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ABSTRACT OF THE THESIS 

 

Automating Classification of Nonverbal Cues from Leader Figures 

 

by 

 

Claudia Seidel 

 

Master of Science in Computer Science 

University of California, Los Angeles, 2019 

Professor Song Chun Zhu, Chair 

 

 

     The need for accurate measures to evaluate and study human expression has grown 

exponentially in recent years, especially with the proliferation of video and image content across 

the Internet landscape. However, the study of nonverbal communication still often relies on the 

creation of data by hand, with humans manually labeling video footage or images. This thesis 

explores automation of the process through computer vision and machine learning, allowing for 

better speed and precision. The developed automated classification pipeline is run on video 

footage of the first and third presidential debates between Donald Trump and Hillary Clinton to 

gauge its accuracy. Results show the automated pipeline is viable as an easily upscaled 

replacement for human work, able to both accurately reproduce the results of human labeling of 

the footage and allow for insight into the various nonverbal idiosyncrasies of the speakers. 
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1.  Introduction 

Nonverbal cues are a highly multifaceted way of conveying information, consisting not only of 

dynamic factors, like facial expressions and gestures with different parts of the body, but also 

static traits like height. The televising on a massive scale of important events for leaders, such as 

speeches or debates between political candidates, allows such factors to now influence very wide 

audiences. It also adds extra dimensions to what can affect viewers (through video editing steps 

that affect the delivery of candidates’ points, like camera angles or cutting of reactions) and 

opens up potential for expansive secondary research, such as examination of social media 

responses during such events. This puts a previously unprecedented spotlight on visual analysis 

in areas like politics and news reporting, where research is still in the process of catching up as 

the political environment becomes increasingly overwhelmed with visual content.   

In this niche of communication studies, there are various existing approaches to analyzing the 

effect of the face and the emotion it conveys. They are often ethological or behavior-based in 

nature, examining how the visual presentation of political candidate/their behaviors affects 

public perception of and reaction to them. However, this usually also involves work to manually 

label the intensity of different emotions over many time intervals, as well as extra steps to ensure 

that work is reliable. The difficulties and time involved in completing the whole process properly 

can frequently hold back study in this area. This has caused many to look towards a simpler 

solution, found in the form of computer vision techniques, which can perform such tasks 

automatically and more reliably.  

This work explores a computational approach to the analysis of nonverbal cues. After first 

determining the communication-based approach to categorizing different sentiments or key 
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actions shown by leader figures, a pipeline is established for objective data about subjects’ facial 

expressions, gestures, and posture to flow through to into a learning classifier, which can then 

predict values in those categories. Footage of the first and third U.S. presidential debates 

between Donald Trump and Hillary Clinton serves as input to validate the classifier’s accuracy. 

Results from the classifier show that this fully automated system can label video as accurately as 

manual labeling in significantly less time. They can also help to note certain individual traits of 

speakers, such as aspects of their speaking style or motions they frequently perform.  

Six sections comprise this thesis. With section 1 introducing, section 2 gives background on the 

application of computer vision to visual analysis, especially the relevant areas of facial analysis 

and emotion recognition. It also outlines more reasoning behind experimenting with automation 

in this context. Section 3 discusses the tools used to build a solid foundation of data, and the 

composition of that data. Section 4 then covers the specifics of classification, as well as the steps 

taken to feed the data into the classifier, with section 5 explaining the results of this work in 

further detail. Finally, the paper concludes with remarks in section 6. 

 

2. Background and Motivation 

2.1  Analyzing the Face and Emotions 

The face has always been one of the biggest points of interest in the study of nonverbal 

communication. Arguably the most prominent approach to evaluating it is the Facial Action 

Coding System, or FACS (Ekman and Friesen 1975, 2003), which strictly measures the 

movement of different muscles in the face, referred to as Action Units (AU). Certain AU 
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combinations can denote specific emotional displays or states in the subject. This system has not 

only been used consistently in communication research since its publishing in 1975, but has also 

been part of computer vision work, applied for anything from detecting drowsy drivers (Vural et 

al. 2008) to monitoring childrens’ expressions as they solve problems (Littlewort, Bartlett, and 

Lee 2011). Even prior to more modern advances in video quality and processing, researchers 

could, for example, apply small plastic spheres to a subject’s face to mark reference points for 

FACS AU measurement (Kaiser and Wehrle 1992). After collecting FACS data, the numbers can 

then be fed into a classifier that can try to label the presence of certain emotions or other 

expressions based on what it has learned.  

As a natural extension of facial analysis, detecting the presence of different emotions has also 

been a topic of great interest in computer vision research (see Black and Yacoob 1995; Busso et 

al. 2004; Kahou et al. 2013 for examples over the years). After noting movements of a subject’s 

facial features, that same data can help to gain insight on their mental state beyond what they are 

saying out loud. FACS does venture into this territory, as mentioned above, but the evaluation of 

emotions can be a subjective process, and to most effectively study them would require some 

perspective from the field of communication. The ethological coding scheme by Masters, 

Sullivan, Lanzetta, McHugo, and Englis (1986) is a prime example of this, directly labeling 

facial expressions in terms of the more complex emotions and sentiments they display. This 

approach forms the main basis of the automated classification pipeline in this work, which is 

explained in detail in section 4.1 later. 

 

 



4 

 

2.2  Problem Definition 

The necessity of automation is visible just through a look at the methodology of existing 

techniques. Consider FACS as an example. Its manual labeling requirements (manual work is 

still one of the more commonly used methods when the system is involved in research) demand 

annotations by trained FACS coders, who must pass a test for certification. This test is estimated 

by the system’s creators to take 50 to 100 hours to prepare for if self-taught, and they 

recommend preparing for it in groups to decrease the tedium of the process. The only other 

approved alternative to become a verified FACS coder is an intensive and monetarily costly five-

day workshop with limited availability, which also culminates in taking the test (Rosenberg 

2013). If researchers wish to work with this system, they must either take the test themselves, or 

involve third parties whose eligibility and completed training must be verified. 

This exemplifies a common trade-off in this field: human labelers and their intuition can better 

understand nuance and ambiguity, resulting in more “accurate” labeling of presented emotions, 

but quality control of those human labelers is often a large time sink in the research process. 

Even after labelers are verified, their work can be tedious and prone to errors. For example, full 

televised debates can last 1-2 hours, which results in a very large number of potential ratings to 

settle by hand, particularly if measurements are in fine-grained intervals. Such intervals can 

mean at least one image every few seconds, maybe even multiple for every second of video at a 

very high level of precision, to be reviewed and cross-checked by multiple parties. This raises 

more issues with the process’s reliability, given that the human eye can’t always capture subtle 

shifts in expression even given a few seconds to work with, and makes automation of face and 

emotion classification an ideal alternative to look towards. 
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With a problem or goal defined and the appropriate images or video collected for analysis, an 

automated face or expression classification model will require only a solid set of “ground truth” 

annotations to learn from. This is particularly effective if the classifier uses a pre-annotated 

dataset like the CelebA dataset (Liu et al. 2015) or the ExpW dataset (Zhang et al. 2015) to learn 

about the human face, as training data will not need custom labels before beginning experiments. 

After classification is completed, there will be enough data present to move into the validation 

stage, where the model’s accuracy is verified. A properly tested classifier can outdo manual 

annotation of datasets in speed and precision all while keeping the same accuracy as a human 

labeler, effectively replacing the manual stage of work and still leaving other key aspects of the 

research process unchanged. 

 

2.3 Computational Approaches 

In computer vision, automating this kind of classification is approached through artificial neural 

networks, programmed constructs that emulate the flow of information through a human brain, 

which allows systems to adapt to different input situations and familiarize themselves with the 

human face like a person might. One of the first forays into artificial neural networks was done 

by LeCun et al. (1989), using an early type of “learning network” to recognize valid US zip 

codes in images of handwritten number sequences. In the earlier days of computer vision, 

researchers would use simpler techniques such as multilayer perceptrons, one of the most basic 

neural networks, essentially consisting of many layers of “neurons” with binary 0/1 output that 

link up to perform more complex calculations. When detecting or analyzing the face, these 

would usually take basic information like head orientation and key points on the face to monitor 
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as input, which could then be used to identify certain facial expressions on a person (Zhang 

1999). Another common method for these tasks was support vector machines (SVMs), which 

were commonly employed for face detection tasks because of their success with pattern 

recognition. This strength meant they could make the classification between “face” and “not a 

face” categories faster than other alternatives at the time (Guo 2000). 

While such methods are still used in computer vision today, their simpler nature now often 

leaves them better suited for tasks like the earlier problem of text analysis. More refined methods 

to evaluate human beings have evolved to match the growing performance of contemporary 

machines. One of the first more complex systems used in this area is the convolutional neural 

network (CNN), a regularized version the earlier multilayer perceptron. Both CNNs and their 

ancestor can be categorized as feed-forward neural networks. In such networks, computation is 

based only on a single initial input, which the system simply performs different operations on in 

sequence to arrive at its output. For this reason, feed-forward networks are best suited for tasks 

such as image classification, where input can be a given image and output can consist of a set 

number of categories or labels, in this case things like basic emotions (e.g. “happy,” “angry,” 

“sad”) or facial expressions (“smiling”, for example). Not only is the input dimension always at a 

fixed size, but input images can also be processed independently of each other, making the CNN 

and its kin suited for applying such label sets to varieties of images depicting different situations. 

A very recent power player in this field is the residual learning framework, or ResNet (He et al. 

2016). ResNet centers around a problem with many deep neural networks, which is that learning 

eventually starts to degrade the further down in network layers one gets. When data gets back-

propagated back to earlier layers, the constant multiplication involved has the potential to get to 

the point that no weights are updated, and the network may not continue to serve its purpose at 
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all. The ResNet authors observed that in plain, unaltered networks, shallower versions would 

have worse train and test error than deeper versions. The resulting work to counter this is an 

improvement to the CNN architecture that works by bypassing certain layers of the model, 

allowing for unprecedented deepness in neural network layers through “skipped connections.” In 

a follow-up paper, they demonstrated that a 1001-layer ResNet could significantly outperform a 

less expansive 200-layer ResNet in both test and training error (He et al. 2016). 

In contrast to the operations mentioned above is the recurrent neural network (RNN), which is a 

non-feedforward network with a cyclical, more closed nature that made it the learning system of 

choice for this paper. In an RNN, output from a previous time step’s computation is used as input 

for the next time step, which allows the network to operate with all previous computations kept 

in mind. This makes them ideal to use on input sequences where elements depend on each other 

somehow, exactly like the debate videos that are analyzed in this work. It becomes more 

important to have the bigger picture that RNN provides because a video’s frames are connected 

temporally, making it critical to analyze each frame in the context of all the frames before it. 

Input size is also not fixed in RNN, which means that videos of different lengths could easily be 

fed into the same classifier to perform the same type of analysis. The details of this work’s 

specific RNN setup are explained in full in section 4. 

 

3. Feature Extraction 

3.1  OpenFace 

The open-source toolkit OpenFace (Amos, Ludwiczuk, and Satyanarayanan 2016), was used to 

collect feature data on the faces of the candidates. It can estimate and quantify features such as 
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what direction the gaze is aimed and how the head is oriented, as well as facial landmarks, which 

are keypoints denoting the outlines of major facial features like the eyebrows, nose, and lips.   

 

Figure 1: A screen capture of OpenFace feature extraction. Facial landmarks are in red points, 

gaze direction in green lines, and head orientation shown through a blue cube. 

An extra data factor not visible above is OpenFace’s extraction of facial Action Unit (AU) data, 

a process automated by Baltrušaitis, Mahmoud, and Robinson (2015). OpenFace collects a 

subset of the AUs used in FACS encoding, as defined in Section 2, and scores them in two ways: 

whether they are present, conveyed with a binary 0 or 1, and how intense the AU action is on a 

scale of 1 (lowest) to 5 (highest). Both scores are included in the classification process later, but 

it is worth noting that this automatic AU measurement may not lead to correct conclusions if 

used as a sole basis of information. When analyzing footage like these political debates, AU 

measurements can be thrown off by how often candidates are talking, since speaking can result 

in facial muscle movements which could be falsely interpreted as conveying certain emotions. 

As such, nothing is inferred directly from the generated AU scores. The numbers are instead 
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simply used for classification along with the rest of the more straightforward OpenFace data. 

Figure 2 below shows examples of how the presence of certain AU appears on monitored faces. 

 

Figure 2: Candidate expressions, cropped from frames where OpenFace noted a high intensity of 

certain AU, with each labeled at the side. 
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3.2  OpenPose 

Much useful information on nonverbal cues also comes from the gestures and posture that 

accompany facial expressions. OpenPose (Cao et al. 2017; Simon et al. 2017), another 

specialized tool based on convolutional neural networks, helped to acquire that information. 

OpenPose takes a video file as input and analyzes each frame, with output emerging in the form 

of XYZ coordinates of a set of body and hand keypoints, the full set of which are illustrated in 

Figure 3 below. All collected information is saved within a directory of JSON files, with each 

frame having one JSON file that contains keypoints for all detected bodies. These files end up 

proliferating in very large quantities, with the 90-minute debate videos used for analysis each 

running up about 130,000-150,000 JSON files that each represented analyzed frames. However, 

this file format let them later be easily converted to more efficient datasets in Python, this work’s 

programming language of choice. 

The camera work during the active argument exchange of the debate, which this study was most 

interested in, essentially rendered the candidates visible only from the torso and above. As such, 

any numbers relating to the lower body (about half of the 25 keypoints OpenPose divides the 

body into, as can be seen in the figure below) were not factored into later classification due to a 

complete absence of data. However, all available hand keypoints were used during classification 

to ensure total coverage of any gestures that appeared within frame. This data was concatenated 

with the previously acquired facial data and fed into the classifier defined in Section 4. 
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Figure 3: OpenPose’s body and hand keypoints, taken from OpenPose documentation. 

 

Figure 4: A screen capture of OpenPose extracting pose and hand data from debate footage. 
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4. Classification of Nonverbal Cues 

4.1  Basis for Classification 

Alongside the extraction of data from the debate footage, the video was divided into intervals, 

which were then classified with regards to various nonverbal behaviors. Deciding how to code 

the candidates’ gestures and expressions required a perspective from the field of communication. 

Study of the influence of leader displays in these contexts has been active for decades (Bucy 

2017), taking a “biobehavioral” approach that considers nonverbal cues just as important as 

participants’ verbal speaking points, if not more so. The effects of these cues can be measured 

not only through physiological reactions, such as a viewer’s heart rate or facial muscle 

movements (Bucy and Bradley 2004), but also through a computational lens, like analysis of the 

volume and sentiment of response on platforms like Twitter, a growing area of influence in the 

political landscape (see Shah et al. 2015, 2016 as examples). 

There are four significant types of leader displays in the biobehavioral approach, denoted here 

with (emotion expressed/intention signaled): anger/threat (A/T), happiness/reassurance (H/R), 

fear/evasion (F/E), and sadness/appeasement (S/A) (see Masters et al. 1986; Stewart, Salter, and 

Mehu 2009). Each of these are shown through the face, specifically the eyebrows, eyelids, and 

mouth, as well as the head’s orientation and motion. For example, S/A displays are usually 

indicated by raised lower eyelids and inner corners of the eyebrows, averted gaze, lowered 

corners of the mouth, and a general lowering of the head. The tools explained in Section 3, 

OpenFace and OpenPose, were able to account for all such differences in facial expression and 

posture in their data collection, making it easy to move forward to establishing a more detailed 

set of annotations than just the four basic categories.  
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With the essentials in mind, gesture coding was further broken down into the groupings of 

affinity and defiance. Affinity gestures, which encompass any movements of the hand, face, or 

body, signal an attempt by a candidate to act friendly/indicate a bond with other important parties 

in the debate. These parties could be the camera (i.e. the audience/viewers), their opposing 

candidate, or even the debate’s moderator. Examples of this would be motions such as waving or 

winking. Defiance gestures, on the other hand, are arm/hand motions where a candidate is openly 

challenging or even dismissive. This sentiment could apply not only to their opposition, but also 

to any other authority within the debate’s sphere. Movements such as shaking or wagging a 

finger (dismissive), prolonged staring at an opponent, and motions with a fist/pointed finger 

(aggressive or challenging) would fall under the “defiance” category. 

Initial “ground truth” annotations for both the first and third presidential debates were created 

through manual examination of the debate footage by trained coders. Types of behaviors with 

documented influence in previous studies, as described above, were considered during the 

creation of the behavioral coding. Also taken into account were gestures or expressions noted as 

frequent/potentially impactful within the specific debates themselves. The names and meanings 

of each gesture annotation are explained in more detail, along with the results of classification, in 

Section 5. 

 

4.2  Classifier Overview 

4.2.1 Defining the Classifier 

The final step in the process was to classify the data. For this study, face and pose data taken for 

every relevant frame of debate footage were used as input for an RNN classifier, specifically 
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with long short-term memory (LSTM) units (Hochreiter and Schmidhuber 1997), which then 

returned predicted index values for each of the nonverbal cues initially coded for. Standard RNN 

consists of internal state vectors, referred to as hidden states, that are updated upon processing of 

an input sequence. When the RNN incorporates LSTMs, another state variable called a cell state 

occurs in each LSTM. The cell state stores information required over the entire duration of 

processing of the input sequence, with an LSTM maintaining control over this cell state and 

updating it when necessary. To state it mathematically, RNN f will update hidden states at time 

step t, represented by ht, based on input xt at that time step, like so: 

ℎ𝑡 = 𝑓(𝑥𝑡−1, ℎ𝑡−1),     𝑡 ∈ {0, 1, 2, . . . . 𝑇 − 1}, 

where the exact function pointed to by f is the function of the LSTM, and T refers to the number 

of elements in the input vector, e.g. how many frames are in an analyzed video. ht is initially set 

to 0 in all cases, although its dimension can vary; in this work, the dimension was set to 64. 

Predicted values are generated at the last time step (with hT-1) via a linear combination.  

In this work, the input at any given timestep is a feature vector of statistics from OpenFace and 

OpenPose, corresponding to a frame of the analyzed video. The model begins with the first 

frame of the video and updates cell states and hidden states as it goes through timesteps, storing 

and passing in those values to the next LSTM for further computation. The values in these states 

are stored and passed to the computation for the next time step until every element in the input 

sequence has been processed. The final outputs (predicted values) are computed based on the last 

values in the hidden state, hT-1:  

    𝑦 = 𝜎(ℎ𝑇−1 ⋅ 𝑤 +  𝑏),    
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where 𝜎(𝑥) is a sigmoid function (output ranging from 0 to 1), 𝑤 is a weight vector, and 𝑏 is a 

bias term, which are learnable parameters of the model. The figure below visualizes this process.

 

Figure 5: A simplified diagram of the workings of the classifier. Internal state value h0 is updated 

through a chain of LSTMs at each time step up until step T, from input frames x0 to xT-1. 

 

4.2.2 Classifier Training 

The data gathered by OpenFace and OpenPose required some additional preprocessing before 

they could be used to teach the classifier. Both initially start with their own methods of denoting 

if measurements belong to different individuals. OpenFace assigns “face IDs” to everyone it 

detects in a frame, while OpenPose simply returns a set of pose keypoint coordinates for each 

person it captures. However, these methods were not ironclad and had caveats of slight 

unreliability from their developers. As such, the classifier was modified to double check the 

proximity of both face and pose coordinate sets to their predecessors, taking only the coordinates 

within appropriately minimal distances of each other as belonging to the same person: whichever 

candidate the data collection run happened to be focused on. 
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For the duration of the examined debates, there were a total of 533 time intervals for debate 1, 

and 547 time intervals for debate 3, with each interval lasting ten seconds. It is worth noting that 

while ten seconds is a somewhat coarse interval in computer vision, the manual coding of the 

debate (the “ground truth” markers) was established with that interval to balance human labeling 

with the limited time available, so the classifier had to match that for its predictions. Data at a 

smaller granularity was aggregated to meet this requirement, with the new data then randomly 

divided into train and test sets. 80% became training data, while the remaining 20%, the test set, 

was excluded from the training process and used later. After the classifier predicted values for 

the test set based on what it learned from the training data, those predictions could be compared 

to the test set’s hand-labeled values to measure classification accuracy. 

The classifier’s specific training algorithm was Adaptive Moment Estimation, also known as 

Adam (Kingma and Ba 2014), an extended version of standard optimization with stochastic 

gradient descent, using 3 epochs (iterations through the entire dataset). Adam was implemented 

and carried out through PyTorch, an open-source machine learning library for Python, making it 

computationally lightweight and easy to configure. 

 

5. Results 

The classifier’s accuracy was analyzed through 10-fold cross validation, i.e., performing the 

operations detailed in section 4.2.2 10 times with differently randomized train and test sets. This 

resulted in graphs of a ROC (receiving operator characteristic) curve whose area under curve 

(AUC) was taken. An AUC’s range is from 0, or complete accuracy, to 1, or complete accuracy. 

A value of 0.5 would indicate that the classifier is about as informative as random chance, 
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meaning relatively inconsequential. Table 1 shows the mean (M) and standard deviation (SD) of 

the AUCs obtained for established features for each candidate during the first presidential debate, 

as well as an explanation of each annotation.  

Table 1: Accuracy of automated classification of candidate nonverbal behavior in the first 

presidential debate. 1 

 Clinton Trump  

Coding M SD M SD Behavior Definition 

look-at .960 .018 .909 .025 The candidate in the reaction shot looks at the 

speaking candidate. 

brush-off .774 .037 .801 .053 The candidate in the reaction shot visually brushes 

off the opponent. 

disagreement .892 .045 .907 .017 The candidate in the reaction shot displays 

nonverbal disagreement. 

look-into .937 .011 .830 .040 The candidate looks directly into the camera, 

sometimes referred to as “breaking the fourth wall.” 

eyebrow .911 .026 .754 .052 The candidate displays any noticeable eyebrow 

movements. 

angry-face .847 .051 .912 .035 The candidate shows an angry/threatening facial 

expression. 

happy-face .880 .014 .841 .041 The candidate shows a happy/reassuring facial 

expression. 

                                                           
1 Blank entries mean a candidate was not seen to exhibit the given behavior during coding. 
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sad-face .776 .034 — — The candidate shows a sad/appeasing facial 

expression. 

neutral-face .836 .025 .881 .043 The candidate shows a neutral facial expression. 

affinity-gest .821 .047 — — The candidate uses any affinity gestures.  

defiance-gest .745 .039 .833 .033 The candidate uses any defiance gestures. 

agentic-gest .991 .010 .939 .006 The candidate engages in an “agentic” style of 

behavior. 

wave-off .906 .039 — — The candidate “waves off” their opponent with a 

dismissive hand and arm swipe. 

tic-lip .736 .042 .771 .055 The candidate moistens their lip.  

tic-bob .855 .047 .713 097 The candidate bobs their head. 

tic-grip .863 .071 .821 .048 The candidate grips their podium.  

tic-drink — — .952 .040 The candidate drinks water. 

tic-touch — — .691 .049 The candidate touches their nose or mouth.  

interrupt .866 .185 .647 .059 The candidate in the reaction shot attempts to 

interrupt the speaking candidate.  

This examination yielded clear overall statistics about the classifier’s accuracy, which 

averaged .825 across all statistics for Trump (with a range of .646 to .952) and .858 for Clinton 

(range of .774 to .991), and had the highest accuracy for both candidates when examining when 
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they looked at their opponents (variable look-at) as well as their overall level of activity (variable 

agentic). The classifier accuracy numbers also offered insights about both candidates’ speaking 

styles. Trump’s nonverbal cues and behavior stand out as significantly more demonstrative than 

Clinton. When factoring in what was observed during manual annotation, Trump did not show 

any cues that would convey a more placating impression, such as lowered mouth corners, head 

turned down towards body, or averted eye orientation, hence the lack of data for the sad-face and 

affinity-gest annotations above. In contrast, the classifier showed especially high accuracy when 

analyzing his defiant gestures or expressions, such as defiance-gest and disagreement. This 

demonstrates a high frequency of them that corresponds to his bombastic speaking style, which 

has been described as “transgressive” and “populist political performance” by other scholars in 

similar study. (Bucy et al. 2018)  

While these results are informative, the initial dataset of the experiment was very small, 

consisting only of the two individuals in the debate footage. The model needed some more 

extensive analysis to evaluate its performance against potential alternatives, and gauge if it could 

generalize into application to other debates. A basis of comparison was acquired by applying a 

separate model trained on a larger dataset, the Expression in-the-Wild (ExpW) Dataset (Zhang et 

al., 2015), a public set of 91,793 faces manually labeled with each of seven fundamental 

expression categories: angry, disgust, fear, happy, sad, surprise, or neutral. This was done with a 

convolutional neural network (CNN) that takes image rather than video input; as such, the 

frames of the input video for the RNN were used as the CNN’s classification input. 

 



20 

 

Table 2: Classification accuracy of a CNN classifier trained on the ExpW dataset, and the 

original video-based classifier trained on the data in this work (RNN). 

 Clinton Trump 

Variable RNN (video) CNN (image) RNN (video) CNN (image) 

angry-face .847 .865 .912 .697 

happy-face .880 .947 .841 .670 

sad-face .776 .846 — — 

neutral-face .836 .688 .881 .600 

Using the CNN classifier also gave a chance to single out flaws or inconsistencies in the 

automated process. For example, despite Trump’s wider range of emoting, he did not actually 

smile often, with the expression usually occurring in attempts to “laugh off” speaking points by 

Clinton. However, in his already low-accuracy classification in the CNN’s “happy” category, 

there were also evident false positives: incorrect classifications of frames as “happy” when they 

were actually depicting other emotions. Because facial datasets like ExpW often have examples 

of “happy”-categorized expressions that show cues such like visible teeth and a widely opened 

mouth, those cues can be wrongly interpreted in different situations by classifiers that overlook 

context. 
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Figure 6: Examples of classified frames. Two are false positives, wrongly classified as “happy” 

(left), while two are true positives, correctly classified as “happy” (right). In the true positive 

frames, Trump is actually smiling while hearing Clinton speak. 

 

6. Conclusion and Future Work 

Many of the 20 different nonverbal cues established for study in this work warranted awareness 

of their context (a US presidential debate) and had potential for ambiguity or misinterpretation. 

Looking at the analysis of the classification pipeline in section 5, it is clear the system can 

effectively and correctly categorize those behaviors (even those which would usually warrant 

human labeling) with accuracy significantly better than chance, demonstrating promising results. 

The labels in this work encompass a wide range of emotions and actions, but will need revising 

and re-checking as more input data outside of the two examined debate videos are prepared for 

classification. The 10-second intervals used for observation can also be improved. While still 

better than the even coarser intervals that manual labeling sometimes resorts to, a wide variety of 

expressions and gestures can take place in ten seconds, and many nonverbal cues can and will 

occur over the space of a second or less, shifting or disappearing immediately after. As such, an 

important step in future work will be establishing more detailed annotations, ideally reaching 

multiple per second. This will require balancing reliable human labeling work for “ground truth” 

annotations with the granularity needed for a more accurate, precise system. 
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Although still not entirely foolproof, this automated technique presents a highly viable 

alternative to manual classification of data on nonverbal cues or behaviors. It not only can 

achieve a similar level of accuracy, but also promises much higher speed and precision than 

human work (often subjective and difficult to maintain reliably without much time and effort) 

could achieve. With the refinement of automated classification and how it analyzes emotions, 

there will also come the important shift towards working with much bigger datasets of image, 

video, or even audio data, allowing for analysis on unprecedentedly large scale. Such study could 

help to create systematic guidelines to interpreting different subjects’ behaviors, as well as a 

much more detailed picture of what affects the large audiences their rhetoric is televised to. 
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