has been found out that the β -VAEh works better than all the other structures in

terms of the training stability and disentanglement ability, thus the β -VAEh method is adopted

here to train the VAE model. The objective function can be seen in Eqn. (4.1), and β is selected

to be 10. The architecture of the VAE network is presented in Fig. 4.6 which consists of 4

convolutional layers in the encoder network and 4 transpose convolutional layers in the decoder

network. The reconstruction performance of the VAE is shown in Fig. 4.7. The reconstructed

images look similar to the raw images which shows a good training result of the VAE. The

structure of the VAE-based controller can be visualized in Fig. 4.8. The raw image is first

resized to 64× 64 and fed into the encoder network which was pre-trained on 200K images

Figure 4.5: System diagram of the end-to-end neural network controller.
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Figure 4.6: The architecture of variational autoencoder network.

(a) sample images (b) reconstructed images

Figure 4.7: The reconstructing performance of the VAE, which (a) are the sample images and
(b) are the reconstructed images trained after 150 epochs.

collected in the simulation environment, and then frozen during the training of the controller

network. The controller network is trained through imitation learning. The latent representation

has a dimension of 64 and the controller network is composed of the fully-connected network
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Figure 4.8: System diagram of the VAE-based controller.

Figure 4.9: A conceptual illustration of the intervention-based learning method.

which has two hidden layers. The output of the controller network is the control command to

the UAV.

4.3.3 Learn from Demonstrations

Classical behavioral cloning does not perform well due to the distribution shift between the

training and testing datasets and may cause catastrophic results. A more proper way to utilize

human knowledge is by taking the DAgger which the control policy is updated through multiple

iterations. At each iteration, the agent control policy is executed and afterward human experts

are queried to provide correction commands. This method works well in many applications

which typically have slow dynamics and discrete action space.
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However, there are several issues with the DAgger, for example, the agent is allowed to

control the robot at the early stage of the training which can be dangerous. Meanwhile, since

the querying process is taken offline, the experts lack visual feedback from the environment

which means they do not know how their corrective demonstrations will perform on the robots.

Instead of querying an expert offline, the approach taken in this work is that the expert is queried

in real time when the drone is flying in the simulation environment. The human expert or pilot

has the authority to take over the control of the agent policy when he thinks the agent output

may lead to a failure or unsafe situation. When the pilot takes over the control from the agent,

the new demonstrations are appended to the training dataset. After a certain period of time when

the pilot puts the drone back to a normal and safe condition, he can return the control back to

the agent. The policy is retrained after each iteration as the normal DAgger is conducted. This

method is also called intervention-based DAgger which the human expert can intervene in the

agent’s control online anytime. Another benefit of this method is that the expert has continuous

time to control the robot which is more natural in real life. This type of imitation learning

approach has been adopted in the literature [144, 145] and proven beneficial. The structure of

the adopted intervention-based DAgger framework is displayed in Fig. 4.9.

4.3.4 Experiment Design

It is realized that allowing the human pilots to control the height makes imitation learning quite

challenging due to the multi-model behaviors from the human pilot and causes the state space

to become too large. Also, sometimes the pilot preferred to stay at extreme locations (e.g., very

close to the water or high above the river) to increase the success rate but it lacks obstacles at

these locations. Therefore, the learned policy is not useful under normal situations. To address

these issues and simplify the problem, the height of the UAV is fixed to 5 m and the forward

speed is fixed to 2 m/s which is achieved by a low-level controller. The yaw angular velocity

is set to 0 by default. Therefore, without any input, the UAV will keep flying forward and

not consider collisions along the way. The vision-based controller is designed to provide the

UAV ability to avoid obstacles along the river path based on the visual features by generating

the yaw rate control command. The human pilots are only allowed to adjust the yaw angular

velocity during the demonstration. The maximum yaw angular rate is limited to 45 deg/s to
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avoid instability. The front-facing camera data is gathered at 10 Hz and the control command is

updated at the same rate.

To compare the performance of different controllers, 15 human subjects were recruited to

collect demonstrated data in the simulation environments. The 15 human subjects were di-

vided into 3 groups, and each group contains 5 people. Group one was trained with the linear

regression-based controller, group two was trained with the end-to-end neural network con-

troller, and group three was trained with the VAE-based controller. To ensure the results are

compatible, both new pilots and experienced pilots were assigned to each group to balance the

knowledge level of the human subjects. The expertise levels of the human subjects are given in

Table. 4.1. Each human subject was required to fly the drone in six maps and provide correc-

tive demonstrations using the intervention-based DAgger method to collect training data. The

difficulty levels of the maps are displayed in Table. 4.2.

With three different controllers described above, two hypotheses have been made and going

to be tested in this chapter:

Table 4.1: The expertise level of different human subjects. The human subjects are split into
three groups and each group consists of both new and expert pilots.

Group One Pilot 1 Pilot 2 Pilot 3 Pilot 4 Pilot 5

Expertise Level Beginner Beginner Expert Beginner Expert

Group Two Pilot 6 Pilot 7 Pilot 8 Pilot 9 Pilot 10

Expertise Level Beginner Expert Expert Beginner Beginner

Group Three Pilot 11 Pilot 12 Pilot 13 Pilot 14 Pilot 15

Expertise Level Expert Beginner Beginner Beginner Expert

Table 4.2: The level of difficulty for different maps.

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6

Difficulty level Easy Easy Medium Medium Hard Hard
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Hypothesis 5 The agent trained with a VAE-based controller can achieve a better performance

than an agent trained with a linear regression-based controller and an agent trained with an

end-to-end neural network controller using the same DAgger method and number of iterations.

Hypothesis 6 The VAE-based controller generalizes well to the novel environments which the

agent has never seen during the training compared to a linear regression-based controller and

an end-to-end neural network controller.

Due to the strong capability of deep neural network and the outstanding performance of

VAE in the task of computer vision, in the first hypothesis, it is hypothesized that the VAE-based

controller will achieve the best performance among all three controller options if they are trained

with the same imitation learning method and the level of training. Since the VAE compresses the

high-dimensional visual inputs to low-dimensional latent representations, it is believed that such

compression will extract the key information from the raw data and makes the training more

effective and efficient. In the second hypothesis, the goal is to test the generalization capability

of three controllers. Since the VAE is expected to extract the hidden dominant features in the

latent space, it is believed that such intermediate representations make the VAE learn a more

general control policy and are less sensitive to the distribution shift between the training and

testing datasets. Therefore, it is hypothesized that the VAE-based controller will have a better

performance compared to the other two controllers when deployed in the novel environment

which the agent has never seen during the training. The evaluation metrics used to compare the

performance of different controllers and test the two hypotheses are described as follows:

• Intervention rate from the human pilots during the training.

• Maximum distance that an agent can travel without human interventions.

• Average distance flown by the agent before a failure.

• Processing time for each frame to generate the control command.
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4.4 Experimental Results
This section presents the results of three controllers trained from 15 human subjects in the

simulation environments. Section 4.4.1 shows the results in training environments and section

4.4.2 describes the performance of the three controllers in testing environments. The results

will be used to evaluate the performance of different vision-based control policies navigating a

UAV in riverine environments and also test the two hypotheses. All the simulations and training

were running on an AMD Ryzen 3900X CPU, 64 GB RAM, and RTX 2080Ti GPU computer

in the lab.

4.4.1 Training Results

(a) (b) (c)

Figure 4.10: Example trajectories of the UAV in simulation environments (a) Map 1 (easy); (b)
Map 3 (medium); (c) Map 5 (hard).

As mentioned in the previous section, each human subject group was trained with a specific

controller type using the intervention-based DAgger approach. More specifically, group one

was trained with the linear regression-based controller, group two was trained with the end-to-

end neural network controller, and group three was trained with the VAE-based controller. For

each group, all three difficulty levels of the maps were utilized and the pilots were requested

to navigate the drone inside each map along the river path with random initial positions and

avoid collisions. Example trajectories of the UAV flying in some environments are provided in

Fig. 4.10.

Ideally, the performance can keep improving with more and more data collected from the

environments as an increasing number of iterations. However, empirically it has been found

out that the pilots had a difficult time judging whether the decision made by the agent would
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lead to a collision or not as the training iteration increases and the agent policy performance

gets improved. As a result, the corresponding demonstrations collected from the human at

those iterations may degrade the agent performance and the retrained agent policy will actually

become worse. Some early training results show that the pilots are able to provide accurate and

good demonstrations up to 3 iterations and therefore, the training is terminated after 3 iterations.

To test the hypotheses, first, the percentage of intervention from human pilots during the

training is calculated for each controller type. The results are averaged among all human sub-

jects in the same group and the mean and variance values are provided in Fig. 4.11. Based on the

results, it is observed that the intervention rate from human pilots decreases as the training iter-

ation increases which shows the effectiveness of the imitation learning method. Since the hard

maps contain sharp curves and therefore become more challenging for the UAV to navigate, the

intervention rate in these maps is higher than the intervention rate in the easy and medium maps.

In addition, it can be seen that the VAE-based controller has the lowest intervention rate across

various maps with different difficulty levels while the end-to-end neural network controller re-

quires the most human intervention compared to the other two controllers. This remains true

over different training iterations. A T-test is also performed which calculates the t-score and p-

value about the intervention rate between the linear regression-based and VAE-based controller,

as well as the end-to-end neural network and VAE-based controller. The results are provided in

Table. 4.3. The significance level is chosen to be α = 0.10 and a p-value smaller than α means

that the null hypothesis can be rejected. Based on the calculated T-test results, it is found that the

VAE-based controller outperforms the linear regression-based controller and end-to-end neural

network controller with significance.

4.4.2 Testing Results

Next, the trained controllers are deployed into the testing environments. An agent that has been

trained to perform well in the training environments does not inherently guarantee to perform

well in a target or novel environment. Therefore, the controllers trained after 3 iterations are

executed in the testing environments which the agent has never seen during the training time to

evaluate their performances in novel environments.

The maximum distance that the drone can fly by itself before a failure is displayed in
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(a)

(b)

(c)

Figure 4.11: Percentage of interventions from human pilots in (a) easy maps; (b) medium maps;
and (c) hard maps during the training.
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Table 4.3: T-Test results with a significance level α = 0.10.

Maps T-test
Linear reg.-based vs. VAE-based End-to-end vs. VAE-based

iteration1 iteration2 iteration3 iteration1 iteration2 iteration3

Easy t-score 1.8785 0.8205 0.7302 2.8860 2.8364 3.6180

p-value 0.08292 0.42328 0.47583 0.01275 0.01319 0.00280

Medium t-score 2.1600 2.2705 0.8890 2.6620 2.0282 2.9990

p-value 0.04859 0.03647 0.39147 0.01956 0.06201 0.01109

Hard t-score 1.8563 1.7503 2.0190 2.1440 1.9757 2.6537

p-value 0.08458 0.09809 0.06308 0.05153 0.06689 0.02103

Fig. 4.12. The testing map has a total length of 225 meters and the agent starts from the same

location every time. Since all the agents start from the same initial location, the scenes they ex-

perienced remain the same and therefore the results are compatible. The distances they traveled

are averaged across 5 trials and sorted by the mean value. Based on the results, it can be seen that

the VAE-based controller can achieve the longest maximum traveling distance while the end-to-

end neural network controller has the shortest maximum traveling distance before a failure. In

fact, two VAE-based controllers can almost reach the end of the river without any intervention

or failure. The reason why the end-to-end neural network controller achieves the worst behavior

is probably that the end-to-end method highly relies on the distribution of datasets, and there-

fore, when the testing dataset is different from the training dataset, it cannot provide consistent

performance. The linear regression-based controller achieves better performance compared to

the end-to-end neural network controller but still crashes earlier than a VAE-based controller.

From this result, the VAE-based controller beats the other two controllers with significance

and generalizes well to scenarios completely unseen at training time which supports the two

hypotheses.

The average distance traveled per failure for each controller type is shown in Fig. 4.13. An

intervention from a human pilot is performed and considered a failure when the UAV is about

to crash. The UAV started from random locations in the testing map and the total distance it

traveled and the number of failures it experienced were counted. The average distances per
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Figure 4.12: Maximum distances traveled before a failure by three different controllers.

Figure 4.13: Average distances traveled per failure by three different controllers.
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Figure 4.14: Processing time of three different controller types.

failure are then calculated and sorted by the values. Similar to the results from the maximum

distance, it can be seen from the figure that the VAE-based controller achieves better perfor-

mance compared to the linear regression-based controller and the end-to-end neural network

controller with a higher average distance flown by itself.

Since the processing time for different maps varies slightly due to the rendering speed of

the simulation, only the processing time in the same map during testing gets compared. The

processing time results are provided in Fig. 4.14 and the numeric values are shown in Table. 4.4.

Based on the results, it can be seen that the linear regression-based controller takes the longest

time to process due to the feature extraction part while the two neural network-based controllers

can predict the control command at much faster rates. The VAE-based controller is slightly

faster than the end-to-end neural network controller due to a simpler structure but the difference

is negligible.

The performance of the controllers is further investigated under different lighting conditions

to see how robust each controller is to the changes in the environment. To achieve that, the best

controllers from each human subject group are selected based on the average distance perfor-

mance in the testing map. This gives three different controllers and their performances under

normal lighting conditions. The lighting of the environment is then changed to a dark condition
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Table 4.4: Numerical values for the processing time of three different controllers.

Processing time per frame (s)

Linear-Regression-Based Controller 0.0668±0.0086

End-to-End Neural Network Controller 0.0034±0.0026

VAE-Based Controller 0.0028±0.0020

and a bright condition and deployed the controllers in the same map. The changes in the cam-

era view can be seen in Fig. 4.15. The comparison results of three controllers under different

lighting conditions are displayed in Fig. 4.16. It has been found out that the VAE-based con-

troller is less sensitive to environmental lighting changes and has a robust performance. The

linear-regression-based controller performance does not change much in bright light but suf-

fers in dark conditions. The performance of the end-to-end neural network controller degrades

significantly for any lighting changes in the environment.

Another set of experiments was performed to investigate the effect of height errors on the

controller performance. Since the UAV was commanded to fly at a fixed height during training,

it is interesting to see whether the controller is robust enough when height error is introduced.

Therefore, the same setting from previous experiments was used which consists of three con-

trollers under nominal conditions. During the experiment, the target height was set to 3m, 5m,

7m, and 9m, respectively, where 5m is the height used for training and the average distance

traveled per failure was calculated under different height conditions. It is noticed that since the

environment is unstructured, the drone sometimes flew above the river bank to avoid obstacles

at high altitudes while no collisions occurred at those locations. In order to make the compari-

son fair, the UAV was restricted to only fly along the river path and it was considered a failure if

the drone attempted to pass the river bound. The performance is plotted in Fig. 4.17. Based on

the results, it can be seen that the controllers are robust to small height errors. The VAE-based

controller outperforms the other two controllers under various height conditions. An interest-

ing finding is that the linear-regression-based controller experienced fewer collisions at lower

95



(a) (b) (c)

Figure 4.15: Three different lighting conditions: (a) dark (b) normal and (c) bright from the
same environment.

altitudes which may be due to the fact that the images at low altitudes contain more edge and

texture information. The performances of all three controllers dropped significantly when the

drone was flying at 9m. This is due to the change of perspective and leads to a distribution

shift issue in which the images contain a large portion of the sky and fewer visual features at

high altitudes compared to the training data. One solution to it is to use a gimbal-stabilized

camera to compensate for the perspective change similar to the one in [136] and collect more

demonstration data at various altitudes.

Based on these results, the two hypotheses have been successfully tested and it can be

concluded that the VAE-based controller is better than the linear regression-based controller

and the end-to-end neural network controller in the task of navigating UAV inside simulated

riverine environments with a lower intervention rate from the human pilot, a longer maxi-

mum traveling distance before a failure, a longer average traveling distance per failure, and

a faster processing time. The VAE-based controller also generalizes well to novel environ-

ments and is robust to the lighting changes of the environment. For supplementary video see:

https://www.youtube.com/watch?v=aPOqHHGbZgs

The performance of the VAE-based controller is also compared with a visual-teach-and-

repeat controller in [132, 134]. The training and testing maps are different in terms of the

river shape, landscapes, and lighting conditions. The trajectories for both environments as well

as sample images along the river are plotted in Fig. 4.18. From the figure, it can be seen

that the training and testing map have quite different trajectories. Three metrics are selected
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Figure 4.16: Average distances traveled per failure of three controller types under different
lighting conditions.

Figure 4.17: Average distances traveled per failure of three controller types under different
heights.
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(a)

(b)

(c)

Figure 4.18: The proposed VAE-based controller versus a visual-teach-and-repeat controller.
(a) Trajectories of both controllers in the training (demonstrated) map, (b) Trajectories of the
VAE-based controller in the testing map, and (c) Maximum distance that the agent traveled
before a failure in the training and testing map.
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to evaluate the image similarity between two maps at a similar left-turn location (two sample

images displayed in Fig. 4.18(a) and (b)). The metrics include the root mean squared error

(RMSE), structural similarity index (SSIM), and perceptual hash (PHASH). The results of them

are RMSE = 91.6 ([0,255], 0 means identical), SSIM = 0.112 ([0,1], 1 means identical), and

PHASH = 0.507 ([0,1], 1 means identical), respectively, which shows that the visual inputs

from the testing map can be considered novel compared to the training one. It’s noted that no

new trajectory information should be provided in the testing map because the goal is to evaluate

the generalization capability of the controller in novel environments which the agent has never

seen before. Therefore, the VT&R agent used the stored trajectory from the training map and

visual inputs to navigate in the testing map while the VAE-based controller only relied on the

visual inputs. The trajectory in Fig. 4.18 (b) from the human is only used for visualizing the

river path and not used by either controller. Based on the experiment result, it can be seen that in

the training map (263m long in total) the VT&R controller tracked the demonstrated route very

precisely and reached the final point without failure. The VAE-based controller also managed

to navigate the vehicle to the final point without a crash, but since it learned a reactive behavior,

the VAE-based controller does not necessarily need to follow the human trajectory. Then the

two controllers were tested in the new environment (225m long in total) which both agents have

never seen before. The VT&R cannot manage the task since the correct trajectory in this map

was not provided. By contrast, the proposed VAE-based controller was able to complete the

mission. The trajectory of the VT&R controller in the testing map is not plotted since it always

failed at the beginning.

4.5 Discussion
Different reactive navigation policies are trained based on human demonstrations that can reli-

ably control a drone from a single forward-looking camera in this chapter. Compared with other

approaches, the proposed controller requires no planning and localization in the environment,

thus saving a lot of processing power and computing time. It does not require performing any

image pre-processing except the down-sampling in order to increase the training speed. Results

show that the controllers can handle the noise pretty well and learn a robust control policy. It is
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(a) (b) (c)

Figure 4.19: Histogram of pilot demonstration data compared to the model prediction. The
pilots are divided into three groups evenly, and each group contains five members. Each group
is trained on a different controller type: (a) linear regression-based controller; (b) end-to-end
neural network controller; and (c) VAE-based controller.
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also observed that the non-collision can be achieved without information on the current velocity

of the UAV.

Based on the training and testing results, it can be found out that the end-to-end neural net-

work controller performs badly in both training and testing environments. In order to understand

why it happened, the histogram of the pilot demonstration data is plotted in Fig. 4.19. The pilots

are divided into three groups evenly and each column in the figure represents the data trained

from a different controller type. Based on the histogram results, it is noticed that the end-to-

end neural network controller tends to overfit the existing data in general and therefore does

not generalize well to the new state-action pairs if their distributions are different. With a lim-

ited amount of data, the end-to-end neural network controller will result in worse performance

compared to the other two controller types. To improve its performance, more data needs to be

collected to cover the distribution of the entire space, however, this can be extremely labor in-

tensive since the demonstrations in this work are provided by human experts. It’s also observed

that since ridge regression is used to calculate the weight for the linear regression-based control,

the shape of the predicted control command is more conservative and concentrates in the mid-

dle region compared to the other two neural network-based controllers. This causes the linear

regression-based controller unable to generate aggressive enough commands when the drone

needs a large yaw angular rate command in some maneuvers. The VAE-based controller, on the

other hand, balances the distribution variance and the fitting performance, therefore compete

the other two controllers.

The method in [48] is applied to investigate which part of the image is the most important

for the neural network to make the decision. In Fig. 4.20, the VAE-based controller and end-

to-end controller are supplied with the same image and the activation maps are displayed from

both controllers. To make the comparison fair, the two controllers are trained by the same

human pilot, therefore the behavior is consistent. From the figures, it is noticed that the VAE-

based controller concentrated on the vegetation on the right side, and it generated a left-yaw

command to avoid that region. In contrast, the end-to-end controller was less concentrated,

attracted by different parts of the frame, and resulted in a near-zero output that may lead the

drone to crash. Based on this result, it is believed that the VAE part benefits the controller to
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(a) (b) (c)

Figure 4.20: Visualization of the neural network decision by showing: (a) the input image
(b) the VAE-based controller activation map, and (c) the end-to-end neural network controller
activation map on the same input image.

(a) (b) (c)

Figure 4.21: The typical failure locations (a) thin branches and leaves (b) no river in the field of
view, and (c) shadow from trees.

learn more important information from the high-dimensional visual inputs, therefore making

the training more efficient and the controller more effective. For supplementary video see:

https://www.youtube.com/watch?v=xQW2wcYjHus.

To further investigate when the controller may lose its performance, the locations at which

the drone commonly crashed in the simulation environments are plotted in Fig. 4.21. It is

observed that all three controllers are likely to fail and lead to a crash when the drone is flying

towards thin tree branches and leaves (see Fig. 4.21 (a)) which the visual algorithm may not be

able to detect them. After a large control command when the UAV is off by the river path too

much and there is no river in the field of view, the UAV may also generate unexpected behaviors

(see Fig. 4.21 (b)). The shadow existing in the environment from the trees also confuses the

control policy and leads to extensive or incorrect control commands (see Fig. 4.21 (c)). In
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addition, since the drone is flying at a constant forward speed, if the obstacle is right in front

of the drone and too close, it’s hard to provide safe navigation even for human operators, and

this usually leads to crashes. All of these common failure locations will be considered in future

work to improve the proposed vision-based navigation policies.

4.6 Summary
The chapter presents an imitation learning framework and compares several vision-based con-

trol policies for the task of UAV autonomous navigation in complex outdoor environments.

Training the agent in simulation allows us to demonstrate the capability of the developed frame-

work and avoid unnecessary losses before deploying it in the real world. An intervention-based

DAgger framework is introduced to train a vision-based UAV capable of flying inside com-

plex and GPS-denied riverine environments. The performance of a VAE-based controller with

a linear regression-based controller and an end-to-end neural network controller trained with

human demonstrations are compared in the simulation environments. The results show that the

VAE-based controller outperforms the other two controller types in both training and testing

processes and is able to navigate the UAV autonomously.
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Chapter 5

Validation of Vision and Learning-based
UAV Control in Real Orchard
Environments

In Chapter 4, a variational autoencoder-based controller was developed and trained by an im-

itation learning approach. The performance was compared against several other vision-based

algorithms for UAV navigation in riverine environments and the proposed VAE-based controller

showed competitive results in simulations. The framework is validated and demonstrated in a

real orchard environment (see Fig. 5.1) in this chapter. The control policy is trained through an

interactive imitation learning framework from real flight data. The results show that the drone

can navigate without GPS in this complex environment and avoid obstacles (e.g., tree branches)

autonomously during the flight. The controller can fly the drone a longer distance with less

human assistance compared to the existing baseline algorithms and has a good generalization

capability.

5.1 Introduction
Autonomous navigation of unmanned aerial vehicles (UAVs) has made significant progress in

recent years. However, most UAVs still rely on GPS to navigate for applications such as remote

sensing [155], precision agriculture [156], pest management [6], and bridge inspection [157].

Thus, UAVs lack the autonomous capability to fly in confined and GPS-deprived environments.
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Figure 5.1: The drone is flying autonomously in this orchard without GPS and knows how to
avoid the tree branches along the way. The view of onboard camera is provided.

Besides, human pilots are frequently queried to provide avoidance maneuvers in the loop, which

heavily increases the workload. Autonomous navigation in complex and unknown environ-

ments especially when the GPS signal is weak poses several challenging problems and largely

hinders the deployment of UAVs.

When GPS becomes unreliable or unavailable, the UAV needs to rely on exteroceptive sen-

sors to sense the environment and navigate. Advanced techniques to enable UAV autonomous

operations without GPS include: 1) lidar-based [158], and 2) vision-based [159] approaches.

Typical lidar sensors are too large to fit on lightweight UAVs and can significantly reduce the

flight time when size and endurance are considerations. It leaves the vision-based algorithm a

better option for UAV autonomous navigation in complex environments where a compact size

and longer battery life are pursued. Also, a camera usually costs less than a lidar sensor.

Reinforcement learning (RL) has produced promising results in the field of self-driving

car [160] and strategy game playing [161] recently. However, one key drawback of RL is its

sample inefficiency. RL requires a substantial amount of data to achieve good results. Also,

designing an effective reward function is tricky. Additionally, its trial-and-error nature hinders

its use in safety-critical systems since one failure may lead to enormous losses. One appealing

workaround to the above-mentioned shortcomings is to train a policy in simulation first and
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transfer it to the real world during deployment [162]. This transfer learning strategy can reduce

the costs and risks to train a policy without worrying about damaging the system. However,

an inaccurate model of the system in simulation (e.g., modeling of environmental changes can

be difficult) may lead to unmatched performance on real robots, and minimizing the sim-to-

real gap remains an open question. In this work, an imitation learning (IL) framework [113]

is adopted to train a visuomotor policy. The robot learns a strategy by mimicking an expert’s

behavior from a small number of demonstrations. The aim is to utilize human knowledge to

guide the learning process and achieve human-like behaviors while overcoming the limitations

of the aforementioned methods. IL has been proven successful in training useful policies on

real robots [66, 68].

5.2 Related Work
Autonomous navigation in complex and unknown environments is challenging. State-of-the-

act technologies divide autonomous navigation into perception, planning, and control prob-

lems [163, 164, 165]. Car and lane detection [166, 167] are standard perception tasks to enable

autonomous driving. Semantic segmentation [168] helps to label the objects and learn represen-

tations of the environment. For orchard environments in particular, 3D point cloud data can be

used to localize the robot in the row [169]. [170] proposed a novel template-based method and

achieved a better localization performance with respect to the row centerlines. For general vi-

sual navigation in GPS-denied environments, visual-inertial odometry [109] and simultaneous

localization and mapping [110] are commonly used algorithms to localize the agent and build a

map of the unknown environment, which provide essential information for the trajectory plan-

ning stage.

A collision-free path or trajectory can be planned after retaining a global or local map of

the environment. Widely used planning algorithms include: 1) graph-search-based approaches,

for instance, A* [171] and its variants [172], and 2) sampling-based approaches, for instance,

probabilistic roadmap [173], rapidly exploring random tree [174] and its variants [172, 175]. An

energy-optimal [115, 176] or time-optimal trajectory [177] may also be designed to satisfy addi-

tional requirements. After that, a tracking algorithm is targeted to control the robot to follow the
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planned path or trajectory. Common path tracking algorithms include pure pursuit [178], PID

control [179], stanley control [180], and model predictive control [181]. Under this framework,

[164] achieved fast drone flights in GPS-denied and cluttered environments. [182] developed

vision-based aerial system to monitor orchards with path planning.

Though this modular design paradigm has achieved some success, the separation of per-

ception and control may cause unexpected behaviors [69]. The authors in [59] also pointed

out that there is a discrepancy between the trajectory planning and the deployment stage. The

requirements to build a 3D map of the environment [158], search feasible collision-free paths,

and solve constrained optimal control problems can add extra cost and delay to the real-time

system [124]. Conversely, human pilots rely on nothing more than a camera stream to navigate

a robot in complex and unknown environments. They can provide outstanding reactive behav-

iors and generalizable skills in a wide range of scenarios [66, 69]. A similar visuomotor policy

which directly maps states to action can be designed. The policy can be represented by a deep

neural network [183] that is trained end-to-end using different learning-based approaches.

Among these approaches, reinforcement learning finds the optimal policy by maximizing a

reward function. RL has been successfully applied in a wide range of applications. For example,

[60] used a deep Q-network to train an agent playing Atari games based on pixel inputs. [61]

trained a deep neural network with proximal policy optimization (PPO) to fly drones across race

tracks at fast speed. Recently, [62] solved the autonomous car racing problem using a soft actor-

critic (SAC) algorithm and the policy achieved super-human performance. [63] successfully

trained quadruped locomotion in real world with deep reinforcement learning. Nevertheless,

RL is notorious for its bad sample complexity. Generally, it requires a substantial amount of

data to obtain good results and the training may converge slowly. The trial-and-error learning

process also causes severe problems for safety-critical systems.

Other researchers attempt to train and deploy the model in different domains with a variety

of techniques. [184] trained a racing drone policy in simulation through domain randomization

and deployed it on a physical platform without fine-tuning. Domain adaptation [185, 186] can

be applied to narrow the gap between simulation and reality. [187] used real-world data to

adapt the model learned in simulation and achieved a better generalization capability. However,
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transferring a model learned in simulation to the real world is still a challenging problem.

Imitation learning-based approaches, on the other hand, learn a policy by imitating expert

behaviors directly and without a need for a hand-crafted reward function. The supervision from

expert demonstrations greatly accelerates the learning process and makes IL more data efficient.

The effectiveness of the learned policy has been demonstrated in solving many autonomous

driving tasks. For example, [188] trained a car to follow a road with supervised learning. [113]

replaced the policy with a convolutional neural network and improved the self-driving perfor-

mance. A visual affordance can be added as guided auxiliary supervision to obtain a higher

success rate [189]. Accomplishing UAV navigation in complex and GPS-denied environments

using supervised information has also been explored by many researchers. For instance, [66]

trained a drone to fly inside low-altitude forests and perform tree avoidance with a data aggrega-

tion approach. By representing the policy with neural networks, [68] used imitation learning to

train a UAV to traverse forest trails based on monocular visual perception of trees and foliage.

[190] taught a quadrotor how to fly indoors and avoid obstacles from a recorded crash dataset.

[69] learned a drone navigation policy in urban environments from the data collected by cars

and bicycles. The policy has a good generalization capability in both indoor and outdoor envi-

ronments. Learning a more agile behavior in challenging environments with IL has also been

studied. For example, [191] learned an agile drone flight policy and demonstrated it in dynamic

environments. [192] achieved agile and off-road autonomous driving using end-to-end imitation

learning.

Recently, researchers found out that privileged information [193] can be used to improve

performance on top of traditional deep learning methods. The training can be split into two

steps [194]. A teacher policy who has access to privileged information is trained first. Next,

a student policy that emulates the teacher’s policy gets trained without knowing the privileged

information. The student policy is then deployed in the real world. This paradigm has proven

successful in achieving vision-based urban driving in simulation [194], performing high-speed

flight of drones in the wild [195], and learning quadruped locomotion over challenging environ-

ments [196]. However, the selection criteria of privileged information are quite vague and the

performance is not guaranteed without training in a high-fidelity simulator [197, 198]. The sim-
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ulator is expected to accurately model the physical dynamics as well as environment changes

(e.g., photo-realistic rendering) in order to properly deploy the trained policy in the real world,

and this certainly demands a lot of engineering work.

5.3 Methodology
In this section, an intervention-based imitation learning framework is introduced with a discus-

sion about its advantages. Next, the neural network architecture in the VAE-based controller is

presented. Finally, the data collection procedure in the real world is described.

5.3.1 Intervention-based Learning

An imitation learning approach is used to train a vision-based control policy in this work. As

discussed above, imitation learning has several advantages over reinforcement learning since it

reduces the sample complexity and eliminates the need for a hand-crafted reward function. A

common strategy of imitation learning is to learn an agent policy πθ parameterized by θ that

mimics the expert policy πE . The optimal policy π∗
θ

is found by satisfying (5.1) where D is a

similarity measurement between the policies.

π
∗
θ = argmin

πθ

D(πθ ,πE) (5.1)

The simplest approach in IL formulates the problem as a supervised learning process with

the objective of matching the learned policy πθ to the expert policy πE from a dataset of expert

demonstrations D , namely, behavior cloning [188]. However, behavior cloning typically fails

in most applications because the distribution of states encountered when executing the learned

policy πθ may not match the distribution found in the demonstrated dataset. To overcome

this limitation, [142] proposed a data aggregation (DAgger) method with a queryable expert

to provide new demonstrations in the loop. However, there are two issues with the DAgger

algorithm. First, the querying step is very inefficient because the expert needs to explicitly

relabel all new data points. Second, when evaluating the agent policy rollout, the human expert

lacks direct feedback from the robot and therefore is unaware of how the correction affects the

future state.

In this work, an intervention-based DAgger approach is used to train the agent policy. A

human pilot is in charge of intervening when the agent drifts away from the desired behavior.
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Instead of querying an expert offline, the expert is queried online when the drone is executing

the agent policy in the real world. During the rollout, the human pilot has the authority to

take over the control from the agent when they think the agent’s action may lead to a failure

or an unsafe state. Only the demonstrations that the pilot is taking over control will now be

appended to the training dataset. After the drone has reached a safe state which is defined by

the human pilot, the pilot can return the control back to the agent. The policy is re-trained after

each iteration as the normal DAgger conducts. Because human expert only provides feedback

intermittently during robot execution, this largely simplifies the querying procedure. Also, the

robot’s behavior can improve online since it’s based upon an iterative approach. Additionally,

the expert has uninterrupted control of the robot with feedback during demonstrations. This

way of interaction is more natural in the real world and will benefit the collected data quality.

A pseudo-code of the intervention-based learning algorithm is provided.

5.3.2 Network Architecture

The proposed VAE-based controller is composed of two components, a variational autoencoder

network followed by a policy network. Each one is explained in detail in this section.

5.3.2.1 Variational Autoencoder Network

A variational autoencoder network [150] is introduced to the control policy. In the previous

chapter, the network was shown to have a good capability to extract useful information from

high-dimensional spaces into low-dimensional spaces and benefit both training and generaliza-

tion in a vision-based navigation task. A VAE network is normally composed of two com-

ponents. The first component is an Encoder network which compresses image data from a

high-dimensional space to a low-dimensional space. The extracted result, also called latent

variables, normally represents some dominant aspects of the original images (e.g., position,

scale, rotation, lighting). The latent variables are then fed into a Decoder network to reconstruct

the image. The loss function in (5.2) is minimized to train the VAE network. The first term in

the loss function is the reconstruction error between the original image x and the reconstructed

image x̂ calculated by the decoder network pϕ(x̂|z), where z is the latent variable and the func-

tion is parameterized by ϕ . The second term is the Kullback–Leibler (KL) divergence between

the extracted latent variables qψ(z|x) from the encoder network parameterized by ψ and a series
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Algorithm 1 Intervention-based Learning
Input: maximum iteration number imax

Output: optimal agent policy π∗
θ

Initialize: i = 0,D = []

if i = 0 then

append all human demonstrations to D

train agent policy πθ0 on D

else

for i = 1 : imax do

roll out agent policy πθi−1 with human interventions

get a series of rollout trajectories T j

for each (st ,at) ∈T j do

if (st ,at) ∈ πE then

append (st ,at) to D

re-train agent policy πθi on current D

π∗
θ
← πθi

return π∗
θ

of distributions p(z) which are Gaussian distributed. A reparameterization trick is used in order

to backpropagate the gradient properly. β is a weight factor and is selected to be equal to three

to balance the penalty on the reconstruction and KL divergence.

LVAE(ϕ,ψ) = ∥x− pϕ(x̂|z)∥2−β ·DKL(qψ(z|x), p(z)) (5.2)

The structure of the VAE is illustrated in Fig. 5.2, which consists of five convolutional

layers with LeakyReLu activations in encoder network and five transpose convolutional layers

with ReLu activations in decoder network. The encoder network takes an image in the size

of 128x128x3 and generates the latent variable which has a dimension of 256. The decoder

network reconstructs the image in the same size. An example pair of the original image and

the reconstructed image is also provided in Fig. 5.2 to visualize the reconstruction performance.

During the deployment, only the trained encoder network is used to compute the latent variable
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Figure 5.2: The structure of the variational autoencoder network.

(the network weight is frozen) and then fed to a policy network which is introduced in the next

section.

5.3.2.2 Policy Network

The policy network is built upon a multi-layer perceptron (MLP) with two hidden layers. Each

hidden layer has a dimension of 256 with ReLU activation. The output layer has a hyperbolic

tangent activation function to generate the control command in the range of [−1,1]. The input

to the policy network is the latent vector extracted by the VAE encoder concatenated with the

current drone state including the attitude and velocity from the EKF estimator. The network is

trained by minimizing the mean-square-error (MSE) between the agent policy output πθ (a|s)

and human expert policy output πE(a|s) in (5.3) on the demonstrated dataset D .

Lpolicy(θ) = ∥πθ (a|s)−πE(a|s)∥2,s ∈D (5.3)

5.3.3 Data Collection in Real World

The experiments were conducted in an orchard environment near Davis, California. To train

the VAE model, six rows were selected from the orchard, so that each row has mixed tree
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Figure 5.3: Sample image data collected in a variety of seasons, weathers, and times in a day
from the field.

species and different appearances. Image data were collected from these six rows in a variety of

seasons (i.e., summer, autumn, winter), weather conditions (i.e., sunny, cloudy), and times in a

day (i.e., morning, noon, afternoon). A selection of image data taken from the field is provided

in Fig. 5.3. The VAE dataset has 110k images in total and was used to train the VAE network.

Standard data augmentation was performed which includes changing the brightness, contrast,

saturation and sharpness of the original dataset. Random horizontal flipping was also applied to

the images. . After the VAE network was trained, the encoder network was taken out (its weight

was frozen) and used to generate the latent variables in order to train the policy network.

The policy network was trained based on the Algorithm 1 discussed in Section 5.3.1. All

human demonstrations were collected in the real world from the same orchard rows where the

VAE data was recorded. Due to the multi-model behavior of humans, it’s infeasible to achieve a

good policy if the human pilot is granted full control over the drone flying in this environment.

For example, the pilot can fly at a high altitude to avoid all trees or command the drone to

fly slowly and provide a very conservative response. This also makes the training hard since

the network is learning from a very large and sparse space. Therefore, in this work, the pilot

is only allowed to provide yaw rate correction while a high-level controller is implemented to

keep the drone flying at a constant height above the ground and at a constant forward speed

in the body-fixed frame. It’s worth mentioning that, due to the imperfect balance of the drone

and the environmental disturbance (i.e., wind gusts), the drone will not always fly in a straight

line and may have a side speed. Navigating in this environment is a challenging problem due
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to unstructured obstacles (e.g., tree branches) and unpredictable disturbances. Continuous yaw

correction is needed to put the drone back in safe regions when it starts drifting away, thus

rendering navigation inside orchard rows a suitable scenario to test the proposed vision-based

algorithm.

In the experiment, the height was fixed in a range of 1.6-2.0 m to avoid the ground ef-

fect [102] and to ensure visible obstacles in the view. The drone was commanded to fly forward

at a speed of 0.6 m/s to allow the pilot to apply effective demonstrations. The max yaw angular

speed was limited to 45 deg/s to avoid large state estimation error because the camera used in

the experiments (see Section 5.4.1) tends to lose tracking under rapid yaw rotations. Ideally,

the human pilot should share the same view as the agent from the onboard camera. However,

in practice, it’s challenging to achieve due to a couple of restrictions. Streaming images back in

real-time to the laptop is unstable, as it is often interrupted because of the limited Wi-Fi range.

The trees in the field block the signal and further degrade the Wi-Fi performance. Also, wireless

data transmission adds extra time delay to the system which is hard to quantify. Therefore, in

this work, the human pilot was allowed to have full state information about the environment. It

is observed that the agent can still learn a good policy and the results are presented in the next

section.

5.4 Experimental Results
In this section, a description of the experimental platform is presented first. Then the results

of the vision-based algorithm are shown in both training and generalization environments and

compared against a set of baseline algorithms from the literature.

5.4.1 Experimental Platform

A custom quadcopter platform was built to validate the proposed vision-based algorithm. The

main frame has a wheelbase of 450 mm. An Intel Realsense D435i camera is mounted forward

and streams RGB images with a field of view of 70◦. The visual odometry is provided by an

Intel Realsense T265 tracking camera. The altitude measurement is found not accurate from

the vision sensor, therefore a Lightware SF11/C laser rangefinder is added to get the relative

height above ground. PixRacer R15 is chosen as the flight unit with the PX4 autopilot stack
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as the low-level controller. The onboard computational unit is an NVIDIA Jetson Xavier NX.

An external SSD is mounted to store the data. A telemetry radio is also added to get real-time

telemetry status from the drone. A 4S Lipo battery is used to power the entire system and can

support a flight time of 13 minutes with a take-off weight of 1.8 kg. Pictures of the platform

can be seen in Fig. 5.4.

Fig. 5.5 shows the architecture of the system. The RGB image is streamed from the D435i

camera at a rate of 30 Hz. The t265 camera is selected here because it has an internal visual

inertial-odometry (VIO) pipeline. Other VIO methods [199, 200] can also be used at the cost

of extra computational load to the onboard computer. The visual odometry, altitude, and IMU

measurements are fused to an Extended Kalman Filter (EKF) and perform state estimation. A

high-level controller generates the necessary commands to fly the drone at a constant height

and speed. Meanwhile, the VAE-based controller provides yaw rate commands at 30 Hz for

navigation in the field. The state estimation, neural network inference, and high-level control

are performed on the Xavier NX. The low-level flight control is handled by the PX4 and outputs

Figure 5.4: The custom-built quadcopter platform equipped with 1) Intel® Realsense D435i
camera; 2) Intel® Realsense T265 camera; 3) Lightware SF11/C laser rangefinder; 4) Tattu 4s
5200mhA LiPo battery; 5) Pixracer R15 flight controller; 6) mRo Ski Telemetry radio; and 7)
NVIDIA Jetson Xavier NX.
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Figure 5.5: System architecture diagram.

Figure 5.6: A filtered point cloud generated from the experiment data.

motor signals. The flight control unit communicates with Xavier NX through a Robot Operat-

ing System (ROS) interface. The onboard computer is connected to a laptop through Wi-Fi,

thus allowing the users to start the scripts and monitor the onboard status. Human pilots can

teleoperate the drone with a remote transmitter to provide demonstrations for training and take

over the control during any emergency.

The training was done on a lab computer with AMD Ryzen 9 3900X CPU, 64GB memory,

NVIDIA Geoforce RTX 2080Ti GPU. ADAM was used as the optimizer to minimize both VAE

loss and MLP loss.
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Figure 5.7: Top-down view of the trajectory performed by the VAE-based controller after one
iteration of training.

5.4.2 Qualitative Results

The qualitative results of the proposed algorithm are shown first. The drone was flown in

the selected six rows mentioned above and the VAE-based controller was trained through the

intervention-based learning method discussed in Section 5.3.1. To visualize the evolution of the

agent policy performance with the training iteration, an open-source SLAM library [201] was

used to plot the drone trajectory in a reconstructed 3D map offline. Since the D435i camera has

a stereo setup and can generate depth images, the depth and RGB images were fused together

with the drone localizations into the SLAM library and generated a point cloud map of the

environment. The raw point cloud was filtered to remove outliers and unrelated points (e.g.,

sky). The ground was identified through the RANSAC algorithm [202] and re-colored for

better visualization. A sample image of the filtered point cloud can be seen in Fig. 5.6. A

top-down view of the drone trajectory in the filtered point cloud map executing the policy after

one iteration of training is provided in Fig. 5.7. The trajectory controlled by the agent policy is

plotted in blue and the human intervention portion is plotted in red. As noticed, the agent policy

learned some skills after one iteration of training but still needed human assistance sometimes

to avoid obstacles and navigate in the field. Based on the experiment, it is found that the

performance improved significantly after three iterations of training. A sample trajectory in

the 3D map after three iterations of training is depicted in Fig. 5.8. It can be clearly seen that

the agent successfully learned how to avoid obstacles and achieved a fully autonomous flight

without human intervention.

To evaluate the generalization performance of the vision-based algorithm in novel environ-

ments, two extra rows were selected from the orchard which the agent had never seen before

during the training. An agent that has been trained to perform well in the training environments

117



Figure 5.8: Top-down view of the trajectory performed by the VAE-based controller after three
iterations of training. The views from the onboard camera at different locations are provided.

Figure 5.9: Top-down view of the trajectory performed by the VAE-based controller in a gener-
alization environment.

is not inherently guaranteed to perform well in a novel environment. There is a necessity to

see its generalization ability. The VAE-based controller trained after three iterations was de-

ployed in these two additional rows. The results confirmed that the agent could fly pretty well

in these novel environments with little human input. A fully autonomous trajectory executing

the VAE-based control in the novel environment is plotted in Fig. 5.9. For supplementary video

see: https://www.youtube.com/watch?v=VPlTaJbdo7U

5.4.3 Quantitative Results

To provide quantitative results and investigate the advantages of the VAE-based controller, the

controller was compared with two baseline algorithms from the literature. 1) The first one
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Figure 5.10: The box plot of human intervention rate against training iterations for all three
controllers.

is a non-neural-network-based controller [66] in which the control policy is trained based on

human-selected visual features and extracted by linear regression. Call it baseline1. 2) The sec-

ond baseline is a neural-network-based controller [69] which includes a compact convolutional

neural network (CNN) to infer the control command and is called baseline2. Both controllers

provide similar reactive behaviors and have demonstrated their performances in the real world.

To make a fair comparison study, the original implementations were slightly modified, so that

both controllers take an input image size of 128x128x3 and output a yaw rate command, sim-

ilar to the proposed VAE-based controller. All three controllers were then trained using the

intervention-based learning method and with the same number of iterations from the human pi-

lot. To further reduce the bias from human awareness, the sequence of executing the controller

was randomly decided in the experiment, therefore the pilot did not know which controller was

being trained.

The human intervention rate during the training process was first calculated for all three con-

trollers and the result is depicted in Fig. 5.10. Each controller was rolled out in the six training

orchard rows for three iterations and the demonstration data was collected from the same human
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Table 5.1: T-Test results for human intervention rate with a significance level α = 10%.

VAE-based vs. Baseline1 VAE-based vs. Baseline2

T-Test iteration 1 iteration 2 iteration 3 iteration 1 iteration 2 iteration 3

t-score 1.3125 3.3187 3.7547 2.8887 3.1981 1.9527

p-value 0.2058 0.00507 0.00274 0.00941 0.00644 0.07458

pilot. The box plot shows the mean and distribution of the human intervention rate with a 95%

confidence interval at different iterations. One can see that the intervention rate decreases as the

training iteration grows for all three controllers. This proves the effectiveness of the proposed

learning framework. Among the three controllers, it is observed that the VAE-based controller

has the lowest averaged intervention rate across all iterations except the first iteration, in which

baseline1 has a slightly lower averaged intervention rate compared to the other two. After three

iterations of training, it is found that the VAE-based controller can keep the intervention rate

below 10% while the other controllers have higher intervention rates and therefore require more

human assistance. To verify the hypothesis rigorously, a t-test was performed to test the signif-

icance of the experiment result. The null hypothesis for the t-test is that the human intervention

rate between the VAE-based controller and the two baselines has no significant difference. The

t-test results are provided in Table 5.1. A significance level α = 10% was selected and a p-value

smaller than α means that the null hypothesis can be rejected. Based on the calculated p-values

and the mean values, it can be concluded that the proposed VAE-based controller outperforms

both baseline controllers with significance.

Next, the fully-trained models over 3 DAgger iterations were taken and used to conduct

additional experiments to evaluate their flight performances in both training and generaliza-

tion environments. Here, the baseline2 model with its pre-trained weights from the original

paper [69] was added into comparison with slight modification on its output, and call it base-

line2 (pre-trained). For the evaluation metric, the average distance flow by the drone before a

failure was selected; a failure in this case means requiring human intervention. To assess the

performances, the experiments were conducted in two selected training environments and two

generalization environments, which the agent had never seen before. The experiments were
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carried out in various weather conditions (i.e., sunny, cloudy, windy), and at different times of

the day (i.e., morning, afternoon). All controllers, including the VAE-based one, were executed

in the field, resulting in ten flights in both training and generalization environments for each

controller type. The flight data was recorded and used to determine the average distance trav-

eled by the agent before a failure, as shown in Figure 5.11. As expected, the performances drop

when deploying the policies in environments and scenes that the controllers had never seen be-

fore. Based on the results, it can be seen that the proposed VAE-based controller achieves better

performance compared to all baselines and can fly a longer distance before human intervention

is needed. The conclusion remains true for both training and test environments, a manifestation

of the good generalization capability of the proposed controller. Actually, during the flight ex-

periments, it was noticed that the VAE-based controller could navigate the drone autonomously

most of the time, while the other baseline algorithms required extensive human assistance. A

discussion on why the VAE-based controller performs better is provided in Section 5.5. It is

also observed that the pre-trained baseline2 did not perform well in the experiments, which

may be due to the reason that it relies on line-like features to navigate and such kind of features

are missing in this particular environment.

The processing time for each algorithm running on the embedded computer was calculated

and presented in Table 5.2. The baseline2 (pre-trained) was dropped in this comparison since

it shares a similar structure with baseline2. Note that all neural network parts were recompiled

and accelerated by TensorRT on the device. The computer vision part of baseline1 also utilized

onboard GPU to accelerate. From the table result, it’s easy to see that both neural network-based

methods (i.e., baseline2 and VAE-based) process the image and generate an inference output

faster than the regression-based method in baseline1. The reason is that baseline1 needs to

explicitly extract visual features such as optical flow from the raw image; hence the computation

time is expected to be higher than the other two approaches. Baseline2 runs slightly faster than

the proposed VAE-based controller due to its more compact network structure. Both of them

can run on the onboard computer in real-time, although baseline1 intermittently triggered a

timeout warning.

The controller performance was further evaluated under a velocity change. Considering
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Figure 5.11: Average distance traveled before a failure for all controllers in training and gener-
alization environments.

all the training was performed at the same forward speed, the forward speed was increased

incrementally from 0.6 m/s to 0.8 m/s and 1.0 m/s in the generalization environments, and the

performance was compared among all controllers. The baseline2 (pre-trained) was dropped

here because its human intervention rate was too high even at the nominal speed. Increasing

the speed to a much higher value is possible but gives the human pilot too little time to provide

recovery maneuvers; therefore the speed was only tested up to 1.0 m/s. All models trained after

three iterations were taken and executed to fly the drone in two generalization environments;

with two flights in each environment. This provided four trails at each speed value and the

results are shown in Fig. 5.12, which present the average distance flown by the drone without a

failure against the speed changes. As expected, more failures occurred when the speed increased

and, as a result, the distance traveled by the agent became shorter, and more human interventions

Table 5.2: The onboard processing time comparison.

Processing time per frame (ms)

Baseline1 34.10±4.13

Baseline2 2.43±0.17

VAE-based 2.85±0.19
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Figure 5.12: Average distance traveled before a failure under different forward speeds.

were required. However, it is found that the VAE-based controller still generalized well to a

speed change and achieved a better result compared to the baselines. The results demonstrate

that the proposed VAE-based is robust to speed changes and delivers good performance even

though it has never experienced these speeds during the training.

5.5 Discussion
The proposed framework does not require explicit perception-plan-control task decomposition

and therefore saves a lot of resources and computational time. It provides a reactive visuomotor

policy directly learned from human expert experience and can reliably control a drone from a

single forward-looking camera. Based on the experiment results, the VAE-based controller can

navigate the drone quite well and lead to no collisions after only three iterations of training. A

discussion on why the VAE-based controller may outperform the existing baselines is provided

as the following.

The histograms of human demonstration data distribution against the agent prediction are

plotted in Fig. 5.13. The horizontal axis represents the normalized control command while the

vertical axis shows the probability density of the human pilot commands against the model pre-

dicted commands on the training dataset. Regarding the behaviors of the baseline2 controller

against the VAE controller, it is observed that the distribution of the baseline2 controller almost
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coincides with the human distribution, which indicates that the baseline2 controller overfits the

training data. It explains why baseline2 controller does not generalize well to novel environ-

ments when the distributions become different. Regarding the performance of the baseline1

controller vs. the VAE-based controller, since a linear regression method is used to calculate

the weight for baseline1 controller, the shape of the predicted control command looks more

conservative and concentrates in the middle region compared to the other two neural network-

based controllers. This hampers the baseline1 controller;s ability to generate aggressive (large)

enough commands when the UAV needs a large yaw angular rate command in some maneuvers.

The VAE-based controller, on the other hand, balances the distribution variance and the fitting

performance, therefore outperforming the other two methods.

The proposed VAE-based controller can navigate the drone autonomously in the field most

of the time and knows how to avoid obstacles correctly. However, the controller is definitely not

perfect and it encounters some challenges when flying in certain locations. The main lessons

learned during the experiments are discussed next. It’s observed that the controller is more likely

to fail when some trees are missing on the side. In that case, the orientation of the row path

becomes confusing to the drone (see Fig. 5.14(a)). This happened to some of the experiments

and a human-pilot takeover was required to pull the drone back in the right direction. A second

case in which the performance dropped is when the drone would approach the end of the row

(see Fig. 5.14(b)). The visual features for navigation are sparse at the row exit and the policy

output tends to become unreliable. Currently, it was switched back to manual mode when the

drone crossed the last pair of trees and landed it. These failure cases will be considered in future

work to improve the proposed vision-based algorithm. A possible solution is to add a memory

to the agent so that the generated heading command will not change too aggressively under

these circumstances. A virtual end target can also be attached to the mission which allows the

agent to exit the row properly.

Another thing noticed is that ideally, the learning performance should keep improving as

more data are collected from humans and the training datasets grows over multiple training it-

erations. However, in practice, the human pilot has difficulty in judging whether the decision

made by the agent will lead to a collision or not, particularly at the iterations when the agent
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(a) (b)

(c)

Figure 5.13: Histogram of human demonstration compared to the model prediction. The hori-
zontal axis is the normalized control command and the vertical axis is the probability density.
The model prediction comes from (a) baseline1 controller, (b) baseline2 controller, and (3)
VAE-based controller.

policy has already learned some good skills. Besides, it was observed that the pilot tended to

wait and see how the agent would perform, and not intervene until the agent was about to crash

into an obstacle. The data collected from these locations is inconsistent with the majority dis-

tribution. As a result, re-training the policy with these data may degrade the agent performance

and cause the learning process to become open-ended. Several experiments were conducted in

the field and it was empirically found that the pilots are able to provide accurate and good per-

formance in up to three iterations. Therefore, the training process terminated at three. There are

certain challenges to be considered when a human teacher is in the learning loop because hu-
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(a) (b)

Figure 5.14: Locations where the policy is more likely to fail (a) missing trees on the side; and
(b) at the end of the row.

mans can be inconsistent and make mistakes. To improve consistency in human demonstrations

and evaluations across multiple iterations, a computer-aided module can be added to determine

when intervention is necessary.

Currently, the trained policy cannot be deployed ‘zero-shot’ to other platforms with different

sizes and dynamics. This is because the human demonstrations are collected from a specific

drone and the same control input may not be applicable to another drone with a different mass

and inertia. One possible solution is to train a robust low-level controller with an adaptive

module similar to the one presented in [203]. In this way, the controller can be transferred to

other drones more easily during the deployment phase.

5.6 Summary
In this work, a vision-based navigation policy was presented which enables a UAV to fly in

complex and GPS-denied environments autonomously. The policy is based upon a variational

autoencoder neural network which extracts latent information from the image data of a front-

mounted camera and generates a reactive yaw rate command. An intervention-based learning

approach was adopted to train the control policy using human experience to guide the learn-

ing process. This approach involves human pilots intervening in the agent’s policy in real-

time to provide safe corrections during rollout. By doing so, they can efficiently provide new

demonstrations and observe the impact of their feedback as the incremental learning process
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progresses. The performance of the navigation policy has been demonstrated in a real orchard

environment. The results show that the proposed VAE-based controller can fly the UAV a

longer distance with less human assistance requirements compared to the existing baselines and

the controller generalizes well to novel environments and speed changes.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions
Several conclusions can be made in this dissertation:

In Chapter 2, the study examined the ground effect on small quadcopters and a model ref-

erence adaptive controller was developed to mitigate this effect in the control architecture. The

experimental results reveal that the thrust generated by rotors to hover in the sky has a linear

relation with the distance from the ground surface, which switches to a quadratic function when

the separation distance between rotors is large enough. The proposed MRAC-based control

architecture, which combines an LQR feedback + feedforward attitude controller with a PID +

MRAC position controller, outperformed a traditional PID controller in terms of altitude track-

ing. Specifically, the adaptive controller reduced the rise time by at least 80% compared to a

pure PID controller, enabling the vehicle to reach the target altitude during taking-off and land-

ing in a timely manner. Furthermore, the study found that the MRAC with RBFs had better

performance than the MRAC with a linear model, achieving a 45% smaller mean square error

and a 15% shorter rise time. These findings suggest that the MRAC-based control architecture

is an effective approach for mitigating the ground effect on small quadcopters and improving

their altitude tracking performance.

Chapter 3 focused on identifying the wind effect on multirotor UAV dynamics near a hov-

ering condition using a data-driven approach. In the flight experiment, the wind was directly

measured by a wind sensor and treated as one of the control inputs into the linearized state-space
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model of an octocopter UAV. The coefficients in the state-space model were identified using a

system identification approach in the frequency domain and their changes were compared under

different wind speeds. The results regarding eigenvalues and dynamics modes show that when

a multirotor UAV is hovering under a windy condition, either with a light or strong wind, its

dynamics characteristics are significantly affected by the wind. The validation results in the

time domain demonstrated that by explicitly considering the wind effect, the prediction error

on the acceleration and angular velocities can be reduced by 15% on average. These findings

offer unique insights into the effects of wind on multirotor UAV dynamics and can provide

a valuable foundation for designing and developing model-based flight control systems. The

approach can help improve the accuracy and reliability of multirotor UAVs in challenging out-

door environments and ultimately contribute to advancing the capabilities of autonomous aerial

systems.

In Chapter 4, an imitation learning framework was presented and the comparisons were

made among several vision-based control policies for the task of UAV autonomous navigation

in complex outdoor environments. Training the agent in simulation allows us to demonstrate the

capability of the developed framework and avoid unnecessary losses before deploying it in the

real world. An intervention-based learning framework was introduced to train a vision-based

UAV capable of flying inside complex and GPS-denied riverine environments in simulations.

The performance of a VAE-based controller with a linear regression-based controller and an

end-to-end neural network controller trained with human demonstrations were compared in the

simulation environments. The results show that the VAE-based controller outperforms the other

two controller types in both training and testing processes and is able to navigate the UAV

autonomously.

In Chapter 5, the proposed vision-based policy was validated on a custom-built quadcopter

platform and its performance was demonstrated in a real orchard environment. The policy

was based upon a variational autoencoder neural network to extract latent information from

the image data of a front-mounted camera and generate a reactive yaw rate command. The

intervention-based learning approach was used to train the control policy from human experi-

ence and guide the learning process. Human pilots could transfer their knowledge to the learning
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agent through interactions and were able to observe the effect of their feedback throughout the

incremental learning process. The results show that the developed VAE-based controller can

fly the UAV a longer distance with less human assistance requirements compared to the exist-

ing baseline algorithms, and the controller generalizes well to novel environments and speed

changes, enabling a UAV to fly in complex and GPS-denied environments more effectively and

efficiently.

6.2 Future Work
In the study of ground effect, the main focus was on the altitude tracking performance of the

multirotor, as this is the most significantly affected parameter. However, it’s worth noting that

ground effect can also affect longitudinal and lateral movement, especially when the UAV has a

non-zero attitude angle. To overcome the model uncertainty, future research can consider adding

model reference adaptive controllers to the longitudinal and lateral directions. Additionally, the

attitude control of multirotor can be further improved by incorporating a full state feedback

controller with attitude command error feedback terms.

This work provides an initial step towards the systematic understanding of wind effects on

multirotor UAVs. To gain a comprehensive understanding, a multi-pronged methodology can

be taken in future research. First, physical-based models can be combined with system identifi-

cation results to analyze the effects of wind. For example, explicitly calculating blade flapping

and induced drag from existing literature and comparing these results with flight experiment

data can help identify discrepancies and improve existing models. Second, conducting forced

oscillation wind tunnel experiments can benefit the identification process by systematically in-

jecting winds with proper spectral content. A similar frequency swept wind can be generated in

the wind tunnel to help identify the wind effects on multirotor UAVs more precisely.

For the vision-based control tasks, several future directions can be explored to further im-

prove the system. One important direction is to incorporate low-level control and the UAV

dynamics in the design process to make the learned policy more generalizable to different plat-

forms. An adaptive module can be designed to transfer the policy to UAVs with different sizes

and dynamics. In addition, the robustness of the controller can be improved by investigating
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common failure situations and incorporating the ability to handle dynamic environments with

moving objects. Currently, the image data used to train the VAE network are collected by

humans, which can be time-consuming and labor-intensive. To address this, a ground robot

equipped with a camera can be used to collect data automatically. This will reduce the need for

human labor and enable more efficient data collection. Another limitation of the current system

is the need for human intervention when the agent displays unsafe behaviors. To overcome this,

a recovery planning module can be designed to enable the agent to automatically recover from

unsafe states and continue the mission without human assistance. Taken together, these future

directions have the potential to enhance the value and significance of the research presented in

this dissertation.
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Appendix A

MRAC for MIMO System

Consider the linear system equation in the form of:

ẋ(t) = Ax(t)+B(u(t)+ f (x)) (A.1)

where f (x) is the matched uncertainty in the system and is a linear combination of N known

locally as Lipschitz-continuous basis function, Φ(x), with unknown constant coefficient, Θ:

f (x) = Θ
T

Φ(x) (A.2)

Define the reference model as:

ẋre f (t) = Are f xre f (t)+Bre f r(t) (A.3)

which characterizes the desired behavior of the closed-loop system. Are f is a Hurwitz matrix

and r(t) is the external reference signal. The goal of MRAC is to let the closed-loop system

states track the reference signals. Define the state tracking error as:

e(t) = x(t)−xre f (t) (A.4)

and the error should asymptotically converge to zero. The controller can be designed as:

u(t) =
(
KT

x x(t)+KT
r r(t)

)
− Θ̂

T
Φ(x) (A.5)

where KT
x x(t)+KT

r r(t) corresponds to the feedback + feedforward part, and −Θ̂T Φ(x) is the

adaptive part compensating for the model uncertainty with estimated parameter Θ̂. The follow-
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ing matching conditions should be satisfied in order to achieve the desired reference behavior:

A+BKT
x = Are f

BKT
r = Bre f

(A.6)

Neglect ·(t) and ·(x) for simplifications. The estimated parameters are generated online through

the inverse Lyapunov analysis. Consider a globally radially unbounded quadratic Lyapunov

function in the form of:

V (e,∆Θ) = eT Pe+ trace
(
∆Θ

T
Γ
−1
Θ

∆Θ
)

(A.7)

where ∆Θ = Θ̂−Θ represents the parameter estimation error and ΓΘ is the adaption rate. P

satisfies the algebraic Lyapunov equation as follows:

AT
re f P+PAre f =−Q (A.8)

where P and Q are symmetric and positive definite matrices. Since the derivative of the tracking

error can be calculated as:

ė = ẋ− ẋre f

= Ax+B
(
KT

x x+KT
r r− Θ̂

T
Φ+Θ

T
Φ
)
−Are f xre f −Bre f r

= (A+BKT
x )x−Are f xre f +BKT

r r−Bre f r−B∆Θ
T

Φ

= Are f e−B(∆Θ
T

Φ)

(A.9)

Then the lie derivative of V is equal to:

V̇ = ėT Pe+ eT Pė+2trace
(

∆Θ
T

Γ
−1
Θ

˙̂
Θ

)
= eT (Are f P+PAre f )e−2eT PB(∆Θ

T
Φ)+2trace(∆Θ

T
Γ
−1
Θ

˙̂
Θ)

=−eT Qe+2[−eT PB(∆Θ
T

Φ)+ trace(∆Θ
T

Γ
−1
Θ

˙̂
Θ)]

(A.10)

Use the property of vector trace identity:(
eT PB

)(
∆Θ

T
Φ
)
= trace

((
∆Θ

T
Φ
)(

eT PB
))

(A.11)

The equation can be rewritten as:

V̇ =−eT Qe+2trace(∆Θ
T
[
Γ
−1
Θ

˙̂
Θ−ΦeT PB

]
) (A.12)
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The adaptive law can be designed as:

˙̂
Θ = ΓΘΦeT PB (A.13)

and therefore the derivative of V is globally negative semi-definite:

V̇ =−eT Qe≤ 0 (A.14)

All signals in the closed-loop system remain uniformly bounded in time.
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Appendix B

Equations of Motion for Multirotor UAV

Consider the Newton-Euler equations in body frame:

F = m
(
V̇+ω×V

)
(B.1)

M = Iω̇ +ω× (Iω) (B.2)

where F and M are the external forces and moments acting on the vehicle. m is the mass

weight, V = [u, v, w]T is the body velocity vector, ω = [p, q, r]T is the angular velocity vector,

I = diag(Ixx, Iyy, Izz) is the moment of inertia matrix. The equations can be expanded as:
u̇

v̇

ẇ

=


rv−qw

pw− ru

qu− pv

+
1
m


X

Y

Z

 (B.3)


ṗ

q̇

ṙ

=


Iyy−Izz

Ixx
qr

Izz−Ixx
Iyy

pr
Ixx−Iyy

Izz
pq

+


1

Ixx
0 0

0 1
Iyy

0

0 0 1
Izz




L

M

N

 (B.4)

with external forces F = [X , Y, Z]T and external moments M = [L, M, N]T . Define [PN , PE , PD]
T

as the position vector in inertial frame and [φ , θ , ψ]T are the corresponding Euler angles. By

slightly abusing the notations (e.g., sφ = sinφ , cθ = cosθ , tψ = tanψ), we have the relations:
ṖN

ṖE

ṖD

=


cθ cψ sφ sθ cψ − cφ cψ cφ sθ cψ + sφ sψ

cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ

−sθ sφ cθ cφ cθ




u

v

w

 (B.5)
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φ̇

θ̇

ψ̇

=


1 sφ tθ cφ tθ

0 cφ −sφ

0 sφ/cθ cφ/cθ




p

q

r

 (B.6)

The equations of motion can be linearized at equilibrium conditions which will produce a

6-DOF model in the form of:
Mẋ = Fx+Gu

y = H0x+H1ẋ
(B.7)

where x = [u, v, w, p, q, r, φ , θ , ψ]T is the state vector, and u = [δlat , δlon, δyaw, δthr]
T

is the control input vector. M is an identify matrix, F is the stability derivative matrix, and

G is the control derivative matrix. Denote the dimensional stability derivatives and dimen-

sional control derivatives in subscript notations (e.g., ∂X
∂v = 1

mXv and ∂X
∂δlon

= Xlon) and with

[U0, V0, W0, φ0, θ0]
T being the trim conditions, the matrices can be written as:

F =



Xu Xv Xw Xp Xq−W0 Xr+V0 0 −gcθ0 0
Yu Yv Yw Yp+W0 Yq Yr−U0 gcφ0cθ0 −gsφ0sθ0 0
Zu Zv Zw Zp−V0 Zq+U0 Zr −gsφ0 cθ0 −gcφ0sθ0 0
Lu Lv Lw Lp Lq Lr 0 0 0
Mu Mv Mw Mp Mq Mr 0 0 0
Nu Nv Nw Np Nq Nr 0 0 0
0 0 0 1 sφ0 tθ0 cφ0 tθ0 0 0 0
0 0 0 0 cφ0 −sφ0 0 0 0
0 0 0 0 sφ0/cθ0 cφ0/cθ0 0 0 0


, G =


Xlat Xlon Xyaw Xthr
Ylat Ylon Yyaw Ythr
Zlat Zlon Zyaw Zthr
Llat Llon Lyaw Lthr
Mlat Mlon Myaw Mthr
Nlat Nlon Nyaw Nthr

0 0 0 0
0 0 0 0
0 0 0 0

 (B.8)

H0 and H1 are the measurement matrices, allowing the measurement vector y to be expressed

in terms of the state vector x and its derivative ẋ, and y = [u, v, w, p, q, r, ax, ay, az]
T .

H0 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 W0 −V0 0 gcθ0 0
0 0 0 −W0 0 U0 −gcθ0 0 0
0 0 0 V0 −U0 0 0 gsθ0 0

 , H1 =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (B.9)

By augmenting the model with the extra first-order dynamic terms, the new state vector and

control vector become:

x = [u, v, w, p, q, r, φ , θ , ψ, δ
′
lat , δ

′
lon, δ

′
thr]

T

u = [δlat , δlon, δyaw, δthr]
T

uw = [δ w
lat , δ

w
lon, δ

w
thr]

T

(B.10)
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where u is the control input from flight control system, and uw is the contribution from wind,

modeled as an additional input. The first-order dynamics has the form of:

δ ′(s)
δ (s)

=
1

Tas+1
(B.11)

where Ta is the identified time constant. Moreover, the time delay in each control axis is explic-

itly included in the state-space model to account for unmodeled high-frequency dynamics. The

final state-space model has the formula of:

Mẋ = Fx+Guu(t− τu)+Gwuw(t− τw)

y = H0x+H1ẋ
(B.12)

F =



Xu Xv Xw Xp Xq−W0 Xr+V0 0 −gcθ0 0 Xlat Xlon Xthr
Yu Yv Yw Yp+W0 Yq Yr−U0 gcφ0 cθ0 −gsφ0sθ0 0 Ylat Ylon Ythr
Zu Zv Zw Zp−V0 Zq+U0 Zr −gsφ0cθ0 −gcφ0sθ0 0 Zlat Zlon Zthr
Lu Lv Lw Lp Lq Lr 0 0 0 Llat Llon Lthr
Mu Mv Mw Mp Mq Mr 0 0 0 Mlat Mlon Mthr
Nu Nv Nw Np Nq Nr 0 0 0 Nlat Nlon Nthr
0 0 0 1 sφ0 tθ0 cφ0 tθ0 0 0 0 0 0 0
0 0 0 0 cφ0 −sφ0 0 0 0 0 0 0
0 0 0 0 sφ0/cθ0 cφ0/cθ0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1/Ta 0 0
0 0 0 0 0 0 0 0 0 0 −1/Ta 0
0 0 0 0 0 0 0 0 0 0 0 −1/Ta


(B.13)

Gu =



0 0 Xyaw 0
0 0 Yyaw 0
0 0 Zyaw 0
0 0 Lyaw 0
0 0 Myaw 0
0 0 Nyaw 0
0 0 0 0
0 0 0 0
0 0 0 0

1/Ta 0 0 0
0 1/Ta 0 0
0 0 0 1/Ta


, Gw =



Xw,lat Xw,lon Xw,thr
Yw,lat Yw,lon Yw,thr
Zw,lat Zw,lon Zw,thr
Lw,lat Lw,lon Lw,thr
Mw,lat Mw,lon Mw,thr
Nw,lat Nw,lon Nw,thr

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


(B.14)

where Gu and Gw are the control derivative matrices with respect to the controller and the wind,

respectively.
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