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Effect of Electronic Transition Dynamics on

Iodine Atom Recombination in Liquids

Domenic P. Ali and William H. Miller
Department of Chemistry, and Materials and Molecular Research Division,

Lawrence Berkeley Laboratory, University of California,
Berkeley, California 94720

Abstract
The Langevin stochastic trajegtory model used by Hynes, Kapral, and
Torrie [J;.QBSE;.EEZ§; 72, 177 (1980)] to describe secondary recombina-
tion of iodine atoms in solution has been generalized to allow for
electronicélly inelastic transitioné between the ten I-I potential
curves that dissociate to groun& state iodine atoms. The electronic
transitions are treated via the Miller-George version of the Tully-
Preston surface hopping model. The main qualitative result is that
electronically inelastic processes substantialiy slow down the rate
(and ultimate probability) of recombination. It is also seen that
the electronic inelasticity changes from being strong at large.r,
where an essentially Boltzman; distribution over the various

electronic states is maintained, to being weak at small r, where the

distribution is far from Boltzmann.



I. Introduction.

Since the earliest experiments by Noyes and co--workersl on iodine
recombination in liquids, an extensive interest has developed in the
study of recombination reactions. Iodine recombination has been

2-6,14

studied in a variety of solvents, and there have also been a

number of experimental7_8 and theoreticalg_ll studies of the process

-

in the gas phase. Of particular importance are the picosecond

experimentsz-6’l4 which allow one to study the short time scale inherent

in these reactioms.
Since recombination is perhaps the simplest ''chemical reaction"
that one can study in liquids, it has attracted considerable theoretical
. . . 12-14
attention. Studies have included molecular dynamics simulations
. . 15-16 . . )
and stochastic trajectory, or Langevin approaches. While molecular
dynamics is relatively common nowadays, the computational effort involved
is considerable in following the specific dynamics of each individual
particle in the system. The Langevin approach is much easier to employ
and can describe longer time behavior, but it incorporates many more
approximations whose validity is difficult to ascertain. There are thus
many fundamental theoretical questions about the dynamics of recombination
in liquids that merit further investigation.
The present work follows closely the Langevin stochastic

trajectory model of Hynes, Xapral, and Torrie,l5 where the focus is

17 . . .
on secondary recombination of the iodine atoms; i.e., one considers

the iodine atoms that, after photo-excitation of Iz, have separated

-]
to a distance of v 4-6 A, from which they either recombine (on a

time scale of Vv 10-30 picoseconds) or dissociate permanently.



(Primary recombination of the atoms immediately after the excitation
takes place within a picosecond and is ;ypically obscured by the
exciting laser pulse.) In their Langevin simulation Hynes, et al.,
considered motion of iodine atoms only on the ground electromnic
potential curve of IZ’ although they noted that the other electronic
states which dissdciate to ground state iodine atoms should also be
taken into account. Figure 1 shows the ten diatomic potential curves

of I, that arise from two 2P3/2 iodine atoms,18 and one sees that

2
o

at Vv 4-6 A they are all within kT of each other, suggesting that

electronic transition between them should be facile in this region.

Previous work dealing with the question of electronic transitions
in iodine recombination includes that of'Bunker,9 who discussed it
only on statistical grounds, and that of Martire and Gilbert_,16 who
used a Folker-Planck equation which included rate constants for
transitions between the various electronic states of IZ' In their
actual calculations Martire and Gilbert assumed only one electronically
excited state, and the rate of transitions between it and the ground
state was varied in ordér to obtain agreement with experimeﬁc. While
this was a good start of dealing with the effects of electronic
transitions, one would like to have a less phenomenological approach
that is also tractible enough to allow practical calculations.

In the present paper we follow the Langevin stochastic trajectory
approach of Hynes, et al., but generalize it to incorporate the
effects of electronic tfansitions between the various potential curves
(i.e., electronic states) of Iz. Specifically, we utilize the Tully-
Preston surface-hopping model19 to allow for localized '"hops'" from
one potential curve to another, with the electronié transition

probability determined by the generalized Stuckelberg model of Miller



and George.ZO Since the surface-hopping model is typically formulated

in a probabilistic framework--i.e., a 'hop" from the current electronic
state is made or not by comparing the electronic tramsition probability
to a random number--it is relatively.easy to include it in the stochastic
trajectory simulation.

Section II describes the surface-hopping Langevin trajectory
model as we employ it, and the results of our calculations are
discussed ip Section III. If électronic transitions between all the
states were extremely facile, one would expect the relative population
on each potential curve to be a Boltzmann distribution; since this is
an important limiting case, results based on assuming a Boltzmann
distribution over the electronic states are also presented in Section
III and compared to those of the surface-hopping Langevin model. Very
interesting differences are seen. Section IV summarizes our

conclusions.



II. The Surface-Hoonping Langevin Trajectory Model.

Following Hymes gg_al.,ls we describe the relative motion of

two iodine atoms by a Langevin equation,

u S =B | (2.1a)
L3 =-T v - €3 + R (2.1b)

where ; is the relative coordinate vector, 3 the conjugate momentum,
V(r) the potential function for the I-I interaction, & the friction
constant, and i(t) the random force exerted by the surrounding
solvent molecules. (The approximations inherent in describing a
dynamical system via a Langevin equation ha&e been discussed by
Deutch and Oppenheim;21 basiéally, it is necessary that correlations
between solvent molecules decay much faster than the rate of solute
Vvelocity relaxation, and Hynes et al., have argued that these conditions
are reasonable for iodine recombination if the solvent molecules
are light.)

All the aspects of the Langevin model are the same as in the work
of Hynes, et al.: e.g., i(t) is assumed to be gaussian random, its
correlation function is related to the friction coefficient through

‘the fluctuation-dissipation theorem,22
- -
2 £ 8§(t) = <R(t)*R(0)> . (2.2)

and the friction constant is related to the self~diffusion constant

DO by



(2.3)

. 4 23 . 1/2
According to Enskog theory the temperature dependence of Do is T ,
so one has

Dy (T) = D,(300) (r/300) /2 , (2.4)

and DO(300) is taken as
DO(3OO) = 10-5 cmz/sec .

For other specifics of the Langevin model we refer the reader to
Hynes, et al.. Also, a good general discussion of Laﬁgevin equations
is that by Chandrasekar.24
As noted in the Introduction, the new aspect of the present
work is that we allow the potential function V(r) (i.e., the electronic
state) for the two iodine atoms to change during the Langevin trajectory
according to the surface-hopping model. (Hynes, et al., also include
in V(r) a "caging potential" which includes the average effect of
the solvent on the I-I interaction; since its effect is rather small
and since our interest here is in investigating the effect of electromnic
transitions between the different I-I potential curves, we ignore
this term in the present work.) Within the Miller—Georgezo version
of the surface-hopping model,19 an electronic transition from state

i to state j is localized to the time (or times) at which Avij(t) =

1]

AVij(r(t)) |Vi(t)-Vj(C)l passes through a local minimum as a

function of t; if t_. is such a time, then the probability of the

0



i+j transition is given approximately by

p, . = exp[-% (Avij/h)<zAvij/A§}ij)1/2] , (2.5)

J*1

where

(> g
<
]

Avij (co)

1

1 Avij (to)

>
<<
]

For the present application the potential curves {Vi(r)} for the
various electronic states (see below for their specific form)

are such that
v, () - V()]

is a monotonically decreasing function of r for all i and j: thus
AVij(t) S AVj(r(t)) passes through a local minimum only when r(t)

experiences an outer turning point, i.e., when

é(co) =0 (2.6a)
and

;(to) <0 . | (2.6b)



This happens whenever the trajectory experiences a sufficient "kick"
from the random force that the separating I atoms are turned around
and headed back towards each other. Furthermore, this means that

a local minimum occurs in AVij(t) simultaneously for all possible

final electronic states i.

The way the surface-hopping model works,‘therefore, is that one
begins in electronic state i, say, and thus integrates the stochastic
trajéctory, Eq. (2;1), with V(r) = Vi(r); when r(t) experiénces an
outer turning point, i.e., Eq. (2.6) occurs, oné calculgtes the
probability (via Eq. (2.5), and see below) of "Hopping" to other
electronic states j, and makes a "hop'" by comparing these probabilities
to random numbers; if a hop is made to electronic state j, then one
continues integrating the stochastic trajectory with V(r) = Vj(r),
until r(t) experiences another-outer turning point, at which point
another "hop" is allowed, etc.

There is one significant modification we need to méke in the above
discussion: the transition probability given by Eq. (2.5) applies to

an isolated I-I collision and thus satisfies the relation
P, . =P, . . (2.7)

The Langevin model, however. describes the I-I system in interaction
with a thermal bath; we thus use Eq. (2.5) to calculate the probability

of de-excitation transitiomns i*j, and then invoke detailed balance

to obtain the probabilities of excitation transitions:

-B(V,-V))

Pj*—i - (gj/gi)Pi<-j e , (2.8)



where Vi < Vj are the electronic energies at the. time of transition,
and'gi and gj are the degeneracies of states i and j. Detailed
balance has the effect that after many transitions a Boltzmann
distribution over the states would result if the energies {Vi} were
constant. Also, the ''primitive’ semiclassical traﬁsition probabilities
given by Eqs. (2.5) and (2.8) are not normalized as they stand, 1i.e.,
do not satisfy conservation of probability, so they are modified as
follows, |

(p (2.9)

jei)normalized = Fyei/ L Pres
| k

in order to do so.

One particularly interesting limit of this model to comsider is
that‘in which transitions between electronic states are much faster
than the relative I-I motion, for all values of r. If this were true,
then the electronic states would maintain themselves in a Boltzmann
diétribution for all values of r, and the effective I-I potential V(r)
in the Langevin equatiom, Eq. (2.11), would be simply the Boltzmann

average of the potential functiomns Vi(r),

—BVi(r) —BVi(r)

/ 2: g; e . (2.10)

W(r) =} g V() e

i i

We have thus carried out the Langevin stochastic trajectory calculation
using this average I-I potential function in order to compare it to
the results of the surface-hopping model. It is clear that it is

much simpler in practice to use one average potential function rather
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than to deal with the dynamics of transitions between several different
potentials, so it is important to see how the results of using this
thermally averaged potential compare with those of the more dynamically
correct surface-hopping model.

For the potential functions we have been used a standard Morse
potential,

—Za(r-re) : -o(r-r )
v (r) = Dele -2e ] , (2.11)

with

De‘ = 5.7144 X 10“2 hartrees
o = 0.98819va0_l

r = 5.03962 a

e 0

for the ground electronic state, and all the others are described as

i=2,...,10; the constants Ci are given in Table I, along with their
symmetry labels and degeneracies. Since we only heed to follow the
I-I dynamics for r > 4 Z (see next section), this description of the
excited state potential functions should be a reasonable approximation.
Of the ten states, five are repulsive and five attractive.

Finally, we note one simplifying modification we made in carrying
out the surface hopping calculations. It was assumed above that

AV,j(r) = lVi(r) - Vj(r)| is a monotonically decreasing function of
i



~-11-

r for all states i and j, so that Avij(t) has a local minimum--and thus
electronic transitions occur--only at an outer turning point of the
r(t) motion. One sees in Figure L, however, that this is not true if
state i or j is the ground electronic stateAand r>6 Z. Thus for
r>6 Z there is the possibility of electronic transitions other than
at an outer turning point, but we have ignored them in our calculations.
While it would certainly have been possible to include them in the
surface-hopping description, the results are essentially unchanged by
their neglect. This is because electronic transitions are already
very facile for r > 6 2, generating a Boltzmann—liké distribution over
the electronic states (see next section), so that including even more
electronic transitions in this region of r would not change the

situation.
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III. Results and Discussion.

The stochastic trajectories are begun at I-I internuclear distance

-
r in electronic state i, with the momentum p selected at random from

0’
a Boltzmann distribution. We have used two different initial distances
Ty = 5.5 i and 6.67 Z, to assess this effect on the results, and in
addition to T = 300°K have also carried out the calculations for

T = 500° and 700°. There is only on a small effect (a few %) on the
results of choosing different initial electronic states.

Similar to Hynes et al., we choose iﬁner and outer cut-off points
for the trajectory to determine when the iodine atoms have either
recombined or permanently separated respectively; these values are
4 ; and 12 Z, respectively. Recombination is said to have occurred,
therefore, if r(t) reaches the value 4 Z'and the electronic state is
the ground state; at this point the iodine atoms afe drawn essentially
monotonically inward, and the electronic energy gap to other states
is sufficiently large that no further tranmsitions occur. Trajectories
are followed until r(t) reaches one of these cut-off points, up to a
total time of 150 psec; 997% of the trajectories have reached one of
the cut-offs by this time limit. Specifics of the numerical integration
procedure are discussed by Turg, Lantelme, and Friédman.2
rBefore discussing the major results, it is useful to note that

within the present model there is a qualitative correspondence between

the collision frequency of I2 in the liquid and the number of outer

turning points that the relative I-I motion experiences (which is also

the number of opportunities the I-I system has to make an electronmic

transition). Thus the collision frequency can be estimated by26

Z =2 ,
g g(r)
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where Zg.is the gas phase collision frequency and g(r) the radial
distribution function at contact. Typical values give a collision
frequency that varies from v~ 20 to 30 collisions per picosecond as T
varies from 300°K to 700°K, while the average number of outer classical
turning points in our stochastic trajectory surface-hopping calculations
varies from v 20 to 25 over this temperature range.

Figure 2 show; the principal results of the paper, the probability
P(t) that the iodine atoms have not recombined by time t. All three
cufves result from a Langevin stochastic trajector& calculation, the
one labeled G being the result of Hynes et al., that used the ground
state I-I potential curve, that labeled T thevreéult of using the
thermally average potential curve, Eq. (2.10), and that labeled S the
result of allowing V(r) to change to the various potentials {Vi(r)}
according to the semiclassical surface-hopping model. The first
qualitative observation is that both curves T and S, which include the
effects of electronically excited states, give less recombination, and
this is easy to understand: recombination can only take blace on
the ground state potential, so any transitioms out of the ground
electronic state will lead to less recombination, i.e., more dissociation.

One sees, however, that the surface-~hopping modél (curve S) produces
a larger correction to the ground state results (curve G) than does use
of the thermally averaged potential (curve T); i.e.,, the surface-hopping
model yields even less recombination than does the thermally averaged
potential. This also has a simple explanation: at relatively large.
values of r, where the potential curves are close together, electronic
transitions betwe;n the states are facile and do essentially produce
a relative Boltzmann distribution among the states, but when r decreases

the separation of the ground state potential from the others makes
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transitions into or out of the ground electronic state improbable:

thus the approximate Boltzmann distribution over electronic states

at large r is 'frozen in'as r decreases, and this means that the

surface hopping model produces less population in the ground electronic
state at small r than that given by assuming a Boltemann distribution
at small r. With less population in the ground seate at

small r, the surface hopping model thus gives less recombination

than the thermally averaged potential model.

To see more clearly that this interpretation is correct, we show
in Figure 3 the average relative population of the different electronic
states that results from the surface-hopping calculation (points
connected by solid line), compared to a Boltzmann distribution (broken
line). TFigure 3A is for a region of large r (7-8 Z), and one sees that
here the surface-hopping model does indeed produce an essentially
Boltzmann distribution over the electronic states; for small r (4-5 Z),
howevef, Figure 3B shows that the surface-hopping model produces much
less poeulation in the ground electronic state (state #1) than that
given by the Boltzmann distribution at small r. This lack of complete
electronic relaxation during the relative I-I motion thus appears to
be an important feature in the dynamics of recombination.

The results shown in Figure 2 are for initial separation ry = 5.5 ;
and temperature T = 300°K. Changing either of these does not change
the qualitative natures of these curves nor their positions relative
to each other, so that the above discussion concerning the effect
of electronic transitions is unchanged. The asymptotic value of
P(t), i.e., P(»), the dissociation probability, does of course depend

on 1, and T. The temperature dependence of P(») is shown in Figure 4,
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and one sees that it is qualitatively the same for the three different
cases.

:The dependence of P(«®) on T, is quite sensitive: increasing r
from 5.5 X to 6.67 Z increases P(») by about a factor of 2. This

0

is understandable--i.e., starting the tréjectories at larger r leads
to larger dissociatibn probability——but it suggests that if the overall
model is to be self-contéined, one needs to e;tend it so that the
appropriate initial value of r is determined by ﬁhe dynamics itself
and is not an ad hoc parameter. One way to do this would be to begin
the trajectory calculation at small r on one of the excited electronic
potential curves, the one that is initially excited from the ground
electronic state by the laser. The iodine atoms would initially
separate on this repulsive electronic state, but as the frictional
effects of the bath slow them down and as electronic transitions become
probable at larger r values, some trajectories would be '"turned around"
and lead to recombination; This type of calculation obviously asks a
great deal more of the Langevin model, but it also has the potential
of providing a more comprehensive description of the process.

Finally, although comparison of the results of these model
calculations with experimental recombination rates is clearly
tenuous, it is nevertheless interesting. Hynes,‘gg_gl;; estimate

3 cm3/mole;sec from their calculations

15,27

- 1
a rate constant of v 4 x 10

~ using only the ground state I-I potential curve, compared to the

experimental value of Vv 1-2 x 1013 cm3/mole-sec of Troe and co-workers.

28
Hynes, et al., attribute this difference to curve-crossing effects

in the I2 electronic levels. If we crudely relate the rate to the time
it takes P(t) to fall to half its asymptotic value, then Figure 2

indicates that the rate given by our surface-hopping model (curve S)
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would be v 4-5 times slower than that of Hynes, et al. (curve G) and thus
roughly the same rate as the experimental value. This is interesting
and encouraging, but one should of course not make too much of the actual

numerical values.
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IV. Concluding Remarks.

While there are undoubtedly many limitations of the present
- model for describing recombination dynamics in liquids, we believe
it is realistic enough that the qualitative results of our calculations
are meaningful. The most significant of these are that electronically
inelastic transitions substantiélly reduce the rate (and final |
probability) of recombination and that the character of the electronic.
dvnamics changes during the recombination process. Thus at large r
electronic transitions are strong and produce a Boltzmann-like distribution
over the various electronic states, but as r decreases electfonic
relaxation ceases to be compiete. There is thus an interesting inter-
play between the electronically inelastic dynamics and the relative
motion of the iodine atoms in interaction with the solvent.

One of the most unsatisfying features of the present model is
the dependence of the results on the initial starting position ry-
As discussed at the end of the preceeding section, one would like to
extend the model to eliminate this ad hoc initial condition, and
one way to do this would be to begin the stochastic trajectory at
small r on the excited 12 potential curve thAt results from the
initial laser excitation. This would also have the possibility of
describing priﬁary recombination events aiong with secondary
recombination in one unified model.

Another aspect of the model that could be improved involves
the inner cut-off at r = 4 Z, i.e;, the assumption that all
trajectories which feach this point will recombine. It is possible

that the iodine atoms might rebound from the repulsive wall of the
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ground state potential curve and separate again to distances greater
than 4 Z. This would be particularly likely if one generalizes the
frictional force in the Langevin equation to realize that there are

no solvent molecules between the jodine atoms at small values of r.

There are thus many aspects of the model one can imagine improving

in order to make the approach a more realistic description of chemical
reactions in solution, and the results obtained in the present paper
are sufficiently encouraging that we think it is worthwhile to pursue

these extensions.
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Figpre Captions

~ Potential curves for the ten electronic states arising from two

ground state (2P3/2) iodine atoms.

Probability that at time t the two iodine atoms have not
recombined; T = 300°k, r, = 5.5 Z. All results are from the
stochastic trajectory model; curve G (the results of reference
15) utilizes the ground state I2 potential curve for V(r) in
Eq. (2.1), curve T utilizes the thermally averaged potential
of Eq. (2.10) for V(r), and curve S uses the semiclassical

surface~hopping model to allow V(r) to change as the electronic

state of the system changes.

Average relative population of the 10 electronic states (state
1 is the ground state) as obtained in the stochastic surface-
hopping trajectory calculation (points connected by solid
lines) and as given by a Boltzmann distribution (broken curve).
(A) is for a region of large r (7-8 Z), and (B) for a region of
smaller r (4-5 2).

Dissociation probability, P_ = P(t»~), with P(t) as shown in

Figure 2 for 300°K. The labels G, T, and S have the same meaning

as in Figure 2.
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Table I. Potential Parameters-

Electronic State : Ciz—
, 1+ 0.00
g
3
I, -28.99
3 .
M, -16.58
3.
I, - 8.35
3
Moy - 8.35
3
, 4.17
111u | 12.41
3 |
By 12.41
35- 24.82
g
3+ 33.16
u

33ee Eq. (2.12).

bUnits are hartree°bohr5.

Degeneracy
1
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This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.
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