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Unraveling the mineralogical complexity of sediment iron speciation using sequential 

extractions  

S. P. Slotznick1, E. A. Sperling2, N. J. Tosca3, A. J. Miller2, K. Clayton3, N. A. G. M. van 

Helmond4, C. P. Slomp4, N. L. Swanson-Hysell1 

1University of California, Berkeley, CA 94720 USA. 2Stanford University, Stanford, CA 

94305 USA. 3University of Oxford, Oxford OX1 3AN United Kingdom. 4Utrecht University, 

3584 CB Utrecht, Netherlands. 

Corresponding author: Sarah Slotznick (sslotz@berkeley.edu) 

Key Points: 

 Magnetic and X-ray diffraction analyses on natural samples corroborate the efficiency

of certain chemical extractions, such as dithionite.

 The majority of iron in the oxalate extraction is not dissolved from magnetite, but

instead comes from iron-bearing clays.

 Recognition of the heterogeneity in chemical extraction efficiency and targeting is

vital for studies of past and present iron cycling.
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Abstract 

Iron speciation is one of the most widely applied proxies used to reconstruct oxygen levels 

and redox conditions in past aqueous environments. The iron speciation proxy estimates 

proportions of different reactive iron species in fine-grained sedimentary rocks, which are 

mapped to redox conditions based on empirical calibrations from modern sediments. It is 

based on a standardized extraction technique of sequentially applying acetate, hydroxlamine-

HCl, dithionite, and oxalate solutions to a powdered sample in order to dissolve iron phases 

and quantify the amount of iron carried by carbonates, “easily reducible” oxyhydroxides, 

ferric iron (oxyhydr)oxides, and magnetite, respectively. Although tested on pure minerals 

and mixtures, assessments of whether this sequential extraction process accurately dissolves 

the targeted minerals in natural sediments and sedimentary rocks are lacking. In our study, 

residues from each sequential extraction step were analyzed using rock magnetic and X-ray 

diffraction experiments to identify and quantify the iron-bearing minerals that were dissolved. 

The dithionite extraction robustly removes the targeted mineralogy as magnetic data show it 

to solubilize nearly all of the goethite. However, magnetic quantification of magnetite was 

orders of magnitude less than the iron measured in the oxalate extraction; X-ray diffraction 

data suggest dissolution of iron-bearing clays, specifically berthierine/chamosite, could 

explain this disparity. Our data compilation shows higher values of iron from the oxalate 

extraction in Precambrian sedimentary rock samples, suggesting a significant temporal shift 

in iron cycling.  Recognition of heterogeneity in chemical extraction efficiency and targeting 

is vital for holistic multi-proxy interpretation of past oxygen levels and communication 

between disciplines.  

Plain Language Summary 

Sequential chemical extractions, where a series of solutions are applied to a powdered rock 

sample to selectively dissolve certain phases, are heavily utilized throughout Earth science 

research. These methodologies provide a tool for estimating different reactive forms of an 

element; understanding how these pools change over time in a given environment allows us 

to better understand cycling of the element by biological, chemical, and geologic processes 

on the Earth’s surface. In this study, we focus on a sequential chemical extraction method 

that measures the element iron, the most abundant transition metal in Earth’s crust. Although 

heavily utilized for understanding nutrient cycling and ancient oxygen levels, the method is 

largely untested using actual rock samples that contain a mixture of minerals of different 

shapes and sizes. Such tests are needed to evaluate whether the extractions are accurately and 

completely dissolving the targeted minerals. We utilized magnetic and X-ray diffraction 

methods that can sensitively measure iron minerals within natural samples. We found that 

some of the extractions worked as expected, but others did not, dissolving additional 

unexpected mineral types and/or slowly dissolving minerals across multiple extractions.   

1 Introduction 

Iron is the most abundant transition metal in the Earth’s crust and is utilized by nearly all life. 

Due to its redox sensitivity as it cycles between +2 and +3 valence states, iron chemistry and 

mineralogy are frequently utilized to fingerprint metal mobility, nutrient cycling, and redox 

conditions in modern and ancient environments. Wet geochemical (sequential) extractions 

have dominated these efforts for the past 40 years; specifically, separating and measuring 
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proportions of iron in distinct operationally-defined pools [e.g. Berner, 1970; Tessier et al., 

1979].  

Iron speciation has become one of the most widely applied proxies for paleoredox and 

oxygen levels, redefining interpretations of redox conditions in the Precambrian and 

Paleozoic [Poulton and Canfield, 2011; Sperling et al., 2015]. Developing from work by Bob 

Berner and his students and colleagues at Yale, the proxy is based on a shelf-to-basin iron 

shuttling model [Lyons and Severmann, 2006; Raiswell and Canfield, 2012]. The proxy has 

had several iterations (see Raiswell and Canfield [2012] for history), but most recent studies 

rely on the geochemical sequential extraction methodology developed by Poulton and 

Canfield [2005]. This method takes powdered sedimentary rock samples and measures 

different proportions of iron through 3-4 sequential extraction steps: 1) sodium acetate to 

target iron carbonates, 2) hydroxylamine-HCl for easily reducible iron oxides (typically 

skipped in analyses of ancient sedimentary rocks), 3) sodium dithionite for Fe3+ oxides, and 

4) ammonium oxalate for magnetite (Fe2+Fe3+
2O4). Separate extractions are used to measure

the sulfide phases—both chromium reducible sulfides like pyrite (FeS2) and acid volatile

sulfides like greigite (Fe2+Fe3+
2S4) and pyrrhotite (Fe1−xS where x = 0 to 0.2). Total iron of a

sample is quantified either by X-ray fluorescence (XRF) or wet chemical methods such as

ICP-OES or flame AAS. Although created to probe redox conditions of ancient sedimentary

rocks, this extraction methodology has also been utilized to understand Holocene to modern

sediments and modern (microbial) cycling of iron and other metals [e.g. Cai et al., 2018;

Egger et al., 2016; von der Heyden et al., 2018] and the Poulton and Canfield [2005]

methodology paper has been cited over 500 times.

The Poulton and Canfield [2005] methodology is operational and is not intended to define 

mineralogy, but it is linked to mineralogy through tests on standards and mixtures of pure 

minerals. Perfect selectivity is not possible as iron minerals display a range of reactivities 

depending on grain-size, exact composition, crystallinity, and mineralogical associations [e.g. 

Raiswell et al., 1994], but researchers applying the method often use mineral-specific 

shorthand for the iron removed during each extraction (e.g. Femag for iron removed during the 

oxalate step). However, the application of this iron speciation interpretation scheme to natural 

samples has led to a lingering debate about its accuracy and efficiency in diagenetically 

stabilized rocks [e.g. Raiswell et al., 2011; Reinhard et al., 2009; Reuschel et al., 2012] and 

in modern sediment samples [e.g. Bacon and Davidson, 2008; Egger et al., 2015; La Force 

and Fendorf, 2000] [also addressed in Raiswell et al., 2018]. A few studies have paired iron 

speciation with other methods of identifying mineralogy, corroborating reports of issues with 

accuracy and/or suggesting the need for modification [e.g. Schröder et al., 2016; Slotznick et 

al., 2018a; J Sun et al., 2018]. In this study, we use rock magnetic and spectroscopic 

techniques to characterize and quantify the minerals removed from natural samples after each 

extraction step. This approach provides a means to test whether the sequential extraction 

accurately dissolves the targeted iron-bearing minerals in natural sediments and sedimentary 

rocks and assess the potential for significant errors in determining iron pools within the iron 

speciation proxy.   

2 Methods and Materials 

Our approach was to characterize bulk powders as well as residues taken after each sequential 

extraction step, utilizing magnetic and spectroscopic techniques. The experiments were 

designed to independently identify and quantify the iron-bearing minerals that were dissolved 

by each step. In order to do this, we performed the sequential extraction procedure on three or 

four aliquots of the same powdered sample, removing one aliquot for analysis after each 

sequential extraction step. This approach means that for each sample we analyzed an 
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untreated specimen, a specimen that underwent the acetate extraction, a specimen that 

underwent the acetate and dithionite extractions, and a specimen that underwent the acetate, 

dithionite, and oxalate extractions. 

2.1 Sediment, Shale, and Siltstone Samples 

Twenty natural rock and sediment samples were chosen for this study that span in age from 

the Holocene to the Mesoproterozoic (~1.5 Ga) (Table 1). Lithologically, all the samples are 

fine grained siliciclastics—siltstones to shales to unlithified sediments. All samples selected 

had been previously characterized using either iron speciation or rock magnetic experiments 

[Dijkstra et al., 2016; Egger et al., 2016; Slotznick et al., 2019; Sperling et al., 2013; Sperling 

et al., 2015]; these data were used to select for a diversity of total iron contents and iron 

extraction pools/mineralogy. Iron speciation analyses performed for this study demonstrate 

that the samples have different proportions of iron from each iron speciation extraction, 

leading to distinct paleoredox interpretations (Fig. 1, Table S1).  

2.2 Sequential Chemical Extractions 

Iron sequential extractions were performed in two different laboratories using the established 

protocols [Poulton and Canfield, 2005]: 1M sodium acetate at pH 4.5 for 48 hours at 50C, 

1M hydroxylamine-HCl in 25% v/v acetic acid for 48 hours (on Holocene/modern samples), 

sodium dithionite solution (0.29 M) buffered to pH 4.8 with 0.35 M acetic acid/0.2 M sodium 

citrate for 2 hours, and 0.2 M ammonium oxalate/0.17 M oxalic acid solution at pH 3.2 for 6 

hours. At Stanford, where analyses of ancient shales and siltstones were performed, iron 

removed during these extractions was measured spectrophotometrically using the ferrozine 

method of Stookey [1970] with color development allowed to proceed overnight. Samples 

were processed alongside four in-house standards, and results for these standards matched 

previous analyses, including those in other labs [Kunzmann et al., 2015; Sperling et al., 

2015]. Previous analyses of these standards have demonstrated a standard error of the mean 

of <5% for all iron pools greater than 0.3 weight percent (see table S7 of Sperling et al. 

[2015] for full description of error estimates for many of these standards). Precision for very 

low weight percent iron pools is lower, but error on such samples will have negligible impact 

on iron speciation ratios in samples with sufficiently high total iron. Due in part to such 

errors, case studies suggest that samples with very low-weight percent total iron should not 

be used for iron speciation paleoredox interpretations [Raiswell et al., 2018]. Some samples 

used in this study had been analyzed dozens of times before at Stanford; individual means 

and standard deviations for each extraction are shown in Fig. S1. Iron in pyrite was analyzed 

through a two hour boiling acidic chromous chloride extraction following the protocol of 

[Canfield et al., 1986], with extracted sulfide (called CRS for chromium reducible sulfur) 

trapped and measured gravimetrically. Based on replicates of an in-house Silurian shale 

standard (J1518-273.5-B), percent standard deviation for CRS is 8.7% and percent standard 

error of the mean is <1%, consistent with precision on previous shale standards [Sperling et 

al., 2013; Sperling et al., 2015]. Total iron and manganese abundances were measured at 

Bureau Veritas Minerals, Vancouver, Canada. Samples were digested using a standard four-

acid digestion or in a lithium borate fusion and measured using ICP-OES (inductively 

coupled plasma optical emission spectrometry). Samples were analyzed alongside blind 

aliquots of USGS standards SBC-1 and SGR-1. While we were not able to establish precision 

for these standards at this lab, single analyses for total iron were within 4% and 7% of 

published values, respectively, and a Bureau Veritas in-house standard had a percent standard 

deviation of 1.3% for iron.   
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At Utrecht University, where analyses of Holocene and modern sediments from the Baltic 

Sea and the Black Sea were performed, iron removed during the Poulton and Canfield (2005) 

extraction under oxygen-free conditions was measured spectrophotometrically using the 1,10-

phenanthroline method [APHA, 2005], with color development allowed to proceed overnight. 

Relative errors were generally less than 10% and often less than 5%, based on duplicates, 

triplicates and in-house standards. For samples from the Baltic Sea, iron carried by 

sedimentary iron-sulfur phases was determined using the procedure of Burton et al. [2008]. 

Briefly, 0.5 g of sediment was extracted under oxygen-free conditions using (1) 10 mL 6 M 

HCl and 2 mL 0.1 M ascorbic acid to dissolve acid-volatile sulfur (AVS, assumed to 

represent Fe-monosulfides); the released H2S was trapped in a tube filled with 7 mL of an 

alkaline zinc acetate solution (24 hours); (2) 10 mL acidic chromium(II)chloride to dissolve 

CRS (assumed to represent pyrite); the released H2S was trapped with 7 mL of an alkaline 

zinc acetate solution (48 hours). For both methods, the amount of sulfur in the zinc sulfide 

precipitates was determined by iodometric titration [APHA, 2005]. For samples from the 

Black Sea, pyrite-iron was determined by sequential extraction using a nitric acid extraction, 

concentrated HNO3 for 2 hours [Claff et al., 2010], although it will be grouped with FeCRS in 

this paper for simplicity. Average analytical uncertainty, based on duplicates and triplicates, 

was <6 % for AVS and CRS. Total sedimentary Fe contents were determined with ICP-OES 

after digestion with a mixture of HClO4, HNO3 and HF [Van Helmond et al., 2018]. The 

relative error was generally less than 3% based on duplicates, triplicates, and in-house 

standards. 

2.3 Rock Magnetic Methods 

Non-destructive bulk rock magnetic experiments were performed to observe fundamental 

magnetic properties that can distinguish between different magnetic minerals and provide 

information about their abundance (Table S2). All minerals have magnetic properties, but in 

many phases, the magnetism is very weak even when exposed to a magnetic field. 

Paramagnetic minerals contain atoms or ions with unpaired electrons (such as iron) that result 

in a magnetization when an external magnetic field is applied; however, when the field is 

removed, their magnetization returns to zero. Ferromagnetic minerals (sensu lato) are 

minerals with specific crystal structures that allow a magnetization to be retained once a 

magnetic field is removed, often called a remanent magnetization or remanence.  For the 

magnetic experiments, bulk powders and residues from the sequential extractions were 

individually packed into gelatin capsules, along with quartz wool, and ranged in mass from 

40 to 250 mg. The four modern sediment samples and their residues were packed inside of an 

anoxic glovebox. They were transferred within plastic vials tubes filled with nitrogen directly 

to a vacuumed system for low-temperature magnetic measurements at the Institute for Rock 

Magnetism at the University of Minnesota. Room temperature magnetic measurements were 

conducted immediately afterwards in Minnesota and over the next three weeks at UC 

Berkeley.   Although stored short-term in plastic tubes with a nitrogen atmosphere and long-

term in an anoxic glovebox, the samples were exposed to air for approximately 10 days over 

the course of these measurements. For specimens that underwent chemical treatment(s), all 

magnetic measurements are mass-normalized to initial mass of the powder pre-treatment 

except for the saturation magnetization (Ms) and remanent saturation magnetization (Mrs) 

measurements used for quantification.  

At the Institute for Rock Magnetism, hysteresis loops and DC demagnetization experiments 

were conducted on all specimens at room temperature using a Princeton Measurements 

Vibrating Sample Magnetometer (VSM). These experiments enabled the calculation of Ms as 

well as determination of the coercivity spectrum for each sample. To develop coercivity 
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spectra with lower noise than on the VSM, alternating field (AF) demagnetization of 

isothermal remanent magnetization (IRM) experiments were conducted using the UC 

Berkeley Paleomagnetism Laboratory’s 2G Enterprises superconducting quantum 

interference device (SQuID) magnetometer with RAPID automatic sample handling and 

software [Kirschvink et al., 2008]. Coercivity is an inherent property of ferromagnetic 

minerals [e.g. Peters and Dekkers, 2003], and coercivity spectra of specimens with complex 

mineral assemblages can be used to identify different mineral phases and their progressive 

loss through sequential chemical treatments.  

In addition to coercivity, many magnetic minerals can be identified by their unique low-

temperature transitions. Using a Quantum Designs Magnetic Property Measurement System 

(MPMS) at the Institute for Rock Magnetism, rock magnetic experiments were performed on 

71 out of 81 specimens to corroborate ferromagnetic mineral identifications, identify 

additional phases which become ferromagnetic at low-temperature, and provide another 

method for investigating mineralogical changes between sequential extraction steps. In these 

experiments, each sample was cooled in a 2.5 T field from 300 K to 10 K, then the field was 

turned off, and remanence measurements were made upon warming (field-cooled low-

temperature saturation isothermal remanent magnetization, FC LTSIRM). Next, the sample 

was cooled to 10K with no applied field, at 10 K it was pulsed with a 2.5 T field, and then 

remanence measurements were made upon warming (zero-field-cooled low-temperature 

saturation isothermal remanent magnetization, ZFC LTSIRM). Finally, the sample was 

pulsed with a 2.5 T field at 300 K before cooling to 10 K and warming back to 300 K during 

which remanence measurements were made (room temperature saturation isothermal 

remanent magnetization, RTSIRM, cooling and warming). 

During static AF demagnetization, gyroremanent magnetization (GRM) can be acquired by 

anisotropic samples in a direction oriented orthogonal to that of the AF [Stephenson, 1993]. 

Many magnetic minerals can acquire GRM at high applied fields, but greigite acquires a 

particularly large GRM which can be used for identification purposes [e.g. Hu et al., 2002; 

Hu et al., 1998]. We tested for GRM acquisition in 11 of the samples using the Berkeley 

magnetometer following the protocol of Garrick-Bethell et al. [2009] and Tikoo et al. [2012]. 

As there was no natural remanent magnetization (NRM) in our powders and residues, 

samples were given an angled IRM of ~1.5 T. In the 5 cases where the bulk powder specimen 

acquired some GRM, additional specimen(s) were run to determine if the signal remained 

after chemical treatment(s). 

Magnetic quantification of magnetite abundance was possible for specimens by dividing the 

measured Ms by that for pure magnetite [Klein et al., 2014; Slotznick et al., 2019]. A range of 

Ms values for magnetite have been reported in the literature from 73 to 92 Am2/kg [e.g. 

Aharoni et al., 1962; Bate, 1980; Dunlop, 1986; Heider et al., 1996; Pauthenet, 1950; Peters 

and Dekkers, 2003; Smit and Wijn, 1959] and we will follow the convention that the highest, 

92 Am2/kg, is closest to the true value. The quantification calculation assumes that magnetite 

is the only ferromagnetic mineral in the sample. It is therefore a maximum value and could 

not be performed on samples and specimens with appreciable quantities of other 

ferromagnetic minerals. For example, some samples contained maghemite (γ-Fe2O3); 

however, this should be (and was) solubilized by the dithionite extraction and therefore, 

quantification could be performed on these samples in specimens after the dithionite step.  

Magnetic quantification was also performed for monoclinic pyrrhotite in sample GP12-8B.  If 

there was trace magnetite mixed with the pyrrhotite, the Ms would be affected; thus Mrs was 

used instead of Ms as it is less sensitive to magnetite abundance within samples as the two 

minerals have more similar Mrs values [Dekkers, 1988; Peters and Dekkers, 2003].  A range 
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of Mrs have been reported in the literature ranging from 1.5 to 9.3 Am2/kg based on grainsize 

and slight differences in chemical formula with an average of 5.0 Am2/kg [Clark, 1984; 

Dekkers, 1988; Peters and Dekkers, 2003].  The quantification also assumes that pyrrhotite is 

the only ferromagnetic mineral in the sample and thus should be treated as a maximum; as a 

result, we use the lowest Mrs reported in our calculations. 

Goethite has a characteristic large difference between the FC and ZFC LTSIRM data with 

much greater remanence acquired during the FC experiment as well as large decreases in 

remanence upon warming [Dekkers, 1989a; Guyodo et al., 2003; Liu et al., 2006]. Qualitative 

approximation of goethite abundance was performed using these experimental results (such 

as in [Kars et al., 2015]; Fig. S19); however, several factors prevented us from performing 

absolute quantification.  Firstly, goethite has a large range of measured Ms and Mrs spanning 

an order of magnitude even at room temperature [Dekkers, 1989b; Peters and Dekkers, 2003] 

which are much lower than other ferromagnetic phases making quantification in mixed phase 

natural samples difficult. Secondly, the 1.4 T high field used on the VSM and the 2.5 T on the 

MPMS will not fully magnetize the goethite present in the samples, as goethite has been 

shown to remain unsaturated above these fields, even up to > 57 T [Rochette et al., 2005].  

Thirdly, goethite has a wide range of blocking temperatures based on grain-size, composition, 

and crystallinity which can be below room temperature; therefore, high fields applied at room 

temperature would not saturate these (subset of) particles either [Guyodo et al., 2003; Liu et 

al., 2006].  Methods such as Mössbauer and X-ray absorption spectroscopy have the potential 

to more robustly quantify goethite weight percent and could be utilized in future work.  

2.4 X-ray Diffraction Methods 

Powder X-ray diffraction (XRD) measurements were made on all of the samples at the 

University of Oxford.  Each specimen was analyzed using two different approaches on a 

PANalytical Empyrean Series 2 powder diffractometer with PIXcel1D detector, operating at 

40 kV and 40 mA, and utilizing a Co Kα source. Both analyses were performed using bulk 

powder that was deposited on a zero-background single crystal silicon substrate and mounted 

on spinning sample stage during analysis (rotating at 10 revolutions per minute). A bulk 

analysis from 5 to 80 degrees two-theta is used to identify major minerals present.  This 

analysis is done by identifying statistically meaningful peaks and matching their intensity and 

position with minerals using the International Center for Diffraction Data (ICDD) Powder 

Diffraction File 4+ database of mineral standards. Quantification of minerals identified in the 

bulk analysis is performed using the reference intensity ratio method [Snyder and Bish, 1989] 

and scale factors published with mineral standards in the ICDD PDF-4+ database.  

A second analysis is run on each specimen to further constrain clay mineralogy, by focusing 

on the high-angle region of the diffraction pattern between 69 and 75 degrees two theta. In 

this region, clay minerals exhibit diagnostic 060 reflections which directly correspond to 

octahedral layer composition (but are insensitive to structural defects), therefore allowing 

clay mineral speciation at the family level (i.e., Fe-rich chlorites and/or serpentine 

(berthierine), Mg-rich chlorites, Fe-rich dioctahedral 2:1 clays and micas, Al-rich 

dioctahedral 2:1 clays and micas, and kaolinites) [Srodon et al., 2001]. Peaks were 

deconvolved using Panalytical HighScore peak fitting software and then assigned to 

mineralogy. Abundances of clay determined by this method scales linearly with peak area in 

this part of the pattern, so quantification is possible by first determining relative abundances 

with respect to quartz as an internal standard, and then multiplying these abundances by the 

total amount of quartz determined through the bulk analysis.  
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3 Results and Mineralogy Interpretation 

Based on the results of the rock magnetic experiments, ferromagnetic minerals were 

identified for the bulk untreated samples. The minerals identified through these experiments 

were siderite (FeCO3), ferrihydrite (Fe2O3 • 0.5(H2O)), goethite (α-FeO(OH)), hematite 

(Fe2O3), maghemite, (oxidized) magnetite, pyrrhotite, and greigite. Magnetic parameters were 

also used to approximate the abundance of paramagnetic minerals in the sample [Richter and 

van der Pluijm, 1994] (Table S1, Fig. S18). Comparison of low temperature experiments and 

coercivity spectra on specimens after each extraction experiment allowed for a qualitative 

assessment of the main effect of each extraction on the magnetic mineralogy of a given 

sample (Figs. 2-8, Figs. S2-S15). Quantitative estimates for the mineral magnetite were made 

by comparing magnetic quantification of the phase to the amount of iron extracted during the 

oxalate extraction (Fig. 9).  

XRD data were analyzed to identify major minerals including small amounts of the iron-

bearing minerals pyrite, jarosite, magnetite, and ferric iron oxides (Table S3). Phases of 

varying composition known to contain iron such as calcite, dolomite/ankerite, and clays were 

also identified. A separate clay mineralogy analysis allowed for semi-quantitative 

measurements of the distinct iron-bearing clays within the samples (Fig. 10, Table S3). These 

quantifications provided a tool for detecting dissolution of minerals after each extraction. 

Both the magnetic and XRD data contribute to the interpretations of the mineral phases 

extracted by each sequential step below.  

3.1 Acetate Extraction 

The acetate extraction is used to target iron contained within carbonates, which could include 

siderite and ankerite (Ca(Fe,Mg,Mn)(CO3)2) as well as Fe-bearing dolomite (CaMg(CO3)2), 

calcite (CaCO3), and rhodochrosite (MnCO3). Of these minerals, magnetic methods are only 

able to detect siderite which can be identified in low-temperature experiments due to its Néel 

temperature of 37 K and characteristic behavior of the FC LTSIRM values being much 

greater than those in the ZFC LTSIRM experiment [Frederichs et al., 2003; Housen et al., 

1996]. Magnetic behavior consistent with siderite was noted in five of the samples (SBC-1, 

SGR-1, 15-TF-05-186, BS13-10A, and F849-225), but the mineral dominates the LTSIRM 

warming curve behavior in the first four samples suggesting it is relatively abundant 

compared to other ferromagnetic phases (Fig. 2, S2, S6). These four samples showed large 

amounts of iron extracted during the acetate extraction (0.88 wt%, 0.80 wt%, 1.01 wt%, and 

0.86 wt%), but other samples with similarly large amounts (> 0.7 wt%) did not contain 

siderite suggesting the presence of iron in paramagnetic carbonate phases (evaluated in Fig. 

S18). Our ability to evaluate the efficiency of this extraction is somewhat limited using 

magnetic techniques. 

XRD analyses were able to measure the percentage of calcite and dolomite/ankerite within 

samples.  However, the percentage of (trace) iron in these phases could not be determined, 

making inferences to the iron from acetate extraction indirect. Eight samples contained 

measurable calcite or dolomite/ankerite; four of these samples have low-temperature 

magnetic data that were interpreted here as indicative of siderite. All or almost all (below 

detection levels) of the calcite and dolomite was solubilized in these samples during the 

acetate extraction (Table S3). The only exception is the pyrite-ore sample (T095-408) 

suggesting mineral assemblage and association could affect dissolution of carbonates via 

acetate.  Overall, based on XRD and magnetic measurements, the acetate extraction 

effectively targeted calcite, dolomite, ankerite, and siderite when they were present in the 

sample (e.g. SBC-1 and SGR-1; Figs. 2, S2). However, not all of the siderite was dissolved 
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during this step for siderite-rich samples, as noted in other studies [Raiswell et al., 2011; 

Reinhard et al., 2009; Schröder et al., 2016].  

In addition to siderite, other ferromagnetic minerals were noticeably dissolved during the 

acetate extraction demonstrating that the extraction solubilizes minerals not typically 

considered to be targeted by the step. Half of the samples showed a loss of room temperature 

remanent magnetization and dissolution of a high-coercivity phase tentatively interpreted to 

be the mineral hematite (e.g. GO130-286; Figs. 3, S13b). These samples did not have 

noticeable low-temperature transitions (the Morin transition, a magnetic transition at ~250K 

[Morin, 1950; J Wang et al., 2015] or others), so this identification is tentative. Due to the 

remanent coercivity on the lower end of hematite’s range, we suggest that this hematite is 

either very-fine grained (<1 μm) or very large-grained (>50 μm) [Özdemir and Dunlop, 2014; 

Peters and Dekkers, 2003]. Nanophase hematite has been shown to form in diagenetic 

processes either during early diagenesis through aging of ferrihydrite or through secondary 

diagenetic processes repartitioning iron, for example from iron-bearing carbonates and 

silicates [Jiang et al., 2015; Swanson-Hysell et al., 2019; Walker et al., 1981; Weil and Van 

der Voo, 2002].  

In addition to hematite, maghemite appears to have been dissolved during the acetate 

extraction (e.g. AMB4; Figs. 4, S13c). Maghemite does not contain a diagnostic low-

temperature transition and has reversible RTSIRM curves upon cooling and warming. As a 

result, it can be difficult to identify unambiguously in multi-mineral natural samples. We 

interpreted its presence on the basis of its relatively low coercivity and loss of 

magnetization/coercivity peak height at room temperature between extractions [Özdemir and 

Dunlop, 2010; Peters and Dekkers, 2003]; mineralogical interpretations other than 

maghemite could be valid for these properties. Maghemite was noted in five samples 

(GO130-286, MP-69.5, AMB4, AMB6, and BLKS-1) always with hematite or oxidized 

magnetite suggesting it results from oxidizing reactions during either protolith weathering, 

deposition, diagenesis, or modern weathering. In the last four listed samples interpreted to 

contain significant amounts of maghemite, approximately half of it was dissolved during the 

acetate extraction.  

The original iron speciation methodology noted that acid volatile sulfides (AVS) were also 

quantitatively solubilized during the acetate extraction [Poulton and Canfield, 2005]. As with 

these other extractions, acid volatile sulfides are operationally defined and include amorphous 

Fe-S, mackinawite ((Fe,Ni)1 + xS where x = 0 to 0.11), greigite, and pyrrhotite [Cornwell and 

Morse, 1987; Praharaj and Fortin, 2004]. Iron speciation analyses on natural rock samples 

showed that the acetate extractions likely do not completely extract all the AVS/pyrrhotite 

especially in AVS-rich samples [Poulton et al., 2010; Reuschel et al., 2012]. Our analyses on 

one sample with abundant monoclinic pyrrhotite (GP12-8B, magnetically quantified as 0.27 

wt%) confirm these results with mineralogical rigor and show that approximately half of the 

pyrrhotite is dissolved in the acetate step (Figs. 5, S12b). Pyrrhotite was identified by its 

classic Besnus transition at 32 K [Besnus and Meyer, 1964; Rochette et al., 1990] and its 

presence was also suggested by moderate coercivity values above those typical for magnetite. 

Hexagonal (3T) pyrrhotite does not show the Besnus transition, and its room-temperature 

magnetic properties are poorly understood [Horng and Roberts, 2018]; it could be present, 

but unidentified, in other samples within the suite. 

Considering other AVS minerals, two samples of modern sediment contained greigite and 

this mineral may also be present in lower abundances in four shales formed during the 

Eocene to Ediacaran periods. Greigite is difficult to identify magnetically due to its lack of 

low-temperature transitions and coercivity range that overlaps with the ranges for magnetite 
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and pyrrhotite (e.g. RI-07-07A-92, Fig. S4). However, the acquisition of large GRM in 

greigite-bearing rocks [e.g. Hu et al., 2002; Hu et al., 1998] was used to confirm the 

mineral’s presence in the two Holocene Black Sea samples (BLKS-1 and BLKS-2) and rule 

out its presence in other samples (Figs. S16, S17). Greigite is primarily extracted during the 

acetate extraction in these samples, but in the sediment sample with the largest abundance 

(BLKS-2), not all greigite was solubilized and it continued to be extracted in later sequential 

chemical steps (Figs. 6, S15a). 

Overall, while the acetate extraction effectively targets most carbonate phases, it only 

partially dissolves the iron carbonate siderite. The extraction partially dissolves monoclinic 

pyrrhotite and greigite when present in abundance. The acetate extraction also appears to 

partially dissolve non-targeted iron oxides tentatively identified as maghemite and fine-

grained hematite. 

3.2 Hydroxylamine-HCl Extraction 

The hydroxylamine-HCl extraction is applied to target “easily reducible” iron oxides like 

ferrihydrite and lepidocrocite. Due to the instability of these minerals on geologic time-

scales, analyses on pre-Quaternary sedimentary rocks usually do not include this extraction 

step due to very low abundances; if present, these phases will be extracted in the dithionite 

extraction. Therefore, hydroxylamine-HCl extractions were only applied to the four sediment 

samples from the Holocene epoch.  

Ferrihydrite and lepidocrocite both can be probed using magnetic methods. Many studies 

have highlighted the wide range of magnetic properties for ferrihydrite depending on its 

structure, purity, grain-size, and ordering [Berquó et al., 2007; Guyodo et al., 2006; Michel et 

al., 2010; X Wang et al., 2016; Zergenyi et al., 2000]. However, data show that remanent 

magnetization has a sharp decrease upon warming in both FC and ZFC LTSIRM experiments 

between 33K and 80 K — interpreted to be related to the blocking temperature. Lepidocrocite 

also shows a similar sharp drop in remanence in FC and ZFC LTSIRM experiments below 30 

to 75 K, interpreted to be the Néel temperature [Guyodo et al., 2016; Hirt et al., 2002; Till et 

al., 2014]. Unfortunately, in natural samples with complex mixtures of minerals, it can be 

difficult to distinguish these phases from superparamagnetic minerals such as nanophase 

hematite or goethite [e.g. Guyodo et al., 2003].  

Two samples had sharp decreases in magnetic remanence during the FC and ZFC LTSIRM 

experiments that were interpreted to indicate ferrihydrite or lepidocrocite (BTCS-1 and RI-

07-07A-92; Figs. 7, S4). In both samples, the acetate extraction dissolved a portion of the

iron oxides ranging from ~25 to 75% of the total amount. One of these samples was a

Holocene sediment to which hydroxylamine-HCl was applied resulting in a decrease in

ferrihydrite/lepidocrocite abundance (BTCS-1; Fig. 7). However, this decrease was similar in

magnitude to the loss observed from the acetate extraction, which was observed in both

samples. In both samples, the subsequent dithionite extraction fully removed the remainder of

these oxide phases. Although only two samples, it appears that the hydroxylamine-HCl

extraction did target easily reducible iron oxides when present, but these phases also

dissolved in earlier and later steps.

More broadly, the hydroxylamine-HCl extraction only minimally dissolved other 

ferromagnetic phases. A slight decrease in oxidized magnetite was noted (BTCS-1 and 

BTCS-2; Figs. 7, 8, S15) and some maghemite was also dissolved (BLKS-1; Fig. S12). Pure 

maghemite was not analyzed in the Poulton and Canfield [2005] sequential extraction 

methodology and it is rarely analyzed in experiments on aqueous reactivity [e.g. Poulton et 

al., 2004]; maghemite might be considered an easily reducible iron oxide based on its 
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dissolution/reactivity in nature [e.g. Yamazaki and Solheid, 2011] or could be grouped with 

the other Fe3+ iron (oxyhydr)oxides or magnetite based on its chemistry and structure. 

3.3 Dithionite Extraction 

The dithionite extraction is used to target Fe3+ oxides and oxyhydroxides, specifically 

goethite, akaganeite, and hematite [Poulton and Canfield, 2005]. Goethite and hematite have 

high coercivities with hematite typically having remanent coercivities >100 mT and goethite 

typically >1000 mT [Peters and Dekkers, 2003]. These high coercivity values for goethite are 

above those reached in the coercivity spectra and its identification was based on low-

temperature magnetic experiments. Goethite can be identified by a large progressive decrease 

from 10 K all the way to 300K during LTSIRM warming curves with higher remanence seen 

in FC LTSIRM experiments than ZFC LTSIRM experiments [Guyodo et al., 2003; Liu et al., 

2006]. 

Goethite was identified in 14 of the 20 samples and it dominated the LTSIRM warming curve 

behavior in five of these samples (GO130-286, MP-69.5, 15-TF-05-176, F849-225, BS13-

10A). The dithionite step was very effective in solubilizing goethite. The characteristic low-

temperature magnetic behavior of goethite was gone following the dithionite extraction (e.g. 

SBC-1, GO130-286, and BTCS-2; Figs. 2, 3, 8) in all but one sample where some goethite 

remained (F849-225; Fig. S8). This loss of magnetization is quantified and shown to be 

correlated to iron extracted by dithionite, especially for nanophase goethite (Fig. S19.) 

Notably, the four samples that had the largest quantity of iron dissolved during the dithionite 

step (> 0.7 wt%) also contained abundant goethite (Fig. S19). A high-coercivity phase 

observed in ten samples is likely to be hematite. As mentioned earlier, hematite has a 

magnetic transition at ~250 K (the Morin transition), but it is often suppressed in naturally-

occurring hematite [Morin, 1950; J Wang et al., 2015] and was not conclusively identified in 

any of these samples. Although in some samples most of this high-coercivity phase was 

dissolved in the acetate step, we observed in three of the samples that the phase was removed 

during the dithionite step (e.g. MP-69.5, AMB4, and AMB6; Fig. S3, S13c, S7). These three 

samples did not all show large amounts of iron extracted during the dithionite extraction; as a 

result, we infer that iron from goethite typically dominates the operationally defined 

dithionite pool across sedimentary samples. Magnetic analyses suggest 

ferrihydrite/lepidocrocite (BTCS-1, RI-07-07A-92; Figs. 7, S4) and maghemite (AMB4, 

AMB6, BLKS-1; Figs. 4, S15c, S7, S12) are solubilized in the dithionite extraction; when the 

hydroxylamine-HCl extraction was not applied, these minerals should probably be targeted 

by this extraction based on the operational definition of ferric iron oxides. Previous magnetic 

and spectroscopic analyses on synthetic, paleosol, and loess samples have shown that the 

dithionite extraction dissolves maghemite in addition to hematite [e.g. Fine and Singer, 1989; 

Singer et al., 1995; W Sun et al., 1995; van Oorschot, 2001; van Oorschot and Dekkers, 

1999].  Overall, of all the iron speciation extraction steps, the dithionite extraction is the most 

robust at extracting the targeted phases. 

However, other phases were still dissolved during this extraction. Iron carbonates and iron 

sulfides that remained after the acetate extraction step also continued to be dissolved in this 

step (siderite in SBC-1 and SGR-1; Figs. 2, S2 and iron sulfides in GP12-8B and BLKS-2, 

Figs. 5, S12b, 6, S15a).  More striking is the dissolution of magnetite (and oxidized 

magnetite) during the dithionite extraction as noted in five samples. Magnetite was identified 

based on its characteristic Verwey transition at 120 K observed in RTSIRM and LTSIRM 

experiments [Verwey, 1939] and its presence was consistent with observed coercivity values 

[Peters and Dekkers, 2003]. As magnetite oxidizes toward maghemite, the RTSIRM warming 

and cooling curves take on a hump-like form [Özdemir and Dunlop, 2010], which was used 
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to qualitatively identify partially oxidized magnetite. Due to its strong magnetization, 

magnetite or oxidized magnetite were able to be identified in all twenty of the samples 

measured for this work. Of the five samples that showed a dissolution of magnetite in the 

dithionite step, ~25 to 75% of the magnetite was dissolved during the step (e.g. SBC-1 and 

BTCS-2; Figs. 2, S13a, 8, S15c), resulting in decreases in the coercivity spectra and 

decreased magnitude of the Verwey transition in low-temperature experiments.  Previous 

magnetic analyses of synthetic, loess, and paleosol samples also show that magnetite is 

variably dissolved in dithionite extractions depending on its concentration and grain size 

[Hunt et al., 1995; van Oorschot, 2001; van Oorschot and Dekkers, 1999].  In summary, the 

dithionite extraction will solubilize magnetite and continue to solubilize siderite and iron 

sulfides that were not previously removed. 

3.4 Oxalate Extraction 

The oxalate extraction was added in the most recent iron speciation protocol to target 

magnetite [Poulton and Canfield, 2005]. Magnetite is the best characterized ferromagnetic 

mineral and can be uniquely identified particularly through identification of the low-

temperature Verwey transition which results in a decrease of remanent magnetization at ~120 

K [Verwey, 1939]. Magnetite, or partially oxidized magnetite, was identified in all twenty 

samples analyzed for this study. Some samples clearly show that the oxalate extraction 

solubilizes a portion of the magnetite (e.g. SBC-1 and SGR-1; Figs. 2, S13a, S2); in samples 

with the highest concentrations, ~25 to 75% of the remaining magnetite was dissolved 

(BTCS-1 and BTCS-2; Figs. 7, 8, S15).  However, quantification of this magnetite is 

necessary to understand its importance for iron speciation.  Saturation magnetization provides 

a method for quantification of magnetite when it is the only ferromagnetic mineral present; 

computing the difference in iron carried by magnetite between specimens after the dithionite 

extraction and after the oxalate extraction should equal the total amount of iron extracted by 

oxalate.  

In most samples, after the dithionite extraction, magnetite was the dominant ferromagnetic 

mineral remaining. The three samples with magnetic iron sulfides were not included in this 

quantification and are discussed more below. Our magnetic quantification of magnetite 

highlights that the sedimentary rock samples contain <30 ppm of magnetite and the Baltic 

Sea Holocene sediments contain between 50 and 120 ppm of magnetite, although some 

magnetite was dissolved in earlier extractions before undergoing the oxalate step (Fig. 9). In 

most cases, only a small portion of this magnetite is dissolved during the oxalate extraction, 

corroborating low-temperature data and coercivity spectra that show little or no change 

between these two steps (e.g. GO130-286, MP-69.5, 15-TF-05-176, T095-53; Figs. 3, S15b, 

S3, S4, S10). Most strikingly, even if one assumed all the magnetite was effectively 

solubilized by the oxalate extraction (a.k.a. using the value after the dithionite extraction 

before the oxalate extraction), the amount of iron extracted by the oxalate extraction is 1 to 3 

orders of magnitude larger than the amount of iron carried by magnetite within the samples 

(Fig. 9). Clearly, magnetite is not a large contributor to the pool of highly-reactive iron in 

most samples and other mineral phases(s) are being solubilized during the oxalate step. 

Low-temperature and coercivity spectra data allow for elimination of options of which other 

phases are solubilized by the oxalate step. Magnetic iron sulfides (greigite and monoclinic 

pyrrhotite) continue to be dissolved during this step (Figs. 5, 6, S12b, S15a); however, this 

dissolution can only account for some of the iron extracted in the oxalate step.  The amount 

of iron extracted during the oxalate step in greigite-containing BLKS-1 and BLKS-2 is twice 

that extracted during the acetate step, even though this step dissolved more greigite. One 

sample interpreted to contain siderite has additional loss of the mineral during the oxalate 
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extraction (SBC-1; Fig. 2). Two samples show a small loss in a high-coercivity component 

during the oxalate extraction, which is likely associated with dissolution of hematite (AMB4 

and AMB6; Figs. S13c, S7). While these three samples have large oxalate values, earlier 

losses were much larger and comparison to the extracted iron pools suggests these minerals 

cannot account for all the iron extracted by oxalate. Overall, it appears that ferromagnetic 

minerals cannot explain the amount of iron being extracted during the oxalate step even 

though it is usually attributed to the mineral magnetite. While a decrease in high-field 

susceptibility is noted in all samples, this decrease is larger in samples with high-oxalate 

extractions (Fig. S18) which suggests that a paramagnetic phase is being dissolved by the 

step.  

The high-angle clay-specific XRD analyses show a correlation between samples that have 

high-oxalate values and those containing berthierine and/or chamosite, suggesting these clay 

minerals are targeted during the oxalate extraction (Fig. 10). Three sedimentary rock samples 

(SBC-1, AMB4, AMB6) and two sediment samples (BTCS-1 and BTCS-2) have Feoxalate 

values > 0.5 wt%; these three sedimentary rock samples contain two to eight times more 

berthierine and/or chamosite than other samples (except GP12-8B) (Fig. 10, Table S3).  

Berthierine ((Fe,Al)3(Si,Al)2O5(OH)4) is a Fe(II)-rich member of the serpentine subgroup 

most commonly associated with Phanerozoic shallow marine oolitic ironstones deposited in 

tropical environments, but it is also found in non-marine settings including laterites and 

estuarine sediments.  Some studies suggest berthierine accumulates via direct precipitation 

from the water column or detrital transport, but it is predominantly thought to form during 

early diagenesis from precursors such as glauconite, kaolinite, odinite, or iron oxide 

(hydroxide) [Longstaffe, 2003; van Houten and Purucker, 1984].  Chamosite 

((Fe,Mg)5Al(AlSi3O10)(OH)8) is a Fe-rich chlorite that typically forms through the burial and 

diagenetic transformation of berthierine or kaolinite at temperatures ≥70 °C [Hornibrook and 

Longstaffe, 1996; Jahren and Aagaard, 1989; Velde et al., 1974]. Due to chamosite and 

berthierine’s structural similarity, their peaks at 7Å and 3.55Å lie close to each other and are 

difficult to distinguish using XRD.  Assignment between the two phases was done based on 

whether a 14Å peak was observed in the bulk scan and, if present, whether the peak intensity 

was significantly modulated compared to the 7Å peak; if so, the clay is likely dominated by 

chamosite (although berthierine could also be present) and if not, vice versa. Although the 

clay analyses are precise, large error bars on the bulk analyses (up to 20%) make it difficult to 

place much weight on the quantification of individual specimens after each extraction.  Even 

so, quantification of berthierine/chamosite highlights significant dissolution of these clays 

over the course of the protocol with a 10 to 80% decrease  (except in BTCS-2) (Table S3).  

Five samples, SGR-1, SBC-1, GO130-286, BLKS-2, and BTCS-1 also showed significant 

loss of illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]) (>50% decrease) occurring 

during the acetate, hydroxylamine-HCl, dithionite, or oxalate extractions (Table S3). 

Both berthierine and chamosite (and illite) have variable chemical compositions with variable 

amounts of iron; the precise compositional range was not determined and therefore 

translation to wt% and direct comparison with iron extracted by oxalate is not possible.  The 

iron speciation sequential extraction protocol has also yet to be directly tested on these two 

minerals. However, there are indications in the literature that corroborate the idea that iron-

bearing clays are the source of the iron extracted by oxalate.  One study suggests that a 

museum-grade chamosite sample could be slightly dissolved in the dithionite extraction 

[Raiswell et al., 2011].  Another study combining XRD and iron speciation showed that their 

samples all had high Feoxalate (2.96 to 6.06 wt%) and also contained berthierine, chamosite, 

and glauconite [Tang et al., 2017]. Overall, the oxalate extraction appears to solubilize iron-

bearing silicates, specifically berthierine and/or chamosite. 
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4 Discussion 

4.1 Comparison Between Targeted and Dissolved Mineralogy 

The sequential extraction procedure developed by Poulton and Canfield [2005] has been 

widely used in paleoredox analyses, ancient and modern iron cycling studies, and other 

applications [e.g. Cai et al., 2018; Egger et al., 2016; Guilbaud et al., 2015; Poulton and 

Canfield, 2011; Poulton et al., 2010; Sperling et al., 2015; von der Heyden et al., 2018]. Our 

results provide some support for connecting operationally-defined iron pools to different 

mineralogical phases in complex natural samples, but also highlight significant challenges in 

making such interpretations.   

A major stated goal and result of the Poulton and Canfield [2005] sequential extraction 

procedure was the ability to isolate contributions of iron from Fe-bearing carbonate phases 

and from magnetite. In that work, the acetate extraction was argued to be effective at 

dissolving carbonate-associated iron while essentially leaving other phases unaffected. Our 

results show that the step is indeed effective at removing iron carried by carbonates and acid-

volatile sulfides, although depending on abundance/grain-size/mineral-association, not all of 

these phases will be extracted. However, the step also leads to removal of ferromagnetic 

phases identified as iron oxides. These phases are difficult to quantify and often may only 

represent a small fraction of the extraction pool, but in some cases could be a significant 

portion of the extraction pool and the highly-reactive iron (>25%).  

Our results show the dithionite extraction to be very effective in solubilizing goethite and 

most hematite within natural samples. Of all the extractions, it is the most effective at 

liberating the targeted minerals. 

Poulton and Canfield [2005] found that the oxalate step was effective in solubilizing 

magnetite when it was the only phase and in a mixture of pure minerals. These results led to 

the conclusion that the step could be used to quantify the amount of magnetite in natural 

samples. Our findings contrast with this conclusion, revealing the extraction to be ineffective 

at fully solubilizing magnetite in natural rock and sediment samples. Furthermore, magnetite 

is typically present in amounts that are very low relative to the amount of iron removed 

through the oxalate step. Rather, XRD analyses suggest that the oxalate step liberates iron 

from Fe-bearing clays, namely berthierine and chamosite.   

Given the complexity of phases that are actually targeted in each of the extractions, we 

recommend against using the mineral-specific names associated with each step. Our analyses 

demonstrate that most minerals were extracted, at least to a degree, across multiple different 

extractions. This is consistent with previous results by Poulton and Canfield [2005] 

demonstrating that some extractions were not perfectly specific (e.g., dithionite extracts some 

magnetite, Table 1 of that paper). While certain extractions dissolved the large majority of a 

mineral (e.g. dithionite for goethite), other phases such as monoclinic pyrrhotite, greigite, 

hematite, maghemite, and magnetite dissolved slowly throughout the sequential extraction 

procedure. Referring to the Feacetate liberated iron as Fecarb obscures that other phases are 

solubilized in this step, and referring to the Feoxalate liberated iron as Femag is largely incorrect. 

The solubility of minerals depends upon their grain-size, crystallinity, and mineralogical 

association; our analyses of natural samples highlight the resulting variation and complexity 

of simple mineralogical assignments to chemical extraction pools. Distinct formation 

pathways and reaction rim formation both in sedimentary processes and during the extraction 
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procedure are two mechanisms for these ranging solubilities. Future investigation in this 

regard could further elucidate iron cycling in both modern and ancient systems.  

4.2 Implications for Paleoredox Interpretation 

One perspective on these findings could be that the specific phases removed at each step are 

of little consequence given that almost all contribute to the highly reactive pool, which is 

typically compared en masse to pyrite and total iron for paleoredox interpretations. The iron 

speciation paleoredox proxy is operationally defined and empirically calibrated; therefore, the 

analyses here do not inherently invalidate it. However, there are multiple aspects of these 

results that raise questions related to paleoredox interpretations. 

Although an empirically calibrated tool, iron speciation is theoretically grounded by the 

shelf-to-basin iron shuttle model [Lyons and Severmann, 2006]. Iron is delivered into a basin 

in mineral phases containing ferric iron. In shallow waters (on the shelf), suboxic diagenesis 

will reduce the highly-reactive phases, releasing ferrous iron. Although some iron is 

immediately re-precipitated and deposited, a small portion can be laterally transported to 

deeper in the basin as colloidal and particulate iron (oxyhydr)oxides [Lenstra et al., 2019]. If 

anoxic waters are present in the deep basin, this highly-reactive iron could accumulate and 

sediments will reflect this enrichment of highly-reactive iron when compared to total iron. 

Similarly, euxinic waters will result in the majority of this highly reactive iron precipitating 

as pyrite due to the abundant sulfide. Geochemical iron speciation analyses on modern 

sediments provided foundations for this model in addition to guiding the calibration of the 

iron speciation paleoredox proxy [Raiswell and Canfield, 1998; 2012]. 

However, the initial empirical calibration for the highly-reactive to total iron proxy (FeHR/FeT

> 0.38) was only based on the dithionite extraction (and iron from CRS) [discussed in Farrell

et al., 2013; Raiswell et al., 2018]. The sequential procedure was developed later. Samples

with high-abundances of iron from the oxalate extraction could give ferruginous redox

interpretations, potentially erroneously as our analyses highlight that iron-bearing clays are

the main mineral being targeted in this extraction, not magnetite. The guiding principles

behind the iron speciation proxy are that the solubilized minerals included in FeHR are highly-

reactive to sulfide on diagenetic time scales; it is unclear if this is true for these clay minerals

which predominantly form during early or burial diagenesis (with iron sourced from diverse

possible precursors), but can also directly precipitate from the water column.  Although

ideally a new calibration of FeHR/FeT would be developed on modern sediments using the

Poulton and Canfield [2005] extraction procedure (refining FeHR/FeT > 0.38), at the moment

samples that contain high abundances of iron extracted in the oxalate pool should be flagged

and more carefully investigated to understand their mineralogy and formation pathways.

Connecting iron speciation pools more directly to mineralogy also raises questions about the 

connection of this proxy to water column chemistry as opposed to post-depositional 

processes.  For example, pyrrhotite, which we show to be removed in each extraction step 

(e.g. GP12-8B; Fig. 5, S12b), forms diagenetically, usually at the expense of other phases, 

primarily pyrite. Hot acid extractions performed on this sample did not reveal significant 

AVS, even though monoclinic pyrrhotite was readily detected magnetically.  Previous 

literature has similarly noted poor extraction of pyrrhotite using the hot 6 N HCl method and 

suggested the use of this methodology has led to widespread underestimation of monosulfides 

in ancient sedimentary rocks in the literature [Rice et al., 1993].  Although the formation of 

pyrrhotite is thermodynamically limited at Earth surface temperatures [Horng and Roberts, 

2006], experimental and geologic studies have shown that it can form at temperatures 

between 75-200°C [Gillett, 2003; Hall, 1986; Kissin and Scott, 1982], a very low 
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metamorphic grade that is quite common in ancient rocks targeted for paleoredox 

investigations. As a result, pyrrhotite’s presence in rocks can greatly affect the pyrite to 

highly reactive iron proxy (Fepy/FeHR) leading to interpretations that do not reflect water 

column chemistry [Slotznick et al., 2018b].  Some studies that identified pyrrhotite in their 

samples attempted to correct for its presence [e.g. Reuschel et al., 2012]; our analyses 

highlight the difficulty of doing so since a single extraction does not represent all the 

pyrrhotite.   

Although we have noted that the dithionite extraction is one of the most robust extractions, 

our data reveal an abundance of goethite throughout the sedimentary rock samples (Fig. S19), 

which accordingly has a significant influence on the highly-reactive iron values. Although 

goethite has been shown to form during early sedimentary diagenesis [van der Zee et al., 

2003], it is also a common product of surficial oxidative weathering and often assumed to be 

a modern weathering overprint.  At the surface, goethite can form at the expense of other iron 

oxides and iron sulfides [Bedarida and Pedemonte, 1971; Bladh, 1982], but also can form 

from Fe-silicate minerals and precipitate from groundwater (liesegang banding) [Eggleton et 

al., 1987; Gilkes and Suddhiprakarn, 1979; Ortoleva et al., 1986; Schwertmann, 1988]. 

Paleomagnetic studies on sedimentary rocks reveal that goethite often records the present 

local magnetic field (indicating recent formation) and comparison between surface outcrop 

samples and deep drill cores corroborates its formation during recent near-surface processes 

[e.g. Belkaaloul and Aïssaoui, 1997; Sprain et al., 2018; Swanson-Hysell et al., 2012]. The 

prevalence of goethite in the analyzed sample suite raises questions about mineralogical 

transformations that occurred during surface weathering or powder storage. Better 

understanding of the primary nature of goethite and its formation pathways is important for 

interpreting the dithionite extraction pool. Rock magnetic screening of samples for the 

presence of goethite could be a valuable addition to iron speciation studies. 

Hematite, maghemite, and partially oxidized magnetite are noted throughout our sample 

suite; they are solubilized throughout the acetate, hydroxylamine-HCl, and dithionite 

extractions.  These phases often co-exist in our samples (along with goethite and/or 

ferrihydrite) and are the result of oxidative reaction pathways; however, it is unclear when 

these reactions occurred.  This mineral mixture could be inherited from the protolith, form 

during weathering and fluvial transport, or relate to water-column and pore water redox 

cycling during deposition and early diagenesis.  During this portion of the sedimentary cycle, 

these highly-reactive phases represent oxidizing conditions, but contribute to the highly 

reactive iron pool, which without additional context could be interpreted as representing 

deposition beneath a ferruginous water column.   Although potentially not an issue in off-

shore basins, analysis of lacustrine shallow-water red siltstones show that the presence of 

hematite can lead to erroneous paleoredox interpretations [Slotznick et al., 2018a].  

Additionally, this suite of iron oxides could form in significantly later post-depositional 

processes associated with diagenesis/low grade metamorphism or more recent surficial 

weathering.  Post-depositional formation of hematite can be at the expense of other highly-

reactive phases like pyrite, (oxy)hydroxides, magnetite, and carbonates  [e.g. Anand and 

Gilkes, 1984; Elmore et al., 1985; Jiang et al., 2015; Weil and Van der Voo, 2002], but can 

also occur due to reactions of iron-bearing clays and silicates [Lu et al., 1994; Turner, 1979; 

Walker et al., 1981].  Such a movement of iron from the unreactive iron pool to the highly-

reactive pool through oxic reactions could incorrectly suggest depositional conditions were 

ferruginous. Although mineral-specific techniques are sometimes more qualitative or time-
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consuming, focusing on mineralogy is vital in studies of iron biogeochemical cycling as these 

processes are fundamentally dependent on mineral reactions. 

Quantification of magnetite in weight % in sediments using non-geochemical techniques has 

not been the norm in the past two decades although exceptions exist [e.g. Huberty et al., 

2012; Hurowitz et al., 2017; Slotznick et al., 2018a; Slotznick et al., 2019]. Previous work on 

sub-greenschist fine-grained siliciclastics similarly noted magnetite levels at <30 ppm in two 

sample suites similar to this work [Slotznick et al., 2019; van Oorschot et al., 2001], but up to 

570 ppm magnetite in another site [Slotznick et al., 2018a]. These results suggest that 

provenance, water column reactions, and diagenesis all play important roles in magnetite 

preservation and sedimentary iron cycling. While the typical quantity of magnetite in 

sediments can make detection difficult through chemical extraction, synchrotron X-ray 

spectroscopy and magnetic techniques, both sensitive to mineralogy at the parts per billion 

level, can be key tools for work on magnetite’s role in iron cycling moving forward. 

The observation that the oxalate extraction is not removing magnetite, but rather other iron-

bearing minerals (suggested here to be berthierine and/or chamosite), begs the question of 

how this affects our interpretation of the geochemical record through Earth History. A 

preliminary investigation of the Feoxalate pool through geologic time is presented here. We 

analyzed 5,388 samples through geologic time; this was based off the compilation of Sperling 

et al. [2015] with 2,124 published and new Feoxalate measurements (all generated at Stanford 

following protocols described in the Section 2.2) included to increase Phanerozoic data 

coverage (note though that post-Paleozoic sampling remains scarce). This analysis shows an 

intriguing trend in iron extracted by oxalate (Fig. 11), with median values of 0.14 and 0.18 wt 

% for the Paleoproterozoic and Mesoproterozoic bins, intermediate values for the 

Neoproterozoic and Cambro-Ordovician bins (0.11 to 0.055 wt %) and lower values for 

younger time periods (0.035 to 0.02 wt %). Maximum values will be strongly controlled by 

sampling effects, but there is a large decrease in maximum values through time within the 

current data set as well as the 75th percentile (Fig. 11). Nonparametric Steel-Dwass tests 

indicate that the Paleoproterozoic and Mesoproterozoic are not statistically different from 

each other (p = 0.87), but with occasional exceptions both are statistically higher than all 

younger bins (generally p < 0.001). Further, Neoproterozoic bins are almost always 

significantly higher than Phanerozoic bins (again, generally p < 0.001). Decision-tree analysis 

suggests that the major change in terms of Feoxalate contents is between Cryogenian and older 

samples and Ediacaran and younger samples. More samples and statistical analyses 

controlling for spatial-temporal sampling density will provide added insight, but at a first 

order, this trend of higher Feoxalate in older samples will likely remain robust.    

On a pragmatic level, these results indicate that the misclassification of the mineralogy of 

iron pools as indicated by our magnetic experiments will dominantly affect redox 

interpretations of Proterozoic iron speciation data as compared to Phanerozoic data. 

Additionally, the use of empirical calibrations from modern sediments to interpret ancient 

rocks is challenged as the Feoxalate pool does not appear to be present in appreciable quantities 

in the modern and geologically recent systems.   

These results also point to significant changes in the history of iron cycling, although exactly 

what this represents must remain fairly speculative as at present our data only reveal a 

positive correlation between Feoxalate and berthierine/chamosite abundance within the 

samples. Recent papers have suggested higher levels of authigenic clay formation during the 

Proterozoic than in the Phanerozoic based on occurrence data, carbon cycle modeling, and 

silicon isotopes [Isson and Planavsky, 2018; Trower and Fischer, 2019]. If Feoxalate can be 

definitively linked to berthierine/chamosite, the oxalate-extractable iron record through time 
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(Fig. 11) would provide support for the hypothesized decrease in authigenic clay formation 

near the end of the Neoproterozoic. These results emphasize the importance of studying 

mineralogical changes as a window into global biogeochemical cycling. 

5 Conclusions 

We present one of the first tests of the standardized sequential extraction for iron speciation 

using natural samples. These results highlight the subtlety and complexity of dealing with 

natural samples that contain diverse mineral assemblages. The magnetic and X-ray diffraction 

measurements made on specimens stopped after each extraction step provide an independent 

method for identifying and quantifying what iron-bearing minerals were dissolved. The 

dithionite extraction stands out as the most robust at effectively solubilizing the targeted 

mineralogy of ferric iron oxides. The oxalate extraction appears to primarily dissolve iron-

bearing clays, specifically berthierine/chamosite, not the targeted mineral magnetite which is 

present only in low abundances. The analyses also emphasize that the solubility of minerals 

depends upon various factors (such as grain-size, crystallinity, association) resulting in 

natural variation and complexity, which must be taken into account when utilizing sequential 

extraction methods. Studies of past and present iron cycling should choose multi-pronged 

methodologies to provide more direct connections to mineralogy and thus natural processes. 

Acknowledgments, Samples, and Data 

Rob Raiswell and an anonymous reviewer gave detailed and constructive comments that 

greatly helped shape this paper; Mike Jackson, Peat Solheid, Dario Bilardello, Bill Seyfried, 

and Bruce Moskowitz provided laboratory assistance and insightful suggestions associated 

with the rock magnetic experiments; Sabrina Tecklenburg assisted with some of the iron 

speciation analyses; Tim Raub and Tiffani Fraser assisted with field collection of samples; 

Una Farrell assisted with geochemical data management. This research was supported by an 

Esper S. Larsen Jr. Research Fund grant awarded to N.L.S.-H. and a Miller Institute for Basic 

Science Fellowship to S.P.S. C.P.S. and N.v.H. acknowledge funding from the Netherlands 

Organisation for Scientific Research (NWO Vici grant 865.13.005). N.J.T. acknowledges 

funding from NERC grant NE/M013014/1 and the Leverhulme Trust. E.A.S. thanks a Sloan 

Ocean Sciences Fellowship and the affiliates of the Stanford Project on Deepwater 

Depositional Systems. Many of the rock magnetic experiments were conducted during two 

visiting fellowships at the Institute for Rock Magnetism which is supported by the National 

Science Foundation and the University of Minnesota. Iron speciation, XRD and rock 

magnetic experimental datasets are available online at 

http://doi.org/10.5281/zenodo.3382916. 

.

18



References 

Aharoni, A., E. Frei, and M. Schieber (1962), Some properties of γ-Fe2O3 obtained by 

hydrogen reduction of α-Fe2O3, JPCS, 23(6), 545-554. 

Anand, R., and R. Gilkes (1984), Mineralogical and chemical properties of weathered 

magnetite grains from lateritic saprolite, J. Soil Sci., 35(4), 559-567. 

APHA (2005), Standard methods for the examination of water and wastewater, American 

Public Health Association (APHA): Washington, DC, USA. 

Bacon, J. R., and C. M. Davidson (2008), Is there a future for sequential chemical 

extraction?, Analyst, 133(1), 25-46. 

Bate, G. (1980), Recording materials, in Handbook of Ferromagnetic Materials, edited by W. 

E., pp. 381-507, North Holland. 

Bedarida, F., and G. Pedemonte (1971), Hematite to goethite surface weathering, American 

Mineralogist: Journal of Earth and Planetary Materials, 56(7-8), 1469-1473. 

Belkaaloul, N. K., and D. M. Aïssaoui (1997), Nature and origin of magnetic minerals within 

the Middle Jurassic shallow-water carbonate rocks of the Paris Basin, France: implications 

for magnetostratigraphic dating, GeoJI, 130(2), 411-421. 

Berner, R. A. (1970), Sedimentary pyrite formation, Am. J. Sci., 268(1), 1-23. 

Berquó, T. S., S. K. Banerjee, R. G. Ford, R. L. Penn, and T. Pichler (2007), High 

crystallinity Si‐ferrihydrite: An insight into its Néel temperature and size dependence of 

magnetic properties, JGRB, 112(B2). 

Besnus, M., and A. Meyer (1964), Nouvelles données expérimentales sur le magnétisme de la 

pyrrhotine naturelle, paper presented at Proc. Int. Conf. Mag., Nottingham. 

Bladh, K. W. (1982), The formation of goethite, jarosite, and alunite during the weathering of 

sulfide-bearing felsic rocks, Econ. Geol., 77(1), 176-184. 

Burton, E. D., L. A. Sullivan, R. T. Bush, S. G. Johnston, and A. F. Keene (2008), A simple 

and inexpensive chromium-reducible sulfur method for acid-sulfate soils, Appl. Geochem., 

23(9), 2759-2766. 

Cai, C., A. O. Leu, G.-J. Xie, J. Guo, Y. Feng, J.-X. Zhao, G. W. Tyson, Z. Yuan, and S. Hu 

(2018), A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) 

reduction, The ISME journal, 1. 

19



Canfield, D. E., R. Raiswell, J. T. Westrich, C. M. Reaves, and R. A. Berner (1986), The use 

of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales, 

Chem. Geol., 54(1), 149-155. 

Claff, S. R., L. A. Sullivan, E. D. Burton, and R. T. Bush (2010), A sequential extraction 

procedure for acid sulfate soils: partitioning of iron, Geoderma, 155(3-4), 224-230. 

Clark, D. (1984), Hysteresis properties of sized dispersed monoclinic pyrrhotite grains, 

GeoRL, 11(3), 173-176. 

Cornwell, J. C., and J. W. Morse (1987), The characterization of iron sulfide minerals in 

anoxic marine sediments, Mar. Chem., 22(2), 193-206. 

Dekkers, M. (1988), Magnetic properties of natural pyrrhotite Part I: Behaviour of initial 

susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size 

dependent framework, PEPI, 52(3-4), 376-393. 

Dekkers, M. (1989a), Magnetic properties of natural goethite—II. TRM behaviour during 

thermal and alternating field demagnetization and low-temperature treatment, GeoJI, 97(2), 

341-355.

Dekkers, M. (1989b), Magnetic properties of natural goethite-I. Grain-size dependence of 

some low-and high-field related rockmagnetic parameters measured at room temperature, 

GeoJI, 97(2), 323-340. 

Dijkstra, N., C. P. Slomp, and T. Behrends (2016), Vivianite is a key sink for phosphorus in 

sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea, Chem. 

Geol., 438, 58-72. 

Dunlop, D. J. (1986), Hysteresis properties of magnetite and their dependence on particle 

size: A test of pseudo‐single‐domain remanence models, JGRB, 91(B9), 9569-9584. 

Egger, M., P. Kraal, T. Jilbert, F. Sulu-Gambari, C. J. Sapart, T. Röckmann, and C. P. Slomp 

(2016), Anaerobic oxidation of methane alters sediment records of sulfur, iron and 

phosphorus in the Black Sea, BGeo, 13(18), 5333. 

Egger, M., O. Rasigraf, C. l. J. Sapart, T. Jilbert, M. S. Jetten, T. Röckmann, C. van der Veen, 
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Table 1 

Sediments and Sedimentary Rock Samples Analyzed in this Study 

Sample : Age Formation Location 
Core or 
Outcrop 

Lithology Ref.a 

SBC-1b Carboniferous 
Glenshaw Fm., 
Conemaugh Group 

Pennsylvania, 
USA 

Outcrop Shale 

SGR-1b Eocene 
Mahogany zone, Green 
River Fm. 

USA Outcrop Shale 

GO130-286 Tonian Fifteenmile Group Yukon, Canada Outcrop Shale 1 

MP-69.5 Cambrian Wheeler Fm. Utah, USA Outcrop 
Calcareous 
Shale 

2 

RI-07-07A-92 Devonian Canol Fm. Yukon, Canada Core Shale 

15-TF-05-176 Silurian Road River Group Yukon, Canada Outcrop 
Calcareous 
Shale 

15-TF-05-186 Silurian Road River Group Yukon, Canada Outcrop Shale 

AMB4 Ediacaran Mall Bay Fm. 
Newfoundland, 
Canada 

Outcrop Silty Shale 

AMB6 Ediacaran Mall Bay Fm. 
Newfoundland, 
Canada 

Outcrop Silty Shale 

F849-225 Ediacaran Sheepbed Fm. Yukon, Canada Outcrop Shale 3 

BS13-10A Calymmian Lower Newland Fm. Montana, USA Outcrop 
Dolomitic 
Shale 

4 

GP12-1 Calymmian Appekunny Fm., Mbr. 2 Montana, USA Outcrop Siltstone 4,5 

GP12-8B Calymmian 
Prichard Fm./Appekunny 
Fm., Mbr. 4 

Montana, USA Outcrop 
Muddy 
Siltstone 

4,5 

T095-53 Calymmian Upper Newland Fm. Montana, USA Core 
Dolomitic 
Shale 

4,6 

T095-408 Calymmian Upper Newland Fm. Montana, USA Core Sulfide Ore 4 

T112-334 Calymmian Lower Newland Fm. Montana, USA Core Shale 4,6 

BLKS-1 Holocene Black Sea Lake stage Black Sea Core 
Pyritized 
Black Mud 

7c 

BLKS-2 Holocene Black Sea Lake stage Black Sea Core Grey Mud 7d 

BTCS-1 Holocene Ancylus Lake stage Baltic Sea Core 
Dark Grey 
Clay 

8e 

BTCS-2 Holocene Baltic Ice Lake stage Baltic Sea Core 
Grey/Greyish 
Brown Clay 

8f 

a Reference for prior iron speciation or magnetic studies on the sample.  All iron speciation data (except FeT 
and FeCRS) were re-measured for this study. 1) Sperling et al. [2013]; 2) Sperling et al. [2015]; 3) Johnston et al. 
[2013]; 4) Slotznick et al. [2019]; 5) Slotznick et al. [2016]; 6) Slotznick et al. [2015]; 7) Egger et al. [2016]; 8) 
Dijkstra et al. [2016]. b USGS Standard. c PHOXY4 GC - 213 - 243 cmbsf. d PHOXY4 GC - 478 - 508 cmbsf. e 
IODP63 - Sample 30; Core 21, Section 1 - 40.73 mbsf. f IODP63 - Sample 43; Core 33, Section 1 - 65.15 mbsf. 
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Figure 1. Iron speciation of the 20 samples shown with details of the iron extracted at each step on the left and 

plotted within the iron speciation proxy framework for paleoredox on the right. The pools in the bar plot are 

colored by the chemical extraction with the more commonly used abbreviations signaling the targeted mineralogy 

shown in parentheses in the legend [Poulton and Canfield, 2005]. Abbreviations: carb = carbonate, HA-HCl = 

hydroxylamine-HCl, ox1 = easily reducible oxides, ox2 = reducible oxides, mag = magnetite, CRS = chromium 

reducible sulfur, U = unreactive, PRS = poorly reactive sheet silicates, FeHighly Reactive = Feacetate + FeHA-HCl + 

Fedithionite + Feoxalate + FeCRS. Note: T095-408 is off scale on the bar plot—see Tables 1 and S1 for additional 

information and data on all samples. 
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Figure 2. Low-temperature magnetic analyses after each extraction for sample SBC-1 (Carboniferous Brush 

Creek Shale, USA). The bulk curves represent the untreated powdered rock, acetate denotes the specimen that 

only underwent the acetate extraction, dithionite the specimen that underwent acetate+dithionite extractions and 

oxalate the specimen that underwent acetate+dithionite+oxalate extractions. For this sample, the data suggest that 

the sample contains siderite, magnetite, and goethite based on their diagnostic low temperature transitions 
(annotated). The acetate step dissolved much of the siderite as well as some of the magnetite (also visible in the 

coercivity spectra Fig. S13a.)  The dithionite extraction showed a continued dissolution of siderite and magnetite 

as well as almost complete loss of goethite.  The oxalate extraction solubilized a small amount of remaining 

siderite and magnetite. Abbreviations: LTSIRM = low-temperature saturation isothermal remanent magnetization, 

FC = field cooled, ZFC = zero-field cooled, RTSIRM = room-temperature saturation isothermal remanent 

magnetization. 
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Figure 3. Magnetic analyses after each extraction for sample GO130-286 (Tonian Fifteenmile Group, Canada) 

suggest that the sample contains goethite and partially oxidized magnetite based on their low temperature behavior 

(annotated). A high-coercivity phase with no low-temperature transitions except a decrease in RTSIRM during 

cooling is also noted and suggested to be hematite (see Fig. S13b for coercivity spectra). Well-shown in the 

coercivity spectra, the acetate step dissolved this high-coercivity phase and a low to moderate coercivity phase 
suggested to be maghemite or oxidized magnetite. The dithionite extraction effectively solubilized goethite and 

much of the maghemite/partially oxidized magnetite. Very little change is observed associated with the oxalate 

step. See Figure 2 caption for abbreviations. 
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Figure 4. Magnetic analyses after each extraction for sample AMB4 (Ediacaran Mall Bay Formation, Canada) 

suggest that the sample contains (oxidized) magnetite based on its low-temperature behavior (annotated). The 

acetate extraction resulted a sharp drop in room-temperature magnetization.  Based on the coercivity spectra (Fig. 

S13c) this is due to the dissolution of a high-coercivity phase and a low to moderate coercivity phase with no low-

temperature transitions suggested to be hematite and maghemite respectively, although greigite is also a possibility 
(see gyroremanent magnetization Fig. S16). Continued dissolution of these two phases occurred during the 

dithionite extraction. The oxalate extraction noticeably further solubilized the high-coercivity phase (suggested to 

be hematite, Fig. S13c). See Figure 2 caption for abbreviations. 
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Figure 5. Magnetic analyses after each extraction for sample GP12-8B (Calymmian Prichard Fm./Appekunny 

Fm., Belt Supergroup, USA) suggest that the sample predominantly contains monoclinic pyrrhotite as well as 

minor oxidized magnetite and goethite based on its low-temperature behavior (annotated). A high-coercivity phase 

with no discernable low-temperature transition is also observed and interpreted to be hematite (Fig. S12b).  The 

acetate extraction dissolved most of this high-coercivity phase as well as some pyrrhotite and goethite.  The 

dithionite extraction effectively solubilized the remainder of these two phases although a small amount of 
pyrrhotite remained and was slightly dissolved during the oxalate extraction. See Figure 2 caption for 

abbreviations. 
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Figure 6. Magnetic analyses after each extraction for sample BLKS-2 (Holocene Black Sea sediment) suggest 

that the sample contains minor oxidized magnetite and goethite based on its low-temperature behavior (annotated). 

A moderate to high coercivity phase with no low-temperature transition other than linearly increasing RTSIRM 

during cooling dominates the sample (Fig. S15a) and is interpreted to be greigite based on its large gyroremanent 

magnetization (Fig. S16); minor maghemite (identified in the other Black Sea sample Fig. S14) could also be 

present.  Greigite and goethite are primarily dissolved during the acetate extraction.  Very little change in 

ferromagnetic phases is associated with the hydroxylamine-HCl (HA-HCl) extraction. During the dithionite 

extraction, the coercivity spectra do not show significant greigite dissolution, but a loss of magnetization in the 
low-temperature experiments suggests otherwise.  The oxalate extraction solubilized some greigite as well. See 

Figure 2 caption for additional abbreviations. 
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Figure 7. Magnetic analyses after each extraction for sample BTCS-1 (Holocene Baltic Sea sediment) suggest 

that the sample contains partially oxidized magnetite, ferrihydrite (or lepidocrocite), and goethite based on its low-
temperature behavior (annotated). The acetate step dissolved some of the tentatively identified ferrihydrite and 

the goethite.  The hydroxylamine-HCl (HA-HCl) extraction continued dissolution of the ferrihydrite and slightly 

solubilized oxidized magnetite.  The HA-HCl specimen has a slight stronger magnetization than the “previous” 

acetate specimen; we interpret this is due to specimen differences from either the subsampling of initial powder, 

extraction protocol, and packing for magnetic analyses.  During the dithionite extraction, goethite was completely 

solubilized as was the remainder of the ferrihydrite; most of the loss of oxidized magnetite also occurred during 

this step.  In the oxalate extraction, some of the remaining oxidized magnetite is solubilized. See Fig. S15b for 

coercivity spectra. See Figure 2 caption for abbreviations. 
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Figure 8. Magnetic analyses after each extraction for sample BTCS-2 (Holocene Baltic Sea sediment) suggest 
that the sample contains magnetite, partially oxidized magnetite, and goethite based on its low-temperature 

behavior (annotated). During the acetate extraction, goethite and (oxidized) magnetite are slightly solubilized. 

Magnetite and/or partially oxidized magnetite is also slightly lost in the hydroxylamine-HCl (HA-HCl) extraction. 

Similarly to BTCS-1, the HA-HCl specimen has a slight stronger magnetization than the “previous” acetate 

specimen; we interpret this is due to specimen differences from either the subsampling of initial powder, extraction 

protocol, and packing for magnetic analyses.  During the dithionite extraction, goethite is effectively solubilized 

along with the majority of the (oxidized) magnetite as seen in both the low-temperature experiments and the 

coercivity spectra (Fig. S15c).  (Oxidized) magnetite continues to be solubilized during the oxalate extraction. 

See Figure 2 caption for abbreviations. 
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Figure 9. a) Magnetite quantification based on saturation magnetization compared after the dithionite extraction 

(before the oxalate extraction) and after the oxalate extraction was applied. The amount of magnetite extracted 

during the oxalate extraction should be the difference between the two. Some samples show a gain in the amount 

of magnetite, which we attribute to the slight differences in the specimens (due to subsampling of the initial 

powder, extraction protocol, and packing for magnetic analyses) and/or the poorly constrained error bars of the 

Ms due to subtraction of a large paramagnetic component. b) Comparison of the amount of iron solubilized during 

the oxalate extraction (Feoxalate) and the amount of iron carried by magnetite as quantified magnetically after the 

dithionite extaction (Femagnetite) plotted on a log scale. The thick black line emphasizes when the ratio is one, and 

iron amounts equal. Even if all the magnetite was extracted, Feoxalate is 1 to 3 orders of magnitude higher than 

Femagnetite suggesting that iron is being solubilized from another phase. 
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Figure 10. X-ray diffraction quantification of clay minerals highlights a correlation between samples containing 

abundant chamosite & berthierine and those with a high quantity of iron solubilized during the oxalate extraction 

(Feoxalate).  A linear regression of these clay abundances in the bulk specimens (as percent of total mineralogy) 

versus the Feoxalate (weight percent) for the same sample is plotted (R2 = 0.40, if only sedimentary rock samples 

are included R2 = 0.61). 

40



Figure 11. Box and whiskers plot of weight percent iron solubilized by the oxalate extraction in a collection of 

samples binned by era or period across geologic time. All values are associated with the final step of the sequential 

extraction protocol following Poulton and Canfield [2005; e.g. the oxalate extraction following the acetate and 

dithionite extractions] (Table S4). The y-axis stops at 1.0 weight percent to better visualize changes in the median 

and interquartile range. Arrows at the top of the plot point to the maximum value in each time bin; post-Cambrian 

time bins do not have maximum Fe-oxalate values > 0.75 weight percent.  Sample numbers in each bin are shown 

next to the bin name, and era/period ages are: Paleoproterozoic 2500-1600 Ma, Mesoproterozoic 1600-1000 Ma, 
Tonian 1000-720 Ma, Cryogenian 720-635 Ma, Ediacaran 635-541 Ma, Cambrian 541-485 Ma, Ordovician 485-

444 Ma, Silurian 444-419 Ma, Devonian 419-359 Ma, Permo-Carboniferous 359-252 Ma, Mesozoic-Cenozoic 

252-0 Ma.
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