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Effect of Electronic Transition Dynamics on 

Iodine Atom Recombination in Liquids 

Domenic P. Ali and William H. Miller 

Department of Chemistry, and Materials and Molecular Research Division, 
Lawrence Berkeley Laboratory, University of California, 

Berkeley, California 94720 

Abstract 

The Langevin stochastic trajectory model used by Hynes, Kapral, and 

Torrie [J. Chem. Phys. 72, 177 (1980)] to describe secondary recoinbina-

tion of iodine atoms in solution has been generalized to allow for 

electronically inelastic transitions between the ten I-I potential 

curves that dissociate to ground state iodine atoms. The electronic 

transitions are treated via the Miller-George version of the Tully-

Preston surface hopping model. The main qualitative result is that 

electronically inelastic processes substantially slow down the rate 

(and ultimate probability) of recombination. It is also seen that 

the electronic inelasticity changes from being strong at large r, 

where an essentially Boltzinann distribution over the various 

electronic states is maintained, to being weak at small r, where the 

distribution is far from Boltzmann. 
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I. 	Introduction. 

Since the earliest experiments by Noyes and co-workers 1  on iodine 

recombination in liquids, an extensive interest has developed in the 

study of reconibination reactions. Iodine reconibination has been 

studied in a variety of so1vents,2614  and there have alsobeen a 

9-11 
number of experimental 

7-8 
 and theoretical 	studies of the process 

in the gas phase. Of particular importance are the picosecond 

experiments26"4  which allow one to study the short time scale inherent 

in these reactions. 

Since recombination is perhaps the simplest "chemical reaction" 

that one can study in liquids, it has attracted considerable theoretical 

attention. Studies have included molecular dynamics simulations 1214  

and stochastic trajectory, 1516  or Langevin approaches. While molecular 

dynamics is relatively common nowadays, the computational effort involved 

is considerable in following the specific dynamics of each individual 

particle in the system. The Langevin approach is much easier to employ 

and can describe longer time behavior, but it incorporates many more 

approximations whose validity is difficult to ascertain. There are thus 

many fundamental theoretical questions about the dynamics of recombination 

in liquids that merit further investigation. 

The present work follows closely the Langevin stochastic 

trajectory model of Hynes, Kapral, and Torrie, where the focus is 

on secondary recombination 17  of the iodine atoms; i.e., one considers 

the iodine atoms that, after photo-excitation of 12,  have separated 

to a distance of 	4-6 A, from which they either recombine (on a 

time scale of " 10-30 picoseconds) or dissociate permanently. 
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(Primary recombination of the atoms immediately after the excitation 

takes place within a picosecond and is typically obscured by the 

exciting laser pulse.) In their Langevin simulation Hynes, et al., 

considered motion of iodine atoms only on the ground electronic 

potential curve of 12,  although they noted that the other electronic 

states which dissociate to ground state iodine atoms should also be 

taken into account. Figure 1 shows the ten diatomic potential curves 

of 12 that arise from two 2P312  iodine atoms, 18  and one sees that 

at '\. 4-6 A they are all within kT of each other, suggesting that 

electronic transition between them should be facile in this region. 

Previous work dealing with the question of electronic transitions 

in iodine recombination includes that of Bunker, 9  who discussed it 

only on statistical grounds, and that of Martire and Gilbert, 16  who 

used a Folker-Planck equation which included rate constants for 

transitions between the various electronic states of I2  In their 

actual calculations Martire and Gilbert assumed only one electronically 

excited state, and the rate of transitions between it and the ground 

state was varied in order to obtain agreement with experiment. While 

this was a good start of dealing with the effects of electronic 

transitions, one would like to have a less phenomenological approach 

that is also tractible enough to allow practical calculations. 

In the present paper we follow the Langevin stochastic trajectory 

approach of Hynes, etal., but generalize it to incorporate the 

effects of electronic transitions between the various potential curves 

(i.e., electronic states) of 12•  Stecifically, we utilize the Tully- 

19 
Preston surface-hopping model 	to allow for localized hops from 

one potential curve to another, with the electronic transition 

probability determined by the generalized Stiickelberg model of Miller 
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and George. 2°  Since the surface-hopping model is typically formulated CY 

in a probabilistic framework--i.e., a "hop" from the current electronic 

state is made or not by comparing the electronic transition probability 

to a random number--it is relatively easy to include it in the stochastic 

traj ectory simulation. 

Section II describes the surface-hopping Langevin trajectory 

model as we employ it, and the results of our calculations are 

discussed in Section III. If electronic transitions between all the 

states were extremely facile, one would expect the relative population 

on each potential curve to be a Boltzmann distribution; since this is 

an important limiting case, results based on assuming a Boltzmann 

distribution over the electronic states are also presented in Section 

III and compared to those of the surface-hopping Langevin model. Very 

interesting differences are seen. Section IV summarizes our 

conclusions. 
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II. The Surface-Hopping Langevin Trajectory Model. 

Following Hynes et al.,' 5  we describe the relative motion of 

two iodine atoms by a Langevin equation, 

- 

dt r(t) = p/p (2. la) 

d - - 	 - 	- P(t) = - V V(r) - 	p + R(t) 	 (2.lb) 

1. 

-3. 

where r is the relative coordinate vector, p the conjugate momentum, 

V(r) the potential function for the I-I interaction, 	the friction 

-3. 

constant, and R(t) the random force exerted by the surrounding 

solvent molecules. (The approximations inherent in describing a 

dynamical system via a Langevin equation have been discussed by 

Deutch and Oppenheim; 21  basically, it is necessary that correlations 

between solvent molecules decay much faster than the rate of solute 

velocity relaxation, and Hynes et al., have argued that these conditions 

are reasonable for iodine recombination if the solvent molecules 

are light.) 

All the aspects of the Langevin model are the same as in the work 

of Hynes, etaL: 	e.g., (t) is assumed to be gaussian random, its 

correlation function is related to the friction coefficient through 

the fluctuation-dissipation theorem, 22  

-3. 	-3- 

2 	5(t) = <R(t)•R(o)> 	, 	(2.2) 

and the friction constant is related to the self-diffusion constant 

D0  by 



kT 

	

= 2D 	
. 	 (2.3) 

According to Enskog theory 23  the temperature dependence of D is T112 , 

so one has 

D0 (T) = D0(300)(T/300)1"2 	, 	 (2.4) 

and D0 (300) is taken as 

	

D0 (300) = lO 	cm2/sec 

For other specifics of the Langevin model we refer the reader to 

Hynes, et al.. Also, a good general discussion of Langevin equations 

is that by Chandrasekar. 24  

As noted in the Introduction, the new aspect of the present 

work is that we allow the potential function V(r) (i.e., the electronic 

state) for the two iodine atoms to change during the Langevin trajectory 

according to the surface-hopping model. (Hynes, et al., also include 

in V(r) a "caging potential" which includes the average effect of 

the solvent on the I-I interaction; since its effect is rather small 

and since our interest here is in investigating the effect of electronic 

transitions between the different I-I potential curves, we ignore 

this term in the present work.) Within the Niller-George 2°  version 

of the surface-hopping model, 19  an electronic transition from state 

i to state j is localized to the time (or times) at which AV. 13  (t) = 

E IV.(t)-V.(t)I passes through a local minimum as a 

function of t; if t 0  is such a time, then the probability of the 
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i-j transition is given approximately by 

P.. 	exp(- 	(V •/h)(2iW.. 	i 
/V )l/2] (2.5) 

3  4-1 3 iJ 	ij 	j 

where 

IV.. 
13  =iV ii 

.(t0) 

LV.. 
13 = V ij (t 0  ) 

For the present application the potential curves {V.(r)} for the 

various electronic states (see below for their specific form) 

are such that 

V(r) - 

is a monotonically decreasing function of r for all i and j; thus 

E ExV.(r(t)) passes through a local minimum only when r(t) 

experiences an outer turning point, i.e., when 

r(.t 0 ) = 0 
	

(2.6a) 

and 

r(t0 ) < 0 	. 	 (2.6b) 



so 

This happens whenever the trajectory experiences a sufficient "kick" 

from the random force that the separating I atoms are turned around 

and headed back towards each other. Furthermore, this means that 

a local minimum occurs in 1V..(t) simultaneously for all possible 

final electronic states j. 

The way the surface-hopping model works, therefore, is that one 

begins in electronic state i, say, and thus integrates the stochastic 

trajectory, Eq. (2.1), with V(r) = V.(r); when r(t) experiences an 

outer turning point, i.e., Eq. (2.6) occurs, one calculates the 

probability (via Eq. (2.5), and see below) of "hopping" to other 

electronic states j, and makes a "hop" by comparing these probabilities 

to random numbers; if a hop is made to electronic state j, then one 

continues integrating the stochastic trajectory with V(r) = V.(r), 

until r(t) experiences another outer turning point, at which point 

another "hop" is allowed, etc. 

There is one significant modification we need to make in the above 

discussion: the transition probability given by Eq. (2.5) applies to 

an isolated I-I collision and thus satisfies the relation 

P 	=P 	. 	. 	 (2.7) 

	

j4-i 	j4-j 

The Langevin model, however, describes the I-I system in interaction 

with a thermal bath; we thus use Eq. (2.5) to calculate the probability 

of de-excitation transitions i-j, and then invoke detailed balance 

to obtain the probabilities of excitation transitions: 

-f3(v.-V.) 

	

P .=(g/g)P 	e 	3 
j•]. 	 i+.j 
	1 	

, 	 ( 2.8) 



where V. < V. are the electronic energies at the time of transition, 
1 	3 

and g  and g. are the degeneracies of states i and j. Detailed 

balance has the effect that after many transitions a Boltzmann 

distribution over the states would result if the energies {v} were 

constant. Also, the Itprimitive  semiclassical transition probabilities 

given by Eqs. (2.5) and (2.8) are not normalized as they stand, i.e., 

do not satisfy conservation of probability, so they are modified as 

follows, 

	

j+inormalized 
P 4j/ Z P. 	 (2.9) 

k 

in order to do so. 

One particularly interesting limit of this model to consider is 

that in which transitions between electronic states are much faster 

than the relative I-I motion, for all values of r. If this were true, 

then the electronic states would maintain themselves in a Boltzmann 

distribution for all values of r, and the effective I-I potential V(r) 

in the Langevin equation, Eq. (2.11), would be simply the Boltzinann 

average of the potential functions V.(r), 

- 	 -V. (r) 	 -V. (r) 
V(r) = L gV.(r) e 	

1 	
/ 	g. e 	

1 	(2.10) 

We have thus carried out the Langevin stochastic trajectory calculation 

using this average I-I potential function in order to compare it to 

the results of the surface-hopping model. It is clear that it is 

much simpler in practice to use one average potential function rather 
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than to deal with the dynamics of transitions between several different 

potentials, so it is important to see how the results of using this 

thermally averaged potential compare with those of the more dynamically 

correct surface-hopping model. 

For the potential functions we have been used a standard Morse 

potential, 

= De[e V1  (r) 	
-2cL(r-r ) - 2e -c(r-r ) e 	 e] 	

(2.11) 

with 

D = 5.7144 x 102  hartrees 

= 0.98819 a0  

r 	= 5.03962 a0  
e 

for the ground electronic state, and all the others are described as 

quadrupole-quadrupole interactions 18 

V.(r) = C./r5 	, 	 (2.12) 

i=2,...,10; the constants C. are given in Table I, along with their 

symmetry labels and degeneracies. Since we only heed to follow the 

I-I dynamics for r > 4 A (see next section), this description of the 

excited state potential functions should be a reasonable approximation. 

Of the ten states, five are repulsive and five attractive. 

Finally, we note one simplifying modification we made in carrying 

out the surface hopping calculations. It was assumed above that 

AV 
1J 

E IV 
1  .(r) - V 3  

.(r)I is a monotonically decreasing function of 
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r for all states i and j, so that V..(t) has a local minimum--and thus 

electronic transitions occur--only at an outer turning point of the 

r(t) motion. One sees in Figure 1, however, that this is not true if 

state i or j is the ground electronic state and r > 6 A. Thus for 

r > 6 A there is the possibility of electronic transitions other than 

at an outer turning point, but we have ignored them in our calculations. 

While it would certainly have been possible to include them in the 

surface-hopping description, the results are essentially unchanged by 

their neglect. This is because electronic transitions are already 

very facile for r > 6 A, generating a Boltzmann-like distribution over 

the electronic states (see next section), so that including even more 

electronic transitions in this region of r would not change the 

situation. 



-12-- 

III. Results and Discussion. 

The stochastic trajectories are begun at I-I internuclear distance 

r0 , in electronic state i, with the momentum p selected at random from 

a Boltzmann distribution. We have used two different initial distances 

= 5.5 A and 6.67 A, to assess this effect on the results, and in 

addition to T = 300 °K have also carried out the calculations for 

T = 5000 and 7000.  There is only on a small effect (a few %) on the 

results of choosing different initial electronic states. 

Similar to Hynes et al., we choose inner and outer cut-off points 

for the trajectory to determine when the iodine atoms have either 

recombined or permanently separated respectively; these values are 

4 A and 12 A, respectively. Recombination is said to have occurred, 

therefore, if r(t) reaches the value 4 A and the electronic state is 

the ground state; at this point the iodine atoms are drawn essentially 

monotonically inward, and the electronic energy gap to other states 

is sufficiently large that no further transitions occur. Trajectories 

are followed until r(t) reaches one of these cut-off points, up to a 

total time of 150 psec; 99% of the trajectories have reached one of 

the cut-of fs by this time limit. Specifics of the numerical integration 

procedure are discussed by Turq, Lantelme, and Friedman. 25  

Before discussing the major results, it is useful to note that 

within the present model there is a qualitative correspondence between 

the collision frequency of 12  in the liquid and the number of outer 

turning points that the relative I-I motion experiences (which is also 

the number of opportunities the I-I system has to make an electronic 

transition). Thus the collision frequency can be estimated by26  

Z = Z g  g(r) 	11 
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where Zg  is the gas phase collision frequency and g(r) the radial 

distribution function at contact. Typical values give a collision 

frequency that varies from 'v  20 to 30 collisions per picosecond as T 

varies from 300 °K to 700 ° K, while the average number of outer classical 

turning points in our stochastic trajectory surface-hopping calculations 

varies from 1,  20 to 25 over this temperature range. 

Figure 2 shows the principal results of the paper, the probability 

P(t) that the iodine atoms have not recombined by time t. All three 

curves result from a Langevin stochastic trajectory calculation, the 

one labeled G being the result of Hynes et al., that used the ground 

state I-I potential curve, that labeled T the result of using the 

thermally average potential curve, Eq. (2.10), and that labeled S the 

result of allowing V(r) to change to the various potentials {V(r)} 

according to the semiclassical surface-hopping model. The first 

qualitative observation is that both curves T and S, which include the 

effects of electronically excited states, give less recombination, and 

this is easy to understand: recombination can only take place on 

the ground state potential, so any transitions out of the ground 

electronic state will lead to less recombination, i.e., more dissociation. 

One sees, however, that the surface-hopping model (curve S) produces 

a larger correction to the ground state results (curve G) than does use 

of the thermally averaged potential (curve T); i.e., the surface-hopping 

model yields even less recombination than does the thermally averaged 

potential. This also has a simple explanation: at relatively large 

values of r, where the potential curves are close together, electronic 

transitions between the states are facile and do essentially produce 

a relative Boltzinann distribution among the states, but when r decreases 

the separation of the ground state potential from the others makes 
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transitions into or out of the ground electronic state improbable; 

thus the approximate Boltzmann distribution over electronic states 

at large r is 'rozen in"as r decreases, and this means that the 	 - 

surface hopping model produces less population in the ground electronic 

state at small r than that given by assuming a Boltzrnann distribution 

at small r. With less population in the ground state at 

small r, the surface hopping model thus gives less recombination 

than the thermally averaged potential model. 

To see more clearly that this interpretation is correct, we show 

in Figure 3 the average relative population of the different electronic 

states that results from the surface-hopping calculation (points 

connected by solid line), compared to a Boltzmann distribution (broken 

line). Figure 3A is for a region of large r (7-8 A), and one sees that 

here the surface-hopping model does indeed produce an essentially 

Boltzmann distribution over the electronic states; for small r (4-5 A), 

however, Figure 3B shows that the surface-hopping model produces much 

less population in the ground electronic state (state #1) than that 

given by the Boltzmann distribution at small r. This lack of complete 

electronic relaxation during the relative I-I motion thus appears to 

be an important feature in the dynamics of recombination. 

The results shown in Figure 2 are for initial separation r 0  = 5.5 A 

and temperature T = 300 ° K. Changing either of these does not change 

the qualitative natures of these curves nor their positions relative 

to each other, so that the above discussion concerning the effect 

of electronic transitions is unchanged. The asymptotic value of 

P(t), i.e., P(°'), the dissociation probability, does of course depend 

on r0  and T. The temperature dependence of P(°°) is shown in Figure 4, 
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and one sees that it is qualitatively the same for the three different 

cases. 

The dependence of P(°°) on r 0  is quite sensitive: increasing r 0  

00  from 5.5 A to 6.67 A increases P(°°) by about a factor of 2. This 

is understandable--i.e., starting the trajectories at larger r leads 

to larger dissociation probability--but it suggests that if the overall 

model is to be self-contained, one needs to extend it so that the 

appropriate initial value of r is determined by the dynamics itself 

and is not an ad hoc parameter. One way to do this would be to begin 

the trajectory calculation at small r on one of the excited electronic 

potential curves, the one that is initially excited from the ground 

electronic state by the laser. The iodine atoms would initially 

separate on this repulsive electronic state, but as the frictional 

effects of the bath slow them down and as electronic transitions become 

probable at larger r values, some trajectories would be "turned around" 

and lead to recombination. This type of calculation obviously asks a 

great deal more of the Langevin model, but it also has the potential 

of providing a more comprehensive description of the process. 

Finally, although comparison of the results of these model 

calculations with experimental recombination rates is clearly 

tenuous, it is nevertheless interesting. Hynes, etal., estimate 

13 	3 a rate constant of 4 x 10 cm /mole-sec from their calculations 

using only the ground state I-I potential curve, 15 ' 27  compared to the 

experimental value of 1-2 x 10 13  cm3 /mole-sec of Troe and co-workers. 28  

Hynes, et al., attribute this difference to curve-crossing effects 

in the 12  electronic levels. If we crudely relate the rate to the time 

it takes P(t) to fall to half its asymptotic value, then Figure 2 

indicates that the rate given by our surface-hopping model (curve S) 
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would be " 4-5 times slower than that of Hynes, etal. (curve G) and thus 

roughly the same rate as the experimental value. This is interesting 

and encouraging, but one should of course not make too much of the actual 

numerical values. 
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IV. Concluding Remarks. 

While there are undoubtedly many limitations of the present 

model for describing recombination dynamics in liquids, we believe 

it is realistic enough that the qualitative results of our calculations 

are meaningful. The most significant of these are that electronically 

inelastic transitions substantially reduce the rate (and final 

probability) of recombination and that the character of the electronic 

dynamics changes during the recombination process. Thus at large r 

electronic transitions are strong and produce a Boltzmann-like distrIbution 

over the various electronic states, but as r decreases electronic 

relaxation ceases to be complete. There is thus an interesting inter-

play between the electronically inelastic dynamics and the relative 

motion of the iodine atoms in interaction with the solvent. 

One of the most unsatisfying features of the present model is 

the dependence of the results on the initial starting position r0 . 

As discussed at the end of the preceeding section, one would like to 

extend the model to eliminate this ad hoc initial condition, and 

one way to do this would be to begin the stochastic trajectory at 

small r on the excited 12  potential curve that results from the 

initial laser excitation. This would also have the possibility of 

describing primary recoiiibination events along with secondary 

recombination in one unified model. 

Another aspect of the model that could be improved involves 

the inner cut-off at r = 4 A, i.e., the assumption that all 

trajectories which reach this point will recombine. It is possible 

that the iodine atoms might rebound from the repulsive wall of the 
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ground state potential curve and separate again to distances greater 

than 4 A. This would be particularly likely if one generalizes the 

frictional force in the Langevin equation to realize that there are 

no solvent molecules between the iodine atoms at small values of r. 

There are thus many aspects of the model one can imagine improving 

in order to make the approach a more realistic description of chemical 

reactions in solution, and the results obtained in the present paper 

are sufficiently encouraging that we think it is worthwhile to pursue 

these extensions. 
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Figure Captions 

Potential curves for the ten electronic states arising from two 

ground state ( 2P312) iodine atoms. 

Probability that at time t the two iodine atoms have not 

recombined; T = 300k, r = 5.5 A. All results are from the 

stochastic trajectory model; curve G (the results of reference 
. 

15) utilizes the ground state 12 potential curve for V(r) in 

Eq. (2.1), curve T utilizes the thermally averaged potential 

of Eq. (2.10) for V(r), and curve S uses the semiclassical 

surface-hopping model to allow V(r) to change as the electronic 

state of the system changes. 

Average relative population of the 10 electronic states (state 

1 is the ground state) as obtained in the stochastic surface-

hopping trajectory calculation (points connected by solid 

lines) and as given by a Boltzmann distribution (broken curve). 

(A) is for a region of large r (7-8 A), and (B) for a region of 

smaller r (4-5 A). 

Dissociation probability, Pd,, P(t- ), with P(t) as shown in 

Figure 2 for 300 °K. The labels G, T, and S have the same meaning 

as in Figure 2. 
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Table I. Potential Parainetersa 

Electronic State C. Degeneracy 

0.00 1 
g 

3 
11 -28.99 2 
2ii 

rr -16.58 2 
ig 

-8.35 2 

-8.35 1 
O il 

4.17 2 

ill 12.41 2 

33 12.41 2 

24.82 1 
g 

33.16 1 
U 

aSee Eq. (2.12). 

bui are hartreethohr5. 
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