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17 ABSTRACT

18 Phthalate esters, commonly used as plasticizers, can be found indoors in the gas phase, in 

19 airborne particulate matter, in dust, and on surfaces. The dynamic behavior of phthalates indoors 

20 is not fully understood. In this study, time-resolved measurements of airborne phthalate 

21 concentrations and associated gas-particle partitioning data were acquired in a normally occupied 

22 residence. The vapor pressure and associated gas-particle partitioning of measured phthalates 

23 influenced their airborne dynamic behavior. Concentrations of higher vapor pressure phthalates 

24 correlated well with indoor temperature, with little discernable influence from direct occupant 

25 activity. Conversely, occupant-related behaviors substantially influenced the concentrations and 

26 dynamic behavior of a lower vapor pressure compound, diethyl hexyl phthalate (DEHP), mainly 

27 through production of particulate matter during cooking events. The proportion of airborne 

28 DEHP in the particle phase was experimentally observed to increase under high particle mass 

29 concentrations and lower indoor temperatures in correspondence with theory. Experimental 
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30 observations indicate that indoor surfaces of the residence are large reservoirs of phthalates. The 

31 results also indicate that two key factors influenced by human behavior – temperature and 

32 particle mass concentration – cause short-term changes in airborne phthalate concentrations. 

33

34 1 INTRODUCTION

35 Past indoor measurements of semivolatile organic compounds (SVOCs) have generally utilized 

36 sample collection methods that yield time-averaged results over sampling periods on the order of 

37 a day to a week.1-3 Higher time-resolution measurements of indoor SVOCs are needed to 

38 investigate indoor dynamic processes relevant to understanding emissions, concentrations, and 

39 exposures. A few studies have explored the dynamic behavior of phthalates directly in real 

40 residential settings or in test houses.4-6 In this study, we report an extensive sequence of phthalate 

41 diester measurements with hourly resolution in a normally occupied residence. Phthalate diesters 

42 are SVOCs of anthropogenic origin whose metabolites have been found in more than 95% of the 

43 US population.7,8

44 Several known and suspected adverse health effects are associated with phthalate exposures, 

45 including impaired reproductive development,9,10 infertility,11,12 asthma,13,14 and obesity.15,16 

46 Phthalates are industrially produced and utilized on large scales. Phthalates are found broadly 

47 throughout the environment: in soil,17,18 in sediment,17,19 in wastewater,17,20 in indoor and 

48 outdoor air,21,22 in the Arctic,23 and in biota.24,25 Certain phthalates are commonly found at 

49 elevated concentrations indoors and have been reported on surfaces, in settled dust, in airborne 

50 particles, and in the gas phase. 1,22,26

51 The abundance of airborne indoor phthalates indicates potentially important contributions to 

52 human exposure.27 Ingestion, dermal uptake from direct contact, air-to-skin dermal absorption, 
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53 and inhalation represent major modes of phthalate exposure, with relative strengths that are 

54 related to compound volatility. Exposure to lower volatility species, such as diethyl hexyl 

55 phthalate (DEHP), occurs primarily by ingestion. Higher volatility species, such as dibutyl 

56 phthalate (DBP), are subject to additional non-dietary modes of exposure, and exposure to the 

57 highest volatility phthalates, such as diethyl phthalate (DEP) and dimethyl phthalate (DMP), is 

58 expected to be dominated by nondietary routes such as inhalation and dermal absorption.28-33 

59 Because, on average, people spend 90% of their time indoors and 60% of their time in their own 

60 residence,34-36 it is important to understand and characterize the processes driving indoor airborne 

61 phthalate dynamic behavior, especially in residences.

62 Chemical properties of phthalates are related to their industrial uses and affect their physical 

63 behaviors. Phthalates with higher vapor pressures, such as DMP, DEP, and DBP, can be found in 

64 high abundance in certain cosmetics, personal care products, and medications. 31, 37-40 Phthalates 

65 with lower vapor pressures, such as DEHP, butyl benzyl phthalate (BBzP), and diisononyl 

66 phthalate (DINP), are widely used as plasticizers, constituting large mass fractions of certain 

67 building materials.41,42 

68 Increased temperature should favor partitioning of phthalates into the gas phase. However, prior 

69 field studies comparing phthalate concentrations across similar indoor environments have 

70 yielded mixed results regarding the role of temperature. Some survey-based studies did not find 

71 correlations between temperature and gas-phase phthalate concentrations.26,43,44 Gaspar et al. 

72 noted that concentrations of three higher vapor pressure phthalates, DEP, diisobutyl phthalate 

73 (DIBP), and DBP, correlated with temperature while two lower vapor pressure phthalates, BBzP 

74 and DEHP, did not.32 Conversely, an in-depth study in a test-house demonstrated that a 9 °C 

75 temperature difference could change concentrations of two lower vapor pressure phthalates, 
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76 BBzP and DEHP, by 300%.6 Qualitatively, these results corroborate findings from laboratory 

77 studies.45, 46

78 Particle concentration is known to affect the airborne abundances of lower volatility SVOCs, 

79 including lower vapor pressure phthalates such as DEHP and BBzP. Liu et al. developed a model 

80 characterizing how airborne particulate matter affects SVOC fluxes between indoor surfaces and 

81 indoor air, predicting that elevated particle concentrations could markedly increase SVOC 

82 emission fluxes from surfaces.47 Total airborne SVOC abundances are expected to increase with 

83 elevated particle concentrations as SVOC material partitions from reservoirs such as dust or 

84 surfaces onto airborne particulate matter. However, full equilibrium partitioning of SVOCs to 

85 particles may not be reached for lower volatility species when the ventilation timescale 

86 (reciprocal of the air-exchange rate) is less than the timescale to approach equilibrium.48-50

87 Chamber studies have been undertaken to explore the role of particle concentration and 

88 composition on SVOC behavior. Benning et al. showed that the emission rate of DEHP is 

89 enhanced in the presence of ammonium sulfate particles.51 Similarly, Lazarov et al. demonstrated 

90 that increased particle concentrations enhanced the emission rate of organophosphate flame 

91 retardants from materials.52 Recent experiments by Wu et al. found DEHP particle/gas partition 

92 coefficients are higher in the presence of organic particles (squalane and oleic acid) than in the 

93 presence of inorganic particles (ammonium sulfate).53 

94 Weschler and Nazaroff described an equilibrium model of indoor SVOC partitioning between 

95 the gas phase and settled dust using the octanol-air partitioning coefficient (Koa); that model can 

96 also be applied to airborne particles.49 In Equation 1, the particle-gas partition coefficient, Kp, is 
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97 determined where fom_part refers to the volume fraction of organic matter in airborne particles, and 

98 ρpart refers to the density of particles. 

99                                                              (1)

100 Now, let Cp refer to the particle-phase SVOC concentration, let Cg refer to the gas-phase SVOC 

101 concentration, and let TSP refer to the mass concentration of airborne particles. Then, the particle 

102 fraction of airborne SVOCs can be estimated using Equation 2. 

103                                                       (2)

104 Weschler and Nazaroff describe how gas-phase SVOC abundances are expected to decrease with 

105 increased particle concentration, while total airborne (gas-plus-particle) SVOC concentrations 

106 are expected to increase. The magnitude of these effects increases with increasing particle 

107 concentration.48

108 This study presents a more detailed investigation of a subset of SVOCs reported by Kristensen et 

109 al.54 Here, we report hourly measurements of four phthalates — DEP, DIBP, DBP, and DEHP — 

110 in a normally occupied northern California residence over a two-week monitoring period. We 

111 examine their dynamic behavior and explore the factors controlling their concentrations, 

112 emissions, and gas-particle partitioning. We investigate how the physicochemical properties of 

113 phthalates — specifically their vapor pressure and octanol-air partition coefficient — affect 

114 dynamic behavior. This work has relevance for modeling efforts assessing indoor SVOC 

115 exposure as there are limited experimental data available for model evaluation.55-58 The results 

Page 5 of 36

ACS Paragon Plus Environment

Environmental Science & Technology



116 also have potentially important implications for better understanding human phthalate exposure 

117 and opportunities for exposure mitigation.

118 2 MATERIALS AND METHODS

119 Field Site: Measurements were conducted at a normally occupied single-family residence in 

120 Contra Costa County, California, from 7 December 2017 to 4 February 2018. The single-story 

121 California ranch style wood-framed house was built in 1951, with 180 m2 (1970 ft2) of living 

122 space. The house temperature was controlled by a forced air gas-furnace with the thermostat 

123 programmed to operate only during morning (6:45 – 7:15 AM) and evening (5:45 – 10:00 PM) 

124 hours. Occasional variations in the baseline heating cycle were applied by manual occupant 

125 override, or by operating a vented gas-fireplace situated in the family room. A MERV 13 filter in 

126 the central-heating system efficiently removed particulate matter from recirculated indoor air 

127 when the furnace fan was on. The house contained a kitchen, living/dining room, family room, 

128 three bedrooms, and two bathrooms. Regular household activities included cooking, social 

129 gatherings, and professional house cleanings, as reported by Kristensen et al.54 Data analyses 

130 presented here focus on the period 16 – 27 December 2017, the longest interval of SVOC 

131 monitoring with consistently high data quality and well characterized experimental parameters. 

132 Phthalate behavior trends were characterized during two distinct periods in this interval 

133 differentiated by house occupancy status. The house was regularly occupied (the “occupied 

134 period”) from 16 to 21 December. The house was unoccupied (the “vacant period”) from 22 to 

135 27 December. 

136 Instrumentation and Measurement Methods: The semivolatile thermal desorption aerosol gas 

137 chromatograph with in-situ derivatization (SV-TAG) is a two channel GC mass spectrometer 

138 instrument that quantifies gas-plus-particle or particle only concentrations of organic species and 
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139 their associated gas-particle partitioning with hourly time resolution. Organic compounds with 

140 vapor pressures ranging from C14 to C30+ alkanes are routinely measured, with limits of 

141 detection varying from high parts-per-quadrillion to low parts-per-trillion depending on the 

142 compound of interest.59-63 SV-TAG was housed in a temperature-controlled shed adjacent to the 

143 house and sampled air from the dining room and from the outdoors. Indoor concentrations were 

144 acquired hourly. Outdoor concentrations, outdoor-gas particle partitioning, and indoor gas-

145 particle partitioning were acquired every four hours on a rotating sampling basis. Three phthalate 

146 species (DEP, DBP, and DEHP) were identified and quantified using authentic external 

147 standards and a fourth (DIBP) was identified referencing mass spectra available in the 

148 NIST/EPA/NIH Mass Spectral Library. Detailed descriptions of SV-TAG operation, including 

149 instrumental positioning, instrumental sampling schedules, potential biases, and method quality 

150 assurance, are contained within the SI.  

151 Supporting Measurements: Metadata collected in the house were used during source 

152 apportionment. A series of SmartThings motion sensors (temperature/motion; n = 8), 

153 SmartThings position sensors (door and window position/temperature; n = 34), SmartThings 

154 appliance sensors (n = 5), Netatmo weather stations (temperature/relative 

155 humidity/pressure/noise/CO2; n = 10), and HOBOTM sensors (temperature/humidity; n = 10) 

156 were used to characterize household state, indoor environmental parameters, and occupant 

157 activities. In this report, “indoor air temperature” refers to the temperature measured in the 

158 family room. Temperature sensors throughout the house strongly covary with the house heating 

159 cycle with small differences observed between main living spaces and the hallway. Occupants 

160 also kept detailed activity logs recording the timing of their presence/absence within the house 

161 and general activities, including cooking, cleaning, and sleeping. A Grimm 11-A aerosol 
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162 spectrometer sampled continuously to quantify particle number concentrations in 31 diameter 

163 bins between 0.25 and 32 µm. Mass concentrations were calculated using an assumed particle 

164 density of 1.67 g/cm3 based on densities commonly used in the literature for characterizing 

165 ambient PM2.5.64, 65 

166 3 RESULTS AND DISCUSSION

167 Airborne concentrations of four phthalates (DEP, DIBP, DBP, and DEHP) were quantified with 

168 hourly time resolution throughout the normally occupied (Dec 16-21) and vacant (Dec 22-27) 

169 periods. Key characteristics of these phthalates and overall measurement results are summarized 

170 in Table 1. Other phthalates commonly reported in indoor air studies — including DMP, BBzP, 

171 DINP, and diisodecyl phthalate (DIDP) — were not identifiable above the background 

172 chromatographic signal, suggesting that their concentrations were much lower than those of the 

173 four reported phthalates. The three higher-vapor pressure phthalates, DEP, DIBP, and DBP, were 

174 present at median concentrations of 196 ng/m3, 133 ng/m3, and 93 ng/m3, respectively, for the 

175 occupied period. These concentrations are generally consistent with past surveys of indoor 

176 environments; for example, median concentrations of DEP (330, 590, 180; ng/m3), DIBP (130, 

177 N/A, N/A; ng/m3), and DBP (140, 220, 310; ng/m3) were reported in surveys of (1) northern 

178 California residences, (2) Cape Cod MA residences, and (3) Boston MA indoor environments, 

179 respectively. 1,22,66

180 Throughout the occupied period, concentrations of higher vapor pressure phthalates displayed 

181 remarkably small temporal variance. Maximum and minimum concentrations of DIBP and DBP 

182 differed by ≤ 32% from the mean (RSD ≤ 11%), and concentrations of DEP fluctuated by no 

183 more than 47% (RSD = 15%). In contrast, indoor concentrations of DEHP were highly variable, 

184 ranging from 1.6 to 112 ng/m3 during the occupied period (RSD = 183%) and from 2.3 to 8.8 
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185 ng/m3 during the vacant period (RSD = 34%). The median DEHP concentration during the 

186 occupied period (4 ng/m3) was considerably lower than median residential concentrations 

187 reported in the surveys mentioned previously (77 ng/m3, 68 ng/m3, N/A). 

188 In a recent study of the dynamic behavior of volatile organic compounds in an occupied 

189 residence, Liu et al. used measured mean-to-median ratios (MMR) to classify indoor species 

190 emissions as being primarily from static contents (MMR < 1.06) or primarily related to episodic 

191 occupant activities (MMR > 1.5).67 In Table 1, we show that MMR < 1.06 for all three higher 

192 volatility phthalates, during both the occupied and unoccupied periods. These low values are 

193 strongly suggestive of the importance of ongoing emissions from static sources in the residence. 

194 In contrast, for DEHP during the occupied period, MMR = 2.1, indicating the importance of 

195 episodic events controlling the release of DEHP into indoor air.

196 Concentrations of DEP, DIBP, and DBP were significantly higher indoors than outdoors at all 

197 times. On average, phthalate concentrations were 3 times higher indoors than outdoors for DEP 

198 and 3.5 times higher for DBP and DIBP. Average concentrations of DEHP during the occupied 

199 period were 2.5 times higher indoors than outdoors, and were roughly equivalent between the 

200 indoors and outdoors during the vacant period. Outdoor time series for the analysis periods are 

201 displayed in Figures S3 and S4.

202

203

204

205

206
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207 Table 1: Characteristics of observed phthalate species along with major measurement results.a  

DEP
diethyl phthalate

DIBP
diisobutyl phthalate

DBP
dibutyl phthalate

DEHP
di-2-ethylhexyl phthalate

Log Saturation 
Vapor Pressureb -6.83 -8.30 -8.47 -11.85

Log Koa
b 8.21 9.62 9.83 12.89

CAS Number 84-66-2 84-69-5 84-74-2 117-81-7

Chemical Formula C12H14O4 C16H22O4 C16H22O4 C24H38O4

Properties

Molecular Weight (g/mol) 222.24 278.35 278.35 390.56

Occupied Concentration 201 ± 30 133 ± 15 91 ± 8 9 ± 16

Mean-to-median Ratio 1.03 1.00 0.99 2.13

Vacant Concentration 200 ± 16 135 ± 17 93 ± 10 4.1 ± 1.4

Mean-to-median Ratio 1.01 1.01 1.00 1.15

Occupied Fp 0.05 ± 0.03 0.12 ± 0.01 0.16 ± 0.04 0.74 ± 0.22

Indoor

Vacant Fp 0.04 ± 0.01 0.11 ± 0.01 0.14 ± 0.02 0.68 ± 0.17

Occupied Concentration 36 ± 21 44 ± 10 31 ± 5 3.4 ± 0.4

Vacant Concentration 54 ± 17 45 ± 6 32 ± 4 3.9 ± 0.8

Occupied Fp 0.16 ± 0.08 0.19 ± 0.03 0.21 ± 0.04 0.79 ± 0.18
Outdoor

Vacant Fp 0.11 ± 0.02 0.16 ± 0.02 0.19 ± 0.02 0.59 ± 0.20

208 a All values are reported as mean ± standard deviation. Total (gas-plus-particle) concentrations are reported in 

209 ng/m3. Fraction in particle phase (Fp) is defined as the measured SVOC concentration associated with 

210 particles divided by the total (gas-plus-particle) concentration. Mean Fp is reported as the average of 

211 calculated values in the analysis window. Variability of Fp is reported as the standard deviation of the 

212 population.

213 b Phthalate saturation vapor pressures vary by orders of magnitude among published measurements, but 

214 generally decrease with increasing molecular weight. Values of the saturation vapor pressure in atm and 

215 the octanol-air partition coefficient (Koa) as determined by theory are reported by Salthammer et al. at T = 

216 298 K.68 
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217 Time-Varying Phthalate Concentrations: Figure 1 presents time series of phthalate 

218 concentrations and indoor air temperature. Diel plots of concentrations and temperature are 

219 shown in Figures S5 and S6. Concentrations of the primarily gaseous species (DEP, DIBP, and 

220 DBP) are characterized by a stable background with small perturbations associated with the 

221 indoor air temperature. Temperature profiles were regulated by wintertime home heating applied 

222 in mornings (6:45-7:15 AM) and evenings (5:45-10 PM) and, accordingly, DEP, DIBP, and DBP 

223 concentrations were higher on average during the warmer waking hours and lower during cooler 

224 sleeping hours. By contrast, concentrations of DEHP were much lower at baseline levels but 

225 exhibited substantial episodic enhancements during the occupied period. Multiple factors are 

226 expected to influence indoor phthalate concentrations. Among these are ongoing background 

227 emissions from static building materials and furnishings, episodic primary emissions from 

228 product usage, and dynamic phase-partitioning flows between indoor air and reservoirs including 

229 surface films and dust. Reversible sorptive interactions would be sensitive to dynamic changes in 

230 physical conditions, such as temperature and airborne particle concentrations, which would alter 

231 equilibrium partitioning between condensed and gaseous phases. Static emissions may contribute 

232 to a stable background, whereas episodic emissions of sufficient strength would be readily 

233 apparent from the time series of concentrations. Cosmetics, personal care products and 

234 medication are commonly reported sources of DEP, DIBP, and DBP.31, 37-40 Strikingly, although 

235 multiple residents applied multiple personal care products throughout the campaign, no episodic 

236 concentration enhancements were observed for the three higher volatility phthalates.

237 SVOCs may interact with the envelope of household occupants at meaningful rates, such as 

238 during uptake on clothing or dermal absorption.48 However, no associations were observed 

239 between occupancy and DEP concentrations. Weak associations between (increased) occupancy 
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240 and (decreased) concentrations of two phthalates, DIBP and DBP, were observed during the 

241 occupied period. (Figure S2).

242

243 Figure 1: Total (gas-plus-particle) concentration time series of four phthalates over the occupied 

244 (left) and vacant (right, in gray) periods. Indoor air temperature is displayed in the upper panel. 

245 The horizontal axis is labeled with day of the month, December 2017.

246

247 Temperature and Surface-Air Partitioning: The hourly-averaged concentrations of the four 

248 measured phthalates are compared with indoor air temperature in Figure 2. The extent to which 

249 concentrations correlate with temperature diminishes with increasing molecular weight and 
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250 decreasing vapor pressure. Specifically, DEP concentrations exhibited strong temperature 

251 dependence during both the vacant and occupied periods, whereas DBP and DIBP concentrations 

252 exhibited only moderate temperature dependence. Average DEP concentrations were essentially 

253 equivalent between the occupied (201 ng/m3) and vacant (200 ng/m3) periods and strongly 

254 correlated with the house heating cycle. Overall, however, indoor air temperatures were slightly 

255 colder (~2 K) during the vacant period than the occupied period. It is possible that the measured 

256 air temperature was not fully representative of reservoir surface temperatures throughout the 

257 residence and that the air-surface temperature relationship was different between occupied and 

258 vacant periods. 

259 Conversely, DEHP was characterized by a low baseline concentration punctuated by episodic 

260 spikes unrelated to temperature. It is well known that the emissions of DEHP, which can be a 

261 major constituent of certain types of materials such as vinyl flooring, increase strongly as 

262 temperature increases.46 Remarkably, airborne DEHP concentrations displayed no observable 

263 correlations with temperature in the occupied period in this study. Furthermore, concentrations 

264 were weakly anticorrelated with temperature during the vacant period. Evidence suggests that 

265 airborne DEHP, which is primarily a particle-phase compound, was effectively removed by 

266 filtration during the morning and evening house-heating intervals (Figure S6).

267 Observed concentrations of DEP, DIBP, and DBP, were several orders of magnitude below their 

268 respective gas-phase saturation concentrations. DEHP was roughly one order of magnitude 

269 below its gas-phase saturation concentration. (Vapor pressure values are as reported in 

270 Salthammer et al.; substantial variation in vapor pressures exists throughout the literature.68) 

271 Interactions between organic surface films and the bulk air may influence airborne SVOC 

272 concentrations and these interactions have been modeled using octanol-air partition 
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273 coefficients.69 Observed median concentrations of each phthalate species strongly correlate with 

274 the octanol-air partition coefficient (log-log plot, R2 = 0.94, Figure S7), a parameter describing 

275 the strength of interactions between air and a model organic film. Furthermore, the dynamics 

276 associated with the observed heating cycle may be tied to thermodynamic changes in the octanol-

277 air partition coefficient. Temperature dependence of the saturation vapor pressure, which is 

278 anticorrelated with the octanol-air partition coefficient, has been experimentally determined for 

279 DIBP and DBP.70 In Figure S8, the concentrations of DIBP and DBP are plotted against their 

280 saturation vapor pressures as a function of indoor air temperature, revealing a strong positive 

281 correlation (R2 = 0.71). Together, these factors suggest that substantial condensed-phase 

282 reservoirs exist throughout the residence and that Koa could be a key controlling variable related 

283 to both dynamics and observed airborne concentrations with additional contributions possible 

284 from static sources. Additionally, these factors suggest that the decreasing abundance of larger 

285 phthalate homologues (CDEP > CDIBP > CDBP > CDEHP) may be coupled to their physical 

286 parameters such as their respective vapor pressures and octanol-air partition coefficients. 
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287

288 Figure 2: Total (gas-plus-particle) indoor-air concentrations of DEP, DIBP, DBP, and DEHP 

289 versus temperature. Data are differentiated by color between the occupied (red) and vacant (blue) 

290 periods, and regression lines correspond to an exponential fit. Units of measure on the fit 

291 parameters are inverse temperature for k (1/K) and concentration for A (ng/m3).

292

293 Particle Mass Concentration Influences DEHP Airborne Abundance: Indoor particle mass 

294 concentrations strongly correlated with total (gas-plus-particle) DEHP concentrations during the 

295 vacant and occupied periods. Occupant activities like cooking can markedly influence indoor 

296 particle concentration, composition and size distribution. Particle resuspension also can occur 

297 during occupant activities, but this process is more important for coarse particles and less 
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298 important for particles smaller than 2.5 µm that are sampled by SV-TAG.71 The effects of 

299 occupant-associated particle sources are explored in Figure 3, which displays DEHP 

300 concentrations against PM2.5 concentration and activity type during the occupied period. 

301 Notwithstanding diversity among particle sources, a linear relationship between particle mass 

302 concentration and total airborne phthalate concentrations is observed with DEHP accounting for 

303 about 0.3% of indoor PM2.5 by mass. DEHP concentrations are strongly associated with particle 

304 emission events from cooking. The absence of cooking events over the vacant period affected 

305 average DEHP concentrations. While concentrations of DEP, DIBP, and DBP were similar 

306 between the occupied and vacant periods, the average concentration of DEHP over the occupied 

307 period was nearly two times greater than during the vacant period. 

308 It has been demonstrated in both modeling and chamber studies that the presence of airborne 

309 particles can enhance DEHP emissions from surfaces.51,72 Particles enhance surface mass transfer 

310 by increasing the gas-phase concentration gradient in the near-surface boundary layer. Particles 

311 act as an airborne sink, sorbing SVOCs from the gas-phase, thereby depleting gas-phase SVOCs 

312 in the bulk air and effectively increasing SVOC flux from surfaces. Similarly, total airborne 

313 concentrations of species with high Kp values are expected to increase with particle mass 

314 concentration, with minimal effect on low Kp species that are predominantly in the gas-phase.

315 It is worthwhile to consider whether direct cooking emissions of DEHP might account for 

316 episodic concentration enhancements. Food-borne DEHP has been reported at low ppb to low 

317 ppm concentrations. When oily food has been stored in jars with PVC gaskets, DEHP can 

318 approach upper ppm concentrations.73 We considered a hypothetical emission event where food-

319 borne DEHP was fully transferred into residential air and assumed a food-borne phthalate 

320 concentration of 10 mg/kg, a typical upper bound. Assuming one kg of food cooked, a cooking 
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321 event could release an upper bound of 10 mg of DEHP from food, which, when diluted 

322 throughout the house volume of 380 m3, would yield a transient peak DEHP concentration of up 

323 to 25 ng/m3. However, this value is below the measured concentrations associated with many 

324 cooking events, suggesting that direct DEHP emission from food was not a dominant contributor 

325 to airborne DEHP enhancements during major source events. Instead, we infer that the increased 

326 airborne particle concentrations enhanced the net rate of transfer of DEHP from static sources 

327 and/or from indoor surface films to indoor air.

328

329

330

331

332
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333

334 Figure 3: Total (gas-plus-particle) DEHP concentrations during the occupied period are 

335 compared against PM2.5 concentration. Concurrent indoor activities with the potential to 

336 influence airborne SVOC concentrations are highlighted: cooking, candle combustion, and 

337 cleaning. Units of measure on the fit parameters are ng/µg (parts per thousand) for the slope, m, 

338 and ng/m3 for the intercept, b.

339

340 PM2.5 concentrations strongly correlated with airborne DEHP concentrations under vacant 

341 conditions (Figure 4). Total (gas-plus-particle) concentrations of DEHP were comparable 

342 between the indoors and outdoors over the vacant period (Figure S4). However, outdoor DEHP-

343 bearing particles are not expected to penetrate the building envelope with full efficiency. For the 

344 duration of the vacant period, indoor PM2.5 was always less than or (approximately) equal to 
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345 outdoor PM2.5 concentrations with an average indoor:outdoor particle mass ratio of 1:4 for the 

346 duration of the vacant period. Because no occupants were present and because indoor particles 

347 were intermittently removed in association with the filter in the house’s forced air heating 

348 system, nearly all indoor particles are believed to have originated from outdoor intrusion through 

349 the building envelope. Over the vacant period, outdoor DEHP constituted 0.10% of outdoor 

350 PM2.5 by mass on average. Together, these observations suggest that particulate matter entering 

351 the house rapidly acquires DEHP from indoor dust, surfaces, and the gas-phase such that DEHP 

352 comprises 0.24% of indoor PM2.5 by mass with contributions from both indoor and outdoor 

353 sources. Similar relations between airborne DEHP concentrations and PM2.5 are observed 

354 during the occupied period (event-driven spikes excluded), albeit with greater variability.

355

356

357

358
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359   

360

361 Figure 4: The gas-plus-particle concentration of DEHP is compared against PM2.5 

362 concentration during the vacant period (A) and the occupied period when no cleaning, cooking, 

363 or combustion events were occurring (B). Units of measure on the fit parameters are ng/µg (parts 

364 per thousand) for the slope, m, and ng/m3 for the intercept, b.

365

366 Gas-Particle Partitioning: The higher vapor-pressure phthalates (DEP, DBP, DIBP) were 

367 present primarily in the gas-phase (Table 1). Their particle fractions, while small, consistently 

368 increased as their molecular size and associated octanol-air partition coefficients increased (Fp 

369 values follow this order: DEP < DBP < DIBP). The particle-phase fraction of these species was 

370 largely independent of particle mass concentration and temperature in the ranges encountered in 

371 the studied residence. Observed particle fractions for DEP, DIBP, and DBP (5%, 12%, 16%,) 

372 were qualitatively similar yet quantitatively higher than those estimated by Weschler and 

373 Nazaroff who reported expected particle fractions to be 0%, 3%, and 5%, respectively.49 
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374 Increasing particle mass concentration can drive gas-particle partitioning towards the particle 

375 phase. Airborne gas-particle partitioning of DEHP is associated with both PM2.5 concentration 

376 and indoor air temperature as revealed in Figure 5. At PM2.5 concentrations above 3 µg/m3, 

377 airborne DEHP concentrations were predominantly in the particle phase. Similar effects are 

378 observable with cooler temperatures promoting partitioning into particles and an increased Fp. 

379 Using the model described in Equation 2 an apparent partition coefficient Kp
*
 was evaluated to be 

380 2.4 ± 0.3 m3/μg under observed conditions. This empirically-derived partition coefficient is 

381 affected by assumptions about equilibrium conditions, the temperature, and by the experimental 

382 approach. Time-scales to approach gas-particle phase equilibrium vary depending on Koa values 

383 and particle size. 48,50 For DEHP, gas-particle equilibration time scales may approach hundreds of 

384 hours for particle diameters in the vicinity of 2.5 μm and would be minutes to hours for particle 

385 sizes near 100 nm. Considering the residence’s average air-exchange period of 2.2 h, the DEHP 

386 phase-partitioning system may be far from equilibrium for larger particles but is expected to be 

387 at or near equilibrium for smaller particles.48, 50, 54 Experimentally, the Fp values were determined 

388 only for particles smaller than 2.5 μm, the SV-TAG particle-size cutoff. In addition, the stated 

389 PM2.5 concentrations do not include particles with diameters smaller than 250 nm that were not 

390 quantified by the Grimm 11-A OPC.

391 Using the van’t Hoff equation, and assuming equilibrium conditions, Kp
* is expected to change 

392 by roughly 3 over the observed indoor temperature range (288 – 294 K).74 After normalizing 

393 each particle fraction measurement from the measured indoor air temperature to the standard 

394 state temperature, the best-estimate Kp
*298 value at T = 298 K is 0.80 ± 0.09 m3/μg (Figure S9). 

395 This value can be compared to the partition coefficient calculated using the model developed by 

396 Weschler and Nazaroff (3.2 m3/μg), which assumed equilibrium conditions, a log Koa value of 
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397 12.9, a particle density of 1 × 106 g m−3, and a volume fraction of organic matter associated with 

398 airborne particles (fom_part) of 0.4.49 The particle partitioning coefficient determined from this 

399 field-monitoring campaign is larger than has been reported in laboratory studies where Kp = 

400 0.032 m3/μg for ammonium sulfate particles, 0.23 m3/μg for oleic acid particles, and 0.11 m3/μg 

401 for squalene particles. 51,70 A recent theoretical prediction yielded Kp = 0.19 m3/μg.74 Given the 

402 order of magnitude variability in Kp depending on literature source, particle composition, and 

403 ambient temperature, determinations of the apparent partition coefficient in real indoor 

404 environments are valuable. As the relative gas-particle abundance can influence consequent 

405 exposures and potential health risks, such observations and inferences are relevant for improving 

406 our understanding of the nature and significance of human phthalate encounters in indoor 

407 environments.

408

409
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410  

411 Figure 5: The particle fraction of DEHP is compared against PM2.5 concentration, with points 

412 colored by indoor air temperature. The lower right panel highlights the low PM2.5 concentration 

413 region between 0 and 4 μg/m3. 

414

415 Implications: Among the four quantified phthalates, concentrations of three higher-volatility 

416 species (DEP, DIBP and DBP) were found to be influenced mainly by indoor air temperature, 

417 whereas the lower volatility species (DEHP) varied with systematic and episodic indoor airborne 

418 particle mass concentrations. Ultimately, factors observed to affect airborne phthalate 

419 concentrations were indirectly related to human behavior. Spikes in DEHP concentrations were 

420 associated with particles generated by episodic emission events related to occupant activities 

421 such as stovetop cooking, oven usage, and candle combustion. Dynamic changes in gas-phase 

422 phthalate concentrations largely followed the occupant-influenced indoor temperature cycle. 

423 Overall gas-phase abundances may be related to factors external to the indoor temperature cycle 

Page 23 of 36

ACS Paragon Plus Environment

Environmental Science & Technology



424 such as the octanol-air partition coefficient and the presence of static sources in the residence. 

425 Perturbations affecting DEHP concentrations were also observed in association with particle 

426 removal by filtration during the operation of the central forced-air heating system.

427 Increased understanding of the factors that control airborne phthalate concentrations is important 

428 to gain insight into human phthalate exposure. The complex partitioning behavior exhibited in 

429 the case of DEHP suggests that human exposure assessments relying on static measures of 

430 concentrations and gas-particle partitioning are incomplete. In this residence, increasing PM2.5 

431 concentrations from 0.5 µg/m3 to 3 µg/m3 could drive DEHP completely into the particle phase, 

432 thereby altering the inhalation mode of occupant exposure. This level of PM2.5 perturbation was 

433 regularly encountered during cooking events. These results illustrate that variable particle mass 

434 concentrations may influence occupant uptake by altering both DEHP concentrations and gas-

435 particle partitioning. This finding points to the potential utility of particle reduction techniques as 

436 a means of reducing indoor airborne exposure to low-volatility phthalates and related SVOCs. 

437

438 Supporting Information: SV-TAG operation; QA/QC; association between occupancy and 

439 airborne phthalate concentrations; outdoor phthalate concentrations; diel concentration plots; 

440 comparison of phthalate abundance and Koa; comparison of phthalate abundance and vapor 

441 pressure; comparison of temperature-corrected DEHP Fp and particle mass loading
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