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Abstract

Scalability and Performance Analysis of Wireless Networks and

Information-Centric Networks

by

Ali Dabirmoghaddam

Computer networks are complex constructs consisting of many entities that si-

multaneously interact with one another. Understanding various aspects of such

complex systems and their scaling properties is therefore a challenging task. This

thesis studies the performance of computer networks through several layers of

abstraction—namely communication, social and information—and investigates

the interplay between these layers at a large scale and from an analytical point

of view. The results derived from this analysis are crucial in early identifying of

design issues and potential weaknesses of large-scale networks such as the Internet

for which performing simulations is prohibitive.

The first part of this dissertation studies how the spatial diversity of social

contacts affect the scalability of communication networks and identifies classes of

social models that let computer networks properly scale. From this analysis, it is

established that scalability is achieved under social models in which social contacts

are statistically concentrated within a confined geographical region around each

node. We shall recognize that the true distribution of social contacts in real

networks does not generally meet this requirement, imposing a scalability gap on

today’s networks.

The second part of the dissertation studies information-centric networking (IC-

N); a framework that utilizes distributed content caching that can be used to

bridge the foregoing scalability gap. Three dominant methods of distributed con-

tent caching—namely uniform-, optimal- and edge-caching—are compared. We

ix



shall see that caching only at the edge of the network outperforms uniform-caching

(the de facto standard of ICN) in terms of end-to-end latency while offering slight-

ly inferior results compared to the more complex optimal-caching strategy. This

result is further augmented by the observation that higher degrees of reference

locality in space and/or time improve the performance of edge-caching, making it

a viable alternative to optimal solution.

Finally, an analysis of the forwarding plane of ICN is presented. In the absence

of host addressing, ICN routers are required to keep track of all requests (Interests)

passing through them in Pending Interest Tables (PITs) that are needed to deliver

data back to the requesters as well as to enable optimization mechanisms such as

Interest aggregation. Through careful analysis of the PIT size distribution and

the probability of Interest aggregation at PIT, we shall see not only are the true

benefits from the stateful forwarding plane of ICN much smaller than anticipated,

but also they come at the high expense of maintaining very large PITs. These

results reveal that the forwarding plane of ICN must be rethought; an important

finding that provokes the investigation of a stateless forwarding plane for future

ICNs.
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Chapter 1

Introduction

Computer networks can be conceived as complex compositions of multiple in-

teracting constructs. On a set of computer hosts, a communication network defines

the topology graph comprising the hosts, a.k.a. nodes, and communication links

(wireless or wired) that physically connect them together. A social network, on

the other hand, defines the quality and the frequency of inter-node communica-

tions. Furthermore, an information network determines the distribution and the

flow of information among nodes.

A computer network can be viewed as a superposition of such tightly inter-

twined layers that are defined on the same set of nodes. The time-varying nature of

the network as well as other dynamics such as node mobility make understanding

different aspects of the resulting construct very complicated.

Due to such complexities, the performance of computer networks is usually s-

tudied under simplifying assumptions and with narrow focuses to mitigate some of

these inherent intricacies. Abstracting away the interplay between different layers

of a computer network is one such treatment. This explains why separate tracks

of research deal with characterizing behaviors of computer networks from specif-

ic and unidimensional viewpoints of communication, social, or information. The
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interaction among the foregoing components, however, has long been overlooked.

Neglecting important aspects of the actual system, such overly simplified models

can only produce implications that are limited in scope and hardly applicable to

real-world scenarios.

The main objective of this thesis is to devise an analytical framework to ex-

plore the interaction among various abstractions of networked systems, namely

communication, social and information. To that end, Chapter 2 of this thesis

aims to improve our understanding of the relationships between the communica-

tion and social networks. Particularly, it studies how the geographical diversity

of social connections can affect the scalability of large-scale computer networks.

In particular, it identifies classes of social relations that let a wireless multihop

network grow in size while the throughput share per node decays at a slow rate. It

is interesting to see from this model that there exists classes of social relationships

where the expected distance between the social contacts is always upperbounded

by a constant irrespective of the network size. In that situation, the maximum

throughput per node decays at a slow rate of O(1/ log n) where n is the number

of nodes in the network. When contrasted against the well-known throughput

decay rate of O(1/
√
n log n) [1] in which the effect of the social model is com-

pletely neglected (i.e., nodes communicate uniformly and at random throughout

the network), the foregoing bound seems very promising.

In real networks, however, social relationships are inherent and social contacts

cannot be dictated how to interact to ensure scalability in the underlying com-

munication graph. Given this remark, Chapter 3 studies how information-centric

networking (ICN) can help enhance scalability by bringing the right information

closer to the consumers through careful content caching. Within this scope, a

fundamental question answered in Chapter 3 is as follows. Given a fixed budget of
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caching storage, what is the optimal way to allocate that budget across all nodes

such that the users’ perceived end-to-end latency is minimized? This problem is

formalized as an optimization problem in Chapter 3 and solutions to certain ex-

amples are presented. The results from this model are then compared against two

other methods of cache allocation, namely uniform-caching and edge-caching. The

former is the commonplace approach assumed by the majority of ICN proposals

and advocates ubiquitous caching of everything everywhere in the network. The

latter, however, is a less known practice that promotes caching content only near

the end-users. Interestingly, the results from Chapter 3 shows that edge-caching

outperforms the commonly used uniform-caching approach in a wide range of s-

cenarios studied and is only slightly inferior to the optimal solution although the

resulting solutions are fundamentally different. Furthermore, Chapter 3 studies

the effect of reference locality through a novel algorithm for generating synthe-

sized references that are localized in space and/or time. The findings from this

study shows that the more localized the references, the less noticeable is the dif-

ference between edge- and optimal caching. These insights are significant in that

finding the optimal distribution of caching storage on a network as complex and

as dynamic as today’s Internet is quite impossible. Besides, distributed content

caching requires significant modifications to the core network infrastructure which

may not be well-justified if the resulting gain is not substantial. In contrast, lever-

aging caches only at the network edge enables an incremental deployment of ICNs

with “less pain and most of the gain” [2].

The information-centric networking architecture attempts to offer scalability

on several fronts. In addition to pervasive content caching studied in Chapter 3, a

second component of ICN is the location-agnostic content addressing by name. In

fact, a fundamental design principle of ICN is name-based routing of content ob-
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jects (in lieu of the conventional model that is based on host addressing using IP).

Accordingly, the ICN routers construct routing tables that route to content names

rather than addresses where they are located. In the absence of host addressing,

the routers must keep track of all user queries (a.k.a. Interests) forwarded as well

as their ingress interfaces to be able to deliver right data to the requesters on the

way back. This information is populated in a data structure known as the Pending

Interest Table (PIT). Because of this design, it is commonly said that the forward-

ing plane of ICN is stateful. An optimization mechanism foreseen in the design

of the forwarding plane of many ICN proposals is Interest aggregation. Thanks

to the highly skewed distribution of the users’ queries (driven by the power-law

nature of content objects popularity distribution), an ICN router may aggregate

similar Interests for the same content object in the PIT while an Interest for that

object has already been forwarded and the router is awaiting to receive the con-

tent. This is of course an intuitive design that can potentially reduce the load on

the network core by suppressing the forwarding of identical Interests as well as

improve the end-to-end latency. The process of aggregating Interests, nonetheless,

comes at a cost. Chapter 4 quantifies the costs and benefits associated with this

process through a characterization of the stateful forwarding plane of ICN. The

likelihood of Interest aggregation at each router and the number of transmissions

saved through the aggregation process are studied in Chapter 4. Furthermore,

the PIT size distribution is also analyzed. The results from Chapter 4 shows that

on the one hand, under stationary traffic less than 20% of Interests are subject to

aggregation, the majority of which happens close to the producers. This calls into

question most anticipated benefits of Interest aggregation in terms of reducing

end-to-end latency and improving bandwidth utilization. On the other hand, the

results of this analysis also show that the PIT size grows at an almost exponential

4



rate every level deeper in the network. This makes the PIT maintenance and op-

eration at line speed a challenging task that yields little earnings in return. The

bottom line is that not only does not the stateful forwarding plane of ICN help

improve scalability, but also puts and extra burden on the routers to bookkeep hu-

mongous tables of pending Interests. This leads to the necessary conclusion that

the forwarding plane of ICN must be rethought. In particular, the results from

Chapter 4 shows that content caching automatically suppresses a great number

of Interests requesting similar content. Therefore, if storing the forwarding state

per Interest is not needed for other reasons, a stateless forwarding plane is indeed

a more reasonable approach to deploy ICNs at Internet scale.

Chapter 5 concludes the thesis and briefly points out some interesting areas

for future research.
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Chapter 2

Scalability of Wireless Multihop

Networks

In this chapter, an analytical framework is presented to investigate the inter-

play between a communication graph and an overlay of social relationships. We

focus on geographical distance as a key element that interrelates the concept of

packet forwarding in a communication network with the dynamics of interpersonal

relations on the corresponding social graph. We identify classes of social relation-

ships that let the ensuing system scale—i.e., accommodate a large number of users

given only finite amount of resources. We establish that geographically concentrat-

ed communication patterns are indispensable to network scalability. We further

examine the impact of such proximity-driven interaction patterns on the through-

put scaling of wireless networks, and show that when social communications are

geographically localized, the maximum per-node throughput scales approximately

as 1/ log n, which is significantly better than the well-known bound of 1/
√
n log n

for the uniform communication model. These results are published and presented

in IEEE SECON 2013 [3], IEEE NetSciCom 2014 [4] and IEEE IPCCC 2014 [5].
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2.1 Introduction

Computer networks can be conceptually organized into several distinct layer-

s that, though logically separate, are operationally interconnected. Within this

framework, such constructs are often referred to as complex networks. In a complex

network the communication layer represents the physical communication infras-

tructure, computing servers, and clients. A social layer defines the communication

patterns among end users collaborating with one another through application-

s running on end systems (host computers). An information layer captures the

distribution and relationships among information objects throughout the network.

The reciprocal interactions among the communication, social, and information

layers of complex networks have an undeniable impact on performance. However,

due to the complexity of characterizing complex networks, prior work has focused

on the performance of networks from unidimensional viewpoints of communica-

tion, social, or information. Examples of studies on communication networks

neglecting the latent social relationships are [1, 6, 7, 8, 9]. In contrast, several

interaction patterns and social paradigms [10, 11, 12] are independently studied

while the restrictions imposed by realistic underlying communication networks are

neglected. Unfortunately, neglecting the interaction among the layers of a com-

plex network renders overly simplified models with implications that are limited

in scope and cannot be extended to more sophisticated real-world scenarios.

In this chapter, we present an analytical framework to investigate the interplay

among the communication and social layers of complex networks. Particularly,

we study how the spatial diversity of social connections affects the scalability of

a wireless network. Section 2.2 provides a formal description of my model. We

focus on proximity-driven social models according to which social relations are

established with respect to the geographical vicinity of nodes. In this model, nodes

7



are inclined to communicate with parties that are geographically closer to them

more often than with ones at farther distances. This behavior is characterized with

a clustering parameter α, such that nodes show higher tendency to communicate

within their proximal neighborhood for larger values of α. The relevance of this

model to real-world social behaviors of people has been widely studied and verified

in both online and offline domains [13, 14, 15, 16].

When examining the scaling limits, it is often desirable to assume idealistic

conditions. While making the problem more tractable, the results of the analysis

based on these assumptions reflect the nominal performance of the system. The

routing algorithm plays an integral part in the performance of multi-hop networks.

By virtue of this, it is desired to adopt a routing algorithm that exhibits optimal

performance. Nonetheless, there does not exist a clear consensus about a general

description of optimal routing in wireless networks. In spite of the fact that the

optimality criterion is principally application-dependent, the research community

has tacitly adopted the shortest path routing as the reference model. Any quanti-

tative analysis of the shortest path routing requires comprehensive knowledge of

the underlying network topology. In the context of random graphs, due to the in-

volved uncertainties, the existing literature has inevitably resorted to approximate

solutions.

Particularly, prior work on the scaling limits of wireless networks has relied on

coarse approximations of the way in which information is forwarded in a network.

Examples of these approximations include routing along the straight line (see for

example [1, 17]) and grid-based routing (see [7, 18, 19] for instance). Although

these approaches make the models easier to evaluate, they can hardly represent

the complexities of the routing process in real networks. Furthermore, while the

resulting models can safely be applied to networks of sufficiently high density,
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they cannot directly be used for the analysis of sparser networks. To address

these shortcomings, Sections 2.3 and 2.4 discuss a framework for characterizing

routing dynamics in random networks more accurately. We focus in particular on

the geographic greedy forwarding (see for example GPSR [20] and GOAFR+ [21]),

because it can be used to represent the routing process in both dense and extended

network models. Besides, greedy forwarding methods are known to scale well as

the network grows in size [22]; an important property to consider when studying

the scaling properties of random networks.

Section 2.5 examines scalability conditions, and Section 2.6 provides upper-

bounds on the throughput capacity of wireless networks under various classes of

social communication and the greedy forwarding scheme we introduced. The two

extremes of this analysis are (1) the conventional uniform communication model

(α = 0) in which nodes choose their destinations uniformly and at random, and

(2) the geographically concentrated interaction models (α > 3). For the former

case, as the number of nodes (n) goes to infinity, we retrieve the well-known upper-

bound of O(1/
√
n log n) (see [1, 7, 17]), while for the latter case, we show that a

maximum throughput of no better than O(1/ log n) can be expected.

Our framework identifies two primary obstacles against the scaling of through-

put in wireless multi-hop networks; namely bandwidth depletion, and inordinate

relaying load. Bandwidth depletion is related to the communication layer of the

network, and results from the node transmission range having to be sufficiently

small to minimize destructive interference [23] with other receivers’ signal, and

large enough to prevent partitioning of network into isolated clusters. As a re-

sult, a critical transmission radius [24, 25], denoted by r(n), has to be used to

minimize interference while maintaining network connectivity at the same time.

In a dense network model, r(n) must shrink as the number of nodes increases

9



(see [24]); conversely, r(n) has to expand (see [25]) with the number of nodes in

the case of extended network model. In either case, the limiting value of r(n)

makes the available bandwidth per node gradually diminish to zero.

The problem of inordinate relaying load has its roots in the social aspect of

inter-node interactions and deals with the unlimited accumulation of relaying traf-

fic as more nodes join the network. The situation is especially aggravated if there

is no preference as to how nodes choose their corresponding destination(s). Ac-

cordingly, on the average, nodes get to communicate with the farthest nodes in the

network just as frequently as they do with their immediate neighbors. In the limit,

this gives rise to the formation of infinite length paths and thereby, a throughput

share that asymptotically converges to zero. We demonstrate that this problem

can be avoided if an inherent tendency exists to favor social contacts that are ge-

ographically closer. This probabilistic communication model concentrates social

interactions within logical clusters of certain radius around each node. For a spe-

cific range of clustering exponent, i.e., α > 3, we show that the expected radius of

such a cluster becomes finite. In that case, though the problem of inordinate load

is remedied, the best throughput scaling becomes of order O(1/ log n), because of

the bandwidth depletion problem.

Section 2.7 provides an overview of related work, and Section 2.8 concludes

the chapter and discusses some avenues for future research. In particular, we will

establish that while hosts cannot be brought physically closer to one another in

the network, the content that they share can. The results of future chapters,

in particular, indicate that caching of information near the consumers of such

information can be used to emulate localized communication patterns that render

better scaling of networks.

To summarize, the key contributions in this chapter are as follows.

10



• Presenting an analytical framework to capture the interplay between a com-

munication network and an overlay of social relationships.

• Providing a new perspective on the characterization of wireless network-

s through decoupling the function of social interactions from the natural

limitations of the physics of wireless communication.

• Exploring the impact of geographical diversity of social interactions on the

scalability and throughput enhancement of wireless multi-hop networks.

2.2 Model and Assumptions

The term scalable is often used to describe systems capable of handling a large

number of users without incurring significant loss in performance. In this section,

a more objective definition of scalability will be presented. We introduce a cost

metric that reflects the average amount of resources needed to accommodate a

typical user. In the context of communication networks, a reasonable cost measure

is the average number of times a packet needs to be transmitted until delivery to

its intended destination. There are three key factors that influence this measure,

namely, topological factors, such as the physical connectivity among nodes and

the number of hops separating a source-destination pair on the communication

graph; social factors, such as the governing patterns according to which nodes

interact with one another, and how a source node chooses its destinations; and

unrestrained factors related to the physical layer effects or network load dynamics

in general; factors such as interference, fading, noise and congestion which might

result in loss of packets and incur re-transmissions.

In this section, we merely focus on topological and social factors which can be

modeled under a minimal and general set of assumptions discussed below.
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2.2.1 The Connectivity Graph Model

For the underlying network topology, let us consider a Random Geometric

Graph (rgg). Thanks to their simplicity and generality, rgg’s have become a de

facto standard in the research community to represent the underlying topology

of wireless networks. A definition of rgg is provided in the following for future

reference.

Definition 2.1. G(X ; r) represents a random geometric graph in which X is a

point process on Rk that describes the distribution of nodes. Further, an undirected

edge connects every pair u and v iff ‖Xu −Xv‖ ≤ r for a given r ∈ R+.

Here, ‖.‖ is a norm of choice on Rk. For simplicity, the Euclidean norm will be

used in this chapter. We consider a Poisson point process (p.p.p.), X , to describe

the geographical distribution of nodes’ in the network. The physical connectivity

between nodes is defined according to a Boolean model that assumes nodes as

being connected if and only if they are within a distance r from one another.

For simplicity, We assume that nodes are distributed on the surface of a sphere.

This assumption has been commonly used to alleviate the network edge effect

(see [1, 17] for example). It has been shown [1] that similar results can be derived

when nodes are distributed on the plane though through much more tedious and

unwieldy computations.

Two distinct models are usually considered when studying asymptotic behav-

iors of rgg’s: the extended model, in which the node density is fixed but the

network dimensions go to infinity; and the dense model, in which the network di-

mensions are fixed but the node density goes to infinity. In this chapter, a general

framework will be presented that can be used to analyze the scaling properties

of both models. We shall use random network in arguments that can equally be

applied to both extended and dense models.
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2.2.2 The Social Model

The social model describes the quality and frequency of inter-node communi-

cations in the network, i.e., how sources choose their destinations. In this chapter,

we consider a proximity-driven social model defined as follows.

Definition 2.2. A communication network follows a proximity-driven social mod-

el if the probability of every node u and v communicating with each other is in-

versely proportional to ‖Xu−Xv‖α for some arbitrary but fixed exponent α ∈ R+
0 .

Definition 2.2 implies a social model that is power-law distributed with dis-

tance. For a specific realization of the network, the probability of node u choosing

v as destination, Pu(v), is obtained as follows according to this definition.

Pu(v) = d(u, v)−α∑
w 6=u d(u,w)−α , (2.1)

where d(u, v) = ‖Xu − Xv‖. The denominator of (2.1) is in fact a normalizing

constant (for that specific realization).

According to Eq. (2.1), the closer two nodes are geographically, the more likely

they are to communicate; except for the case of α = 0 that results in a uniform

communication model in which a source node is equally likely to choose any other

node as its destination, irrespective of their distance. At the other extreme, when

α → ∞, every node communicates with its closest neighbor almost surely. In

fact, different ranges of α correspond to distinct classes of social relationships with

identical scaling behaviors. Identifying such social classes is a primary objective

of this chapter.

Let us denote the number of nodes in the network by n. We want to obtain

a probability distribution for the event of having a social contact at any given

physical distance. For the sake of generality, we normalize the distance metric with

respect to the critical transmission range r(n). This allows our social model to be
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equally applicable to either of the dense or extended network models. Particularly,

for the case of a dense network in which the geometric diameter of the network is

fixed and the critical transmission range approaches zero, this adjustment allows

for having social contacts that are spaced infinitely far away.

Let Xmin ≤ x ≤ Xmax(n) be such a range-adjusted distance measure, where

Xmin andXmax(n) respectively denote the minimum and maximum range-adjusted

distances between two social contacts. Without loss of generality, we assume that

nodes’ social contacts are at least r(n) distance away from them; hence, Xmin , 1.

Also, Xmax(n) , d/r(n), where d is the geometric diameter of the network (i.e.,

the longest possible physical distance between any pair of nodes).

Define Fα(x) = Pr{having a social contact at distance ≤ x r(n)}. According

to Definition 2.2, assume that such density function is a power-law on distance.

Also, by Poisson approximation, we know that the number of potential social

contacts at any distance x is linearly proportional to x. Therefore, we define the

corresponding p.d.f. as follows.

fα(x) = Cα x r(n) ·
(
x r(n)

)−α = Cα
(
x r(n)

)1−α
,

in which Cα is a constant independent of x. To obtain the value of Cα note that

1 =
∫ Xmax(n)

1
fα(x) dx =





Cα
r(n) × log x

∣∣∣∣
Xmax(n)

1
if α = 2 ,

Cα r(n)1−α

2− α × x2−α
∣∣∣∣
Xmax(n)

1
if α 6= 2 .

Solving for Cα yields

Cα =





r(n)
logXmax(n) if α = 2 ,

(2− α) r(n)α−1

X 2−α
max (n)− 1 otherwise .

(2.2)
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The p.d.f. fα(x) provides a description of our proximity-driven social model.

We shall use this model to define our cost measure as discussed in the following

subsection.

2.2.3 The Expected Social Path Length

Recall that the cost that every packet imposes on the network is measured

by the expected number of times it has to be transmitted in the network until

delivered. Knowing the average number of hops each packet travels while observ-

ing the underlying social relations, we define the expected social path length as

follows.

Definition 2.3. The expected social path length (Espl) is the expected number

of hops, h̄(x), separating a source-destination pair on a proximity-driven social

network identified by fα(x) and is computed as

E[Lα] =
∫ Xmax(n)

1
fα(x) h̄(x) dx . (2.3)

Definition 2.3 exploits the notion of geographical distance to connect the pro-

cess of routing on the physical graph of the network with the nature of social in-

teractions. In view of that, Espl is, in fact, a cost measure reflecting the amount

of resources that every node consumes on average, respecting both topological and

social considerations.

Evidently, Espl is a non-decreasing function of the network size. Nevertheless,

the network cannot sustain a continuously increasing load forever as more nodes

join in. Hence, we present the following definition for the class of social relations

that allow the underlying communication network scale appropriately without

significant loss in performance.
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Definition 2.4. A communication network with proximity-driven social relations

is scalable if E[Lα] <∞ when n→∞.

Based on Definition 2.4, a necessary condition for scalability is that the network

performs, on average, a finite number of transmissions per packet irrespective of

the size of the network. In the sequel, we address the impact of different values

of α on the growth of Espl as the network grows larger. To that end, the next

section introduces a methodology to compute the average number of hops, h̄(x),

that a routing algorithm takes over any given distance x.

2.3 Progressive Walks

It follows from Definition 2.3 that an accurate evaluation of Espl depends at

least in part on the performance of the routing algorithm used in the network.

It is commonplace to characterize the system performance under idealistic condi-

tions leading to nominal upper-bounds on the achievable performance limits. As

such, the underlying routing algorithm is assumed to be optimal for modeling pur-

poses. Although finding optimal paths on deterministic graphs is algorithmically

straightforward, in the context of random graphs, this turns out to be a highly

challenging problem. Most of this complexity stems from the random nature of

the underlying topology. In essence, an optimal routing algorithm requires global

and exact information about the network structure and state, which is virtually

non-existent when speaking of rgg’s.

Several approximations of optimal routing have been studied in the literature,

such as routing along the straight line [1, 17], and grid-based routing [7, 18]. These

approximations are often sufficiently accurate when studying a random dense net-

work, but are less useful for the analysis of extended networks with finite density.
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Moreover, the internal mechanisms of such routing schemes are remarkably dif-

ferent from how distributed routing algorithms work in real networks.

Despite the theoretical difficulties in the analysis of optimal routing in random

configurations, more tractable solutions with near-optimal performance can still be

conceived. One such routing strategy is known as greedy (geographical) forwarding

in which intermediate relays attempt to push the packet some distance closer to

the destination. With this policy, even though the global structure of the routes

need not be necessarily optimized, a sub-optimal path can still be found by making

locally optimized decisions when choosing subsequent relays along the path.

Various criteria for optimizing local decisions have been studied in the liter-

ature leading to different variations of the geographical forwarding method. We

abstract away such functional details by introducing the notion of progressive walk

that captures the essence of greedy forwarding.

Definition 2.5. We say a walk 〈s, . . . , t〉 on G(X ; r) is a progressive walk from

s to t and denote it with s  t iff ‖Xu − Xt‖ ≥ ‖Xv − Xt‖ for all ordered pairs

(u, v) on s t.

For a given source-destination pair, a greedy forwarding algorithm attempts to

output a progressive walk on the communication graph. The expected number of

hops on a greedy route is equivalent to the expected length of the corresponding

walk. To succeed, a greedy forwarding algorithm requires that a physical path

does exist for the intended source-destination pair. However, the algorithm may

not possibly succeed even though such a path does exist.

The existence of a walk is trivial when the expected length of the walk is a

parameter of interest. However, the ability of a greedy forwarding algorithm to

always be able to find a progressive walk with high probability (w.h.p.) need not

be true because of possible dead-ends, and hence this assumption has to be made
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to simplify the given problem. Later, however, we will relax this assumption by

slightly modifying the routing algorithm to circumvent dead-ends, should they be

encountered. Let us first have a closer look at the core mechanism of the greedy

routing algorithm, i.e., progressive forwarding, through the following definition.

Here, B(Xc; r) denotes the ball of radius r centered at Xc.

Definition 2.6. The hand-off region of a relay u for a final destination t is

Ht(u) , B(Xu; r) ∩ B(Xt;x), where x = ‖Xu − Xt‖. Further, we say that node v

is a potential next-hop for u t iff Xv ∈ Ht(u).

According to Definition 2.5, the hand-off region defines the subset of nodes

that can be considered by a relay node as potential next hops to further the

packet towards its destination. The convergence of the progressive walk relies

upon having at least one potential next-hop in each and every hand-off region

along the walk. If the packet comes at a relay with a void hand-off region, i.e.,

a dead-end, the progressive walk stalls as no further progress towards destination

is possible. For the time being, we assume that the greedy algorithm converges

w.h.p.

2.3.1 Greedy Forwarding with Almost Sure Convergence

The key element of a progressive walk according to Definition 2.5 is to progres-

sively reduce the remaining distance to the destination along the walk. In fact, at

every stage of the walk, the packet is pushed some distance closer to the destina-

tion in the Euclidean space. In view of this, a progressive walk can be perceived

as a drifted random walk on the communication graph. The distance traveled by

the packet at every hop is a random variable determined by the process specifying

the topology of the communication graph as well as the optimization criteria of

the greedy routing algorithm. Exploiting results from the theory of martingales,
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Theorem 2.1 provides a useful model that describes the relationship between the

physical distance and the average hop-count on a rgg, under certain conditions

when a greedy forwarding algorithm is considered.

Assume that node s sends a packet to t through multiple intermediate hops

employing a geographical greedy forwarding algorithm. Let ξδ be a random vari-

able denoting the progress towards destination if a transmission at distance δ from

destination takes place. The following theorem provides bounds on the expect-

ed number of hops under a greedy forwarding algorithm given an initial physical

distance x.

Theorem 2.1. Consider a source s and a destination t at distance x = ‖Xs −
Xt‖ > r in a rgg G(X ; r). Provided that ξδ’s are independent, and the routing

algorithm converges w.h.p.,

lim
δ→r+

E[ξδ] <
x

h̄(x)
< lim

δ→∞
E[ξδ] .

Proof. Let Sδ(t) =
∑t

i=1 ξδ(i) be a random walk where ξδ(i) is a stochastic process

with respect to i representing the progress towards destination when at distance δ

from it. In fact, Sδ is a progressive walk that assumes all relays have similar-sized

hand-off regions as if they are all at distance δ from destination.

Let Tδ = inf{t : Sδ(t) ≥ x} be the first time Sδ(t) hits the target distance

x. Note that 0 ≤ ξδ(i) ≤ r and E[ξδ] > 0; thus, P (Tδ < ∞) = 1. Also,

{t < Tδ} = {Sδ(1), . . . , Sδ(t) < x} which is clearly independent of Sδ(t′) for

t′ > Tδ. Therefore, Tδ is a stopping time with respect to Sδ(t).

Fix a δ such that r < δ < x, and consider a relay at distance δ from destination.

The measure of hand-off region is a monotonically increasing function of δ (see

Figure 2.1). Therefore,

lim
δ→r+

E[ξδ] < E[ξδ] < lim
δ→∞

E[ξδ] for all δ > r . (2.4)
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Now, consider the process Mδ(t) = Sδ(t)− tE[ξδ]. Note that,

E[Mδ(t)] = E
[
Sδ(t)− tE[ξδ]

]
= E

[ t∑

i=1
ξδ(i)− tE[ξδ]

]

= E
[ t∑

i=1

(
ξδ(i)− E[ξδ]

)]
=

t∑

i=1
E
[
ξδ(i)− E[ξδ]

]

=
t∑

i=1

(
E[ξδ]− E[ξδ]

)
= 0 <∞ .

Also, E[Mδ(t + 1) − Mδ(t)] = E[Mδ(t + 1)] − E[Mδ(t)] = 0. Therefore, Mδ(t)

is a martingale with respect to ξδ. According to the optional stopping theorem,

Mδ(Tδ ∧ t) is also a martingale with respect to ξδ, where (Tδ ∧ t) is the minimum

of Tδ and t. Hence,

E[Mδ(Tδ)] = E
[
Sδ(Tδ)− Tδ E[ξδ]

]

= E[Sδ(Tδ)]− E[Tδ] · E[ξδ] = 0 ,

which yields

E[Sδ(Tδ)] = E[Tδ] · E[ξδ] . (2.5)

Now, consider the process S(t) =
∑t

i=1 ξy(t), where y = max
(
x−S(t− 1), r

)
and

S(0) = 0. Let T = min{t : S(t) ≥ x} be a stopping time. From Equation (2.4),

for all y > r we have that

lim
δ→r+

E[ξδ] · E[T ] < E[ξy] · E[T ] < lim
δ→∞

E[ξδ] · E[T ] ⇒

lim
δ→r+

E[ξδ] · E[T ] < E[S(T )] < lim
δ→∞

E[ξδ] · E[T ] ⇒

lim
δ→r+

E[ξδ)] <
E[S(T )]
E[T ] < lim

δ→∞
E[ξδ] .

Having E[S(T )] = x and noting that E[T ] = h̄(x) is in fact the average number

of hops over distance x, we obtain that

lim
δ→r+

E[ξδ] <
x

h̄(x)
< lim

δ→∞
E[ξδ] ,

which completes the proof.
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t ur u∞

r r

Figure 2.1: A 2-d illustration of how the hand-off region, i.e., shaded area,

shrinks as the remaining distance to the destination is reduced. Here t is the

destination, and ur and u∞ represent relays at distances r and∞ from destination,

respectively.

As mentioned earlier, a problem that limits the accuracy of the given bounds in

Theorem 2.1 is the assumption that the routing algorithm converges w.h.p. This

assumption might be true when studying dense networks, but it is not applicable

to networks of finite node density in which a dead-end might be encountered.

In the following, we extend the case studied in Theorem 2.1 to account for such

possibilities as well.

2.3.2 Greedy Forwarding with Backtracking

We analyze a modified greedy forwarding algorithm which works as follows.

At every stage t of the walk, the packet either makes a progress of +ξ(t) towards

destination with probability p, or backtracks for a random step size of −ξ(t)
with probability 1 − p in the event of encountering a dead-end. Considering the

underlying p.p.p., the probability p is then

p = 1− exp
(
− ρ |H(·)|

)
,
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where ρ is the intensity of the p.p.p., and |H(·)| denotes the Lebesgue measure

of the hand-off region. The corresponding random walk, hence, is formalized as

follows.

S(t) =





S(t− 1) + ξ(t− 1) with probability p ,

S(t− 1)− ξ(t− 1) with probability 1− p ,

and S(0) = 0. Therefore, E[S(t)] = S(t − 1) + (2p − 1) ξ(t − 1). Consider the

process M(t) = S(t) − t (2p − 1)Eξ for t > 0. We first verify that M(t) is a

martingale.

E[M(t+ 1) |M(t)]

= E
[
S(t+ 1)− (t+ 1)(2p− 1)Eξ

∣∣S(t)− t(2p− 1)Eξ
]

= E
[
S(t) + (2p− 1)ξ(t)− (t+ 1)(2p− 1)Eξ

∣∣ ·
]

= S(t)− t (2p− 1)Eξ = M(t) .

Define a stopping time T = inf{t : S(t) ≥ D}. By the optional stopping theorem,

E[M(T )] = E[M(0)] = 0. Thus,

E[S(T )] = (2p− 1)E[T ]E[ξ] ⇒

x = (2p− 1)E[T ]E[ξ] ⇒

E[T ] = x

(2p− 1)E[ξ] . (2.6)

The natural constraint of E[T ] > 0 requires that p > 1/2 in order for Eq. (2.6)

to make sense. As p → 1
2

+, E[T ] diverges, which is an intuitive behavior. Also,

when p = 1, (2.6) simplifies to (2.5) which is also expected.

The bounds given in Theorem 2.1 are expressed in terms of the expected

progress the greedy forwarding algorithm makes per hop when at a limiting dis-

tance of ∞ or r from destination. As seen from Figure 2.1, in 2-d space, the

hand-off region shrinks from a half-disk at the former distance to a shape resem-

bling a biconvex lens at the latter. Aside from the size of the hand-off region,
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the expected progress per hop does also depend on the forwarding policy of the

greedy algorithm, i.e., the criteria by which the next relay is chosen from within

the set of potential next-hops. In the next section, we examine the tightness of

the suggested bounds in Theorem 2.1.

2.4 Expected Progress Per Hop

Several policies for next hop selection have been proposed in the context of

greedy routing algorithms. A widely used policy is to always choose the next-hop

with the least remaining distance (lrd) to the destination. Even though this

strategy does not guarantee that the packet would necessarily travel the fewest

number of hops, it ensures the maximum possible progress towards destination at

every hop.

An issue with the lrd policy is that it violates the required condition on the

independence of per-hop progresses. To clarify, observe that the hand-off regions

of subsequent hops are not necessarily disjoint. For instance, in Figure 2.2, the

hand-off region of node u overlaps that of node v on v  t in the crosshatched

region. Therefore, if node v is chosen as next-hop for u  t under lrd, then v

cannot logically have a potential next-hop in the crosshatched region. This implies

that when lrd is used as the forwarding policy, the information from the past

history of the walk can, in fact, affect the future decisions.

In order to use Theorem 2.1, we must make sure that the adopted forwarding

policy does not violate the independence of succeeding progresses as described

above. One such compliant policy is random greedy forwarding (rgf) by which a

current relay forwards the packet to a randomly chosen next hop. Such a next-hop

could clearly be located anywhere within its hand-off region, and its election as

the next relay does not impose any restriction on the location of subsequent hops.
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Ht(v)

Ht(u)

void region

Figure 2.2: Succeeding hand-off regions may overlap. Here, the darker shaded

region is empty, and part of it, i.e., the crosshatched area, overlaps the hand-off

region of v on v  t.

As such, rgf satisfies the requirements of Theorem 2.1.

In the following, we quantify the expected progress per hop under rgf policy.

It is noteworthy that although rgf is not an optimal forwarding strategy, it can

still serve as a lower-bound for more aggressive policies such as lrd.

2.4.1 A Lower-bound on Per-Hop Progress

Consider the case when the source and destination are located at a distance

δ + ε for a small positive ε → 0. In that case, the hand-off region for the source

can be approximated by a symmetrical biconvex lens, as illustrated in the left-

hand-side of Figure 2.1. For the moment, assume r = 1 and define the boundaries

of the hand-off region as follows.

|ω| =





√
1− (1− δ)2 =

√
2δ − δ2 if 0 ≤ δ ≤ 1

2 ,√
1− δ2 if 1

2 ≤ δ ≤ 1 .

Due to the symmetry of the region, the enclosed area can be calculated as

A(r) = 4 ·
∫ 1

2

0

∫ √2δ−δ2

0
dω dδ = 4 ·

∫ 1
2

0

√
2δ − δ2 dδ .
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Since the next-hop can be located anywhere within the hand-off region with equal

probability, E[ξ(r)] is the expected distance from the relay over the region which

can be calculated as follows.

E[ξ(r)] = 2
A(r)

(∫ 1
2

0

∫ √2δ−δ2

0

√
δ2 + ω2 dω dδ+

∫ 1

1
2

∫ √1−δ2

0

√
δ2 + ω2 dω dδ

)
.

Using numerical methods and noting that E[ξ(r)] is linear in r, for a general case,

we obtain that

lim
δ→r+

E[ξ(δ)] ≈ 0.643 r . (2.7)

2.4.2 An Upper-bound on Per-Hop Progress

Consider the right-hand side of Figure 2.1. The hand-off region is defined as

follows.

|ω| ≤
√

1− δ2 for 0 ≤ δ ≤ 1 .

The area of the hand-off region is clearly A(∞) = π/2. Hence,

E[ξ(∞)] = 2
A(∞)

(∫ 1

0

∫ √1−δ2

0

√
δ2 + ω2 dω dδ

)
= 2

3 .

By analogy to the previous case, we obtain that

lim
δ→∞

E[ξ(δ)] ≈ 0.667 r . (2.8)

From Theorem 2.1 and Equations (2.7) and (2.8), we obtain that, under a

routing with rgf policy, the average hop count over any given distance x� r is

bounded as

1.50
(x
r

)
< h̄(x) < 1.56

(x
r

)
. (2.9)

Note that x/r is the theoretical lower-bound on the number of hops under any

routing scheme, which, of course, can almost never be attained on a rgg.
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2.5 Scalability Analysis

We now examine the scalability conditions of random networks under proximity-

driven social models, taking advantage of the mathematical models developed in

previous sections. The following theorem identifies a large family of social rela-

tionships that allow a communication network to scale.

Theorem 2.2. Under a proximity-driven social model identified by the power-law

p.d.f. fα(·), a random network exhibits scalability if α > 3.

Proof. Recall from Definition 2.4 that the required condition on scalability is to

maintain E[Lα] <∞ when the network size grows infinitely large. From Eq. (2.9)

and for a range-adjusted distance measure x we established that C ′min x < h̄(x) <

C ′max x for constants C ′min, C
′
max > 0 independent of x. Plugging C ′max into Eq. (2.3)

and expanding yields

E[Lα] <
∫ Xmax(n)

1
Cα
(
x r(n)

)1−α · C ′max x dx

= C ′max Cα r(n)1−α
∫ Xmax(n)

1
x 2−α dx

=





C ′max Cα r(n)−2 logXmax(n) if α = 3 ,

C ′max Cα
3− α r(n)1−α

(
X3−α

max (n)− 1
)

otherwise .

Replacing Cα from Eq. (2.2) results in the following upper-bounds on Espl.

E[Lα] <





C ′max
Xmax(n)− 1
logXmax(n) if α = 2 ,

C ′max
Xmax(n) logXmax(n)

Xmax(n)− 1 if α = 3 ,

C ′max
α− 2
α− 3 ×

X3−α
max (n)− 1

X2−α
max (n)− 1 otherwise .

Likewise, replacing C ′max by C ′min results in similar lower-bounds. Note that

limn→∞Xmax(n) = ∞. Therefore, we can express Espl in terms of Xmax(n)

26



as follows.

E[Lα] =





Θ
(
Xmax(n)

)
if 0 ≤ α < 2 ,

Θ
(

Xmax(n)
logXmax(n)

)
if α = 2 ,

Θ
(
X3−α

max (n)
)

if 2 < α < 3 ,

Θ
(

logXmax(n)
)

if α = 3 ,

Θ(1) if 3 < α .

(2.10)

As seen from Eq. (2.10), Espl becomes a constant independent of n only when

α > 3 and the theorem follows.

Figure 2.3 provides a pictorial view of the relations provided in Eq. (2.10).

The figure illustrates how Espl grows against an increasingly growing network

diameter (Xmax(n)) for various degrees of clustering (α). A linear relationship

is evident for 0 ≤ α < 2. When α = 3, Espl is still growing but the growth

rate is very slow with respect to the network geometric diameter. For any α > 3,

Espl becomes constant and decreases with increasing α to a limiting value of 1

as α → ∞. At that point, each node only communicates to its closest neighbor

(that is one hop away) almost surely.

An alternative view of the relationship between Espl and the clustering ex-

ponent α is depicted in Figure 2.4. As seen, α > 3 is the scalable region where

Espl demonstrates a stable behavior. As soon as α drops below the threshold of

3, Espl demonstrates a rapid initial growth which gradually flattens out around

α = 2. The monotonic relationship between Espl and Xmax(n) is evident for

0 ≤ α < 2.
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Figure 2.3: The growth rate of Espl for various clustering exponents (α) as the

geometric diameter of the network increases. α > 3 is the scalability threshold and

the shaded region highlights networks with bounded average social path lengths.

2.6 Upper-bounds on Throughput

Our scalability analysis can be extended to a characterization of the through-

put capacity of random networks when various social interaction models are ap-

plied. The analysis presented below is in fact a generalization of the upper-bound

throughput calculation in [1]. Assume a network consisting of n nodes each ca-

pable of transmitting W bits per second. Each node chooses a social contact at

random according to some proximity-driven social model with parameter α as
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Figure 2.4: The decaying rate of Espl versus an increasing clustering exponent

(α). The shaded area, i.e., α > 3, illustrates the scalable region in which a finite

expected social path length is attained.

described in Section 2.2.2. Let Rα(n) be the rate at which each node transmit-

s (including both original and relaying traffic) and each packet goes through a

path consisting of E[Lα] hops on average. The network, hence, carries a total of

nRα(n)E[Lα] bits per second.

Due to the shared nature of the wireless medium, some distributed medium

access control protocol must be in place to avoid multiple access interference. For

that purpose, a simple TDMA scheme similar to the protocol model in [1] can be

conceived. According to this model, a transmission from node u to v is considered
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successful if (1) ‖Xu − Xv‖ ≤ r(n), and (2) ‖Xv − Xw‖ ≥ (1 + ∆) r(n) for every

node w transmitting simultaneously with u over the same (sub)channel.

Lemma 2.1. The maximum number of simultaneous transmissions the network

can handle grows as Θ
(
X2

max(n)
)
.

Proof. The proof shares a similar logic with the proof of Lemma 5.4 in [1]. By

requirement (2) of the protocol model and the triangle inequality, simultaneous

receivers on the same (sub)-channel must be at least ∆ r(n) distance away from

one another (See Figure 2.5). Thus, the surface of the network can be covered with

disjoint disks of radius ∆ r(n)/2 centered at each receiver. The area of each such

disk is Θ
(
r(n)2). The total area of the network is Θ

(
d2). The maximum number

of simultaneous receivers is thus Θ
(
d2/r(n)2) ≡ Θ

(
X2

max(n)
)
. Every receiver

corresponds to an identical transmitter and hence, the lemma follows.

From Lemma 2.1, it follows that the maximum accumulative traffic in the

network cannot grow faster than Θ
(
X2

max(n)
)
. In symbols,

nRα(n)E[Lα] ≤ Θ
(
X2

max(n)
)
. (2.11)

We use this result to derive the theoretical maximum throughput capacity per

node.

Lemma 2.2. In a random network, Xmax(n) = Θ
(√

n
logn

)
.

Proof. In Section 2.2, we defined Xmax(n) , d/r(n). We prove the lemma for the

cases of dense and extended networks separately, referring to some known results

from the random networks literature.

The case of dense network: The critical transmission range to ensure connec-

tivity in dense graphs is derived by Gupta and Kumar [24] as r(n) = Θ
(√

logn
n

)
.

Noting that d = Θ(1) for dense networks, the result follows immediately.
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Figure 2.5: To avoid multiple access interference, the protocol model demands

concurrent receivers over the same (sub)channel to maintain a distance of at least

(1 + ∆) r(n) from an irrelevant active transmitter. Here, u is transmitting to

v. The shaded region (cropped to save space), with a width of ∆ r(n), is the

guard zone in which no other node can simultaneously receive. w and y are at

distance (1+∆) r(n) from u and thus, can be simultaneous receivers over the same

(sub)channel without being affected by u’s signal. By triangle inequality, such

simultaneous receivers cannot be closer than ∆ r(n) to v. Therefore, imaginary

disks of radius ∆ r(n)/2 centered at all simultaneous receivers are disjoint.

The case of extended network: Santi and Blough [25] derive the critical

transmission range for extended networks as r(d) = Θ(
√

log d), where d is the

geometric diameter of the network. For an extended network, d = Θ(
√
n) and

thus, r(n) = Θ(
√

log n). The lemma follows.

Using Lemma 2.2 and the bounds obtained in Eq. (2.10), we derive the theo-

retical upper-bounds on the per-node throughput.
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Theorem 2.3. In a random network and under a proximity-based social model

with clustering exponent α, the theoretical maximum per-node throughput Rα(n)

is bounded above as

Rα(n) =





O
(

1√
n log n

)
if 0 ≤ α < 2 ,

O
(√

log n
n

)
if α = 2 ,

O
(( 1

n

)( n

log n

)α−1
2
)

if 2 < α < 3 ,

O
(

1
log2 n

)
if α = 3 ,

O
(

1
log n

)
if 3 < α .

(2.12)

Proof. From Lemma 2.2 and Eq. (2.11), it is immediate that

Rα(n) ≤ Θ
( 1

log nE[Lα]
)
.

The theorem follows by replacing E[Lα] with corresponding bounds given in E-

q. (2.10).

Figure 2.6 illustrates the bounds derived by Theorem 2.6. The drastic decay

in per-node throughput can be observed when 0 ≤ α < 2. The shaded region

depicts the transition into a slowly decaying order of 1/ log n when α exceeds a

threshold of 3.

The throughput order of 1/
√
n log n was first derived in the pioneering paper

by Gupta and Kumar [1] under the assumption of uniform communication model

when nodes choose their destinations randomly and uniformly, i.e., α = 0. The

result in Theorem 2.3 is consistent with this well-known result. In fact, Theo-

rem 2.3 makes a stronger statement that this bound indeed holds for a larger
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Figure 2.6: An illustration of how the throughput capacity decays versus the

network size when various classes of social relationships are in effect. Curves are

to only exhibit the approximate decaying rates and should not be interpreted as

being accurate.

range of α between 0 and 2. With increasing α, the order throughput improves

and eventually gets bounded above by 1/ log n when α exceeds 3.

This suggests that the maximum throughput scaling to be expected is of order

O(1/ log n) for α > 3 when the expected social path length remains constant. In

that case, even though every packet is transmitted only a finite number of times

along its path to the designated destination, still, a constant throughput per node

cannot be attained. The fundamental reason for this limitation is the restrictions

imposed by the MAC layer and the connectivity requirement. The area consumed

by every transmission is quadratic in the nodes’ transmission radius and this
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prohibits other nodes within the interference range from being able to receive

their intended packets at the same time. On the other hand, in order to maintain

a giant connected component in both the extended and dense network models,

the nodes’ critical transmission radius must be adjusted such that an increasing

number of nodes are covered within the one-hop neighborhood as the network

grows larger. This natural requirement inevitably contributes to larger interfering

groups of nodes and hence, increasingly limits the available capacity per node.

Though even highly localized interaction patterns cannot guarantee a decaying

rate of better than O(1/ log n) in per-node throughput, in practice, this can still

serve as a reasonable upper-bound should it be realized. Theorem 2.3 does not

provide insights as to whether or not this bound is achievable. Nonetheless, a

constructive approach to study the feasibility of this bound, similar to the lower-

bound analysis in [1], can be developed. This analysis is left as a subject of future

research.

2.7 Related Work

Originated by the seminal paper of Gupta and Kumar [1] and followed by

a handful of subsequent work (e.g., [7, 8, 9, 17, 26]) in the past decade, it was

revealed that the asymptotic per-node throughput in wireless multi-hop network-

s rapidly decays as the network grows in size. This unfavorable behavior was

primarily attributed to the effect of interference caused by the shared nature of

wireless medium that could only be avoided at the expense of some sort of spatial

or temporal sacrifice of bandwidth. Shortly after, a flurry of research discussed

potential mechanisms to mitigate the wireless channel impairments and thereby,

improve the throughput capacity through leveraging mobility [6, 17], hybridiza-

tion [27, 28], directional antennas [29, 30], or cooperative transmission [31, 32].
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All these proposals have correctly identified a root cause of throughput dete-

rioration in wireless networks by focusing on the limitations due to the physics of

wireless communication. Nonetheless, there also exists a social aspect to network-

ing which has received much less attention. A social model defines the patterns

according to which nodes interact with one another. For this side of the problem,

the mainstream literature has generally resorted to a naïve uniform interaction

model—see for example [1, 6, 7, 17, 19]. As it turns out, not only does such a

simplistic model fail to reflect a realistic picture of interaction patterns in the

network, but it also yields an overly pessimistic view of the network scaling limit-

s. A remarkable body of research [13, 14, 15, 16] has been undertaken to explore

geographical dynamics of social interactions in real networks, but no notable piece

of work has been devoted to investigating the impact of applying realistic social

models on the scalability and throughput capacity of communication network-

s. A primary objective of this chapter was to provide additional insight in the

exploration of this cross-domain problem.

2.8 Conclusions and Outlook

We investigated how geographical diversity of social interactions can affect the

scalability of communication networks. Particularly, we identified a threshold on

the spatial diversity of social interactions beyond which the majority of inter-node

communications become statistically concentrated within a finite neighborhood

around nodes. We showed that this phenomenon enables the underlying commu-

nication graph to scale as the number of nodes in the network increases.

We further examined how the upper-bound on the throughput capacity can

be improved if the social interactions among nodes are fueled by geographical

proximity. According to our analysis, an upper-bound of O(1/ log n) can be
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expected on the maximum per-node throughput if communication patterns are

highly concentrated. Although more promising than the well-established bound

of O(1/
√
n log n) under uniform communication model, the foregoing result does

not yet guarantee the existence of networking mechanisms to realize this bound.

In fact, the feasibility of this limit depends largely on the agreement of my social

model description with the actual communication patterns among nodes in real

networks.

The spatial diversity of social contacts may not naturally meet the necessary

localization requirements as needed by my model. Even in that case, similar

bounds may still be achievable by employing mechanisms such as in-network con-

tent replication and caching to bring content closer to consumers. I believe this

is an interesting topic for future research.
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Chapter 3

Distributed Content Caching in

Information-Centric Networks

In this chapter, a formal framework is presented for the characterization of

cache allocation models in Information-Centric Networks (ICN). The framework

is used to compare the performance of optimal caching everywhere in an ICN

with opportunistic caching of content only near its consumers. This comparison

is made using the independent reference model adopted in all prior studies, as

well as a new model that captures non-stationary reference locality in space and

time. The results obtained analytically and from simulations show that optimal

caching throughout an ICN and opportunistic caching at the edge routers of an

ICN perform comparably the same. In addition, caching content opportunistically

only near its consumers is shown to outperform the traditional on-path caching

approach assumed in most ICN architectures in an unstructured network with

arbitrary topology represented as a random geometric graph. The content of this

chapter is published and presented in ACM ICN 2014 [33].
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3.1 Introduction

Over years, the traffic workload on the Internet has evolved from endpoint-

based message passing towards more of the distribution and sharing of (often mul-

timedia) content. This shift has given rise to many content-oriented networking

paradigms such as web caches, content delivery networks (CDN) and peer-to-peer

(P2P) systems that are built on top of the existing TCP/IP stack. These designs

are often application-/service-specific and hence are costly and inefficient. In re-

cent past, several Information-Centric Networking (ICN) architectures [34, 35, 36]

have been introduced to redesign the current architecture of the Internet to ac-

commodate content-oriented applications and services. Decoupling the content

from Internet addresses is fundamental to information-centric networking and us-

ing this principle, ICN architectures seek to provide the necessary foundation for

scalable and cost-efficient content distribution. A key design component of many

ICN architectures is the universal in-network caching of named data objects in

an opportunistic fashion. The universality implies that content caching should

be done everywhere and for everything in the network. The former requires all

ICN routers to equally contribute in the network-wide process of caching, while

the latter necessitates the ICN routers to cache all kinds of traffic they handle,

irrespective of the popularity of the content or its geographical relevance. This

approach is used to attain such performance benefits as reduced response time,

efficient content distribution, and improved disruption tolerance.

As the review of prior work in Section 3.2 points out, even though universal

in-network caching is assumed in many ICN architectures, there has been no

quantitative analysis justifying this choice compared to opportunistic caching of

content near its consumers. The main objective of this chapter is to provide

a formal framework for the characterization of the performance of optimal in-
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network caching in ICN’s, as well as opportunistic in-network caching at the edge

of ICN’s—i.e., close to the end-users.

Section 3.3 uses the Independent Reference Model (IRM), which assumes that

references to content objects occur independently, to study the benefits of us-

ing universal caching compared to a simple policy of caching only at the edge

of the network. The results of this analysis, supported by extensive event-driven

simulations over a wide range of configurations, indicate that the optimal cach-

ing approach based on universal caching provides only marginal benefits over the

simple policy of caching only at the edge of the ICN. Although empirical stud-

ies [2] in the past have shown similar results, this chapter attempts to explain this

important finding from a mathematical point of view.

Section 3.4 addresses the impact of locality of references (i.e., content requests)

on the performance of caching in an ICN. This work is inspired in part by the

results delineated by Traverso et al. [37] on the temporal locality of content

references. I introduce a novel view of reference locality that captures both spatial

and temporal aspects. The reference locality highlights the property that a request

for a content object is likely to trigger subsequent requests for the same object

from same geographical neighborhood (i.e., spatial locality) in near future (i.e.,

temporal locality). In other words, object references are localized in both space

and time. Most prior work (e.g., [38, 39, 40, 41]) neglects the existence of such

dependencies by simply resorting to the IRM model.

Exploiting the notion of cluster point processes [42], I present a general method

to produce synthetic traces of object references while maintaining their locality

properties. The process of generating such non-stationary traces complies with the

intuitive perception of spread of epidemics on today’s social networks. An infor-

mation object first attracts attention in a certain geographical region. Information
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consumers start sharing the content with their social contacts. A subpopulation

of their contacts who find the content interesting re-share it and this process is

repeated so long as the content retains its informational value in the network.

I leverage the fact that this description closely matches that of a self-exciting

Hawkes process [43] and present a new algorithm to produce a synthetic trace

in which, while the collective popularity profile of objects follows the commonly

observed Zipf distribution [44, 45], the occurrences of object-specific references

over time and space are locally clustered when observed on a smaller scale. Based

on this, I introduce a convenient measure to quantify the clustering degree of ref-

erences on a scale from 0 to 1. I call this measure the localization factor, which

can be used to cover the entire spectrum of reference patterns, from IRM (when

it equals 0) to highly localized (as it goes to 1).

Armed with these new tools, I extend the comparison of universal in-network

caching with simple caching at the edge of an ICN for traces not necessarily

conforming to the IRM assumption. The results from my model in conjunction

with event-driven simulations show that, while the optimal caching naturally drifts

towards the edge as the caching budget increases, higher degrees of reference

locality can further accelerate this transition. According to my findings, a 35%

difference between edge- vs. optimal caching under the IRM assumption decreases

to only 8% with a locality factor of 0.9.

Section 3.5 addresses the problem of caching in an unstructured ICN modeled

using a random geometric graph. Given that the optimal solution for universal

in-network caching cannot be obtained for this complex case, ICN architectures

have adopted caching of content along the paths taken by content objects from

producers or caches to consumers. This heuristic method is recently popularized

under the name “Transparent En-Route Caching” (TERC) [34]. My simulation
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results using ndnSIM [46] demonstrate that opportunistic caching at the edge of

an ICN outperforms TERC in virtually all circumstances. While this result may

be surprising at first, it can be explained with the insight gained by the model.

TERC forces routers to store excessive amounts of content that induces much

more content replacement along paths, while edge-caching tends to store more

what is of interest to consumers near the routers.

This chapter does not advocate specific mechanisms or ICN architectures.

However, it provides new tools (e.g., the generation of meaningful synthetic traces)

to analyze novel caching approaches in the future, and insight that has been miss-

ing to date on the caching schemes adopted in ICN architectures. In particular,

given that universal in-network caching is not needed to attain efficiency, and giv-

en that edge-caching performs so well, new approaches should be developed that

better integrate content routing and congestion control with content caching near

consumers. Architecturally, our results indicate that deploying different types of

routers in ICN’s—some without caching functionality—would be far more cost

effective. In the words of Fayazbakhsh et al. [2], content caching “at the edge” of

ICN’s renders “less pain, most of the gain.”

3.2 Related Work

3.2.1 Caching

Although isolated caches have been studied extensively in the past (e.g., [47,

48]), many aspects of interconnected networks of caches are not yet fully under-

stood. Such systems, often described as “cache networks”, are formed by seri-

alizing multiple cache modules such that the aggregate miss stream of multiple

downstream caches constitutes the input to an upper level cache. Cache net-
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works first became a subject of interest as a means to improve the performance

of the Web [49, 50], and work on ICN architectures has renewed interest in this

topic [39, 41, 51, 52, 53, 54, 55, 56, 57].

Understanding the full dimensions of networks of caches is naturally much more

complicated than that of individual caches when operating in isolation. Many ex-

isting methods developed for analyzing the performance of isolated caches are

based on algorithms that themselves are computationally expensive. For sim-

plicity, these methods often introduce certain approximations that come at the

inevitable cost of inaccuracy. Despite being negligible in the analysis of individual

caches, these errors can aggregate and propagate through the system and produce

a cascading effect when used in analysis of networks of caches.

A highly accurate approximation of least recently used (LRU) caching was

introduced by Che et al. [49]. This analysis was recently revived in a seminal

work by Fricker et al. [40] and shown to be applicable to a much wider range of

scenarios beyond the specific conditions that Che et al. had initially anticipated.

In the following, we briefly review this method which we shall refer to as “Che-

aprx”—abbreviated form of Che-approximation—hereinafter.

Consider a system comprising a total of N information objects and a LRU

cache with capacity C. The requests for an object n come at the cache forming a

Poisson process with rate q(n). In fact, q(n) signifies the popularity of object n

in the system—i.e., the proportion of total requests that belongs to n. The more

popular an object n, the higher q(n) as compared with other objects.

Che et al. define the characteristic time of a cache of size C, denoted by tC , as

the time it takes the cache to be filled with unique objects subject to the request

rates q(·) under the IRM assumption, and show that tC is indeed the unique root
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that solves the following equation for t:

C =
N∑

i=1

(
1− e−q(i) t

)
. (3.1)

Knowing tC , the miss probability m(n) for an object n, according to Che-

aprx, is derived as:

m(n) ≈ e−q(n) tC . (3.2)

As mentioned earlier, Che-aprx is proved to be very accurate and highly

versatile. However, there are two important restrictions in this approximation.

1) Equal-sized objects. All information objects in Che-aprx are of equal

size—more precisely, unit-size such that the cache is able to store at most C

objects. This assumption might seem far from reality at first, though becomes

more plausible if objects are assumed to be segmented into equal-sized chunks, as

required by many existing ICN proposals. It has also been shown [40] that Che-

aprx can readily be extended to also account for variable-sized objects. This,

however, makes the derivations more unwieldy with little, if any, extra benefit to

the purpose of our analysis. Hence, we choose to keep this assumption in place.

2) Independent object references. Che-aprx assumes that the requests

for information objects—a.k.a. references—arrive at the cache according to an

i.i.d. process, independent of the past history of the requests and following a

distribution determined by q(·) function. This assumption—generally referred to

as the Independent Reference Model (IRM)—is fairly standard to many similar

analyses for tractability and in order to calculate stationary cache hit/miss rates.

Although the IRM assumption is convenient, it is too simplistic in the context

of cache networks, where object references exhibit strong correlation in both s-

pace and time domains. Consider for example a new song, while listed among the

top hits of the month, may be highly popular for a certain period, but gradually
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loses popularity as newer hits are released. Furthermore, if the song is in a spe-

cific language, it may be well-received in certain regions of the world where that

language is widely spoken, while attracting little attention in other regions. The

first example reflects the temporal locality of references, in contrast to the spatial

locality highlighted by the second example. The IRM assumption neglects such

localities in space and time by assuming that content popularity is stationary.

This shortcoming of the IRM model might not be critical for the case of a

single cache that is local to a specific region, though of high importance when

it comes to a large network of interconnected caches with a mix of traffic being

exchanged among nodes. The extent to which this can influence the performance

of a cache network is not previously studied and is a topic to be investigated in

the present chapter.

3.2.2 Architectures and Systems

In-network caching of named content is a cornerstone of many ICN architec-

tures [34, 35, 36]. This consideration is so pervasive that many research papers

(e.g., [34, 54, 55, 57, 58]) use the notion of “cache network” as an abstraction to

describe “content-centric networks”.

The caching approach used in the vast majority of existing ICN proposals (e.g.,

[59, 60, 61]) is the transparent en-route caching (TERC) [34] by which all ICN

routers in the network participate in the process of content caching in conjunction

with their primitive function of relaying the content objects downstream. This

naïve method of caching, however, has been subject of many debates and criti-

cisms [2, 56, 57]. To reduce caching redundancy, more complex varieties of this

policy, such as probabilistic in-network caching (ProbCache) [53] and opportunis-

tic caching using reinforced counters [62] have recently been introduced.
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A handful of attempts in the past few years have been made to investigate

most efficient methods of caching in ICN, both empirically [2, 37, 63] and analyt-

ically [39, 53, 56]. The results from some of these studies, however, are somewhat

inconsistent and indecisive. For instance, the authors of [64] argue that caching at

the core of the network can be more effective, as opposed to [2, 52] who advocate

caching closer to the network edge.

Amidst this flurry of research, some researchers [56, 57] believe that the best

cache placement strategy is greatly influenced by factors such as network topology;

hence, there does not exist a unified strategy to be generally adopted. In contrast,

other work [65] reports that the impact of topology on the performance of caching

is limited.

Many notable analytical works [38, 39, 41, 54, 57, 66] focusing on the char-

acterization of caching generally suffer from the limitations imposed by the IRM

assumption. This assumption is so tightly coupled with the existing models of

caching that Kurose writes [34]: “[The IRM] assumption is as fundamental for

cache modeling as the memoryless assumption of exponential packet/circuit in-

terarrival times . . . are for modeling packet- and circuit-switched networks . . . ”

This is indeed the case; however, just as exponential interarrival times, the IRM

model is only a simplifying assumption to make problems tractable; there is no

evidence showing that real-world traffic adheres to the IRM assumption [67, 68].

Recently, Traverso et al. [37] have addressed the importance of temporal

reference locality on the performance of today’s caching networks. Their work

leverages the concept of Poisson shot noise processes as a convenient tool to model

and analyze temporal reference locality. They further show that adopting the IRM

assumption results in an overly pessimistic view of caching performance.
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3.3 Hierarchical Caching Model

Given a hierarchical network of caches, we ask the question: how much should

each layer of the hierarchy of caches contribute in the caching process in order to

get the most out of a constrained total caching budget? We frame this question

as an optimization problem and present solutions based on non-linear integer

programming.

Consider a hierarchy of LRU caches in the form of a tree with its root acting

as the content source. We assume that the source stores permanent copies of all

the content objects in the system. Alternatively, the source can be considered as

a collection of all possible content hosts that are logically collapsed into one single

entity as the root of the tree in our model.

The tree comprises L + 2 levels. The content subscribers (i.e., users or infor-

mation consumers) are at the 0th level, while the content source is at level L+ 1.

Subsequently, there exist L levels of nodes with caching capabilities between users

and the content source which are sequentially labeled from bottom (level 1) to

the top (level L).

The caching paradigm we seek to optimize is called “on-path caching” which

works as follows. When a request for an object is raised at level 0, it is forwarded

along the (unique) path of intermediate caches towards the root until a cache hit

occurs. If all cache accesses are missed along the path, the request will be fulfilled

by fetching a copy of the object directly from the source (root). Once located, the

object is transferred on the reverse path back to the requester and a local copy is

also stored on each and every cache along the path.

For simplicity, in the following analysis we assume that the hierarchy is a

complete k-ary tree. Under the IRM assumption and given that the cache states

are independent (which is reasonable if k is not very small), the rate at which
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requests for an object n arrive at a particular cache at level ` can recursively be

formalized as:

q`(n) =





q(n) ` = 0 ,

k q`−1(n)m`−1(n) 0 < ` ≤ L ,

(3.3)

where m`−1(n) is the miss probability of object n at a cache of level `− 1, which

can itself be calculated directly using Che-aprx (i.e., Equations (3.1) and (3.2)).

3.3.1 The Expected Time To Access Content

A parameter of interest is the expected time to access (Etta) an object n,

which we denote by τ(n). This is defined as the expected duration between the

time a user sends a request for an object n until a copy is located in the system

(either at an intermediate cache or finally at the original source). We measure

this duration in terms of the number of hops between the user and the closest

replica of the content along the path to the source. The following theorem gives

a closed-form for calculating Etta in terms of the miss rates of the intermediate

caches.

Theorem 3.1. Consider a tree structure with L + 2 levels where the users are

at level 0 and the content source at level L + 1. Employing an on-path caching

strategy as described before, the expected time to access an object n is obtained as:

τ(n) = 1 +
L∑

i=1

i∏

j=1
mj(n) , (3.4)

where mj(n) is the miss probability of content n at a cache of level j on the path

from the user towards the root of the tree.

Proof. For an object n, the problem can be modeled by a discrete-time Markov

chain whose states are the levels of the caching hierarchy plus an additional state
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of H denoting a cache hit (See Figure 3.1). Every state `, 0 < ` < L + 1

transits into either the following state ` + 1 or H with probabilities m`(n) and

h`(n) = 1 − m`(n), respectively. States L + 1 and H transit into state H with

probability 1.

H

0

1

2

· · ·

L

L+ 1

1

m1(n)
h1(n)

m2(n)

h2(n)

mL−1(n)

mL(n)

hL(n)

1

1

Figure 3.1: The Markov chain representing the process of locating an object

on a cache hierarchy. State 0 is where the users’ requests are generated. State

H denotes the state of a cache hit and other states correspond to the levels in

the hierarchy from bottom to the top. State L + 1 is the root of the tree where

the content source is located. mi(n) and hi(n) = 1 −mi(n) are the miss and hit

probabilities at a cache of level i.

Define TH , inf{t ≥ 1 : Xt = H} as the stopping time denoting when state

H is visited for the first time. Also, the expected time to visit H as τ0(n) ,

E[TH |X0 = 0], where X0 is a random variable denoting the initial state. Note

that τ0(n) counts the expected number of transitions to visit state H which can

be expressed recursively as:

τ0(n) = 1 + τ1(n)
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= 1 + 1 +m1(n) τ2(n) +
(
1−m1(n)

)
τH(n) .

Also, it is clear that τH(n) = 0 for every object n, because visiting state H

implies that the content is already located. Similarly, τ2(n) = 1 + m2(n) τ3(n).

By induction on the index i of τi(n), it is easy to verify that

τ0(n) = 2 +
L∑

i=1

i∏

j=1
mj(n) .

In essence, τ0(n) serves to count the expected number of steps it takes to

locate the object in the hierarchy of caches. However, due to the presence of the

additional state H, the real number of steps is one less than what τ0(n) counts.

Representing the actual expected value by τ(n), therefore, τ(n) = τ0(n) − 1 and

Eq. (3.4) follows.

A slightly modified version of the foregoing result has also been used in [69]

as a measure of “virtual round-trip time” to access contents of various popularity

classes.

3.3.2 Optimal Cache Allocation in Tree Structure

Definition 3.1. (The optimal cache allocation problem)

Given a fixed total cache budget C, find the optimal breakdown of the caching

budget across different levels of the tree that minimizes the overall expected time

to access subject to a given content popularity profile q(·).

Under the IRM assumption, for a k-ary tree with L cache levels, we formulate

this problem as a non-linear integer programming as follows:

c∗ = argmin
c

N∑

n=1
q(n) τ(n; c)
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s.t.
L∑

`=1
c(`) k(L−`) = C , and

c(`) ≥ 0 and integer ∀` ∈ {1, . . . , L} , (3.5)

where c∗ ∈ NL is the vector of optimal cache sizes on the tree in which c∗(`)

denotes the optimal capacity of an individual cache at the `th level.

3.3.3 Numerical Results

I collected some numerical results on the problem described above utilizing the

active-set algorithm of the optimization toolbox in MATLAB. As the underlying

topology, I considered k-ary tree structures with height of 7. The requesters are

the leaves (i.e., level 0) and the source (storing a permanent copy of all objects)

is at the root (i.e., level 6). The 5 intermediate levels—which we call `1 to `5

caches—are cache routers with LRU replacement policy.

All content objects in the system are ranked based on their global popularity—

i.e., the overall frequency of requests for that object throughout the system. For

these simulations, I used one million data objects whose popularities follow a Zipf

distribution with exponent 1. References to these objects are Poisson distributed

with rates proportional to their popularities. For the time being, we make sure

that the references conform to the IRM assumption and that identical objects

have the same popularity among all users. I shall later explain how the IRM

assumption can be relaxed by focusing on more general classes of traffic with

non-stationary behavior in time and space.

Figure 3.2 demonstrates the optimal breakdown of the caching budget across

various levels of the tree hierarchy for complete trees of degree 2 to 5. Bars show

what fraction of the caching budget is allocated to various levels for any given

total budget. The darker the color, the lower the cache level in the hierarchy.
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Figure 3.2: Optimal breakdown of caching budget across various levels of the

tree for the given total cache budgets
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As seen, there is a drift towards the edge as the caching budget increases. This

is trivially expected when Etta is the objective criterion for the optimization

problem. For trees with lower degrees, this behavior is more evident, because

for the same total budget, edge caches in lower degree trees receive larger shares,

making edge-caching even more effective.

When the caching budget is large, it is clear that edge-caching becomes the

optimal strategy. At the limit, a budget of N×kL can be broken up evenly across

all `1 caches giving each enough capacity to store a copy of every object in the

system. This results in an Etta of close to 1 in the long run. The available

budget, nonetheless, is usually much less than this in practice. Figure 3.3 serves

to shed some light on the question of how different optimal caching performs in

general as compared with pure edge-caching by comparing the overall Etta for

edge- with optimal caching.

The solid lines in Figure 3.3 represent edge-caching, where all the caching bud-

get is evenly split across `1 caches. The dashed lines illustrate the optimal caching

with a budget breakdown specified in the corresponding part of Figure 3.2. To ver-

ify the accuracy of these results, I also designed a discrete-event simulation based

on ndnSIM [46], a NS-3 module implementing Named Data Networking [70]. As

seen, results from discrete-event simulations demonstrate almost perfect agree-

ment with the proposed model.

Interestingly, Figure 3.3 suggests that edge-caching can perform comparably

close to the optimal caching in practice. According to our results, the maximum

difference observed between the two schemes is around 10%. The difference is

seen to increase slightly with the degree of the tree. However, as Figure 3.2

also illustrates, the optimal breakdown tends towards the edge with an increased

caching budget. This essentially means that the difference between the edge- and
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caching budget for optimal- vs. edge-caching
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optimal caching is reduced with further increasing the budget. On the other hand,

when the available budget is small, both edge- and optimal caching strategies

appear to be equally ineffective. Thus, the maximum observed gap applies only

to the cases where the available budget is modest—that is, neither so large to

make edge-caching effectively optimal, nor so small to undermine the effectiveness

of caching altogether.

Implementing edge-caching is practically more convenient, in that it only re-

quires deploying `1 caches at the AS-level without any need to manipulate central

routers deep in the core of the network. Although the effectiveness of edge-caching

has previously been shown through extensive empirical results [2], this chapter,

to the best of my knowledge, presents the first formal framework as a basis to

compare the two paradigms in more depth.

3.4 Capturing Reference Locality

To obtain useful insights out of the foregoing analysis, it is imperative to e-

valuate the model under realistic conditions. As discussed, the IRM assumption

overlooks the correlation present among subsequent object references occurring

over a certain period of time (i.e., temporal locality) and/or a specific region in

space (i.e., spatial locality). I introduce a convenient model to generate object

references while preserving their spatio-temporal locality properties. Before pro-

ceeding, let us have a closer look at the intuitive interpretation of the concepts of

spatial and temporal locality.

Spatial locality of reference captures the impact that the geographical

diversity of the users has on the observed trace of requested objects by them.

More precisely, the requests coming from a specific region in space are more likely

to be similar than those collected over regions far apart. For example, a certain
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news content might be of special interest in a certain area, while its global impact

in the geography of interest remains limited. On the other hand, globally popular

objects are seen to be requested from a wider range of geographical regions.

Temporal locality of reference captures the effect that, if an object is

requested at a certain point in time, more likely it will be requested again in near

future. In fact, nor are the object references scattered randomly and independently

over time; rather, an object might be of particular interest at a certain time

interval, while its popularity gradually fades out.

longitude(x) latitude(y)

tim
e

Figure 3.4: A cluster process representing references to a specific object file.

The projection of points over X-Y plane represents the spatial density of requests,

whereas the projection along the time axis reflects the temporal distribution.

3.4.1 Using Cluster Point Processes

In the light of the above discussion, an intuitive approach for simulating the

spatio-temporal locality of object references is using cluster point processes [42].
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A generic method for producing one such process works as follows. First, a point

process Π generates “centers” of the process. Next, a point process Xp for each

p ∈ Π produces the off-springs. The combination of these points X = ∪p∈ΠXp

constitutes a cluster process. Particularly, X is called a “Poisson cluster process”

if Π is a Poisson process.

A specific example of the Poisson cluster process is “Hawkes process” [43] that

is generated as follows. First, a Poisson process on Rd with intensity function

ρ(·) creates the cluster centers Π. Then, for each cluster center p ∈ Π, the first-

generation off-springs are generated as a Poisson process of intensity ϕ(x − p),

where ϕ(·) is a positive function on Rd. This process continues repeatedly such

that for every first-generation off-spring p1, a Poisson process of intensity ϕ(x −
p1) generates the second generation off-springs and so on. The mean number

of off-springs for each center point is determined as β =
∫
ϕ(x) dx. A natural

requirement for this process to stop is β < 1. Figure 3.4 illustrates one realization

of the Hawkes process in R3. The contour plot on the X-Y plane represents the

spatial density of the requests for a certain object, while the histogram along the

time axis shows the temporal evolution of the object popularity.

This procedure can be repeated for the number of content objects in the system

to generate a collective trace of all references. The procedure Generate-Trace

in Algorithm 3.1 shows the pseudocode for this with inputs N denoting the total

number of objects, α as the parameter of the Zipf distribution for object popular-

ity, and β specifying the localization factor. For an object n, Line 4 calculates the

intensity qn at which the references to that object should be generated. To ensure

that the global object popularity profile follows the desired Zipf distribution, we

choose this rate to be directly proportional to the global popularity of the object

in the system. Consequently, references to more popular objects will be placed
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Algorithm 3.1 Method for generating object references with localization in a

d-dimensional space
Input: Number of objects (N), Zipf parameter (α) and localization factor (β)
Output: An aggregate Poisson cluster process X
Ensure: X is Zipf distributed with parameter α

1 procedure Generate-Trace(N,α, β)
2 X ← ∅
3 for n from 1 to N do
4 qn ←M × n−α . M is some constant multiplier

5 Πn ← Hawkes-Process(qn, β)
6 X ← X ∪ Πn

7 end for
8 return X

9 end procedure

over a wider geography and a longer course of time, as opposed to the less popular

items which may only be requested from a specific region and a certain period.

The multiplier M in Line 4 is a positive constant which can be interpreted as the

maximum intensity—i.e., the desired intensity for the most popular (first rank)

object. Depending on the choice of N and α, one may need to set the value of

this multiplier sufficiently large to ensure that the lower rank objects at the tail

of the popularity distribution will also have a reasonable chance to appear in the

output trace.

Once the reference intensity is determined, a call to procedure Hawkes-

Process is made at Line 5 to produce the actual trace of references. The

parameters ρ and β respectively determine the intensity of the centers and the

expected number of next-generation off-springs in the underlying cluster process.

The centers are uniformly scattered throughout the region, and for each center,

the off-springs are normally distributed around it. The procedures Uniform and
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Algorithm 3.2 Method for generating a Hawkes point process

Input: Intensity of cluster centers (ρ) and the expected number of off-springs (β)
Output: A Poisson cluster process Π
Require: ρ ≥ 0 and 0 ≤ β < 1

1 procedure Hawkes-Process(ρ, β)
2 nt ← Poisson(ρ)
3 for i from 1 to nt do
4 Π(i)← Uniform(0,1)
5 end for
6 idx← 1
7 end← nt

8 while idx < nt do
9 nc ← Poisson(β)

10 for j from 1 to nc do
11 end← end+ 1
12 Π(end)← Π(idx)+ Normal(0,σ)
13 end for
14 nt ← nt + nc

15 idx← idx+ 1
16 end while
17 return Π
18 end procedure

Normal are assumed to return coordinates in d-dimensional space with corre-

sponding distributions and the parameters specified.

3.4.2 Caching under Non-stationary References

With a non-stationary stream of references, the popularity profile of objects in

the system varies over both space and time. Consequently, the model discussed in

Section 3.3 can no longer be used to analyze the behavior of the caching system.

A useful insight which can help remedy this limitation is that while, in the big
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picture, the underlying process of object references is dynamic, when studied at

a finer granularity, it can be well-approximated as a “piecewise” stationary pro-

cess. In other words, if we look at the process of references through a sufficiently

small window in the time-space domain, the subprocess observed exhibits a rather

stationary behavior.

Let qu(n, t) be the popularity of the nth object observed by a cache node u

around a particular time t. As a generalization of Eq. (3.3), we can compute this

quantity as follows:

qu(n, t) =





lim
∆t→0

E[Nu(n, t+ ∆t]
∆t u ∈ {`1} ,

∑

c∈Cu
qc(n, t)mc(n, t) u /∈ {`1} .

(3.6)

Here, {`1} denotes the set of `1 caches; Nu(n, t + ∆t) denotes the number of

references to object n coming at node u during interval (t, t+∆t); and Cu represents
the set of caches which have u as their upstream node. In other words, the

aggregate miss streams of nodes in Cu form the input stream of u.

In most scenarios, it is neither practical nor necessary to work with the in-

finitesimal limit given in Eq. (3.6). Rather, the input stream of a `1 cache could

be partitioned into a number of smaller time bins over which the input process

is assumed to be stationary. The size of the time bins does indeed depend on

the degree of reference locality. The more localized the input stream, the more

clustered are the occurrences of the references over time; hence, smaller time bins

will be required to mitigate the approximation error.

This treatment can be used in conjunction with Che-aprx when dealing with

non-stationary streams of references. The miss rates and the corresponding Et-

ta’s can be computed separately for individual intervals. The overall Etta, sub-

sequently, can be calculated as the time-average of individually computed Etta’s

over specific intervals.
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Figure 3.5: Optimal breakdown of caching budget across various levels of the

tree for various localization factors
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To evaluate the accuracy of this method, we conduct some Monte Carlo simu-

lations backed by a series of discrete-event simulations performed in ndnSIM [46].

The underlying topology we consider is a complete tree of degree 4 and depth 6

with 4 layers of intermediate caches. The object catalog contains 100 files with a

Zipf popularity profile of parameter 1. Algorithm 3.1 is used to generate a 2-D

trace of object references with various degrees of localization. Leaves of the tree

span across one dimension and object references are directed at their L1-closest

cache. The other dimension captures the temporal distribution of references as

discussed before.

Figure 3.5 demonstrates the optimal breakdown of cache budget across levels

of the tree for various degrees of reference locality. Again, a drift towards the

edge can be observed as the available caching budget increases. This transition

is further accelerated with a larger localization factor. Figure 3.5(d) reflects this

phenomenon more vividly. In particular, we observe that an increased localization

factor from 0.0 to 0.9 has almost the same impact on the performance of the

caching hierarchy as doubling the caching budget does.

Figure 3.6 compares the overall expected time to access for edge- vs. optimal

caching with the same configurations as plots in Figure 3.5. As discussed earlier,

for numerical analysis, we split the time into smaller non-overlapping intervals

(bins). With zero localization, references are generated independently. The gen-

erated trace, therefore, conforms to the IRM assumption and hence, one single

time bin is considered. With a localization factor of 0.9, I found that 5 time bins

yield a good approximation with a maximum error of 6% over a wide range of

configurations. For other cases in between, the number of bins are chosen propor-

tionally. For the general case, the number of bins should be chosen such that the

approximation error is minimized. Finding the optimal number of bins requires
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a deeper understanding of the behavior of the underlying point process, and we

leave this as a subject for future research.

Figure 3.6 also captures how fast optimal on-path caching converges towards

the edge as both the caching budget and localization factor increase. In the

examples depicted, the maximum difference between the two schemes is around

35%. This is reduced to 8% on the far right of Figure 3.6(d) where each `1 cache

has capacity to store 16 content objects.

The main focus of our study so far was primarily on a well-defined hierarchy

of caches. In what follows, we broaden the scope of these findings by considering

a more arbitrary topology for cache networks.

3.5 Caching on Random Networks

Let Π0 be a point process on d-dimensional space representing a random de-

ployment of cache routers. We define the local cache of a sub-region in the space

of interest as follows.

Definition 3.2. A node x ∈ Π0 is said to be the local cache for the region Cx
defined as:

Cx =
{
y ∈ Rd : ‖y − x‖ ≤ inf

x′∈Π0,x′ 6=x
‖y − x′‖

}
.

In fact, Cx comprises the closed set of points that are geographically closer

to x than any other point in Π0. In this sense, the process Π0 forms a Voronoi

tessellation of the space similar to the construction depicted in Figure 3.7. The

solid dots are the points generated by Π0 and the polygons where they reside are

the Voronoi cells. We shall refer to Cx as the cell of node x, hereinafter.

Each cache node is equipped with two types of storage. One type is used to

permanently store content originally published by the cache node. The other type
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Figure 3.7: A Voronoi tessellation of the terrain via randomly deployed cache

nodes. Solid dots are local caches to the cells they belong to, and empty dots

indicate requests directed to them (shown only for one cell for clarity). The

dashed line represents a path from cell 1 to cell 7. Cache node c7 is the original

source of the content to be routed to c1, the initial requesting cell. On this way,

if the content is cached at every cache node ci, i = 1, . . . , 6, it is called on-path

caching. If the content is cached only at c1, we call it edge-caching.

is used for caching content from other nodes while the cache node serves to route

the content towards some end-user/subscriber.

Subscription requests (generated by Algorithm 3.1), form a second point pro-

cess. A request originating from cell Cx is first forwarded to x, the local cache

of that cell. If x happens to have a copy of the requested object, it serves the

request locally. Otherwise, it forwards the request towards the original owner of

the content in a multi-hop fashion.
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The connectivity among cache nodes is defined based on Euclidean distance

such that every xi, xj ∈ Π0 are connected through a bidirectional link iff ‖xi −
xj‖ ≤ r for some constant r > 0. Such a paradigm is often adopted for modeling

of wireless ad hoc networks and might not be well-suited to represent a typical

wired topology. Still, we believe it is insightful to study the performance of various

caching schemes on a more general and irregular type of topology such as that of

a random geometric graph.

3.5.1 The Routing and Caching Process

The routing is performed along the shortest path connecting source-destination

pairs. For simplicity, we choose the critical radius r large enough to ensure that

the network is connected. Hence, there always exists at least one path connecting

each subscribing cell to the publishing source. Such paths typically cross through

several cells and the traffic carried along them may be cached at the local caches

of the cells where they intersect.

On the way towards the source, if a valid replica of the requested object is

found at any of the intermediate caches along the path, the request will be handled

locally and it will not be forwarded beyond that point. However, if no cache hit

occurs along the path, the request will be served by the original source and the

requested object will be routed back towards the requester on the reverse path.

For a well-structured tree topology, we observed suggestive evidence that edge-

caching can perform comparably close to optimal caching in certain situations.

Implementing optimal caching on a random configuration, nevertheless, is chal-

lenging if not impossible at all. This is perhaps why many existing ICN proposals

adopt a simplified version of on-path caching in which all routers blindly cache

every piece of content they relay.
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Implementing edge-caching, in contrast, is not much of a burden on a random

network so long as a clear definition of “edge” is given. Since object requests are

scattered all over the network, there is no physical boundary to separate edge from

the rest of the network. Instead, we give a logical definition of the edge. In fact,

we say edge-caching takes place if caching is only performed at the local cache of

the last cell where the traffic is being served—i.e., the destination cell. According

to this definition, a cache router is an edge cache for the cell it resides in and a

non-edge cache for the traffic it relays to all other cells. An interesting aspect to

investigate is a performance comparison of the simple on-path caching—which for

brevity we shall refer to as “on-path”—versus edge-caching in the above described

configuration.

Although appearing different, the above-described system has many charac-

teristics in common with the hierarchical topology we discussed in the previous

section. In particular, for any given object, the original publisher (source) serves

as the root of a tree. The object requesters (i.e., destinations) are the leaves,

which can be from anywhere within the network. Of course, the induced tree

structures differ for various content objects. Consequently, a cache node can be

part of several such logical trees and at different levels.

3.5.2 Simulation Results

I performed event-driven simulations on ndnSIM [46] to compare the perfor-

mance of caching at the edge versus the standard on-path caching on a random

geometric topology. The network consisted of 200 cache nodes distributed uni-

formly and at random over a region of 100× 100 square units. Nodes’ radio range

was set to 12 units giving each node an average degree of 8.93. I considered a

total of 1000 content objects with a Zipf popularity distribution of parameter 1.
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The objects are also uniformly distributed among nodes which act as original pub-

lishers of the designated objects. Hence, some nodes may publish more than one

data object while some others none. With the foregoing settings, the following

measurements were performed in the steady-state of the system when all caches

were full.

Figure 3.8 shows how the average hop-count decreases with an increased locali-

ty factor when each node has a caching storage of size 10. In this case, edge-caching

outperforms the standard on-path caching even under the IRM assumption (i.e.,

β = 0). This behavior is rather surprising because when the references are gen-

erated independently, there should seemingly exist no difference between the two

schemes in terms of cache hits. However, a subtle observation is that replacements

generally take place at a higher rate with on-path caching than with edge-caching.

This is due to the replacements that a cache incurs while relaying traffic to other

cells. These replacements do not take place when caching is only done for the

edge traffic.

Not all such replacements are useful. In fact, with a heavy-tailed distribu-

tion such as Zipf, a vast majority of objects are individually unpopular and very

unlikely to be requested. Yet, in the big picture, it is much more likely to see

some object from this whole population of less popular items being referenced by

some node within the network. With on-path caching, all such references result

in replacements along the entire path serving the traffic to the destination cell.

Once referenced, however, because the object is of little global interest, the odds

are small that any of these affected caches serve any subsequent reference to the

same object in near future. The replaced item takes up a space that could have

otherwise been dedicated to a more popular item and thereby, diminishes the

caching gain.
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Figure 3.8: Overall expected time to access an object in a random geometric

topology for various degrees of reference locality (from IRM (β = 0) to highly

localized (β = 0.9))

With edge-caching, such useless replacements occur at a lower rate and the

caching capacity is utilized more efficiently. The same arguments hold in case of

higher degrees of locality resulting in an even sharper contrast.

Figure 3.9 illustrates the impact of increasing the caching budget on the aver-

age hop-count. As seen, edge-caching outperforms on-path caching for all cache

sizes and over various degrees of locality. The enhancements attained through

increasing the budget size become more pronounced with a higher degree of ref-

erence locality. Another observation is that a localization factor of 0.9 requires

roughly 6 times less caching budget to yield the same overall Etta than it does

under the independent reference model.
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Figure 3.9: The impact of increasing the cache size on the caching gain for

various degrees of reference locality. Edge-caching outperforms on-path caching

in almost all scenarios.

3.6 Conclusions and Future Work

In this chapter, a computational framework was presented to compare the

performance of in-network caching in ICN. In particular, we compared optimal

on-path caching against the simple strategy of caching only at routers near the

consumers of an ICN in terms of their overall expected time to accessing con-

tent objects. The results using the commonly-used independent reference model

showed that while the optimal breakdown of caching budget is markedly influ-

enced by factors such as topology and caching budget, optimal caching provides

only marginal benefits over edge-caching in most scenarios.
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Next, we investigated the impact of locality of reference on the performance

of ICN’s, and introduced a novel tool to synthesize traces of object requests that

preserves their spatial and temporal locality properties. The results using this

model demonstrate that, while the optimal breakdown of caching naturally drifts

towards the edge with an increased caching budget, higher degrees of reference lo-

cality further accelerate this transition. This suggests that the difference between

edge- and optimal on-path caching is far less than what the existing models based

on the IRM assumption predict.

We also compared the prevalent on-path caching approach assumed in most

ICN architectures today against edge-caching on random geometric graphs repre-

senting ICN’s with irregular topologies. The results of simulations in ndnSIM [46]

confirm the result from our modeling, and in fact show that edge-caching outper-

forms on-path caching.

The discussions in this chapter open up avenues for new research in ICN. New

ICN architectures should be investigated that exploit content routing with edge-

caching. It is important to broaden the scope of this study by considering more

realistic types of topologies. Also, the locality model introduced should be fit

against real-world traces to examine how localized content requests are in actual

networks.
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Chapter 4

Performance Analysis of ICN’s

Stateful Forwarding Plane

The Named Data Networking (NDN) and Content-Centric Networking (C-

CNx) architectures are Interest-oriented communication models in which users

request content through sending out Interest packets. These designs require the

use of Pending Interest Tables (PIT) that keep track of the state of every Interest

packet traversing a router. This information is used for routing data back to the

requester(s) as well as enabling optimization mechanisms such as Interest aggre-

gation. In the past, it has been assumed that such “stateful” forwarding plane

can reduce end-to-end latency and bandwidth consumption. In practice, however,

it is not well understood how realistic these expectations are or how effective this

design is. In this chapter, I present a thorough analysis of the stateful forwarding

plane in NDN and CCNx that carefully captures the reciprocal impact of Interest

hit rate at the cache and aggregation probability at the PIT in an NDN router.

Based on this model, I next develop an algorithm to study the performance of

large-scale content-centric networks of interconnected routers. My findings reveal

that, under realistic assumptions, PIT tends to quickly expand in size while only
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an insignificant fraction of Interests in the system end up benefiting from aggre-

gation. These results call into question the use of a stateful forwarding plane in

content-centric networks. The content of this chapter is published and presented

in IFIP Networking 2016 [71].

4.1 Introduction

The observation that it is the content and not its location that matters to

end-users has initiated a new direction in the networking research which is often

referred to as Information-Centric Networking (ICN) [34, 35, 36]. In the past

decade, ICN has been pursued as a unifying framework realizing the evolution from

today’s host-centric architecture of the Internet towards a clean-slate content-

centric design for the future.

CCNx [72] and NDN [70] are two prominent ICN design blueprints. In CC-

Nx and NDN, content consumers request content objects (CO) through Interest

packets that are handled and processed by routers. Routers support ubiquitous

content caching enabled through content store (CS). When a router receives an

Interest packet, it first attempts to satisfy that Interest locally by looking up the

CS for a cached copy of the requested content. If successful, the router sends

the requested CO back to the consumer. Otherwise, the router queries a pend-

ing Interest table (PIT) to check if an Interest for the same CO is already being

processed by the router. In that case, the PIT simply records the incoming port

through which the recent Interest is received and dismisses the Interest. In this

way, the PIT prevents unnecessary forwarding of similar Interests while a desired

piece of content is being downloaded. This mechanism is often referred to as In-

terest aggregation. The idea of Interest aggregation is hardly new; it has been

implemented in Web caching architectures in the past, e.g., Squid [73]—where
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it was referred to as collapsed forwarding—and commercially used on production

content delivery networks since the early days of the Web.

An Interest not finding a matching record in the PIT results in the creation

of a new PIT entry under the requested CO name. The router next forwards

the Interest using its forwarding information base (FIB), which is populated by a

name-based content routing protocol. The FIB enables routing to names rather

than Internet addresses and specifies the best next hop to forward an Interest to

based on the given name prefix.

According to CCNx and NDN, forwarding state is stored at the PIT for ev-

ery Interest packet traversing the router. Therefore, existing literature [74, 75]

describes the forwarding plane of NDN as “stateful.” Over the years, it has been

argued that Interest aggregation in such a stateful forwarding plane renders in-

herent multicast support, reduced load on content servers, optimized bandwidth

utilization and improved end-to-end latency when combined with caching. How-

ever, all these benefits come at the price of creating, optimizing and maintaining

very large data structures (i.e., PITs and FIBs) which are expected to operate

at line speed. The routers used in the Internet backbone handle hundreds of

thousands of packets every second. It can be very challenging to design these

components efficiently with fast enough lookup and update operations to not act

as a source of latency and overhead themselves.

In recent past, considerable body of work has focused on the optimization and

scalability of the PIT (e.g., see [76, 77, 78, 79]). Nevertheless, there exists no

comprehensive analytical work evaluating the effectiveness of this stateful design

for NDN which is realized through the PIT. Despite some experimental efforts [80,

81] in dimensioning the PIT size, important questions such as: What are the

dynamics of the PIT size under realistic conditions? What fraction of Interests
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are subject to aggregation? How much traffic can effectively be eliminated through

Interest aggregation and whether or not these justify the use of PITs have mainly

remained unanswered to this date. A more detailed discussion of related work is

provided in Section 4.2

In an attempt to answer the above questions, Section 4.3 presents compre-

hensive analytical models for characterizing an NDN router with CS and PIT

components. Closed forms are derived for the CS hit rate, the PIT aggregation

probability, as well as the router response time as functions of the popularity

of content objects. In Section 4.4, I use these constructions for the analysis of

a network of interconnected NDN routers. Particularly, I develop an algorithm

that evaluates how the CS cache hit and Interest aggregation at the PIT jointly

affect the shape of the egress traffic to other routers in the network. Through

extensive event-driven simulations, Section 4.5 demonstrates how accurately the

proposed framework can predict the steady-state behavior of such a complex sys-

tem. Furthermore, it shows how the model can be used to study the performance

of a large network under realistic conditions, such as that of today’s Internet for

which event-driven simulations are prohibitive.

Section 4.5 shows numerical examples quantifying the performance of the state-

ful forwarding plane of NDN in a network containing more than 100,000 routers

and hundreds of millions of COs. The results reveal many shortcomings to the

existing design of the NDN’s forwarding plane. Despite the common beliefs, the

results from this chapter show that: (1) the benefits from Interest aggregation

are marginal for regular traffic; (2) most Interest aggregation takes place closer

to sites where the content is permanently stored—hence offering minimal gain on

reducing the internal traffic load; (3) the PIT size grows exponentially every level

deeper inside the network; and (4) increasing the caching storage eliminates most

74



benefits from Interest aggregation though hardly helps the growth of the PIT size.

The insights from this analysis lead to the necessary conclusion that ND-

N’s stateful forwarding plane must be rethought and PIT should not be an in-

tegral component of the future ICN architectures and content-centric networks.

Network-wide content caching inherently suppresses a great number of Interests

requesting similar content throughout the network without the costs of maintain-

ing PITs. In fact, if per-Interest forwarding state is not needed for other reasons,

a “stateless” forwarding plane makes content-centric networking at Internet scale

more feasible than the currently existing NDN design, given that forwarding data

structures (e.g., CCN-DART [75, 82] and CCN-GRAM [83]) smaller and more

efficient than PIT could be used for routing data back to the consumers.

4.2 Related Work

To address the problem of PIT size explosion, great [76, 77, 78, 79, 84] effort

has been put in recently to design and implement fast and scalable pending in-

terest tables, as well as to reduce the required memory to store it. Among first

who initiated the study of PIT were Dai et al. [76]. They proposed a tree-like

structure for PIT that enables fast lookup and update operations. A separate

line of work is by You et al. [85] that take advantage of Bloom Filters in order

to reduce the memory space needed for operation of the PIT. One of the first

papers pinpointing the high overhead of the PIT was by Tsilopoulos et al. [86].

They proposed a semi-stateless forwarding scheme in which instead of tracking

Interests at every hop, the state is stored by the routers every d hops on the path.

Virgilio et al. citevirgilio:13 evaluated the performance of several existing PIT

architectures in terms of resilience to overload conditions. Revealing differentiat-

ed weaknesses for every architecture, their results emphasizes the need for better
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PIT management strategies. Their solution is to manage a dynamic PIT timeout

that dynamically adapts to the network load conditions. The same idea was later

adopted and expanded by Dehghan et al. [87] who proposed a thorough analysis

of the PIT with dynamic timeout and its interaction with the content store.

4.3 Characterizing an NDN Router

I develop a mathematical model to characterize an NDN router with a CS

enabling the caching functionality and a PIT for Interest aggregation. In an NDN

router, the CS and PIT are implemented as data structures holding collections of

references to content objects (CO). To characterize the dynamics of these complex

data structures, we abstract away unnecessary intricacies by looking at them in

their simplest mathematical form as sets of elements. The elements are references

to the actual COs in the system and at any point in time, CS and PIT may

potentially contain any arbitrary combination of such references.

Let U = {1, 2, ..., N} be the universal set containing unique ID’s of all COs

in the system and consider a subset S ⊆ U . Let a Bernoulli random variable

1{i∈S} indicate whether an element i ∈ U is also in S or not independent of all

j ∈ U, j 6= i. Assume 1{i∈S} takes on values 1 with probability pi and 0 with

probability 1− pi and let S denote the cardinality of S. We have

S =
N∑

i=1
1{i∈S} .

Given that 1{i∈S}’s are independent Bernoulli trials, though not necessarily identi-

cally distributed, their summation S follows a Poisson binomial distribution whose

first two central moments are as follows:

E[S] =
N∑

i=1
E
[
1{i∈S}

]
=

N∑

i=1
pi , (4.1)
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Var(S) =
N∑

i=1

N∑

j=1
Cov(1{i∈S},1{j∈S})

=
N∑

i=1
Var(1{i∈S}) =

N∑

i=1
pi(1− pi) . (4.2)

Consider an NDN router serving Interests conforming to the independent ref-

erence model (IRM)—that is, for each CO, Interests inter-arrival times are in-

dependent identically distributed random variables. Let hi and ai respectively

denote the occupancy probabilities of CO i in the CS and the PIT. Replacing

pi’s with hi’s or ai’s in Eqq. (4.1) and (4.2) would accordingly give the average

and variance of the cache size (i.e., number of COs in the CS if there is no cache

size restriction) or the PIT size. Assuming that the arrival stream of Interests

into an NDN router is a Poisson process, the occupancy probabilities hi and ai

are respectively equivalent to the cache hit probability of the CS and the Interest

aggregation probability at the PIT. This is due to the fact that Poisson arrivals

see time averages—a.k.a. the PASTA property [88].

To derive the cache hit- and PIT aggregation probabilities, we need to take

a closer look at the internal mechanisms of the router. At the packet level, the

operations a router performs when handling Interest and Data packets for a par-

ticular CO i can be analyzed in periodic cycles. One such cycle is illustrated in

Figure 4.1.

In Figure 4.1, the router receives an Interest for CO i on an incoming face.

It first searches the CS for a cached copy of the requested CO and a cache miss

occurs (see the first solid red comb). The router creates an entry in the PIT for CO

i and forwards the Interest on an outgoing face. The router then awaits receiving

the CO. It takes some duration di until a copy of CO i is located in the network

and downloaded into the router. We shall refer to di as the download delay of

CO i. Meanwhile, subsequent Interests (shown as dotted red combs) requesting

77



timemiss interval (di)
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T

Interest inter-forwarding cycle

· · ·

Figure 4.1: Interests arriving at an NDN router over time. Interests for different

COs are distinguished by their heights. Interests for a particular CO i are drawn

in color. The red/green zones indicate time intervals when CO i is absent/present

in the cache. Interests drawn in red are cache misses; solid ones are forwarded and

dotted ones are aggregated. It takes di units of time since the first miss until a

copy of CO i is fetched. Interests arriving after that point will result in cache hits

(green combs) so long as the CO is present in the cache. A similar cycle repeats

upon CO eviction.

CO i are aggregated at the PIT because a pending entry for CO i already exists

there. All incoming requests for CO i up until the time its download is complete

in the CS result in cache misses. This duration which we call the miss interval is

highlighted as the red region on the left side of Figure 4.1.

As soon as a copy of CO i is fetched and stored in the CS, the PIT entry for

CO i is removed and the CO is sent out on all faces from which an Interest for CO

i was received. Thereafter, subsequent Interests requesting CO i will be served

directly from the CS (i.e., cache hits) so long as CO i is not replaced in the cache.

This duration is highlighted as the green region in Figure 4.1, which we call the

hit interval. The cycle is completed with the eviction of CO i from the CS and

the next Interest for CO i would initiate a new cycle.

We compute the total number of Interests handled during one such inter-
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forwarding cycle assuming that the arrivals of Interests for CO i into the NDN

router follow a Poisson distribution with parameter λi. Accordingly, denoting

with E[di] the expected length of the miss interval, the expected number of missed

Interests (denoted by n̄i) is

E[n̄i] = 1 + λiE[di] , (4.3)

of which 1 is forwarded and the rest are aggregated at the PIT.

To compute the number of cache hits during an Interest inter-forwarding cycle

we need to know the length of the hit interval. For that we leverage the notion

of cache characteristic time, which was first introduced by Che et al. [49]. The

cache characteristic time denoted by TC(i) is a random variable specifying the

duration of time from a last reference to CO i (while it is already in the cache)

until it is replaced where C is the capacity of the cache (consult Figure 4.1 for an

illustration). Once CO i is referenced in the cache, if the inter-arrival time of the

subsequent reference to CO i is greater than TC(i), then CO i will be replaced in

the cache with some other newly referenced CO. For caches with zero download

delay and large capacity C, a useful property is that the cache characteristic

times become nearly deterministic and independent of i [49]; hence index i may

be omitted. Dehghan et al. [87] showed that this property holds even when

download delays are non-zero. For brevity, we drop the subscript C in the rest of

this chapter and simply denote the cache characteristic time by T while keeping

in mind that the characteristic time of a cache does depend on the cache size.

The Interest inter-arrival times for CO i are independent exponential random

variables with rate λi. The p.m.f. of exactly ni = k cache hits is the probability

of the event that the first k Interest inter-arrival times are smaller than the cache

characteristic time T , while the following Interest inter-arrival time is greater

than T . This probability is defined by the p.m.f. of the geometric distribution as
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follows:

P (ni = k) =
(
1− e−λiT

)k
e−λiT .

Hence, the expected number of cache hits is

E[ni] =
∞∑

k=0
kP (ni = k) = eλiT − 1 . (4.4)

From Eqq. (4.3) and (4.4), the total number of Interests for CO i handled by the

router during an Interest inter-forwarding cycle is derived as:

E[Ni] = E[ni] + E[n̄i] = λiE[di] + eλiT .

Now we compute the Interest aggregation probability at the PIT as follows:

ai = E[n̄i]− 1
E[Ni]

= λiE[di]
λiE[di] + eλiT

. (4.5)

And the probability of an incoming Interest resulting in a cache hit at the CS is

hi = E[ni]
E[Ni]

= eλiT − 1
λiE[di] + eλiT

. (4.6)

Eqq. (4.5) and (4.6) indicate what fraction of Interest packets received by the

NDN router in the long run result in aggregation at the PIT or hit the CS cache,

respectively. As seen, both ai and hi depend on the cache characteristic time T .

For computing T we return to Eq. (4.1) and leverage PASTA property to write

C =
N∑

i=1
hi . (4.7)

Eq. (4.7) can be solved for T efficiently using numerical computing environments

like MATLAB and the results used to compute per-CO probabilities of PIT ag-

gregation and CS hit through Eqq. (4.5) and (4.6) respectively. Using Eqq. (4.1)

and (4.2), we can also derive the mean and variance of the PIT size (denoted by

P) as follows:

E[P ] =
N∑

i=1
ai , Var(P) =

N∑

i=1
ai(1− ai) . (4.8)
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Except the trivial case where a router is directly connected to a producer, com-

puting the download delays for CO’s can be tricky. In a network of interconnected

routers this computation is more involved because the CO may be retrieved from

any of the following sources:

• The original producer if the Interest does not hit any intermediate cache,

nor does it get aggregated at PITs along the path to the producer.

• The CS of an intermediate router if a cache hit occurs as the Interest is

being routed towards the CO producer.

• An intermediate router which does not have the CO readily available in the

CS, but has a relevant entry for that CO in its PIT.

In the former case, the time it takes that router to satisfy the Interest would

be di, while in the latter two cases, it can be any value from interval (0, di].

We define the pending time of an Interest in the router as the time difference

between the arrival of an Interest and the subsequent moment when the Interest

is served. With Poisson arrivals, Interest arrival times are uniformly distributed

over (0, di]; hence, the sum Wi of pending time of Interests during a download

interval di can be formulated as

Wi = di + λi

∫ di

0
(di − t) dt = di(1 + 0.5λidi) .

We define the response time ri of the NDN router for a particular CO i as the

expected pending time of Interests for that CO which is readily derived as

ri = E[Wi]
E[Ni]

= E[di(1 + 0.5λidi)]
λiE[di] + eλiT

. (4.9)

Note that for the computation of the router response time knowledge of only

the first two moments of download delays is sufficient.
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4.4 An Algorithmic Approach to Performance

Analysis of Cache Networks

In the previous section, we discussed important characteristics of an LRU cache

when operating in isolation. In other words, the input into and the output from

the cache were directly provided by the consumers. In this section, we investigate

how the dynamics of PIT and CS in an interconnected network of NDN routers

can be analyzed using the results from the previous section.

For the underlying network topology, we need a realistic configuration which

is simple enough to be modeled without having to deal with complex geometric

details. Also, the desired topology has to make a clear distinction between the net-

work edge (where the consumers reside) and the network core (where the content

is stored) so that the behavior of the routers at different regions of the network

can separately be analyzed. The simplest topology that matches the foregoing

description is a hierarchical tree structure as depicted in Figure 4.2. Consumers

are located at the outermost level where their requests for objects of interest are

directed to the first level NDN routers (i.e., `1 routers). An `1 router searches its

local CS for a copy of the requested object and if failed, it forwards the request to

the next level (i.e., the parent `2 router). This process is repeated on every cache

miss and in the worst case, the requested object is downloaded directly from the

producer at the top of the hierarchy storing permanent copies of all the objects

in the system. On the reverse path back to the original requester, a copy of the

object is stored in the CS of every NDN router it passes through.

For simplicity, we consider one single producer in the network. The producer

in our model may conceivably represent an array of several producers at the core of

the network which are collapsed into one single entity. This single-source spanning-
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Figure 4.2: A hierarchy of interconnected NDN routers. Consumers are located

at the bottom level. Their Interests go through at most L layers of content routers

towards a producer as the root of the hierarchy in the center.

tree simplification of the network topology is fairly standard in the study of content

delivery [89] and publish-subscribe networks [90]. It is noteworthy that more

complex topologies can also be constructed by superposing several instances of

this simplified topology. The symmetry of the topology makes routers of the

same level share identical statistics making the model results easier to interpret

and understand.

To analyze this structure, we face two critical challenges. First, the Interest

stream into a higher-level router (i.e., all except `1 routers) is no longer a simple

Poisson process, but an aggregate of miss streams from a number of lower-level
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routers. It is known, however, that the superposition of multiple streams tends

toward Poisson as the load increases [91, 92]. We shall use this insight when

extending the results of the previous section to the analysis of CCN networks by

primarily focusing on trees of high arity (i.e., node degree of 10 or more).

Secondly, chaining routers may cause circular dependencies in the computation

of some router performance metrics. For instance, the cache hit probability in an

`1 router depends on the download delay of the COs as mandated by Eq. (4.6).

That delay is determined by the response time of the parent `2 router which in

turn is a function of its input rate. The input into an `2 router itself partially relies

on the miss stream of its descendant `1 routers, and that is where a dependency

cycle is formed. To overcome this hurdle, I present an algorithmic approach with

iterative refinements as outlined in Algorithm 4.1.

Procedure Analyze-CCN-Tree is proposed to compute the important router

performance metrics discussed in Section 4.3 for a hierarchical network structure

such as the one portrayed in Figure 4.2. This procedure analyzes a complete k-ary

tree of height L+2 in which consumers are at level 0; L layers of NDN routers are

employed in the middle, and the producer is located at level L+ 1 as the root of

the tree. The available caching budget is provided by vector C in which element

C` indicates the allocated CS capacity for each of the routers at level `. The initial

rate at which Interests are produced by the consumers and fed into each `1 router

is λ. The object popularity profile follows a Zipf distribution as determined by the

probability vector q. Without loss of generality, in this chapter we always rank

and index objects in their decreasing order of popularity. As such, the normalized

popularity of the nth ranked object is determined by the power-law

q(n) = n−α∑N
u=1 u

−α
,

where exponent α > 0 is the parameter of the Zipf distribution. Finally, each link
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induces a round-trip delay of δ for transporting an individual piece of content.

These parameters are inputs to Algorithm 4.1.

As pointed out, Algorithm 4.1 works in iterations to tackle circular dependen-

cies. The superscript (i) used throughout the algorithm denotes the latest count

of iterations. At the 0th iteration, i.e., the initial phase, since all caches are empty

and all requests are fulfilled directly by the producer, the router response times

(denoted by r) are simply set based on the hop-distance of routers from the root

(lines 3–5). The notation r
(i)
`+1 describes the response time of an (` + 1)th level

router computed at the ith iteration. Note that variables denoted in bold face are

vectors with values corresponding to individual objects in the system as ordered

in popularity profile q.

Algorithm 4.1 Method to characterize a hierarchical CCN
Input:

k: arity of the tree;
L: number of tree levels;
λ: consumer input rate to each first level router;
δ: round-trip delay across each link;
C: vector of caching budget per node per layer;
q: probability vector reflecting the object popularity profile.

Output:
T : characteristic time of caches at each level;
h: vector of cache hit probabilities at each level;
a: vector of aggregation probabilities at each level;
r: vector of router response times at each level;
m: vector of incoming Interest rates to each level.

1 procedure Analyze-CCN-Tree(k, L, λ, δ,C, q)
2 i← 0 , T

(0)
` ←∞

3 for ` from 1 to L do
4 r

(i)
`+1 ← δ × (L− `)

5 end for
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6 repeat
7 i← i+ 1
8 for j from 1 to N do
9 m

(i)
1,j ← λ× qj

10 for ` from 1 to L do
11 d

(i)
`,j ← δ + r

(i−1)
`+1,j

12 end for
13 end for
14 for ` from 1 to L do
15 T

(i)
` ← Char-Time(m(i)

` , d
(i)
` , C`)

16 for j from 1 to N do
17 a

(i)
`,j ← Agg-Prob(m(i)

`,j, d
(i)
`,j, T

(i)
` )

18 h
(i)
`,j ← Hit-Prob(m(i)

`,j, d
(i)
`,j, T

(i)
` )

19 r
(i)
`,j ← Resp-Time(m(i)

`,j, d
(i)
`,j, T

(i)
` )

20 m
(i)
`+1,j ← Miss-Rate(k, m(i)

`,j, h
(i)
`,j, a

(i)
`,j)

21 end for
22 end for
23 until

∣∣T (i)
` − T

(i−1)
`

∣∣ < ε for all ` from 1 to L
24 for ` from 1 to L do
25 µ` ← 0
26 σ2

` ← 0
27 for j from 1 to N do
28 µ` ← µ` + a

(i)
`,j

29 σ2
` ← σ2

` + a
(i)
`,j ·
(

1− a(i)
`,j

)

30 end for
31 end for
32 end procedure

Next, at any subsequent iteration:

1. Download delays for all levels are updated (lines 10–12) according to the

heuristic that the delay for downloading files into the CS of an arbitrary

router is equal to the response time of its parent router plus the round-
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trip delay of the link connecting them together. Assuming all objects are

unit-sized, we can deduce that the average link delays are the same. In

a hierarchical structure, thus, we can compute the download delays into a

particular router by knowing the average link delays and the response time

of the next level (i.e., parent) router.

2. All performance measures discussed in Section 4.3 are computed/updated

across all tree levels (lines 14–22).

Starting from the bottom working towards the top, at each tree level the

measures are computed in the following order:

Procedure Char-Time is called at line 15 to compute the cache characteristic

times by solving the following fixed-point equation for variable T`:
N∑

j=1

em`,jT` − 1
m`,j d`,j + em`,jT`

= C` , (4.10)

where m`,j and d`,j respectively denote the input rate and download delay of CO

j at a level ` router. Note that Eq. (4.10) is in fact the expanded form of (4.7)

using (4.6).

Procedures Agg-Prob, Hit-Prob and Resp-Time are called at lines 17–19

to use the above computed characteristic time for computing the PIT aggregation

probability, CS hit probability and router response time for each individual CO

according to Eqq. (4.5), (4.6) and (4.9), respectively.

Procedure Miss-Rate is called at line 20 to compute the aggregate input rate

of any CO j into the next level (i.e., parent) router using the above computed

hit- and aggregation probabilities according to the following relation:

m`+1,j = k ·m`,j

(
1− h`,j

)(
1− a`,j

)
. (4.11)
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In essence, Eq. (4.11) reflects the fact that the input stream of a router at level

(`+ 1) is the superposition of k miss streams from its descendant level-` routers.

The only exception are `1 routers whose inputs are directly provided by consumers

according to line 9.

To better understand the dependency between these procedure calls, the dia-

gram in Figure 4.3 provides a pictorial view of their relationship. At the initial-

ization phase, all caches are empty and the download delays of CO’s into the edge

routers are computed based on the hop distance to the producer. The input rate

into the edge routers is also the rate of Interests produced by the consumers. This

information is used to compute the cache characteristic time for all `1 routers.

Cache hit- and PIT aggregation probabilities as well as router response times are

then computed for `1 routers. Next these results are used to calculate the input

rate and download delays for `2 routers. Then level 2 becomes the current level

and a similar procedure is repeated for all remaining levels from the bottom to

the top of the tree.

The computations in the middle and bottom boxes in Figure 4.3 are repeated

in consecutive iterations as needed; the results from one iteration will be used

to refine the next as the computed measures gradually converge to their steady-

state values. This is handled by the condition in line 23 of Algorithm 4.1. The

convergence is determined by the variations of the cache characteristic times.

In fact, when the absolute difference between characteristic times of caches in

consecutive iterations drops below a certain pre-specified threshold ε, the main

repeat loop stops. In my numerical simulations—to be discussed next—I noticed

that the first few iterations usually suffice to get an accuracy of better than 0.1%

while no more than 10 iterations were needed in all cases studied (irrespective of

the input size).
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Figure 4.3: Dependency among procedure calls in Algorithm 4.1.

Finally, the Interest aggregation probabilities are used (lines 24–31) to compute

the mean (µ) and variance (σ2) of the PIT size at various levels according to

Eq. (4.8).

Implementing Algorithm 4.1 is straightforward in many off-the-shelf numeri-

cal computing environments. In my simulations, for solving Eq. (4.10) I leveraged

fsolve function from MATLAB’s Optimization Toolbox which uses trust-region

methods [93] for solving systems of nonlinear equations. It is known [94] that

trust-region methods take O(ε−2) iterations to drive the norm of the gradient of

the objective function below desired threshold ε. The time-complexity of Algo-

rithm 4.1 is hence O(NLε−2).
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4.5 Performance Evaluation

In this section, I present simulation results to show how the proposed method

can be used to accurately predict the complex behavior of a large network of

interconnected content routers. First, a detailed comparison is provided of the

numerical results of the presented model versus the results from extensive event-

driven simulations in ndnSIM [46]. Next, the results from my model are used to

analyze more complex scenarios, such as networks with much larger content base

and many more content routers, for which performing event-driven simulations

is extremely resource- and time-intensive. The objective is to show through nu-

merous examples how the current stateful design for the NDN’s forwarding plane

performs in a large scale.

In the experiments to be discussed next, we shall focus on two strategies of

cache allocation, namely uniform caching and edge caching. In the former, a fixed

caching budget is evenly distributed among all content routers, whereas with the

latter, the budget is entirely allocated to the routers at the edge of the network,

i.e., `1 routers. With edge caching, the upper level routers act as routers with no

caching capability (that is, their CS size is set to zero); yet they perform normal

Interest aggregation upon receiving Interests for which they have pending entries

in their PITs.

4.5.1 Comparison of Model with Event-driven Simulations

We consider a tree of degree k = 10 and height H = 5 as the underlying

topology, where L = 3 levels of content routers are employed in the middle. The

reason for using such configuration is to keep the overall aggregate traffic pattern in

the middle layers as close to being Poisson as possible, as discussed in Section 4.4.

Although the model was able to capture the overall trends in our experiments with
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trees of lower arity, we noticed that more accurate results are generally obtained

when nodes have higher fan-in (e.g., 10 or more). This assumption, however, is

not unrealistic as some studies [95] of the actual Internet router-level topology

have reported an average degree of more than 22 per router.

When performing event-driven simulations, I found that with a large content

base the system takes much longer to come to a steady-state; while increasing the

caching budget worsens the situation. In such case, a large number of requests

must be used just to “warm-up” the system—hence, not to be used for collecting

statistics—from the initial state where all caches are empty. Besides, because

of the Zipfian nature of CO popularity, a larger number of requests must be

generated in total to ensure that COs at the long tail of the distribution also get

a reasonable chance to appear in the generated stream of Interests. Hence, for

the first set of experiments, I decided to use a small content catalog comprising

only 100 COs. Even for such a small content catalog with a Zipf parameter of 1,

I had to generate roughly 4 million requests—while disregarding the first half—to

make sure all caches in all levels have their capacity almost fully utilized before

collecting statistics.

For the foregoing set-up, Figure 4.4 compares the Interest aggregation prob-

ability for individual COs as predicted by model versus the results from exten-

sive event-driven simulations. Curves in each plot represent the PIT aggregation

probability as attained by each of the content routers at the corresponding level.

Thanks to the symmetry of the topology, all routers at the same level share similar

statistics. Graphs in the top row contrast uniform caching against edge caching

employed in graphs at the bottom. In each row, the total caching budget (CB)

increases from left to right and top to bottom. The model accurately predicts

aggregation across various caching levels even at a fine object-scale resolution.
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Figure 4.4: A comparison of model versus event-driven simulations. Input rate

into each edge router is 100 Interests/sec. Model predicts aggregation probability

for individual objects fairly accurately across all levels of the tree topology.
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As seen, edge caching generally results in higher aggregation probability at higher

levels. This behavior is expected because with edge caching naturally no cache hit

may occur at higher levels in the tree. Hence, many requests that would have hit

content stores if a non-zero cache size were used now end up getting aggregated

at PITs.

To obtain a more insightful view of Interest aggregation, graphs in Figure 4.5

show the odds of a generic Interest (irrespective of the object popularity rank)

getting aggregated at each level of the tree when the link delay gradually increases.

It is clear that at a fixed Interest rate, an increased link delay naturally improves

the aggregation probability. However, larger cache sizes tend to offset some of

these improvements, more noticeably with uniform caching strategy.

Interest aggregation occurs at a higher probability at upper levels of the tree.

This can be attributed to the higher input rate into those levels considering the

fact that the aggregate miss stream from many lower level routers constitutes

the input of their parent router. Results from Figure 4.6 suggest that significant

benefits are likely to accrue from Interest aggregation; however, this promising

gain should be taken with a grain of salt due to the reasons discussed in the

following.

First, the small object catalog consisting of only 100 COs naturally gives rise to

a higher frequency of similar Interests arriving at the router, thereby an increased

aggregation probability. Despite the event-driven simulation which turns out to

be extremely tedious especially for a large number of COs, numerical simulations

using the proposed model are practicable even on commodity hardware. Our

numerical results in the next subsection confirm that the actual benefits of Interest

aggregation are indeed much smaller in reality.

Secondly, the notion of aggregation probability itself may give a magnified
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Figure 4.5: Interest aggregation probability at various router levels as a function

of link delay for increasing cache sizes (left to right) and different cache alloca-

tion strategies (top vs bottom rows). Input rate into each edge router is 100

Interests/sec.
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Figure 4.6: The combined impact of link delay and input rate on aggregation

probability. Increasing one factor has exactly the same effect on Interest aggrega-

tion as increasing the other.
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image of the real benefits. In fact, aggregation probability at a certain level in the

hierarchy indicates what fraction of Interests making it up to that level end up

getting aggregated. Since the request stream observed by the higher level routers

is a “filtered” version of the input stream to their descendants, it is clear that

fewer Interests are received in total at each level towards the top of the hierarchy.

For this, we define a new measure called aggregation percentage that determines

the percentage ratio of the count of aggregated Interests at a certain level (or at a

particular router) over the total count of produced Interests in the whole system.

Since every generated Interest can be aggregated at most once along its path

towards the producer, aggregation percentage provides a more representative and

unbiased measure. From now on, aggregation percentage shall be used in lieu of

aggregation probability to assess the real benefits of Interest aggregation.

Given the foregoing remarks, I emphasize that the results demonstrated in

Figures 4.4 and 4.5 are particularly meant to verify the accuracy of my proposed

analytical framework, and to provide a side-by-side comparison of how varying

different parameters affects the relative odds of Interest aggregation. The true

benefits of Interest aggregation are discussed in the following subsection, where

more realistic input parameters are used.

4.5.2 Numerical Evaluations of Interest Aggregation

As previously discussed, Interest aggregation rate is highly dependent on two

key factors, namely, download delay and input rate. The combination of these

parameters plays an essential role in the dynamics of the PIT. To understand the

co-impact of these factors on the probability of Interest aggregation, Figure 4.6

provides some useful insights. The symmetry of plots in Figure 4.6 suggests that

varying the link delay or the input rate regulates the overall trend of aggregation
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probability in the same exact way. In other words, doubling the input rate for a

fixed link delay has the same effect on the aggregation probability as keeping the

input rate fixed and doubling the link delay. Therefore, we define system load as

the product of these two quantities on which we build our next set of experiments.

As a combined metric, system load does not identify a specific delay or input rate,

rather defines an infinite range for these parameters. For example, a system load

of 10 may imply an input rate of 100 Interests/sec with link delay of 0.1 seconds,

or equivalently, an input rate of 500 Interests/sec with link delay of 0.02 seconds.

For the experiments to be discussed next, Table 4.1 summarizes the general

configurations unless specifically stated otherwise. We consider a tree topology of

degree 10 with height 7 where the five middle levels are NDN routers—a total of

more than 100,000 nodes. The total number of objects considered, i.e., 140 million,

is an estimate [96] of the total number of videos on YouTube in 2008 and the Zipf

parameter of 0.8 is taken from empirical studies [66, 97] of real content networks.

The input rate of 100,000 Interests/sec and link delay of 15 milliseconds are also

chosen such that the average generated traffic in the network is comparable with

the load experienced by the Internet’s backbone routers [98, 99].

Figure 4.7 shows the probability of Interest aggregation at each tree level as

a function of system load. Contrary to the results in Figure 4.5, a side-by-side

comparison of uniform- (Figure 4.7(a)) vs. edge-caching (Figure 4.7(b)) reveals

that when the object catalog is large, there is no remarkable difference between

these two cache allocation strategies. It is interesting that even with the highest

system load of 3000, the maximum aggregation probability observed at the third

level routers is less than 0.1. This seven-fold degradation compared to the results

of Figure 4.5 highlights the importance of the size of the object catalog in the

overall odds of Interest aggregation.
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Figure 4.7: Impact of system load on the aggregation probability
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Figure 4.8: Impact of system load on cumulative aggregation percentage
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Table 4.1: Table of default values for simulation parameters

Parameter Symbol Value

Tree height H 7

Number of cache layers L 5

Node degree k 10

Total number of objects N 140 million

CS capacity per cache node C 100,000 COs

Zipf exponent α 0.8

Input rate into each edge cache λ 100,000/sec

Link delay each way d 15 milliseconds

This rather surprising finding can be explained as follows. Given the Zipf dis-

tribution of the objects popularity, a highly popular object is requested frequently.

Hence, once such an object is downloaded into the CS, due to the frequent ref-

erences to it, it stays there for a long time. Interests for that object, therefore,

mostly result in cache hits and are rarely aggregated. On the other hand, Inter-

ests for an unpopular object (in the long tail of the distribution) are received so

sporadically over time that the odds of them co-occurring in the short time span

when the router is awaiting the content are negligible. As a result, aggregation on-

ly occurs for those Interests which are neither so popular nor so unpopular—i.e.,

those at the middle portion of the popularity distribution.

To obtain a better understanding, Figure 4.8 draws the cumulative percentage

of aggregated Interests in the system against an increasing system load. Evidently,

the overall percentage of Interests aggregated varies from around low 20% under

light load to high 45% under heavy load, while the dominant majority occur at

the top two layers, and the cumulative rate of Interest aggregation at the lower
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three layers of the hierarchy is capped by 10%. Note that for these results each

cache node has capacity to store only 0.07% of the entire object catalog.

Increasing the cache size offsets the Interest aggregation gain by improving

the overall cache hit rates. As Figure 4.9 suggests, with little caching capacity,

sizable gain (around 50% total) can be attained through Interest aggregation.

Evidently, with small cache size, all layers in the hierarchy contribute to the

aggregation percentage; however, as more cache is added to the routers, most

Interest aggregations occur at the upper layers, while aggregation percentage at

the edge decays to zero more rapidly. With a cache size of one million COs

per router (i.e., 0.7% of the size of the content base), although the cumulative

aggregation percentage remains around 20%, almost none of it is contributed by

the first three layers.

Figure 4.10 captures the impact of the object popularity distribution on the

cumulative percentage of aggregated Interests. The non-monotonic trend of curves

in Figure 4.10 exhibits a diminishing returns type of effect. To explain this be-

havior, we note that with a Zipf popularity distribution, COs can heuristically be

categorized into two groups, namely, an unpopular majority and a popular minor-

ity. The Zipf parameter (α) controls the relative size of each group as well as the

skewness of the distribution. In fact, the larger the Zipf parameter, the smaller

the proportion of the minority group, and the greater their popularity intensity.

The latter renders a higher access frequency to the COs in the popular group as

α increases, hence a higher aggregation rate for them. However, as α increases

and the proportion of the popular COs shrinks, the higher access frequency also

results in higher cache hit rates, because many of those COs eventually find their

way into the caches; therefore, subsequent requests for them no longer get aggre-

gated. On the other hand, thanks to their diminishing popularity, the Interests
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Figure 4.9: Impact of cache size on overall aggregation percentage
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Figure 4.10: Impact of popularity distribution on aggregation percentage
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for the majority group are also becoming so sparsely dispersed that the odds of

finding a relevant entry for them at the PIT becomes negligible. For this, only

a small fraction of Interests representing those fairly popular objects which may

not have found a free spot in (limited-size) caches remain subject to aggregation.

Further increasing the Zipf parameter shrinks down the size of the popular group

gradually such that at some point, every one of them finds a permanent place in

all caches. Thenceforth, the probability of aggregation becomes effectively zero.

From another viewpoint, Figure 4.10 also provides suggestive evidence that

even under a non-stationary content popularity distribution, no remarkable bene-

fit can be anticipated from Interest aggregation. For example, when object refer-

ences are temporally localized, a CO becomes highly popular over a certain epoch,

while its popularity gradually vanishes over time as other COs gain popularity.

In that case, if the object popularity is measured within smaller discrete time

windows, each piece can independently be approximated with a Zipf distribution

with a possibly different parameter. As Figure 4.10 suggests, irrespective of how

different the popularity profile looks like, only an insignificant number of Inter-

ests may be aggregated particularly at the first few layers; hence, the benefits of

Interest aggregation would still remain minimal, with the maximum aggregation

taking place around a Zipf parameter of 0.8.

As evident from Figures 4.8, 4.9 and 4.10, a cumulative aggregation percentage

between 20% to 50% can be expected leveraging the stateful forwarding plane of

NDN. However, as clearly seen, most of these aggregations actually take place

near the core of the network. Aggregating Interests closer to the producers is

less effective in terms of preventing network congestion and reducing delay. In

order to draw more informed conclusions, the following results summarize the

benefits of Interest aggregation in terms of expected number of hops Interests
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save towards the producer compared to the case where PIT is not used and no

Interest aggregation is performed.
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Figure 4.11: The effect of system load on reducing hop-count through Interest

aggregation

In Figures 4.11, 4.12 and 4.13, the left vertical axes show the average number of

hops reduced while the right vertical axes represent the corresponding percentage

of savings taking into account the length of the path from the consumers to the

producer. These quantities are calculated based on the hop-distance of aggregated

Interests from the producer. Clearly, Interests aggregated closer to the edge save

more hops compared to those aggregated near the core. Hence, as Figure 4.11

shows, the 20% to 45% rate of Interest aggregation in Figure 4.8 under varying

system load translates to an average hop-count reduction of only 5% to 15%.

Likewise, Figure 4.12 shows that with caching capacity for 100,000 COs (i.e.,

0.07% of the size of the content base) per router, aggregated Interests save on

average less than 1.5 hops on their path from the consumers to the producer
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Figure 4.12: The effect of cache size on reducing hop-count through Interest

aggregation

and back. Also, Figure 4.13 conveys that the maximum percentage of reduced

hops does not far exceed 10% for a Zipf parameter of 0.8. These findings together

confirm that aggregating Interests can only bring about marginal improvements in

terms of reducing traffic load throughout the network. These improvements come

at the cost of maintaining and updating large PITs. Next subsection discusses the

dynamics of the PIT size.

4.5.3 PIT Size Distribution

In Section 4.3, I showed that the PIT size follows a Poisson binomial dis-

tribution. It is well-known [100] that a Poisson binomial distribution can be

approximated by a Poisson distribution with rate equal to the sum of the success

probabilities of individual Bernoulli trials. Figure 4.14 compares the two distribu-

tions in Q–Q plots where horizontal axes are the theoretical Poisson distribution
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Figure 4.13: The effect of CO popularity distribution on reducing hop-count

through Interest aggregation

with rate λ` =
∑N

j=1 a`,j and vertical axes are the samples of the PIT size tak-

en from ndnSIM simulations of an NDN tree of degree 10 and height 5. Due to

the high computational expense of event-driven simulations, for this experiment

I considered a total of 100 COs whose popularity follow a Zipf distribution with

parameter α = 0.8. The linear relationships between the two distributions in

graphs of Figure 4.14 confirm the agreement between the model and simulations.

Next we study how the PIT size responds to varying simulation parameters.

For conciseness, I shall only discuss uniform caching strategy as I found the results

for the edge-caching scenario (not graphed) very similar. Figure 4.15 shows the

average PIT size growth with respect to an increasing system load. Besides the

average PIT size, the standard deviations are also shown around each marker point

as error bars, though they are so small compared to the average PIT size that

are hardly visible in most cases. Clearly, the heavier the system load, the larger
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bution (horizontal axes) versus the quantiles of the PIT size samples taken from

ndnSIM simulations (vertical axes). The linear relationship indicates good agree-

ment between the two distributions.
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Figure 4.15: Average PIT size vs. increasing system load
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Figure 4.16: Average PIT size vs. increasing cache size
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the PIT size. As the results in Figure 4.15 (also Figures 4.16 and 4.17) show,

an order of magnitude increase in the PIT size can be observed every deeper

level in the network hierarchy. This can pose a critical performance challenge on

the core routers which have to constantly update PITs with tens to hundreds of

millions of entries. This observation is more insightful when combined with the

results of Figure 4.11 demonstrating the expected number of saved hops for an

increasing system load. As can be seen, the stateful forwarding plane of NDN

makes routers to maintain colossal PITs which is hardly justified by the negligible

expected reduction of 5% to 15% we observed on the hop-count.

Figure 4.16 shows an interesting result regarding the effect of an increasing

caching budget on the PIT size. In Figure 4.12, we saw that the expected number

of saved hops diminish with an increasing cache size. Intuitively, increasing the

caching budget improves the cache hit probability and thereby must result in

smaller PITs as well. Figure 4.16, however, reveals that the PIT size is not as

sensitive to increasing the cache size unless the amount of caching budget available

to each router is comparable with the size of the object catalog. Particularly, we

see that while savings on the hop-count quickly vanish by stretching the caching

capacity past 1000 COs, the PIT does not begin to shrink in size unless the caching

storage exceeds a threshold of 10 million COs. This budget is significantly larger

than what is usually available to caches in real life. Hence, with a moderate

amount of caching storage in an actual NDN deployment, PITs should be expected

to operate at near their maximum theoretical size while the expected savings from

aggregating Interests remain minimal.

Figure 4.17 demonstrates the impact of the CO popularity (determined by

the parameter of the Zipf distribution) on the PIT size. As seen, for a Zipf

parameter between 0 (i.e., invariant content popularity) and 0.8, the PIT size is
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Figure 4.17: Average PIT size vs. CO popularity parameter

maximum. With a Zipf exponent greater than 0.8, the PIT size begins to decay

at a steady rate. Empirical studies [97] of the CO popularity distributions on real

content networks report a Zipf exponent between 0.8 and 1.0. Although for this

range the expected savings on the number of hops reduced through aggregation

is maximum (see Figure 4.13), the corresponding PIT size is also close to the

maximum according to the results in Figure 4.17.

4.6 Final Remarks

In this chapter, I presented an analytical treatment of Interest aggregation

in Content-Centric Networks using a simple yet accurate model where content

download delays into the routers are non-zero. Based on my model, I introduced

an algorithmic approach based on iterative refinements to analyze a hierarchical
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network of content routers in terms of CS hit- and PIT aggregation probabilities

and router response times. This method enables the evaluation of large-scale

hierarchical caching structures, such as that of an ICN at Internet scale, with

high accuracy and low computational cost for which discrete-event simulations

are entirely impractical due to high processing and time demands.

My numerical evaluations of a network with over 100,000 NDN routers and

hundreds of millions of COs revealed that:

1. With reasonable caching storage available to routers, only 20% of Interests

are subject to aggregation.

2. PITs grow at an almost exponential rate every level deeper inside the net-

work.

3. Increasing the caching storage rapidly diminishes the percentage of aggre-

gated Interests, though is hardly effective on reducing the PIT size.

4. Most Interests are aggregated closer to the producers, negating the expected

benefits of reducing latency and bandwidth utilization desired from aggre-

gation.

5. With regular traffic and reasonable in-network caching storage, Interest ag-

gregation can only filter between 5% to 15% of the traffic load.

Together, these observations imply that Interest aggregation should only be con-

sidered as an optional optimization mechanism in Content-Centric Networking.

Furthermore, if per-Interest forwarding state is not needed for other purposes,

the stateful forwarding plane of NDN (realized through PITs) can effectively be

replaced with more efficient mechanisms, such as CCN-DART [75, 82] and CCN-

GRAM [83], which eliminate the need of PIT for Interest forwarding and multi-

casting while providing similar end-to-end content delivery latencies.
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My presented model relies on the assumption that input streams conform to

the independent reference model, which need not be true in reality. Nonetheless,

the simulation results in [75, 83] indicate that in-network caching makes Interest

aggregation unnecessary even with spatio-temporal locality of Interests.
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Chapter 5

Conclusions

With the proliferation of mobile phones and other handheld devices and in

conjunction with the advent of social media, the modern era has witnessed an

ever-increasing demand for content production and sharing among the users. The

underlying networking infrastructure to furnish these services, nonetheless, does

not expand rapidly enough to accommodate such tremendous traffic demand.

Consequently, it is imperative to understand how communication networks re-

spond to a growing number of end users and a steadily increasing amount of traf-

fic, and to devise pragmatic solutions that let the existing infrastructures evolve

into more scalable systems.

To gain a better understanding of this problem, in this thesis we decomposed

networking systems into several conceptual subsystems: (1) a social layer consist-

ing of the end users and the interactions among them, (2) an information layer

comprising the content files and data objects they share, and (3) a communication

layer including the physical devices and the underlying backbone and protocols

that actually enable the exchange of information. Focusing on the specific char-

acteristics of each component separately, this decomposition remarkably reduces

the complexities of the given problem. Moreover, it is easier to understand the
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dynamics of the actual system by investigating the reciprocal impact that each

layer has on the performance of the others.

In connection with the described approach, the second chapter of this the-

sis began by analyzing how the spatial diversity of social interactions can affect

the performance of a communication network. This analysis was based on the

observation that people naturally tend to communicate with parties that are ge-

ographically closer to them more often than with ones at farther distances [13].

In order to quantify how intense this tendency is, a clustering parameter α was

introduced that determined how localized the inter-personal communications look

like on the social layer. The more concentrated the social interactions, the greater

the value of α and vice versa. The clustering parameter has a critical impact

on the scalability of communication networks, because transferring information

over longer distances is generally more costly in terms of the networking resources

required. A larger clustering parameter means that the social contacts are geo-

graphically more concentrated around each node, and thus, the average amount

of resources the network utilizes for the exchange of information is smaller.

A natural question there was for what ranges of α a communication network

exhibits scalability; that is, the network becomes able to handle a large number

of users—without significant performance loss—given only finite amount of re-

sources. A careful treatment of this problem was conducted and it was found that

there actually exists a threshold on the clustering parameter α beyond which the

communication networks become generally scalable. This critical value is indeed

α = 3, which we termed the scalability threshold. At this threshold and beyond,

nodes are still free to establish both local and long-distance social connections;

however, the combination of the nodes’ social connections on the average look

clustered enough that the whole system scales properly.
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That the communication networks scale under spatially clustered social inter-

actions was an interesting finding; yet we identified a problem with the applicabil-

ity of this result. Social relationships are inherent to the networks; that is, users

cannot be dictated as to how to interact with one another. Extensive studies

(e.g., [14, 16]) of real-world social networks show that humans interactions have

a clustering parameter of less than 2 which is clearly smaller than the scalability

threshold of 3 we found. This gap, nonetheless, does not indicate that commu-

nication networks are inherently unscalable, thanks to optimization mechanisms

such as in-network content caching. While social contacts cannot physically be

brought closer, the content they share can. In fact, we can take advantage of

content replication and caching on the information layer of the network to bring

the information closer to the consumers and thereby, bridge the scalability gap

imposed by the social layer. This study was the subject of the third chapter of

this thesis.

Information-centric networking (ICN) was studied in the third chapter as a

foundation upon which the future Internet can be built. This design is motivated

by the evolution of the Internet usage in which most traffic is for accessing vast

amount of information irrespective of its physical location. In accordance to this

shift, in-network content caching is a fundamental principle of most ICN propos-

als that is to increase information availability and reduce end-to-end latency by

placing useful information near the consumers. Clearly, how the caching storage

is distributed throughout the network can pose a prominent impact on the mag-

nitude of the desired benefits. One objective of the third chapter was to find the

optimal cache allocation strategy that minimizes end-to-end latency given a fixed

storage budget. Solutions to this problem were presented using integer program-

ming and compared against other methods of caching, namely uniform on-path
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caching and edge-caching. The former strategy is the ICN’s de facto standard

that promotes caching all kind of traffic everywhere in the network. The latter,

however, is an underappreciated method that advocates caching content only n-

ear the consumers at the edge of the network. It was shown in the third chapter

that edge-caching’s performance is only within a small margin from the optimal

solution in terms of reduction of end-to-end delay, while always outperforming on-

path caching for a wide range of scenarios studied. Next, the impact of reference

locality in space and time was studied using a novel algorithm for generating local-

ized references. It was shown that highly localized references make edge-caching

perform even closer to the optimal caching strategy. This insight is important

as it enables achieving maximum benefits of in-network content caching by just

adding caching functionality to the edge routers.

To enable fast content retrieval, a core component of ICN is the location-

agnostic content addressing by name. In contrast to the conventional model of

host address resolution using IP, ICN enables name-based routing of content ob-

jects and ICN routers build routing tables that route to content names rather than

addresses where they are located. In the absence of IP addressing, the routers must

keep track of all users’ queries (a.k.a. Interests) forwarded as well as the corre-

sponding ingress interfaces so that correct data can be delivered to the requesters

on the way back. In the fourth chapter, we discussed how this information—

commonly referred to as the state—is populated and stored in Pending Interest

Tables (PITs). A thorough characterization of the stateful forwarding plane of IC-

N was next presented that quantified the key performance metrics such as cache

hit rate, Interest aggregation probability, cache response time and the PIT size

distribution. Using this model, we observed that in general less than 20% of In-

terests are subject to aggregation, out of which the majority happen near the
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producers. This much aggregation was shown that on the average saves between

5% to 15% of the total in-network transmissions at the expense of maintaining

PITs that have to constantly handle hundreds of millions of entries. We concluded

that the stateful forwarding plane of ICN can hardly achieve its expected objec-

tives of reducing end-to-end latency and improving bandwidth utilization, leading

to the necessary conclusion that the forwarding plane of ICN must be rethought.

In sum, our results confirmed that content caching by itself realizes most benefits

sought after through Interest aggregation. Therefore, if storing the forwarding

state per Interest is not needed for other reasons, a stateless forwarding plane is

indeed a more reasonable approach to implement ICN’s at Internet scale.

In this direction, a useful addendum to the results discussed in this thesis

would be an analysis of the content discovery and routing in information-centric

networks which is achieved through ICN’s Forwarding Information Base (FIB).

Unlike conventional FIB’s in today’s Internet that enable route to IP addresses,

the FIB’s in ICN provide route to names. Since the number of content objects

in networks is usually orders of magnitude larger than the number of hosts, it

is expected that the FIB size in ICN’s must be considerably larger than today’s

existing FIB’s. The exact distribution of the FIB size and its scaling properties,

however, are not yet well understood. A mathematical framework for modeling

the performance of the FIB will enhance our understanding of the performance of

ICN’s from yet another perspective. We shall leave this as an avenue for future

research.
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