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ABSTRACT OF THE DISSERTATION

Rational Designs for Increased Bioproduction in Komagataella phaffii

by

Troy Alva

Doctor of Philosophy, Graduate Program in Bioengineering
University of California, Riverside, September 2021

Dr. Ian Wheeldon, Chairperson

The production of biologics such as enzymes, biomaterials, and therapeutics play a

leading role in biotechnology. As a microbial cell factory, Komagataella phaffii stands

out for its high secretion capacity, ability to metabolize methanol as its primary car-

bon source, safety record as a source of biologics, and extensive literature compared

to other non-model yeasts. Large scale production of biologics is simplified if the

host secretes the proteins into its medium. However, this is difficult to achieve be-

cause an organism’s protein biogenesis machinery have evolved under the demands

of its proteome and cells struggle to express and secrete non-native proteins. Het-

erologous protein production requires the harmonization of biogenetic machinery

like ribosomes for synthesis, signal recognition particles and their cognate receptor

for intracellular targeting, and protein folding chaperones for post-translational

modification. These biogenetic components represent limited pools of resources

that are distributed between heterologous proteins and the host proteome. While in

use, these components are sequestered and unavailable for other tasks. Accurate

accounting of these resources allows strains to be engineered in ways that relieve

bottlenecks specific to producing particular heterologous proteins.

We survey the translational landscape of Komagataella phaffii using Ribo-seq

viii



under different conditions to elucidate which host proteins sequester the most

biogenetic resources. Ribo-seq is a high throughput sequencing technique used to

monitor protein synthesis by measuring ribosome abundancies at each codon of

each transcript. Herein, a novel Ribo-seq pipeline was used to prepare mRNA foot-

print libraries for Illumina sequencing, create new annotations for protein-encoding

genes, and address biases that are inherent to the technique and complicate quantifi-

cation of protein synthesis. Using this pipeline, Ribo-seq was used with subcellular

fractionation techniques to measure translation in the cytosol and on the endoplas-

mic reticulum membrane to uncover how and what proteins traffic through the

early secretory pathway of yeasts. Finally, this developed protocol was used to

identify which host proteins sequester the most biogenetic resources during het-

erologous expression. Genes encoding these proteins represent targets for rational

strain engineering.
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Introduction

The market for engineered proteins has concomitantly increased with the expansion

of protein production platforms.1 Recombinant proteins are enormously useful

and diverse technologies that range from enzymes, structural proteins including

those found in spider silk, and proteins useful for therapeutic design. The demands

for these technologies has led to the development of specifically tailored cellular

chassis toward their production. The choice of one cell type over another requires

the consideration of many factors including protein structural complexity, codon

biases, glycosylation patterns, and minimum titer requirements. Cellular factories

used for bioproduction are E. coli, yeasts, or mammalian cells.2

As microbial cell factories, yeasts offer many advantages for recombinant protein

production including their natural properties and potential in synthetic biology.

Yeasts grow rapidly to high densities in inexpensive media and are resistant to

physical and chemical stress.2 They also have an endomembrane system that is

fundamentally conserved with higher eukaryotes.3 This oxidative environment

supports glycosylation and subsequent glycan modification, folding using ATP-

driven molecular chaperones and protein disulfide isomerases, and protein quality

control.4 Compared to mammalian cells, yeasts have simpler genomes and can be

more easily characterized and modified.5 Combine these features with tools such as

CRISPR/cas9, and the range of tractable species is expanding.6,7
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Komagataella phaffii (one of two species previously known as Pichia pastoris)8–10

stands out as a host for recombinant protein expression due to its high secretion

capacity, its ability to metabolize methanol as its primary carbon source, its safety

record as a source of biologics, and its extensive literature compared to other

non-model yeasts.11,12 As a methylotroph, K. phaffii contains a promoter region

(AOX1) that constitutively regulates the expression of alcohol oxidase for methanol

metabolization. This methanol induced promoter is used to control the production

and secretion of heterologous proteins.13 Thus, K. phaffii is an ideal chassis to rapidly

implement changes designed to improve protein expression and secretion.5 Indeed,

recent work in K. phaffii has focused on systems-level analysis14 and implementing

design approaches of synthetic biology such as molecular parts lists and strain

engineering.15,16 Such changes may accelerate product development and allow

cheap, local production of pharmaceuticals.17,18

Production of heterologous proteins is difficult but greatly simplified when het-

erologous proteins are secreted into the growth media.2 For secreted proteins using

the AOX1 promoter, the first bottleneck in secretion appears to be translocation

from the cytoplasm into the endoplasmic reticulum (ER) lumen.19,20 This process is

complex and requires the orchestration of many biogenesis factors. These factors

mediate targeting to the membrane of the ER, translocation across this membrane,

protein folding, post-translational modification, quality control, and trafficking.

Membrane targeting during secretion largely occurs co-translationally and is con-

tingent on the recognition and binding of N-terminus hydrophobic motifs, signal

sequences, by a signal recognition particle (SRP).21 SRP guides the ribosome nascent

chain complex to the membrane of the ER where they associate with sec translocon

complexes by interaction of SRP’s cognate receptor.22

In yeasts, several varieties of sec translocons exist that are distinguished by their
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subunit composition. Yeasts have two homologs of the central pore complex, Sec61

and Ssh1 complexes. The Sec61 complex is composed of Sec61p, Sss1p, Sbh1p and

the Ssh1 complex is composed of Ssh1p, Sbh2p, and Sss1p. The Sec61 complex can

also associate with Sec62p, Sec63p, Sec71p and Sec72p, while the Ssh1 complex

cannot. While Sec71 and Sec72 are non essential genes, in vivo tagging of ribosomes

reveals that deleting Sec71p reduces co-translational attachment of a subset of

mRNAs.23 Sec63p and Sec62p are essential for cell survival and have different

roles depending on the translocation pathway. Both Sec61 and Ssh1 complexes

can associate with the SRP receptor for co-translational translocation with Sbh1p

and Sbh2p respectively. SRP dependent and independent pathways use different

sec translocons for translocation and use different mechanisms for associating the

ribosomal nascent chain complex (RNC) with the ER membrane.

During SRP dependent translocation, ribosomes exposing the signal peptides

of secreted proteins are associated with and guided by SRP to the SRP’s cognate

receptor on the ER where the nascent protein translocates coincidentally with

translation.22 Co-translational translocation in S. cerevisiae occurs equally between

the Sec61 hexameric translocon (Sec61 complex, Sec63p, Sec71p, and Sec72p) and the

Ssh1 heterotrimeric translocon (Ssh1 complex). While a preponderance of evidence

suggests that mRNA is physically attached to the ER, it remains unclear which states

have ribosomes in contact with translocons in vivo. Post-translational translocation

is an SRP independent process where signal sequences are directly recognized and

associated by the heptameric translocon complex. Post-translational translocation

uncontroversially occurs with tail-anchored membrane proteins and small secreted

proteins. The post-translational heptameric translocon is composed of the Sec61

complex, Sec62p, Sec63p, Sec71p, and Sec72p. Sec63p plays conserved and unique

roles for the hexameric (co-translational) and heptameric (post-translational) com-

3



plexes. Sec63p is speculated to interact with the ER resident chaperone Kar2p (BiP)

for translocon pore gating. In the hexameric complex, Sec63p is necessary for form-

ing the hexameric complex and is shown to be necessary for membrane proteins,

which are SRP-dependent co-translational.24 In the heptameric complex, Sec63p has

been shown to block ribosomes from binding to Sec61p25 and is necessary for com-

plex assembly as it binds to Sec62p. Sec62p is a critical subunit in the heptameric

complex as it directly recognizes and binds signal peptides for SRP-independent

translocation.

Translocation depends on hydrophobic motifs: signal sequences, signal anchors

or internal transmembrane domains. These motifs are recognized by either a

translocon, or by the signal recognition particle (SRP).21 Prior investigation revealed

extreme cases where a protein strictly requires a specific translocon architecture or

subunit for translocation. One extreme includes proteins which require the signal

recognition particle for translocation, and are therefore obligate co-translational

substrates. In yeast, obligate co-translational substrates are often vacuolar proteins,

extracellular/secreted proteins, or membrane proteins. However, there are many

examples of proteins which seem to rely on more than one translocon pathway.

Proteins necessary for protein biogenesis such as Kar2p, Och1p, and Ost1p are

transported by either pathway and are speculated to have evolved this way due

to the essentiality of their functions. The preference for either of these pathways

are consequence of the hydrophobicity of the signal sequence and is not easily

predicted. This uncertainty in linking protein sequence to translocon requirement

may hinder attempts to rationally engineer expression systems.

Translocation is facilitated with the help of molecular chaperones that are also

involved in oxidative protein folding. Proteins that do not translocate sequester cy-

tosolic chaperones linked to translocation, like Ssa1, Ssa2, Ssb1 and Ssb2. While these

4



chaperones have been demonstrated to assist in translocation in normal conditions,

we predict that overexpression during bioproduction will generate an artificially

destabilized state. Ultimately, secreted proteins that fail to translocate into the ER do

not have access to ER-resident chaperones and fail to fold correctly. Protein folding

is an ATP driven process that includes many ER-resident proteins to Kar2 such

as Scj1, Pdi1, Ero1, and Jem1. Proteins that fail to assemble activate the unfolded

protein response (UPR) and are retroactively translocated and degraded by the

ER-associated degradation pathway (ERAD).3 Highly expressed host proteins that

are co-translationally translocated are expected to block translocation of heterolo-

gous proteins as Sec-translocons become limited in number and processivity. On

the other hand, highly expressed proteins that are post-translationally translocated

inhibit protein folding for heterologous proteins as protein folding chaperones

are also limited in number and processivity. These genes that pose the greatest

threat to ER trafficking are not well understood and may provide novel targets for

maximizing heterologous flux in relation to the host proteome.

The Lewis lab has elegantly demonstrated that deleting highly expressed con-

comitant heterologous proteins in CHO cells increases the yield of other heterol-

ogous secreted proteins.26 This result is intuitive, as highly expressed proteins

compete for resources necessary for protein secretion. Other studies have also

shown positive, yet variable, results when modifying the host’s secretory system.

Modification of the secretory pathway, such as the optimization of signal sequences

for protein targeting27 and reducing the effect of the ERAD system,20 provides vary-

ing degrees of success and is contingent on the complexity and specialization of the

protein product.28,29 We hypothesize that the discrepancy in efficacy between viable

secretory modifications is because a cell’s biogenesis machinery has coevolved

under the demand of its proteome.
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Choosing gene targets to improve secretion in non-model yeast is not trivial.

While fungi are genetically and physiologically diverse, most genetic manipulations

are derived from knowledge of baker’s yeast, the model organism S. cerevisiae.3

This is problematic when strain engineering K. phaffii, however, as approximately

230 million years of evolutionary divergence separates these two species. The

large range of genetic diversity between species results in subtle differences in both

protein sequence and regulation of gene expression, which can cause drastically

different phenotypes in regards to protein production and secretion.3 In addition to

differential phenotypes in protein synthesis between species, the majority of next

generation sequencing data for K. phaffii is derived from cells cultured in media

distinct from those used in heterologous conditions. Currently, it is unclear how

the translatome of K. phaffii differs between these conditions and if gene targets for

strain engineering consequently change.

Thus, rational engineering of the host’s secretome requires a product-tailored

approach that considers inherent metabolic burdens as well as the demands that

protein sequence features require for proper targeting and secretion. Proteins that

are longer will require more ribosomes to produce the same amount of proteins than

a shorter gene may require in a given amount of time and may benefit from deleting

ribosome rich transcripts from the host.30 Longer proteins also have complicated

folding requirements and may require a greater number of protein folding chaper-

ones than a shorter protein would.31 Shorter proteins may have adequate ribosomal

resources but may compete for translocon accessibility in the ER. Understanding

which genes require and sequester the most biogenetic resources for production

requires a set of techniques that provides genome wide coverage and accurately

reflects demands on biogenetic resources.

Ribosome profiling (Ribo-seq) is a high throughput sequencing technique used
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to monitor protein synthesis by measuring ribosome abundancies at each codon

of each transcript. This technique has advantages over standard proteomics in

its ability to detect expression with wider gene coverage and is more accurate in

detecting protein abundance in comparison to RNA-seq.32 Ribo-seq is a variation

of RNA sequencing, where a non-specific ribonuclease generates varying sized

“footprints” of ribosome-protected mRNA depending on the translational state of

the ribosome.33 In these regards, Ribo-seq can provide an instantaneous snapshot

into the translatome and represents an accurate bridge between gene expression and

protein abundance.34 Combined with fractionation techniques to separate cytosolic

and ER membrane-bound ribosomes, this procedure allows us, for the first time,

to connect sequence features to membrane expression as well as survey metabolic

burdens that impede protein production.

The first chapter of this dissertation presents the development of a Ribo-seq

protocol for the characterization of K. phaffii’s translatome. Herein, a Rib-Seq

protocol was used to prepare mRNA footprint libraries for Illumina sequencing,

create new annotations for protein-encoding genes, and address biases inherent to

Ribo-seq in this species. Interpreting Ribo-seq studies in K. phaffii is made difficult

as previous genome annotations do not have accurate demarcations of untranslated

regions (UTRs) and open reading frames (ORFs). We utilize Ribo-seq data and long-

read RNA sequencing data to generate a novel annotation of protein-encoding genes

in K. phaffii. While these annotations greatly improved our understanding of the

translatome, assigning reads remains difficult as K. phaffii’s genome is tightly packed

and small footprints have the capacity to map to multiple locations in the genome.

We introduce a technique to ameliorate multi-mapping with a unique masking

strategy that prevents codons with the highest propensity to map to homologous

regions. This technique utilizes a novel metagene normalization procedure to more
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accurately count reads that lie within homologous regions. Finally, we use this

technique to discover which genes are most highly expressed in K. phaffii in YPD

culture.

The second chapter of this dissertation uncovers which proteins require the

most biosynthetic resources in the early secretory pathway of yeasts. We use our

Ribo-seq protocol discussed in chapter one as well as subcellular fractionation to

measure protein synthesis in the cytosol and on the surface of the ER-membrane.

This analysis allows us to classify proteins that enter the secretory pathway co-

translationally and predict those that enter post-translationally. Our libraries reveal

that a subset of secreted proteins show less partitioning of their encoding to the

surface of the ER. We show that nearly all of these proteins have relatively fewer

amino acids between their targeting signals and C-termini and that kinetics of

translation influence partitioning of mRNA to the ER. For co- and post-translational

pathways, we estimate each protein’s demand for ribosomes, translocons and

molecular chaperones with genome wide coverage. For the first time, we compare

the early secretory demands between different species. Using K. phaffii and S.

cerevisiae, we show that a distinct set of proteins enter the ER and a strain specific

understanding of the secretory pathway is necessary to rationally engineer cells for

increased bioproduction.

The third chapter of this dissertation investigates K. phaffii’s translational land-

scape under conditions used for heterologous expression. In this chapter, we use

Ribo-seq to model protein synthesis ER flux before and after heterologous induction.

For heterologous expression, we utilize common techniques in industry where cells

are grown in glycerol media before induced to express heterologous proteins using

methanol media. This study is the first of its kind to capture differences in host

protein synthesis and early secretory trafficking consequent to over-expressing and
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secreting recombinant proteins. Herein, we further optimize Ribo-seq for surveying

translation of cells in different conditions and draw several conclusions to rationally

engineer cells for increased bioproduction. In optimizing Ribo-seq, we show that

ribosomal rRNA depletion strategies are more efficient when they are designed

under similar conditions to those used for Ribo-seq. We also develop a novel tech-

nique using biological replicates to determine minimum read count thresholds

when comparing expression between different samples. To rationally engineering

cells for increased bioproduction, we identify which host proteins sequester the

most biogenetic resources and use these to provide rational targets for designing

strains for increased biogenesis. These experiments highlight that gene targets used

for strain engineering change for cells grown in different conditions and that cells’

proteome responds to heterologous expression in unpredictable ways.
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Chapter 1

Optimization of ribosome profiling in

Komagataella phaffii

Background: A segment of industrial bioproduction relies on Komagataella phaffii

as a production host for its growth characteristics, ability to produce proteins with

complex folding and glycosylation requirements, and ability to utilize methanol

as a sole carbon source. While its use in industry continues to grow, however,

little is known of the organism’s translational landscape. Furthermore, efforts to

understand Komagataella phaffii’s translatome are complicated by idiosyncrasies

related to its genome and the tools used for its interrogation. Herein, we make

general and strain specific optimizations to high throughput sequencing techniques

aimed to answer fundamental questions related to protein synthesis.

Results: In optimizing ribosome profiling, we adapt library preparation tech-

niques to study translation in Komagataella phaffii during exponential growth in rich

media with unprecedented resolution and throughputness. By coupling ribosome

profiling with long-read mRNA sequencing, we generated a new annotation of

protein-encoding genes. Next, we developed masking strategies to ameliorate the
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propensity for ribosome footprints to map to multiple locations in Komagataella

phaffii’s tightly packed genome. Masking strategies involved read distribution

normalizations that correct for mask position biases secondary to common ribo-

some profiling library preparation artifacts. These strategies allowed us to calculate

protein synthesis and ribosome sequestration metrics per gene.

Conclusion: Ribosome profiling is an incredibly useful tool to understand

protein synthesis dynamics. Our pipeline offers a systematic approach to study

translation and improve existent genome annotations.

1.1 Introduction

To provide a model for the translational landscape of Komagataella phaffii, we used

ribosome profiling (Ribo-seq). Ribo-seq is a high throughput sequencing technique

used to measure ribosome abundance at each codon of each transcript. Compared

to standard RNA-seq experiments, Ribo-seq more accurately detects static protein

levels.32 While actively translated mRNA read counts do not reflect proteostasis

levels, we are interested in quantifying protein synthetic demands and so Ribo-seq

is a more appropriate tool than standard proteomics. Indeed, this technique has

additional advantages over standard proteomics for its ability to detect expression

with wider gene coverage32 while accurately predicting protein stoichiometry.35 In

these regards, Ribo-seq represents an appropriate tool for bridging gene expression,

protein synthesis demands, and protein abundance.34

Ribo-seq involves the capture of actively translating ribosome protected mRNA

fragments in the cytosol and on the surface of membranes like the ER and mitochon-

dria. During Ribo-seq, cell cultures are typically grown to log phase before they are

collected and flash frozen.36–38 Flash frozen cells are then lysed before non-specific
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nuclease is used to degrade mRNA strands that are not covered, and thus protected,

by ribosomes. While it is not difficult to separate the protein components of the ribo-

some after nuclease digestion, approximately 65 % of the ribosome is composed of

RNA.39 Ribosomal RNA (rRNA), however, requires measures greater than organic

extraction procedures to separate from ribosome protected mRNA fragments. rRNA

contaminates Ribo-seq libraries by obscuring the percentage of next generation

sequencing reads that map to open reading frames (ORFs).40 There are many ways

to reduce rRNA contamination and the most common method is probe-directed

degradation using biotinylated oligos.36 Commercial kits that utilize this method

are often limited and are prohibitively restricted to a subset of model organisms like

E. coli, S. cerevisiae, mice, and Chinese hamster ovary cells.41 While there is a degree

of homology between K. phaffii and some of these organisms (notably S. cerevisiae),

it is unclear if these kits are effective at removing rRNA contaminants for other

organisms as their probes’ sequences are often proprietary.42

Interpreting protein synthesis in K. phaffii from Ribo-seq derived data sets is

made difficult by idiosyncrasies inherent to the technique and the species. Ribosome

protected mRNA fragments are small and have the capacity to map to multiple

locations in the genome.35,43 Ribo-seq also has a tendency to disproportionately

collect ribosomes localized at the the 5’ end of transcripts due to slower rates of

initiation than elongation, pausing, or as a byproduct of library preparation.44,45

Together, these artifacts complicate protein synthesis calculations. Differential

expression studies are further complicated for K. phaffii as genome annotations for

the non-model organism’s genes are not often correct. While K. phaffii’s genome and

transcriptome have thoroughly been sequenced,46–48 the boundaries of its ORFs are

guided by de novo predictors and lack in vivo based evidence of actively translated

regions. These de novo predictors may misannotate translational start sites and not
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recognize very short ORFs.49 While canonical methods do not exist to address these

difficulties, super-resolution Ribo-seq profiles have been employed to annotate

transcript ORFs with great success.50,51

The protocol described in this chapter optimizes Ribo-seq preparation and anal-

ysis in K. phaffii. In optimizing library preparation protocols, we adapt the methods

of Jonathan Weissman36 and Nicholas Ingolia.37 The methodologies outlined herein

are necessary to begin species and condition specific comparisons that can be used

for rational strain engineering.

1.2 Materials

1.2.1 Strains

The dissertation herein uses the Komagataella phaffii strains shown in Table 1.1.

Table 1.1: Strains used in Ribo-seq

Strain Genotype Phenotype Manufacturer Catalog.No.

GS115 his4 Mut+ Invitrogen K1710-01
GS115 Albumin HIS4 MutS Invitrogen K1710-01

1.2.2 Reagents

Ribo-seq requires a sizable variety of reagents. While many of these reagents may

be replaced with equivalents, we have shown great success in the accuracy and

replicability of our library preparation protocol using the ones listed in Table 1.2.
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Table 1.2: Reagents used in Ribo-seq

Material Manufacturer Catalog.No.

RNase inhibitors
RNase-free water Invitrogen AM9930
SUPERase*In 20 U/ul Invitrogen AM2694
Liquid nitrogena AirGas 13600-102

Ribo-seq chemicals
100 mg/ml Cycloheximideb Sigma–Aldrich C4859-1ML
Ambion RNase A 1 mg/ml Invitrogen AM2270

Buffers and sucrose gradients
NaCl, RNase-free Fisher Scientific S271-1
0.5 M EDTA, RNase-free Gentrox 30-012
10% SDS, molecular grade Promega V6551
NaOAc, RNase-free Gentrox 30-038
MgOAc, RNase-free RPI M24100-500.0
MOPS, RNase-free RPI M92020-500.0
KOH, RNase-free Fisher Scientific SP208-500
KOAc, RNase-free Fisher Scientific BP364-500
Triton X-100, molecular grade RPI 111036
Tris-HCl, molecular grade Fisher Scientific PR-H5123
Tris Base, molecular grade Gentrox 30-065
Sucrose, molecular grade Ricca Chemical RSOC0020-1C

Precipitations
Oligo Clean & Concentrator kit Zymo Research D4060
PCR Purification Kit, Agencourt AMPure XP Fisher Scientific BP220-1
Phenol:chloroform 5:1, molecular gradec Sigma-Aldrich P1944-100ML
Chloroform, molecular gradec Beckman Coulter A63880
Isopropanol, molecular graded,e Ricca Chemical RSOI0020-1C
Ethanol, molecular gradef Fisher Scientific BP2818-4
GlycoBlue 15 mg/ml Invitrogen AM9515

Gel electrophoresis
SureCast Acrylamide Solution (40%)g Invitrogen HC2040
10x TBE RNase-free RPI T32020-10000.0
Bromophenol blue Fisher Scientific BP115-25
Formamide, molecular gradei Promega H5051
10000x SYBR Goldh Invitrogen S11494
Ultra Low Range DNA Ladder, 10-300 bp Invitrogen 10597012
VersaLadder, 100-10,000 bp Goldbio D012-500

Ribosomal RNA depletion
Ribo-Zero Gold rRNA Removal Kit (Yeast) Illumina MRZY1306
Duplex-specific nuclease Evrogen EA001
Exonuclease I New England Biolabs M0293S

Dephosphorylation and linker ligation
T4 polynucleotide kinase New England Biolabs M0201L
T4 RNA Ligase 2 truncated K227Q New England Biolabs M0351L
Mth RNA Ligase New England Biolabs M2611A

Reverse transcription
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Table 1.2: Reagents used in Ribo-seq (continued)

Material Manufacturer Catalog.No.

10 mM dNTP mix New England Biolabs N0447S
SuperScript II Invitrogen 18064014
NaOHj RPI S24000-500.0

Circularization and amplification
CircLigase II Lucigen CL9025K
Q5 High-Fidelity DNA Polymerase New England Biolabs M0491L

a CAUTION - Liquid nitrogen may cause burns or suffocation
b CAUTION - Cycloheximide is extremely hazardous, dispose properly and handle with care
c CAUTION - Extremely hazardous, use in fume hood
d CAUTION - Highly flammable and volatile
e CAUTION - Irritant
f CAUTION - Acrylamide is a neurotoxin, handle with care
g CAUTION - Nucleid acid stains are mutagenic, dispose properly and handle with care
h CAUTION - Formamide is a reproductive toxin
i CAUTION - Highly corrosive

1.2.3 Oligonucleotides

The oligonucleotides shown in Table 1.3 are as described in Ingolia et al..37

Table 1.3: Oligonucleotides for library preparation

Oligo Id Oligo sequence

Linker sequences
NI-810 5’-

/5Phos/NNNNNATCGTAGATCGGAAGAGCACACGTCTGAA/3ddC/
NI-811 5’-

/5Phos/NNNNNAGCTAAGATCGGAAGAGCACACGTCTGAA/3ddC/
NI-812 5’-

/5Phos/NNNNNCGTAAAGATCGGAAGAGCACACGTCTGAA/3ddC/
NI-813 5’-

/5Phos/NNNNNCTAGAAGATCGGAAGAGCACACGTCTGAA/3ddC/
NI-814 5’-

/5Phos/NNNNNGATCAAGATCGGAAGAGCACACGTCTGAA/3ddC/
NI-815 5’-

/5Phos/NNNNNGCATAAGATCGGAAGAGCACACGTCTGAA/3ddC/
Reverse transcription primer

NI-802 5’-/5Phos/NNAGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/
GTGACTGGAGTTCAGACGTGTGCTC

Forward library PCR primer
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Table 1.3: Oligonucleotides for library preparation (continued)

Oligo Id Oligo sequence

NI-NI-798 5’-
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG
CTC

Reverse library PCR primers
NI-799 5’-

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGA
CGTGTG

NI-822 5’-
CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGA
CGTGTG

1.3 Methods

1.3.1 Culture conditions, harvesting, and lysis

Assays described were performed using Komagataella phaffii GS115 Mut+ cultured in

YPD (1 % yeast extract, 2 % peptone and 2 % glucose).

1. For each Ribo-seq biological replicate, grow liquid culture to an OD600 of 2 at

30 °C with shaking in baffled 2 L flasks.

2. Vacuum filter cells from culture using a 0.8 µm filter.

3. Immediately after filtering, scrape cells off the filter using a chilled scoopula

before submerging in a 50 mL conical tube containing liquid nitrogen. Samples

may be indefinitely stored at −80 °C.

4. Prepare lysis buffer containing 50 mM MOPS, 25 mM KOH, 100 mM KOAc,

2 mM MgOAc, 1 mM DTT, 1 % Triton X-100, and 100 µg mL−1 CHX when

appropriate.

5. Freeze lysis buffer by adding 2 mL per dropwise to a 50 mL conical tube

containing liquid nitrogen.
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6. For each biological replicate, mix frozen cells with 2 mL frozen lysis buffer into

single 50 mL ball mill chamber (Retsch) with a single 2 mL steel ball (Retsch).

7. Pulverize mixture for 2 min and collect into 50 mL conical tubes.

8. After thawing, centrifuge lysates at 18 000 g for 10 min.

9. Transfer supernatants to 1.5 mL conical tube before further clarification via

centrifugation at 23 000 g for 20 min.

1.3.2 Ribo-seq

1.3.2.1 Nuclease footprinting and ribosome recovery

1. Determine the rough RNA concentration of cell lysates using BioDrop UV

spectrometer. Dilute samples in lysis buffer to similar concentrations.

2. Prepare 10 % to 50 % sucrose gradients in 50 mM Tris pH 7.5, 200 mM NaCl,

and 2 mM MgOAc using a Gradient Master (Biocomp). Store at 4 °C for 1 h.

3. Determine ideal RNase A concentrations by using different concentrations

for multiple 300 µL lysates. For each lysate, digest with RNase A for 1 h at

room temperature before layering digested samples on sucrose gradients.

Centrifuge at 39 000 RPM for 2.5 h in a TH-641 rotor (Thermo). After centrifu-

gation, fractionate gradients using a Piston Gradient Fractionator (Biocomp)

to determine how many units of RNase A are necessary for optimizing mono-

some peaks (Figure 1.1).

4. Repeat digestions using determined units of RNase A described above, retain

monosome peaks.

5. Extract RNA using a standard phenol-chloroform method followed by isopro-

pranol precipitation
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Figure 1.1: Determination of ideal RNase concentration for nuclease footprinting Images represent
absorbance reading from Piston Gradient Fractionator (Biocomp). For K. phaffii lysates at this
concentration, 40 U RNase A maximizes the area under the curve for 80s monosome peaks relative
to the rest of the gradient.

6. Purify ribosome protected footprints 18 nt to 34 nt using 15 % polyacrylamide

TBE-urea gel (Figure 1.2).

7. Perform over night extraction of excised gel fragments using RNA gel extrac-

tion buffer followed by isopropranol precipitation and resuspension in 4 µL

water containing 20 U mL−1 SUPERase · In (1:1000 SUPERase · In).

1.3.2.2 Dephosphorylation and linker ligation

1. Dephosphorylated purified fragments by incubating 2 µL 1 M RNA sample

with 2 µL RNase free water, 0.5 µL SUPERase · In RNase Inhibitor, 0.5 µL T4
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Figure 1.2: Ribosome footprint size selection The “M” on the outside lanes is an RNA marker
composed of 18 nt and 34 nt RNA fragments. The lanes in the middle are samples. Footprint
fragments are purified by excising the gel areas within orange box.

Polynucleotide Reaction Buffer (PNK), and 0.5 µL T4 Polynucleotide Kinase

at 37 °C for 1 h.

2. Pre-adenylate adapter sequences by combining 1.2 µL 100 µM linker oligonu-

cleotide with 2 µL 10x 5’ DNA adenylation reaction buffer, 2 µL, 2 µL 1 mM

ATP, 13.8 µL RNase-free water, and 2 µL Mth RNA ligase. Incubate for 1 h

at 65 °C followed by heat inactivation of enzyme via incubation at 85 °C for

5 min. Add 30 µL RNase-free water to adenylated adapter sequences fol-

lowed by purification via Oligo Clean & Concentrator kit, elute in 6 µL 1:1000

SUPERase · In.

3. Combine 5.5 µL purified fragments, 3.5 µL 50 % PEG-8000, 0.5 µL 10x T4 RNA
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Ligase Reaction Buffer, 0.5 µL 10 µM pre-adenylated adapter sequences and

0.5 µL T4 Rnl2(tr)k277Q. Incubate reaction mixture at 30 °C for 4 h.

4. Add 210 µL RNase-free water, 30 µL 3 M NaOAc, to each sample. Concen-

trate samples via isopropranol precipitation and resuspend in 3 µL 1:1000

SUPERase · In.

5. Purify linker-ligated samples using 15 % TBE-urea polyacrylamide gel.

6. Perform over night extraction of excised gel fragments using RNA gel extrac-

tion buffer followed by isopropranol precipitation.

7. Resuspend samples in 28 µL 1:1000 SUPERase · In. Using the images from

previous gel purification, dilute and pool samples to equivalent concentration

using their relative pixel intensities calculated from BioRad imaging software

(Figure 1.3). Be sure to note which samples were linker ligated with which

adapter sequences. Do not pool samples together that were linker ligated with

the same adapter sequences as there is no way to computationally demultiplex

them.

1.3.2.3 Depletion of ribosomal RNA using Ribo-Zero rRNA Removal Kit Yeast

1. Remove ribosomal RNA using streptavidin-coated magnetic beads from the

Ribo-Zero rRNA Removal Kit Yeast as recommended by manufacturer.

2. Combine 90 µL RNase-free water and 18 µL 3 M NaOAc with samples before

concentration via isopropranol precipitation.

3. Purify linker-ligated samples using 15 % TBE-urea polyacrylamide gel.

4. Perform over night extraction of excised gel fragments using RNA gel extrac-

tion buffer followed by isopropranol precipitation.

5. Resuspend samples in 10 µL 1:1000 SUPERase · In.
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Figure 1.3: Pooling linker-ligated RNA fragments The “M” on the left-most lane is an RNA marker
composed of 18 nt and 34 nt RNA fragments. The “S” lanes in the middle are samples. Sample boxes
are generated by BioRad imaging software to determine relative concentration by pixel intensity.
The “C” on the right-most lane is a linker-ligated RNA marker.

1.3.2.4 Reverse transcription

1. Perform 5 min denaturation of 10 µL sample via incubation at 65 °C with 2 µL

reverse transcription primer NI-802.

2. Reverse transcribe samples by combining with 4 µL 5X First Strand Buffer,

1 µL 10 mM dNTPs, 1 µL 10 mM DTT, 1 µL 20 U µL−1 SUPERase · In and 1 µL

200 U µL−1 SuperScript II Reverse Transcriptase before 30 min incubation at

50 °C.

3. Deactivate enzyme via hydrolysis by adding 2.2 µL 1 M NaOH followed by a

20 min incubation at 70 °C.

4. Add 28 µL RNAse free water was added to reverse transcription mixture

(~50 µL total) and concentrate using Oligoclean and Concentrator Kit (it is no

21



longer necessary to resuspend samples in 1:1000 SUPERase · In).

5. Purify cDNA from unincorporated reverse transcription primers using 12 %

TBE-urea polyacrylamide gel (Figure 1.4).

Figure 1.4: Purifying reverse transcribed products The “L” lane corresponds to an Ultra Low Range
DNA ladder. The “M” lane corresponds to an RNA marker composed of 18 nt and 34 nt RNA
fragments. The “RT” lane corresponds to the reverse transcription primer. The “C” lane corresponds
to reverse transcribed RNA marker (previously linker ligated). The “54” and “55” lanes are samples.

6. Perform over night extraction of excised gel fragments using RNA gel extrac-

tion buffer followed by isopropranol precipitation.

7. Resuspend samples in 11 µL RNase-free water.
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1.3.2.5 Circularization

1. Circularize single stranded cDNA samples by incubating 11 µL sample in

2 µL CircLigase II 10x Reaction Buffer, 1 µL 50 mM MnCl2, 1 µL ATP, 4 µL 5 M

Betaine, and 1 µL 100 U µL−1 CircLigase II ssDNA Ligase at 60 °C for 3 h.

2. Heat inactivate circularization process by incubating sample at 80 °C for

10 min.

1.3.2.6 Probe-directed depletion of ribosomal RNA using DSN

The following process was utilized in Chapter 3 as the Ribo-Zero rRNA Removal

Kit Yeast was insufficient for adequate rRNA depletion under those conditions. For

cultures grown in YPD, this step may be skipped. Depletion probes were designed

using rRNA aligned Ribo-seq reads collected from GS115 cultured in BMGY before

methanol induction (Table 3.1).

1. Incubate 10 µL circularized sample with 4 µL 4x hybridization buffer, 1 µL 4x

depletion probes at 200 µM, and 1 µL water.

2. Denature mixture for 2 min at 98 °C and allow to slowly anneal for 5 h at 65 °C.

3. Enzymatically degrade rRNA fragments hybridized to depletion probes by

adding 2 µL 10x DSN master buffer, 1 µL DSN storage buffer, and 1 µL DSN

before incubation at 65 °C for 25 min.

4. Deactivate reaction by adding 20 µL 10 mM EDTA to mixture.

5. Purify samples using AMPure XP beads per manufacturer’s instructions.

6. Digest linearized DSN degraded DNA fragments using Exonuclease I as these

may contain regions complementary to PCR amplification primers.

7. Purify samples again using AMPure XP beads per manufacturer’s instruc-

tions.
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1.3.2.7 Library construction PCR

1. Determine the ideal number of rounds of PCR to reach appropriate concentra-

tions without introducing amplification biases. Create reaction 50 µL reaction

mixture consisting of 10 µL Q5 Reaction Buffer, 1 µL 10 mM dNTPs, 2.5 µL

10 µM forward primer, 4 µL circularized DNA sample, 0.5 µL Q5 High Fidelity

DNA Polymerase and 29.5 µL RNAse free water. Divide reaction mixture into

5x 10 µL aliquots and perform different cycles of PCR for each aliquot (Figure

1.5).

Figure 1.5: Determining optimal conditions for library construction PCR The left-most lane is a
VersaLadder DNA ladder. The lanes labeled “nx” represent different amounts of PCR amplifications
on technical replicates. For this sample, 10x rounds of amplification were required to maximize
sample concentration with minimal re-annealed duplexes.
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2. Amplify circularized DNA samples (split into five aliquots, again) using

optimal conditions.

3. Purify DNA libraries from using 10 % non-denaturing TBE polyacrylamide

gel. 4.Perform over night extraction of excised gel fragments using DNA gel

extraction buffer followed by isopropranol precipitation.

4. Quantify library using Qubit 2.0 Fluorometer and dilute to required concen-

tration.

5. Submit library for Illumina sequencing using HiSeq 4000 (Chapter 1 and

Chapter 2) or NextSeq (Chapter 3).

1.3.3 Long read RNA sequencing

For each Ribo-seq biological replicate, 500 mL liquid cultures of YPD (1 % yeast

extract, 2 % peptone and 2 % glucose) were grown to an OD600 nm of 2 at 30 °C with

shaking in baffled 2 L flasks and harvested via centrifugation. Total RNA was

obtained using a Direct-Zol kit (Zymo Research). Cells were vortexed with glass

beads for 2 min during incubation with TRI reagent. Total RNA was purified using

Zymo Direct-zol columns and reagents according to the manufacturer’s protocol.

RNA was reverse transcribed using strand switching primer before selecting for full-

length reverse transcribed RNA using PCR. Reverse transcribed RNA is amplified

using PCR followed by a clean up using AMPure XP beads. Purified cDNA is then

prepared for cDNA-PCR sequencing using Oxford Nanopore Technologies (ONT)

minION sequencer52,53 by adding an adapter to the amplified library. Flow cell for

minION sequencer was then primed and loaded for long read RNA sequencing.

Sequencing was performed using ONT’s miniKNOW software.54,55
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1.3.4 Transcript assembly

Novel transcripts were assembled using data derived from Ribo-seq, long-read

RNA-Seq, and a prior genome sequence of strain GS115.46 A flowchart of the

annotation pipeline is provided in Figure 1.6. Ribo-seq reads and long reads were

Figure 1.6: Flow-chart of the annotation pipeline Annotation pipeline involves Illumina sequenced
ribosome profiling reads, Oxford Nanopore sequenced long-read RNA sequencing derived reads,
and prior genome sequence of strain GS115.46 Reads are processed and prepared for annotation
preparation using several programs.

aligned to the reference genome using HISAT256 and Minimap257 respectively.

Stringtie version 1.3.6 was used to assemble transcripts from Ribo-seq data, with
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reads mapping to each strand processed separately.58 Pinfish was used to assemble

transcripts from long reads (Oxford Nanopore Technologies). After transcript

assembly, PASA59 was used to combine the Stringtie and Pinfish models into a

single transcriptome. Transdecoder60 was then run twice: first, to identify candidate

coding regions with PASA model with a lower limit of 100 amino acids, and second,

to identify coding regions in just the Stringtie model with a lower limit of 40

amino acids. The latter run has a reduced risk of misannotating start codons

in the 5’-UTR. Transdecoder annotated transcripts from TransdecoderPASA were

used to train GlimmerHMM61 and CodingQuarry,62 which were used to provide

de novo predictions in the genome. EVidenceModeler63 was used to incorporate

predictions from PASA, TransdecoderStringtie, TransdecoderPASA, GlimmerHMM and

CodingQuarry. File processing, UTRs, and tRNAs annotations were provided by

the update utility in the Funannotate package.64

1.3.5 Mapping of ribosome protected reads to codons and masking

Linker ligated sequences were trimmed and demultiplexed in an error-tolerant

way using Cutadapt.65 Ribo-seq reads were mapped to the genome of Komagataella

pastoris GS11546 using HISAT2.56,66 Alignments were converted from SAM to sorted

and indexed BAM files using Samtools and only included reads with mapping

quality threshold of 60.67 Mapped reads were loaded into R using the Genomi-

cAlignments package from Bioconductor68 and converted to their 3’ end positions

before determining p-site offsets. P-site offsets were determined using the Ribo-

Profiling package in Bioconductor.69 Each read was mapped to a single codon.

Masking files were created by first parsing the coding sequence (CDS) annotation

file associated with the reference genome into a fasta file simulating every possible
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28 NT combination (approximate length of a ribosome protected mRNA fragment).

This fasta file was then aligned to reference genome twice, one to only include reads

with mapping quality greater than or equal to 60 (unambiguously assigned), and

another to include all reads (ambiguously assigned). Both alignment files were used

to generate reads per codon per gene (RPCPG) data tables. The unambiguously

assigned reads were subtracted from ambiguously assigned reads and codons with

a nonzero difference were included in the mask. The first and last five codons in

genes’ open reading frames (ORFs) were masked to correct for variable read quality

at the beginning and ending of transcripts inherent to Ribo-seq.70

1.3.6 Metagene correction and quantification of metabolic demand

Read counts were normalized at the codon level using a metagene analysis that

provides a global profile for each data set. First, for each ORF, reads at each codon

position were scaled by the average reads per codon mapped ORF. Then, for codon

position, either a mean or median value was calculated from all ORFs using the

following scheme: for positions 1 to 100, a rolling mean with a window of 10 codons;

for positions 100 to 1000, a rolling mean with a window of 100; for positions 1000

and onward, a rolling median with a window of 1000. In calculating corrected

transcripts per million (cTPM), codon read counts were scaled by dividing the

metagene-derived value at that position and normalized by their pseudo gene

lengths (theoretical gene length minus number of masked codons) and a per million

scaling factor unique to each data set. In calculating ribosomes per million (cRPM),

a ribosome scaling factor was created for each gene by dividing the sum of the

metagene-derived values at all codon positions by the sum of smoothed reads per

codon with the mask applied (a gene with zero masked codons will have a ribosome
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scaling factor equal to one, while a gene that contains masked codons will have

a scaling factor greater than one). The ribosome scaling factor is multiplied by

unmasked gene read counts and normalized by a per million scaling factor unique

to each data set to give RPM. Membrane enrichment is quantified for each gene

as the log2 ratio of membrane cTPM scores or total cTPM scores to soluble cTPM

scores.

1.3.7 Classification of ORFs

Gene names were hierarchically assigned to novel K. phaffii transcripts through

homology. Firstly, transcripts were assigned names inherited from S. cerevisiae71

using BlastP72 with an expected value less than 1e-5. For genes that were not

predicted to be homologous, gene names were assigned common names using

EggNOG 4.573 using a taxonomic scope limited to ascomycetes. Genes that did

not share homology with S. cerevisiae or known ascomycetes were assigned names

inherited from K. phaffii GS11546 using BlastP with expected values less than 1e-5.

Novel genes that were not assigned names using the methods above were named

after the moniker automatically assigned during transcript assembly.

ORFs were classified by function, cellular location, and sequence features using

various prediction softwares. Functions were assigned ontologically using clusters

of orthologous groups (COG) and were prepared using EggNOG 4.5.73 Vironoi tes-

sellations were created to quantitatively map the biosynthetic composition of these

functions using COGs and expression metrics derived from Ribo-seq.74 DeepLoc

was used to predict the subcellular localization associated with ORF products.75

Sequence features such as signal sequences, transmembrane domains (TMD), and

GPI anchors were identified using SignalP 5.0,76 TOPCONS,77 and predGPI78 re-
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spectively.

1.4 Perspectives

1.4.1 Ribo-seq and long-read RNA-seq improve open reading

frame annotations

We sought to globally quantify several aspects of protein synthesis in K. phaffii

GS115. We asked which genes were responsible for sequestering limited biosyn-

thetic resources, such as ribosomes and ER translocons. We also asked which genes

were responsible for producing the most nascent chains, which is critical for pre-

dicting amino acid usage, as well as modifications that act on a per chain basis

(i.e., N-terminal acetylation, GPI anchoring, vesicular sorting). Ribo-seq provides

a snapshot of protein translation, allowing us to answer both of these questions.33

It is a high throughput sequencing technique that provides a snapshot of protein

translation and is capable of inferring ribosome abundance at each codon of each

transcript.79 In Ribo-seq, a non-specific ribonuclease generates 20 nt to 22 nt or 28 nt

to 30 nt “footprints” of ribosome-protected mRNA depending on the translation con-

formation of the ribosome,33 which are then sequenced. Ribo-seq libraries revealed

adequate depletion of ribosome derived RNA using rRNA depletion strategies

designed for S. cerevisiae in YPD media. Our data sets captured footprint lengths

from 15 nt to 42 nt( Figure 1.7a). Nearly all (99 %) footprints mapped within open

reading frames (ORFs). Our profiling data also indicate active translation through

the appearance of three nucleotide periodicity in read depth that is preserved across

the transcriptome (Figure 1.7b).

We noticed that ribosome-protected read patterns were often inconsistent with
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Figure 1.7: Ribo-seq models active translation a. Distribution of reads for different length RNA
fragments. Read distribution is bimodal and reveals two peaks at 22 nt and 30 nt. These peaks reflect
the distance that ribosomes cover mRNA and is dependent on stage of translocation. b. Nucleotide
periodicity for 30nt fragment reveals active translation. The distance from the beginning codon
to the codon where periodicity begins is known as a p-site offset. Calculating this offset helps to
accurately map reads to codons.

prior annotations of open reading frames (Figure 1.8). At many loci, Ribo-seq

appeared to indicate that translation began at an alternate start codon. Inaccuracies

in ORF structure are problematic, since the length of a reading frame is a critical

parameter used for quantifying translation and the position of the start site is

used in correction using global profiles. We therefor sought to improve the GS115

annotation using Ribo-seq. Several methods that rely solely on Ribo-seq to annotate

structure rely on the three nucleotide periodicity of reads to define reading frames.80

They require substantial coverage for each genes; however, sparse Ribo-seq coverage

could still support re-annotation if it were treated like stranded RNA-seq data.
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Figure 1.8: Ribo-seq and long read RNA sequencing improves protein predictions Images are
adaptations from screen captures using Integrated Genome Viewer (MIT) and reflect reads for the
gene TIF1. Ribosome-protected footprint reads mapped to transcripts are translighted left to right in
gray stacks. Reads mapped to transcripts in R are shown as blue histograms while IGV’s predicted
read mapping are shown behind as light gray. Translation table for genome annotation are shown as
multicolored panels where green squares represent theoretical start sites and red squares represent
theoretical stop sites. Previous annotation incorrectly predicts start site and is shown in blue while
Ribo-seq/ONT annotation correctly predicts start site and is shown in yellow.

Moreover, de novo open reading frame predictors can be trained using verified

translational start sites, and so improving the accuracy of annotations for a subset

of the transcriptome was expected to improve overall prediction accuracy. We

therefore adapted consensus methods used in gene prediction and annotation with

stranded RNA-seq data, with optimizations for fungi.63,64 Our approach uses Ribo-

seq to construct transcript models, which are then used to train several de novo

annotators.

Like other yeasts, K. phaffii has short intergenic sequences, leading to overlap-

ping untranslated regions (UTRs), even on transcripts encoded on the same DNA

strand. As a results, methods that construct transcripts from short-read sequencing

merge data from adjacent genes into a single transcript. We therefore collected

long-read data using Oxford Nanopore PCR-cDNA sequencing and developed a
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pipeline to integrate Ribo-seq, long-read RNA-seq, and de novo gene prediction

(Figure 1.8 and Figure 1.9). ORFs that were fully covered by Ribo-seq data were

Figure 1.9: Ribo-seq and long-read RNA-seq improve transcriptome annotation Images are screen
captures from Integrated Genome Viewer (MIT). In an example transcript, Ribo-seq (top register)
and long-read RNA-seq (bottom register) reveal both the open reading frame and the untranslated
regions (UTRs).

allowed to be as short as 40 amino acids, increasing the number of annotated genes

compared to other annotations of K. phaffii (Table 1.4).46,81,82 Our annotation adjusted

the translational start site of about 10 % of ORFs compared to each previous model.

Overall, Ribo-seq reads were mapped to 5,303 genes in K. phaffii in the assembly

presented here. We have named genes based on homology to prior annotations, to

S. cerevisiae, and to other ascomycetes.

Table 1.4: Comparing annotations

Annotationa Total sequences Homologsb Length differencesc

Ribo-seq annotation 5,329
GS115 (PRJNA304976) 5,064 5,035 514
GS115 (PRJEA37871) 5,040 5,100 697
CBS7435 (PRJEA62483) 5,291 5,198 604
a NCBI bioproject numbers located in parenthesis
b BlastP matches from current study to prior study
c Number of homologs with different predicted lengths
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1.4.2 Quantification of protein synthesis demands

Each read in Ribo-seq originates from a translating ribosome. To quantify protein

synthesis demands, the number of nascent polypeptide chains produced per unit

time can be approximated using a modified form of the transcripts per million

(TPM) metric used in RNA-seq. TPM has advantages over other metrics (RPKM

or FPKM) for its intuitive interpretation during differential analysis and for its

congruence with proteomics.83,84 In RNA-seq, reads are generally long enough to be

unambiguously mapped to the transcriptome, and they can be assumed to equally

cover a transcript. In Ribo-seq, however, these assumptions do not hold, and biases

due to ambiguous mapping must be corrected. Ribosome protected fragments are

small, 22 nt to 30 nt, and have the capacity to map to multiple mRNA sequences

when the transcriptome contains homologous stretches. Ambiguously mapped

reads can be handled in one of several ways, often with shortcomings. Discard-

ing multi-mapped reads85–88 depreciates read counts for highly expressed genes.

Randomly assigning reads to ORFs with equivalent percentage of alignment79,89,90

overestimates read counts for lowly expressed genes. Here, we adapt the method of

Taggart et al.,35 who used computational masks to exclude homologous segments

of the predicted transcriptome. We calculated a mask of the K. phaffii transcriptome

accounting for all possible 28 nt reads, excluding 3 % of codon positions available.

To estimate gene expression via transcripts per million (TPM), reads must be scaled

by ORF length. Unlike discarding or randomly assigning reads, masking adjusts

the gene length to reflect mRNA positions available for analysis. However, masking

alone is insufficient because ribosome protected reads are not evenly distributed

across transcripts.

Ribosome-protected reads are more abundant near the 5’ end of ORFs.79,91 This
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Figure 1.10: Metagene analysis Corrections applied to Ribo-seq data. a Ribosome-protected read
counts at each codon were scaled by the total reads mapping to the ORF. Dots represent individual
codons, and the line represents a composite of rolling means and medians (see Methods). Regions in
yellow are the same width and are used to demonstrate that masked codons at the beginning of ORFs
have a greater influence of calculated expression than masked codons at the end of ORFs. b Data
from a after metagene correction. c Comparison of ribosome-protected reads per codon for highly
expressed genes of different length. TPM for RPL5 gene is approximately 135% greater than TPM
for YEF3 while producing approximately 38% as many ribosome-protected reads. After metagene
correction cTPM scores are similar preserving the same difference in ribosome sequestration
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effect may be due to slower elongation rates at the beginning of translation92 or

abortive translation.35 Regardless of the mechanism, the positional bias is observed

in nearly every transcript and results in a global read profile that is conserved across

the translatome (Figure 1.10a). As a result, estimates of the expression of short ORFs

will appear inflated (and long ORFs deflated), since only the ribosome-rich region

of the global profile is sampled. We again adapt the method of Taggart et al.,35

where the positional bias is removed by scaling reads at each codon by the empirical

global profile (Figure 1.10b). We used corrected TPM (cTPM), with masking and

scaling, as a measure of the rate at which nascent chains are produced. For example,

transcripts of RPL5 and YEF3 display similar numbers of ribosomes at the start

of their ORFs (Figure 1.10c), suggesting similar initiation rates. However, because

YEF3 is a longer ORF, its standard TPM is smaller than the TPM of RPL5. Here, we

assume that if RPL5 were as long as YEF3, then its translation profile will be similar

to the global profile, resulting in similar cTPM scores.

While cTPM estimates the number of nascent polypeptide chains, it does not

inform us about ribosome sequestration. Longer transcripts sequester a greater

number of ribosomes in order to produce the same number of nascent chains as a

shorter transcript. If ribosomes accumulate near the start codon in vivo, then it is

important to include this effect while measuring allocation. cTPM, therefore, is an

appropriate metric. If ribosome-protected reads could be unambiguously mapped

to the transcriptome, then simple read counts estimate ribosome usage per gene.

However, when masking is applied, the position of the mask becomes important

(Figure 1.10a, b). Two masks of the same length, applied at different positions, will

hide different amounts of ribosomes based on the global profile. To correct for

this, we introduce a ribosome scaling factor that accounts for masking of each gene.

The factor represents the fraction of ribosomes expected to be observed when the
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Table 1.5: Nascent chains produced in K. phaffii

Genes Nascent chainsa

Ontological functions
Translation, ribosomal structure and biogenesis 366 44
Function unknown 1,602 11
Post-translational modification, protein turnover and

chaperones
409 9

Energy production and conversion 207 8
Intracellular trafficking, secretion and vesicular transport 382 4
Carbohydrate transport and metabolism 218 3
Cell wall/membrane/envelope biogenesis 85 3
Amino acid transport and metabolism 191 3
Transcription 355 2
Rna processing and modification 242 2

Predicted features
Lumenal and secreted proteinsb 266 8

Gpi anchorsc 117 79
Transmembrane proteinsd 960 7

a Nascent chains are percentage of the total cTPM represented by each category
b Total number of genes with an N-terminal signal sequence and may include a GPI anchor
c Percentage of signal sequences that also contain a predicted GPI anchor
d Contain no signal sequence but one transmembrane domain (TMD), or two or more TMDs

gene-specific mask is applied to the global translational profile. We generate a new

metric for each gene, correct ribosomes per million (cRPM), which is practically

equivalent to reads per million (RPM) in standard RNA-seq. In our example in (

Figure 1.10c), cRPM and RPM are almost identical, as expected since there are no

masks applied to RPL5 or YEF3.

After applying corrections, we find that the majority of nascent chains syn-

thesized by K. phaffii are from genes involved in translation, ribosomal structure,

and biogenesis (Table 1.5 and Figure 1.11), as expected for log-phase growth. The

majority of nascent chains encoded by genes of unknown function are predicted

to be extracellular, where they are likely components of the cell wall. We consider

endomembrane lumenal and secreted proteins to be those with (i) predicted N-

terminal signal sequences, (ii) are not predicted to be localized to the mitochondria,

and (iii) contain less than or equal to one transmembrane domain, as these are
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Figure 1.11: Translational landscape in K. phaffii Tessellations represent the relative number of
nascent chains produced by ribosomes for each gene. Each gene is categorized by their predicted
ontological function. A gene’s tile size is proportional to their respective cTPM score within a
Ribo-seq sample.

frequently GPI anchors. Some single-pass, type I transmembrane proteins will be

misannotated by this definition. The number of genes containing these predictive

features and the relative percentage of nascent chains they produce are summarized

in Table 1.5. A majority of nascent chains for genes containing a signal sequence also
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contain GPI anchors, suggesting that this structural class represents the majority of

products that will be processed by the secretory pathway.

1.5 Conclusions

Ribo-seq is an enormously powerful technology that allows us to detect and quan-

tify protein translation in vivo. This technology allows for the quantification of

metabolic demands, understanding of translational control mechanisms, and the

determination of encoded transcript regions for a more thorough understanding of

the translatome. While protocols for Ribo-seq and its analysis are ever changing

and under constant development, we offer a standardized computational pipeline.

First, we show that a commercially available rRNA depletion strategy designed

for the model organism S. cerevisiae is effective in K. phaffii collected in YPD during

exponential growth. Second, we provide an updated genome annotation based on

both Ribo-seq and long-read RNA-seq. Third, we address the inherent propensity

for small reads to map to multiple locations in the genome using a computational

masking strategy. Finally, we utilize this protocol to broadly characterize nascent

chain production for genes characterized by their ontological functions.
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Chapter 2

Characterization of endoplasmic

reticulum translocation pathways and

comparison of early secretory

demands in Komagataella phaffii and

Saccharomyces cerevisiae

Background: Eukaryotes use distinct networks of biogenesis factors to synthesize,

fold, monitor, traffic, and secrete proteins. During heterologous expression, satu-

ration of any of these networks may bottleneck titer and yield. However, most of

what we know about these processes is derived from Saccharomyces cerevisiae. To

understand the flux through various routes into the early secretory pathway, we

quantified the global and membrane-associate translatomes of Komagataella phaffii.

Results: By using ribosome profiling with subcellular fractionation, we quan-

tified demands on co- and post-translational translocation pathways. During ex-
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ponential growth in rich media, protein components of the cell-wall represent the

greatest number of nascent chains entering the ER. Transcripts encoding the trans-

membrane protein PMA1 sequester more ribosomes at the ER membrane than any

others. Comparison to Saccharomyces cerevisiae reveals conservation in the resources

allocated by gene ontology, but variation in the diversity of gene products entering

the secretory pathway.

Conclusion: A subset of host proteins, particularly cell-wall components, impost

the greatest biosynthetic demands in the early secretory pathway. These proteins

are potential targets in strain engineering aimed at alleviating bottlenecks during

heterolgous protein production.

2.1 Introduction

Identifying and relieving protein biogenesis bottlenecks is one strategy to improve

yields of high-value, recombinant proteins.2,93 For secreted proteins expressed in

K. phaffii, an early bottleneck is the translocation of newly made proteins from

the cytoplasm into the lumen of the endoplasmic reticulum (ER).19,20 Yeasts have

multiple pathways for translocation, which use partially overlapping sets of biogen-

esis factors (reviewed in).3 In the major pathway into the ER, translocation occurs

through a membrane-embedded protein complex called the sec translocon. At least

three major translocons exist in yeasts (the Ssh1 complex; two Sec61 complexes

with, and without, Sec62p, Sec63p, Sec66p and Sec71p), which can accept proteins

as they are synthesized by ribosomes (co-translationally) or after synthesis of the

polypeptide chain is complete (post-translationally). Besides translocon architecture,

co- and post-translational pathways differ in their reliance on cytosolic molecular

chaperones.94,95 Translocons bind hydrophobic amino acid motifs, called signal
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peptides, found at the amino termini of secreted proteins.96 Some signal peptides

are dependent upon a cytosolic factor, the Signal Recognition Particle (SRP), and

the ER-bound SRP receptor to engage a translocon;97 these tend to be longer or

more hydrophobic than SRP independent signals.98,99 Binding of a signal peptide

to a translocon opens the channel and allows the rest of the protein to pass into

the lumen. In addition to secreted proteins, the sec translocon is a major point

of entry for integral membrane proteins of the endomembrane system.100 Integral

membrane proteins that use a sec translocon require SRP for targeting to the ER

over mitochondria.98

For any production host, ribosomes, molecular chaperones, and sec translocons

represent limited pools of resources that are distributed between heterologous

proteins and the host proteome.103 Unlike resources that are replenished enzymat-

ically (like aminoacyl-tRNAs), ribosomes, translocons and chaperones only act

on a single nascent chain at a time. While in use, they are sequestered and un-

available for other tasks. Although computational models that approximate these

effects exist for bacteria,104 the complexity of eukaryotic translation is insufficiently

understood to predict these allocations from transcriptomics alone. Accurate ac-

counting of these resources could allow strains to be engineered in ways to relieve

bottlenecks specific to a target. The secretome of K. phaffii has been characterized

under several conditions,105 but the precise biosynthetic requirements of each pro-

tein remain unknown. Sequence features of secreted proteins, like glycosylation

motifs, allow approximation of their direct biosynthetic costs such as ATP, carbo-

hydrates, disulfide bonds, or GPI-anchors.106 Per molecule costs can be coupled

with measurements of gene expression to identify most expensive host proteins.

Deletion of these proteins improves yields of secreted heterologous proteins in

mammalian systems.107,108 However, while these analyses account for demands on
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global resources, they are limited by insufficient experimental data which links

gene products to specific biogenesis subnetworks. For instance, overloading co-

translational translocons could limit secretory yields even if metabolic demands

are met and post-translational translocons are available. Quantification of global

ribosome, co-translational translocon and SRP use is available for S. cerevisiae.21,23,98

However, these measurements are unavailable for other industrially significant

species, including K. phaffii.

Which host proteins sequester the most biogenesis machinery in the early se-

cretory pathway of K. phaffii? Which host genes produce the most nascent chains,

competing for chaperones and sorting factors within the endomembrane system?

To answer these questions, we quantified active translation globally and at the

surface of the ER or mitochondria using ribosome profiling (Ribo-seq). Our analysis

reveals the set of proteins that enter the secretory pathway co-translationally and

predicts the set that enter post-translationally. In each set, we estimate demand

for ribosomes and translocons. We distinguish between resources that act on a per

nascent chain basis from machinery that is utilized based on elongation time.

2.2 Materials and Methods

2.2.1 Strains and culture conditions

All experiments were performed us Komagataella phaffii GS115 (Invitrogen). For

each Ribo-seq biological replicate, 500 mL liquid cultures of YPD (1 % yeast extract,

2 % peptone and 2 % glucose) were grown to an OD600 nm of 2 at 30 °C with shaking

in baffled 2 L flasks. Cells were harvested by vacuum filtration through a 0.8 µm

filter. Immediately after filtering, cells were scraped off the filter using a chilled
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scoopula and submerged in a 50 mL conical tube containing liquid nitrogen. When

indicated in order to match conditions of S. cerevisiae fractionated Ribo-seq data,21

cycloheximide (CHX) was added to 100 µg mL−1 for 3 min prior to harvesting. CHX

treatments longer than a few minutes can alter ribosome abundance near the start

of transcripts.109 Short incubation with CHX enhance targeting of translocation

competent ribosome-nascent chain complex while not perturbing non-secretory

polysomes.23

2.2.2 Lysis and subcellular fractionation

Cells were lysed in either soluble lysis buffer (50 mM MOPS, 25 mM KOH, 100 mM

KOAc, 2 mM MgOAc, 1 mM DTT and 100 µg mL−1 CHX) or membrane lysis buffer

(soluble lysis buffer with 1 % Triton X-100). Lysis buffers for each sample were frozen

by adding 2 mL per dropwise to a 50 mL conical tube containing liquid nitrogen.

For each biological replicate, 2
3 frozen cells were mixed with 2 mL frozen soluble

lysis and the remaining 1
3 were mixed with 2 mL frozen membrane lysis buffer.

Cell fractions were pulverized for 2 min in a 50 mL ball mill chamber with a single

2 mL steel ball (Retsch) collected into 1.5 mL conical tubes. After thawing, lysates

were centrifuged at 20 000 g for 10 min. Supernatants from samples lysed with

membrane lysis buffer were collected and used as “total” fractions. Supernatants

from samples lysed with soluble lysis buffer were collected and used as “soluble”

fractions. The pellets from sample lysed with soluble lysis buffer were resuspended

in 2 mL membrane lysis buffer and centrifuged. The supernatants were collected

and used as “membrane” fractions. Triton-X 100 was added to 1 % in soluble

fractions, so that all three fractions were in equivalent buffers (Figure 2.1).
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Figure 2.1: Overview of Ribo-seq and subcellular fractionation Ribosomes (gray) bound to a
translocon (red) are only solubilized in the presence of detergent. The total sample has footprints
originating from both membrane-bound and free-floating ribosomes. The soluble fraction is enriched
in footprints from free-floating ribosomes. The membrane fraction is enriched in footprints from
membrane-bound ribosomes
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2.2.3 Ribo-seq

Lysed samples were nuclease digested using 40 U of Ambion RNase A for 1 h at

room temperature. Digested samples were layered on a 10 % to 50 % sucrose gradi-

ent prepared in 50 mM Tris pH 7.5, 200 mM NaCl, and 2 mM MgOAc case using a

Gradient Master (Biocomp). Gradients were centrifuged at 39 000 RPM for 2.5 h in

a TH-641 rotor (Thermo). After centrifugation, gradients were fractionated using a

Piston Gradient Fractionator (Biocomp) and monosome peaks were retained. Total

RNA was extracted using a standard phenol-chloroform method and alcohol precip-

itated. Ribosome protected footprints 18 nt to 34 nt were resolved and excised using

15 % polyacrylamide TBE-urea gel. RNA was collected from excised gel fragments

using RNA gel extraction buffer (300 mM NaOAc, 1 mM EDTA, and 0.25 % SDS),

precipitated, and resuspended in water containing 20 U mL−1 SUPERase · In.

Purified fragments were then dephosphorylated by incubating 2 µL 1 M RNA

sample with 2 µL RNase free water, 0.5 µL SUPERase · In RNase Inhibitor, 0.5 µL T4

Polynucleotide Reaction Buffer (PNK) (NEB, Cat #B0201S), and 0.5 µL T4 Polynu-

cleotide Kinase at 37 °C for 1 h. Dephosphorylated samples were linker ligated with

adapter sequences by incubating with 3.5 µL 50 % PEG-8000, 0.5 µL 10X T4 RNA

Ligase Reaction Buffer, 0.5 µL 10 µM adenylated linkers and 0.5 µL T4 Rnl2(tr)k277Q

at 30 °C for 4 h. Linker-ligated samples were concentrated via isopropranol precipi-

tation and resolved using 15 % TBE-urea polyacrylamide gel. Imaged samples were

diluted and pooled to equivalent concentrations by their relative pixel intensities

calculated from BioRad imaging software after overnight extraction in RNA gel

extraction buffer.

Ligated and purified samples were rRNA depleted using streptavidin-coated

magnetic beads from the Ribo-Zero rRNA Removal Kit as recommended by man-
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ufacturer. Depleted samples were precipitated, resolved using 15 % TBE-urea

polyacrylamide gel, and extracted as previously described.

RNA was reverse transcribed by adding 2 µL reverse transcription primer to

10 µL sample and incubating at 65 °C for 5 min to denature. Denatured sample was

then incubated with 4 µL 5X First Strand Buffer, 1 µL 10 mM dNTPs, 1 µL 10 mM

DTT, 1 µL 20 U µL−1 SUPERase · In and 1 µL 200 U µL−1 SuperScript II Reverse Tran-

scriptase at 50 °C for 30 min using thermal block. After incubation, sample was hy-

drolyzed by adding 2.2 µL 1 M NaOH and then incubated at 70 °C for 20 min using

thermal block. 28 µL RNAse free water was added to reverse transcription mixture

(~50 µL total) and concentrated using Oligoclean and Concentrator Kit. Concen-

trated RNA was then purified of reverse transcription primers using 12 % TBE-urea

polyacrylamide gel. RNA from gel slices was extracted using method previous

described. Extracted precipitants were resuspended in 11 µL 1:1000 SUPERase · In.

Single stranded cDNA samples were circularized by incubating 11 µL sample

in 2 µL CircLigase II 10x Reaction Buffer, 1 µL 50 mM MnCl2, 1 µL ATP, 4 µL 5 M

Betaine and 1 µL 100 U µL−1 CircLigase II ssDNA Ligase at 60 °C for 3 h on thermal

block. The circularization process was inactivated by incubating sample at 80 °C for

10 min on thermal block.

Circularized samples were PCR amplified for 12 cycles using a 50 µL reaction

mixture (10 µL Q5 Reaction Buffer (NEB , Cat #B9027S), 1 µL 10 mM dNTPs, 2.5 µL

10 µM forward primer, 4 µL circularized DNA sample, 0.5 µL Q5 High Fidelity

DNA Polymerase and 29.5 µL RNAse free water) divided into 5 x 10 µL aliquots.

Amplified sample was resolved using 10 % non-denaturing TBE polyacrylamide

gel and extracted using previously described method. Libraries were quantified

using Qubit 2.0 Fluorometer and sequenced using Illumina HiSeq 4000.
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2.2.4 Mapping of ribosome protected reads to codons and masking

Linker ligated sequences were trimmed and demultiplexed in an error-tolerant

way using Cutadapt.65 Ribo-seq reads were mapped to the genome of Komagataella

pastoris GS11546 using HISAT2.56,66 Alignments were converted from SAM to sorted

and indexed BAM files using Samtools and only included reads with mapping

quality threshold of 60.67 Mapped reads were loaded into R using the Genomi-

cAlignments package from Bioconductor68 and converted to their 3’ end positions

before determining p-site offsets. P-site offsets were determined using the Ribo-

Profiling package in Bioconductor.69 Each read was mapped to a single codon.

Masking files were created by first parsing the coding sequence (CDS) annotation

file associated with the reference genome into a fasta file simulating every possible

28 NT combination (approximate length of a ribosome protected mRNA fragment).

This fasta file was then aligned to reference genome twice, one to only include reads

with mapping quality greater than or equal to 60 (unambiguously assigned), and

another to include all reads (ambiguously assigned). Both alignment files were used

to generate reads per codon per gene (RPCPG) data tables. The unambiguously

assigned reads were subtracted from ambiguously assigned reads and codons with

a nonzero difference were included in the mask. The first and last five codons in

genes’ open reading frames (ORFs) were masked to correct for variable read quality

at the beginning and ending of transcripts inherent to Ribo-seq.70

2.2.5 Metagene correction and quantification of metabolic demand

Read counts were normalized at the codon level using a metagene analysis that

provides a global profile for each data set. First, for each ORF, reads at each codon

position were scaled by the average reads per codon mapped ORF. Then, for codon
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position, either a mean or median value was calculated from all ORFs using the

following scheme: for positions 1 to 100, a rolling mean with a window of 10 codons;

for positions 100 to 1000, a rolling mean with a window of 100; for positions 1000

and onward, a rolling median with a window of 1000. In calculating corrected

transcripts per million (cTPM), codon read counts were scaled by dividing the

metagene-derived value at that position and normalized by their pseudo gene

lengths (theoretical gene length minus number of masked codons) and a per million

scaling factor unique to each data set. In calculating ribosomes per million (cRPM),

a ribosome scaling factor was created for each gene by dividing the sum of the

metagene-derived values at all codon positions by the sum of smoothed reads per

codon with the mask applied (a gene with zero masked codons will have a ribosome

scaling factor equal to one, while a gene that contains masked codons will have

a scaling factor greater than one). The ribosome scaling factor is multiplied by

unmasked gene read counts and normalized by a per million scaling factor unique

to each data set to give RPM. Membrane enrichment is quantified for each gene

as the log2 ratio of membrane cTPM scores or total cTPM scores to soluble cTPM

scores.

2.2.6 Classification of ORFs

Gene names were hierarchically assigned to novel K. phaffii transcripts through

homology. Firstly, transcripts were assigned names inherited from S. cerevisiae71

using BlastP72 with an expected value less than 1e-5. For genes that were not

predicted to be homologous, gene names were assigned common names using

EggNOG 4.573 using a taxonomic scope limited to ascomycetes. Genes that did

not share homology with S. cerevisiae or known ascomycetes were assigned names
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inherited from K. phaffii GS11546 using BlastP with expected values less than 1e-5.

Novel genes that were not assigned names using the methods above were named

after the moniker automatically assigned during transcript assembly.

ORFs were classified by function, cellular location, and sequence features using

various prediction softwares. Functions were assigned ontologically using clusters

of orthologous groups (COG) and were prepared using EggNOG 4.5.73 Vironoi tes-

sellations were created to quantitatively map the biosynthetic composition of these

functions using COGs and expression metrics derived from Ribo-seq.74 DeepLoc

was used to predict the subcellular localization associated with ORF products.75

Sequence features such as signal sequences, transmembrane domains (TMD), and

GPI anchors were identified using SignalP 5.0,76 TOPCONS,77 and predGPI78 re-

spectively.

2.2.7 S. cerevisiae analysis

Ribo-seq data for total protein synthesis were taken from,35 and data obtained from

soluble or membrane-bound ribosome fractions were obtained from.21 All data

were processed in the same way as K. phaffii using the S288C reference genome

R64-2-1.110

2.3 Results

2.3.1 Biogenesis demands in the early secretory pathway

We investigated the global demands for machinery needed for translocation into

the ER. Subcellular fractionation was used to separate membrane-bound ribosomes

from free floating, soluble ribosomes. Membrane-bound ribosomes were detergent
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solubilized, and then samples from both soluble and membrane fractions were sub-

ject to Ribo-seq (Figure 2.1). As in S. cerevisiae, libraries derived from the membrane

fractions are enriched in ribosome-protected footprints originating from transcripts

that encode proteins destined for the ER or mitochondria.21 Membrane enrichment

scores were calculated as the log2 ratio of cTPM for membrane and soluble fractions

and were reproducible. The magnitude of membrane enrichment scores depends on

the efficiency of fractionation, and if a gene falls below the diagonal line in Figure 2.2,

it will have a negative enrichment score. As in S. cerevisiae, membrane enrichment
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Figure 2.2: Comparison of translation from samples of membrane-bound and soluble fraction
Values are calculated using fractions obtained after incubation with CHX. Genes that are considered
membrane enriched have a log2 ratio of expression on the membrane and cytosol. This cutoff is
represented as a linear yellow line.

scores are limited by the length of the ORF when transcripts encode signal-sequence

bearing proteins21,23 (Figure 2.3). This effect is due to a kinetic competition be-

tween trafficking rate and translation elongation rate. Figure 2.2 also reveals that

a membrane enrichment score of 2 effectively separates two populations, and so
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Figure 2.3: Nascent peptide length and membrane enrichment for secreted, lumenal, or GPI-
anchored proteins Proteins have a predicted N-terminal signal sequence. Three sets of biological
replicates were included for membrane and cytosolic fractionated libraries. The dashed line is
drawn to establish cutoff for log2 membrane enrichment. Proteins under this line are considered
post-translationally targeted and genes over this line are considered co-translationally translocated.
Proteins were binned according to their probabilistic distribution. Proteins were color coded to
represent the number of standard deviations from the mean membrane enrichment score for the bin
they belong to.

we define genes with scores greater than 2 as co-translationally translocated into

either the ER or mitochondria. The set of co-translationally translocated nascent

polypeptides is enriched for those involved in energy production and conversion,

cell wall and membrane biogenesis, and various transporters. To assess entry into

the ER, we filtered out transcripts encoding proteins predicted to localize in the

mitochondria by DeepLoc (Figure 2.4a). Finally, we define proteins that enter the ER

through a post-translational sec translocon as those having a predicted N-terminal

signal sequence and less than two-fold membrane enrichment (Figure 2.4b). Post-

translationally trafficked membrane proteins rely on other mechanisms, such as the

GET pathway.96

A more diverse group of proteins enter the ER through co-translational translo-
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Figure 2.4: Translation on the ER-membrane in K. phaffii Tessellations are calculated using cTPM
from the total fraction of a CHX treated culture and represent relative quantities of nascent chains
produced by ribosomes associated with the ER-membrane for each gene. a. Translation of co-
translationally translocated proteins. b. Translation of post-translationally translocated proteins.

cons than those that enter post-translationally (Figure 2.4a,b and Table 2.1). While

the diversity of functions for proteins that enter the ER post-translationally is

relatively small (mostly of unknown function and then cell wall and membrane
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Table 2.1: Comparison of translocon demands by ontological function

Function Genes Nascent chainsa Ribosomesb

Co-translationally translocatedc

Function unknown 261 7.9% 10.7%
Cell wall/membrane/envelope biogenesis 41 7.4% 11.9%
Post-translational modification, protein turnover

and chaperones
89 6.8% 11.6%

Carbohydrate transport and metabolism 114 6.6% 9.5%
Intracellular trafficking, secretion and vesicular

transport
95 6.3% 7.4%

Inorganic ion transport and metabolism 82 4.9% 9.7%
Lipid transport and metabolism 72 3.8% 5.4%

Post-translationally translocatedd

Function unknown 30 33.4% 9.6%
Cell wall/membrane/envelope biogenesis 10 14.2% 8.9%
Post-translational modification, protein turnover

and chaperones
5 0.3% 0.2%

a Calculated as percent of total cTPM for all proteins predicted to be ER destined
b Calculated as percent of total cRPM for all proteins predicted to be ER destined
c Greater than 2-fold membrane enrichment and not mitochondrial
d Lesser than 2-fold membrane enrichment, not mitochondrial and contain a signal sequence

biogenesis), we find that post-translational translocation handles a majority of total

nascent chains entering the ER. These genes encode primarily small proteins such

as Scv12161.1p or cell wall proteins processed with GPI-anchors, such as SPI1.

Although its function is unknown, SPI1 is also predicted to be GPI-anchored, and

both SPI1 and SCV12161.1 produce among most nascent proteins within the cell

under conditions tested here. We then classified the genes of unknown function

that entered the ER by their predicted final location. The majority of these gene

products, approximately four fifths, are predicted to be localized extracellularily

and have an unusual discrepancy between their relative ribosomal usage, nascent

chains produced, and average gene length compared to unknown genes predicted

to localize elsewhere (Table 2.2).

54



Table 2.2: Biosynthetic demands for proteins with unknown ontological functions by predicted
subcellular localization

Location Genes Mean lengtha Nascent chainsb Ribosomesc

Co-translationally targetedd

Endoplasmic reticulum 113 446 7% 19%
Cell membrane 56 494 6% 15%
Lysosome/Vacuole 30 482 2% 7%

Post-translationally targetede

Extracellular 13 246 79% 44%
Cell membrane 9 267 2% 3%
Endoplasmic reticulum 7 453 0% 1%

a Calculated as the average number of amino acids
b Calculated as percentage of total cTPM for all proteins predicted to enter the ER
c Calculated as percentage of total cRPM for all proteins predicted to enter the ER
d Greater than 2-fold membrane enrichment and not mitochondrial
e Lesser than 2-fold membrane enrichment, not mitochondrial, and contain a signal sequence

2.3.2 Comparing the translational landscape of K. phaffii and S.

cerevisiae

Of the 5,329 K. phaffii genes annotated here, 73 % have a homolog in S. cerevisiae.

Unlike K. phaffii, S. cerevisiae is thought to have undergone a whole-genome duplica-

tion, and so many S. cerevisiae genes have paralogs.111 The influence of paralogy is

evident in how these two species allocate translational throughput. We calculated

cTPM and cRPM in S. cerevisiae using prior data acquired under similar growth

conditions.21,35 The overall distribution of cTPM by ontological category is similar

between species (Figure 2.5). Under the conditions tested here (glucose-containing

rich media), TEF1, encoding translational elongation factor 1 alpha, is the most

translated protein in K. phaffii. The TEF1 promoter is used to drive constitutive

expression in K. phaffii,112 and our results suggest that the native TEF1 ORF is trans-

lated more than the ORFs linked to other promoters used for expression in glucose,

such as GAP (here, TDH3) and PGK1.12 S. cerevisiae generates a similar amount
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Figure 2.5: Comparison of metabolic burden for K. phaffii and S. cerevisiae a. Total nascent chains
for K. phaffii. b. Total nascent chains for S. cerevisiae.

of nascent chains to the same function, but it does so using a combination of its

paralogous genes TEF1 and TEF2. Unsurprisingly, Crabtree-positive S. cerevisiae

generates three times more polypeptides involved in glycolysis and fermentation

than K. phaffii (e.g., ENO1/2, GMP1, FBA1, TDH2/3, TPI1, PGK1, PDC1, ADH1).
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Indeed, these two species also show divergence in energy production with

regards to co-translational mitochondrial import (Figure 2.6). Our subcellular frac-
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Figure 2.6: Correlation of membrane enrichment scores between K. phaffii and S. cerevisiae K.
phaffii used membrane enrichment scores from a biological replicate not treated with CHX and
S. cerevisiae used membrane enrichment scores from a biological replicate treated with CHX. a.
Enrichment scores restricted to non-mitochondrial signal sequence bearing proteins. Contrast
dots represent genes found in Table 2.3. b. Enrichment scores restricted to non-mitochondrial
transmembrane proteins. c. Enrichment scores restricted to mitochondrial proteins. d. Enrichment
scores restricted to cytosolic proteins.

tionation assay recovers all membrane-bound ribosomes, including those attached

to the mitochondria. A greater number of nuclear-encoded mitochondrial proteins

undergo membrane-localize translation in K. phaffii. Recovery of membrane as-

sociated mRNA strongly depends on active translation.21 Therefore, less active
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translation of mitochondrially destined proteins may become reflected in lower

membrane-enrichment scores.

We next asked whether ER translocation pathways are conserved between the

two species. Between homologs, membrane enrichment scores correlated with

a Pearson’s r of 0.85 compared to a Pearson’s r of 0.99 between K. phaffii repli-

cates (Figure 2.7). Genes encoding transmembrane proteins or cytosolic proteins
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Figure 2.7: Comparison of membrane enrichment between K. phaffii and S. cerevisiae a Compari-
son of membrane enrichment between K. phaffii replicates. b Comparison of membrane enrichment
between K. phaffii and S. cerevisiae.

which lack ER or mitochondrial targeting sequences had the highest correlation.

Signal-sequence bearing proteins, including GPI-anchored proteins, however, had

lower correlation (Figure 2.7a). There were several genes which only showed co-

translational membrane enrichment in one species, and in some cases this was
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Table 2.3: Membrane enrichment for secreted, lumenal and GPI-anchored proteins in K. phaffii
and S. cerevisiae

Gene Description K. phaffii S. cerevisiae

Increased enrichment
FLO9 Lectin-like protein, flocculin (isoform 2) 5.32 1.06
ZPS1 Putative GPI-anchored protein 5.80 2.54
SGA1 Sporulation-specific glucoamylase 4.49 1.32
BIG1 Cell wall beta-1,6-glucan level regulator 4.51 1.99
GDA1 Guanosine-diphosphatase 4.99 2.50
FLO9 Lectin-like protein, flocculin (isoform 1) 2.99 1.06

Decreased enrichment
YKL077W Uncharacterized protein 1.39 3.49
PDI1 Protein disulfide isomerase 2.21 4.35
MNL1 Uncharacterized protein 1.53 3.81
KRE5 Beta-1,6-glucan biosynthesis protein (isoform 2) 2.84 5.47

due to lost of a signal peptide in one of the homologs. The ten genes that showed

the greatest difference in magnitude, while still showing evidence for membrane

enrichment in both species, are reported in Table 2.3. Notably, this list includes PDI1,

encoding an ER lumenal protein-disulfide isomerase that is essential for ER home-

ostasis. Mitochondrially localized proteins have greater membrane enrichment in

K. phaffii, which may be related to the greater use of aerobic respiration compared

to S. cerevisiae (Figure 2.7c).

Finally, we explored the relationship between the burden imposed by production

of polypeptide chains (cTPM), ribosome demand (cRPM) and translocation pathway

(membrane enrichment score) for ER destined proteins within the two species

(Figure 2.8). In S. cerevisiae, most of these chains originate from a single gene,

CCW12, while in K. phaffii, there are a wider variety of genes, with SCV12161.1

being the most dominant. Strikingly, post-translational targeting is used for about

two-thirds of lumenal, secreted or GPI-anchored nascent chains in both species.

K. phaffii, however, is distinguished by at least one major cell wall protein, Pst1p,

which enters the ER co-translationally. In both species, Pma1p is the dominant
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Figure 2.8: Demands imposed on secretion pathway Black dotted lines represent membrane proteins
and blue solid lines represent secreted, lumenal or GPI-anchored proteins. Membrane proteins were
non-mitochondrial proteins that contained greater than or equal to two transmembrane domains or
had one transmembrane domain but do not have a predicted N-terminal signal sequence. Secreted,
lumenal or GPI-anchored proteins proteins were non-mitochondrial proteins containing a predicted
N-terminal signal sequence and less than or equal to one transmembrane domain. a Demands in K.
phaffii. b Demands in S. cerevisiae.
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membrane protein passing into the ER. In terms of ribosome sequestration, the

trend reverses; co-translational translocation is responsible for sequestering two

thirds of ribosomes used to produce secreted or GPI-anchored proteins. While

PST1 yields slightly more nascent chains than PMA1, PMA1 is more than twice as

long as PST1 and sequesters 1.36 times more ribosomes. Thus, PMA1 represents a

significant burden to the secretory systems of both S. cerevisiae and K. phaffii as it is

predicted to sequester more ribosomes, co-translational translocons, and lumenal

chaperones to synthesize and transport nascent chains into the ER.

2.4 Discussion

The yields of engineered, recombinant proteins are restricted by bottlenecks in

biogenesis.2 Certain bottlenecks are metabolic, including insufficient ATP or other

high-energy compounds, nucleotides for mRNA synthesis, amino acids, carbohy-

drates for glycosylation, and reducing equivalents. A promising systems-level ap-

proach to remove bottlenecks is to identify and delete host proteins with the greatest

demand for metabolic resources. Indeed, the Lewis lab has elegantly demonstrated

in CHO cells that deleting expensive proteins (in terms of ATP equivalents) increases

the yield of heterologous secreted proteins.26,107,108 Similar modeling of metabolic

demand has been performed by the Nielsen lab for the secretome of S. cerevisiae.106

Other bottlenecks are due to insufficient cellular protein biosynthetic machinery,

such as polymerases, ribosomes, translocons, and molecular chaperones. Focus-

ing on metabolic demand will likely relieve pressure on machinery with tightly

coupled–and therefore accurately predicted–energetic requirements (e.g., cycles of

translation elongation by the ribosome). However, it only approximates demand

for chaperones and translocons, which gate entry into the ER. Compared to tightly
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coupled complexes, chaperones and translocons are ambiguous in their energetic

demand. Chaperones perform cycles of binding and rebinding that depend on

the folding pathways of client proteins.113 Translocation into the ER is driven by

ATP-hydrolyzing chaperones, translation elongation, or a combination of the two in

a client dependent manner.114,115 Engineering of the early secretory pathway, such

as the optimization of signal sequences for protein targeting27 and reducing the

effect of the ERAD system,20 provides varying degrees of success. These approaches

are contingent on the complexity of the protein product and must be empirically

optimized.28,29 Our data and analysis may augment these efforts by accounting for

capacity of translation, co- and post-translational translocation.

Despite the ability of Ribo-seq to accurately quantify gene expression, our study

has several caveats that limit interpretation. First, we have only considered yeast

undergoing log phase growth in liter scale, aerated shaking cultures using rich

media. This design enabled comparison to several published data sets using S.

cerevisiae that were collected under identical conditions.21,35 We chose strain GS115,

a commonly used commercially available strain that is a histidine auxotroph (HIS4).

Even under rich media with abundant extracellular histidine, this auxotrophy

may influence gene expression compared to strains which supply His4p. Future

work involves quantifying demands at industrial scale in stirred bioreactors under

induction of a heterologous protein. Second, we assume that elongation rates are

relatively constant across genes. However, if the elongation rate is altered for a

transcript, it may result in greater or fewer ribosome protected reads. We argue

that on the whole, our assumption is valid, given that Ribo-seq accurately predicts

mature protein stoichiometry.35,116 Third, Ribo-seq does not account for protein

degradation; indeed, some proteins are co-translationally ubiquitinated.117 Our

results should therefore not be interpreted as revealing steady-state protein levels in
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K. phaffii. However, our goal was to quantify the costs of protein synthesis, and so

we argue that Ribo-seq is a more appropriate tool than mass spectrometry. Despite

these limitations, our approach allowed us to interrogate protein translocation into

the ER.

Most secreted proteins, including high-value targets like antibodies, will enter

the ER via a sec translocon.3 The translocon subunits Sec62p, Sec63p, Sec66p and

Sec72p are required for the translocation of certain proteins, particularly those

with shorter or less hydrophobic signal peptides.23,95,99 Molecular chaperones are

also implicated in protein translocation, through binding of proteins in the cyto-

plasm (Ssa1p)94 or the ER lumen (Kar2p).114 However, many gene products are

able to associate with more than one class of translocon.23,99 In addition, while

recent structural work suggests that the heptameric Sec61 complex cannot directly

bind a ribosome,25,118 there is a preponderance of evidence demonstrating that the

proteins dependent on this complex are translated at the ER membrane.21,23,98,119,120

Further, even if a protein does not strictly require particular machinery, like SRP,

it may nonetheless sequester it in vivo, reducing availability for proteins that do

require these factors.21,119 Because of these complexities, it is unsurprising that it has

remained difficult to precisely tune a translocon for a specific engineered protein.

Rather, optimization will likely require understanding the needs of the target, what

the target will sequester, and how this will relate to the balance of resources in the

host.

Our calculations for nascent chains produced, ribosomes used, and predicted

translocation pathways suggest that each gene presents a unique combination of

challenges to the cellular biosynthetic capacity. For instance, long, co-translationally

translocated proteins will impart little demand on cytoplasmic chaperones, but will

sequester ribosomes, translocons, and lumenal chaperones for extended periods
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Figure 2.9: Demands imposed by different translocation pathways a Co-translational translocation
of a long and short protein. Shorter proteins translate faster and allow resources to be released and
recycled. This allows shorter genes to use less resources to produce the same amount of proteins as
a longer gene in a given time. b Alternative pathway for co-translationally destined short proteins.
Genes that are too short to target to the ER in time may also use the post-translational pathway
for ER translocation. c Post-translational translocation of a long and short protein. Shorter genes
produce more nascent chains than a longer gene given the same amount of time and resources.
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of time (Figure 2.9a). However, because of sustained translation on the surface of

the ER, fewer instances of SRP targeting are required. A shorter co-translational

protein will require fewer ribosomes, translocons, and lumenal chaperones to

produce the same number of polypeptide chains. However, if the gene is short

enough to fail to sustain translation at the membrane (Figures 2.3, 2.9), then it

may require multiple rounds of SRP targeting to get there. If sufficient nascent

chains are exposed to the cytosol, the gene may also require cytosolic chaperones.

If translation terminates prior to membrane attachment, then post-translational

translocons may be needed as well. Long, post-translationally translocated pro-

teins will also sequester ribosomes, but will require both lumenal and cytosolic

chaperones (Figure 2.9c). There are few genes in K. phaffii in this category (Figure

2.3). Finally, short, post-translationally translocated proteins will sequester few ribo-

somes, no co-translational translocons, and some cytosolic and lumenal chaperones.

Our experimental approach cannot measure transit time through post-translational

translocons; we speculate that it will be correlated to polypeptide length.

Some resources used in biogenesis of ER proteins are dependent on chain num-

ber, rather than elongation time. For instance, GPI-anchored proteins each re-

ceive a single lipid anchor,121 retrograde transport is mediated by the K/HDEL

recognition,122 and protein sorting in the secretory pathway involves interactions

between cargo and receptors, such as Sec24p.123 In optimizing these systems, cTPM

may be the appropriate metric to consider, and strain engineering efforts could

focus on deleting or down-regulating highly expressed host proteins. In yeasts, GPI-

anchored cell wall proteins present the greatest burden by cTPM. Other aspects are

dependent on total polypeptide length, such as the potential ratcheting mechanism

provided by Kar2p during translocation.114 Although not considered here, cTPM

scaled by protein length may be the appropriate metric used in engineering. A
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third aspect is the availability of resources such as ribosomes or translocons, which

are sequestered while in operation. cRPM is an appropriate metric to understand

ribosome sequestration. For co-translational translocation, we propose that cRPM

could be used as a proxy, as one ribosome binds one translocon during import. In S.

cerevisiae and K. phaffii, expression of PMA1 appears to be a major ribosome sink,

and therefore also a translocon sink. In K. phaffii, PST1 is a second major sink for

ribosomes and translocons.

Although fungi are genetically and physiologically diverse, most mechanistic

knowledge about secretion is derived from studies in S. cerevisiae.3 Based on a recent

molecular dating using 332 genomes,124 K. phaffii and S. cerevisiae diverged roughly

230 million years ago, whereas the S. cerevisiae whole-genome duplication occurred

roughly 90 million years ago. Thus, sequence variation is found in nearly all of

the proteins conserved in the two species, and due to the paralogy in S. cerevisiae,

additional differences exist in the regulation of gene expression. Our comparison

of K. phaffii and S. cerevisiae suggests that the path a conserved protein takes to the

ER is not necessarily the same between species, even for essential genes critical to

health of the secretory pathway, like PDI1. However, we find that even though

the number and diversity of genes differ between the species, categorically there

is conservation in the biosynthetic demand. For instance, our data suggest that K.

phaffii can provide more nuanced engineering of the cell wall, as it is composed by a

greater number of genes. Optimizing fungal species separately may increase protein

secretion yields in ways not predicted through analysis of model organisms alone.

These results call for a more thorough understanding of industrially used fungal

secretion systems for rationally engineering cellular factories during bioproduction.
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2.5 Conclusions

Protein biogenesis is a complex phenomena that not only requires raw materials

(energy and amino acids), but also access to specialized cellular machinery. Our

analysis in K. phaffii reveals several principles about these pathways that will be

useful in strain engineering. First, we find that a small number of host genes are

responsible for most of the protein entering the secretory pathway. Second, GPI-

anchored protein components of the cell wall represent the greatest number of

nascent chains within the secretory pathway. Third, co-translational translocation

pathways must accommodate a wider set of proteins than post-translational path-

ways. Fourth, orthologs may enter the endoplasmic reticulum through different

translocation pathways. Finally, despite differences in the number of genes asso-

ciated with biological function, the amount of nascent chains entering the ER are

similar between K. phaffii and S. cerevisiae.

2.6 Availability of data and materials

The datasets generated and analyzed during the current study are available as NCBI

Bioproject PRJNA669501.
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Chapter 3

Identification of targets for rational

strain engineering in Komagataella

phaffii using ribosome profiling

Background: Biogenesis of heterologous proteins requires the harmonization of

biological machinery to synthesize, fold, traffic, and secrete proteins. However,

demands imposed by the host proteome present significant bottlenecks for het-

erologous proteins to undergo these processes. To understand these demands, we

quantified the translatome of Komagataella phaffii under heterologous conditions

involving growth on glycerol and methanol medias.

Results: We optimized ribosome profiling for studying translation in heterol-

ogous conditions using combinatorial ribosomal RNA depletion strategies and

develop an approach for differential expression analyses that relies on minimal

numbers of replicates. In using ribosome profiling, we quantified global and early

secretory demands before and after methanol induction in Komagataella phaffii GS115

MutS ALB and GS115 Mut+ strains. For global demands, both strains show distinct

68



patterns of translation initiation, elongation, and gene expression before and after

methanol induction that were indicative of oxidative stress responses. Surprisingly,

GS115 MutS ALB shows lesser expression of genes involved in the unfolded protein

response and endoplasmic reticulum associated degradation than GS115 Mut+.

Protein components of the cell wall represent the greatest number of nascent chains

entering the early secretory pathway for both strains. However, cell wall com-

ponents were significantly more expressed in GS115 MutS ALB than GS115 Mut+.

Additionally, the most highly expressed cell-wall components before induction

were distinct from those after induction.

Conclusion: Ribosome profiling requires condition specific optimizations to

capture translation most accurately. Oxidative stress may limit bioproduction of

albumin-like proteins more than heterologous folding stress. Bottlenecks involved

in methanol induced protein production may be alleviated by optimizing media

methanol concentrations, over expressing genes involved in combating oxidative

stress, and deleting host cell proteins that sequester the most biosynthetic resources

in the early secretory system.

3.1 Introduction

Engineering structurally and functionally diverse biologics such as enzymes, ma-

terials, and therapeutics is an essential task in biotechnology and the biophar-

maceutical industry.1 Biologic therapeutics represent the area of highest growth

in the medical industry5 and have the capacity to treat a variety of ailments in-

cluding but not limited to central nervous system disorders,125 inflammation,126

hypercholesterolemia,127 and infectious diseases.128 The ability to produce these

proteins remains difficult and is viable to the biogenetic capacity of production
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strains. Fungi are used as production strains because of their ability to grow rapidly

to high densities in inexpensive media, are easy to genetically manipulate, and have

the ability to post-translationally modify proteins.2,4

Komagataella phaffii stands out among the fungal kingdom for its ability to metab-

olize methanol as its primary carbon source using the alcohol oxidase (AOX) and

for the limited host proteins it naturally secretes into its media.11,105,129 Production

of AOX is constitutively expressed by AOX1 in the absence of glucose and the

presence of methanol.130 Industrial bioproduction in K. phaffii typically involves

growing cells in glycerol-based media before transferring them to methanol-based

media for heterologous induction.47,131,132 This process utilizes the AOX1 promoter

to precisely regulate the expression of heterologous proteins like human serum

albumin (HSA).13 HSA is moderately sized (~67 kDa) protein with semi-complex

folding requirements and is minimally glycosylated. As an industrially relevant

recombinant protein, HSA is a major protein component of human plasma and is

produced as a serum replacement product to maintain colloid osmotic pressure

within blood vessels. The cost and sophistication of producing HSA is reduced

if the host cell secretes it into the growth media as this simplifies downstream

purification.2,19,133,134 However, protein secretion is complex and viable to multiple

bottlenecks.

The first major bottleneck, protein trafficking through the endoplasmic reticulum

(ER), is complex and is the rate limiting step in protein production.20 Heterologous

trafficking is contingent on the recognition and binding of N-terminus hydropho-

bic motifs, signal sequences, by a signal recognition particle (SRP).135 SRP guides

the ribosome nascent chain (RNC) complex to the ER membrane where they as-

sociate with translocons by interaction of SRP’s cognate receptor and translocate

co-translationally.22 In S. cerevisiae, proteins translocate co-translationally using
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the hexameric and heterotrimeric Sec-translocon. Secreted proteins that fail to

translocate across the ER do not have access to ER-resident chaperones and do

not fold correctly. Protein folding is an ATP driven process that includes many

ER-resident proteins such as Kar2p, Scj1p, Pdi1p, Ero1p, and Jem1p. Access to

protein folding chaperones in K. phaffii is made more difficult as previous studies

show that an equal amount nascent polypeptides translocate across the ER co-

translationally and post-translationally.136 This is additionally problematic as the

heptameric post-translational Sec-translocon requires the same subunits as the hex-

americ Sec-translocon as well as an additional subunit. Misfolded proteins in the ER

are not transported to the Golgi and instead activate the unfolded protein response

(UPR). Proteins that activate the UPR are often destroyed using the ER-associated

degradation pathway (ERAD).137

As a strategy to improve secretion in K. phaffii, we propose the use of next

generation sequencing to study the translatome under heterologous conditions for

rational strain engineering purposes. We provide analyses of methanol metabolism

in K. phaffii for insights into process optimization. As well, we show which host cell

proteins sequester the most biogenetic machinery in the early secretory pathway

during heterologous expression. These insights are accomplished using ribosome

profiling (Ribo-seq) and ER trafficking predictions to produce data sets that reflect

prototypical variations in the translatome under heterologous conditions in wild-

type and HSA expressing strains. We provide a model for metabolic and secretory

demands by surveying proteins expressed globally and proteins that are predicted

to enter the ER co-translationally and post-translationally. Little is known of how

host protein synthesis changes under heterologous conditions and lesser is under-

stood how the cell manages resources to traffic and translocate engineered proteins.

Our experiments reveal novel insights into these conditions and may allow for
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a rational approach to widen secretion bottlenecks by providing new targets for

modification that would not have otherwise been predicted.

3.2 Materials and Methods

3.2.1 Strains and culture conditions

Assays were performed using GS115 Mut+ and GS115 MutS ALB.13

For each biological replicate, 200 mL liquid cultures of BMGY (1 % yeast extract,

2 % peptone, 100 mm potassium phosphate pH 6.0, 1.34 % YNB, and 1 % glycerol)

were grown to an OD600 nm of 5 at 30 °C with shaking in baffled 2 L flasks. Of this

culture, 100 mL were harvested by vacuum filtration through a 0.8 µm filter. Imme-

diately after filtering, cells were scraped off the filter using a chilled scoopula and

submerged in a 50 mL conical tube containing liquid nitrogen. The remaining liquid

cultures were split into two 50 ml conical tubes and were pelleted via centrifugation.

Supernatant was removed from each 50 ml conical tube. The cell pellet of one 50 ml

conical tube was gently resuspended with 40 mL BMMY without methanol (1 %

yeast extract, 2 % peptone, 1.34 % YNB, and 100 mm potassium phosphate pH 6.0).

Resuspended culture was used to resuspend the cell pellet in the second 50 ml

conical tube. Resuspended cultures were equally divided into two 280 mL cultures

of BMMY without methanol in 2 L baffled flasks for a final volume of 300 mL for

each sample. Methanol was added at 0.5 % to each of the baffled flasks for AOX1

induction. Flasks were allowed to shake at 30 °C and were collected in the manner

described above three and twenty-four hours after methanol induction (Figure 3.1).

Lysis buffers (50 mM MOPS, 25 mM KOH, 100 mM KOAc, 2 mM MgOAc, 1 mM

DTT, and 1 % Triton X-100) for each sample were frozen by adding 2 mL dropwise

72



to a 50 mL conical tube containing liquid nitrogen. For each sample, frozen cells

were mixed with 2 mL frozen lysis buffer. Cell fractions were pulverized for 2 min

in a 50 mL ball mill chamber with a single 2 cm steel ball (Retsch) and collected in

50 mL conical tubes. After thawing, lysates were centrifuged at 18 000 g for 10 min.

Supernatants were transferred to 1.5 mL conical tube and were further clarified by

centrifugation at 23 000 g for 20 min.

3.2.2 Ribo-seq

Lysed samples were nuclease digested using 40 U of Ambion RNase A for 1 h at

room temperature. Digested samples were layered on a 10 % to 50 % sucrose gradi-

ent prepared in 50 mM Tris pH 7.5, 200 mM NaCl, and 2 mM MgOAc case using a

Gradient Master (Biocomp). Gradients were centrifuged at 39 000 RPM for 2.5 h in

a TH-641 rotor (Thermo). After centrifugation, gradients were fractionated using a

Piston Gradient Fractionator (Biocomp) and monosome peaks were retained. Total

RNA was extracted using a standard phenol-chloroform method and alcohol precip-

itated. Ribosome protected footprints 18 nt to 34 nt were resolved and excised using

15 % polyacrylamide TBE-urea gel. RNA was collected from excised gel fragments

using RNA gel extraction buffer (300 mM NaOAc, 1 mM EDTA, and 0.25 % SDS),

precipitated, and resuspended in water containing 20 U mL−1 SUPERase · In.

Purified fragments were then dephosphorylated by incubating 2 µL 1 M RNA

sample with 2 µL RNase free water, 0.5 µL SUPERase · In RNase Inhibitor, 0.5 µL T4

Polynucleotide Reaction Buffer (PNK), and 0.5 µL T4 Polynucleotide Kinase at 37 °C

for 1 h. Dephosphorylated samples were linker ligated with adapter sequences

by incubating with 3.5 µL 50 % PEG-8000, 0.5 µL 10X T4 RNA Ligase Reaction

Buffer, 0.5 µL 10 µM adenylated linkers and 0.5 µL T4 Rnl2(tr)k277Q at 30 °C for
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Figure 3.1: Overview of heterologous expression and Ribo-seq Starter cultures were grown in
buffered glycerol media (BMGY). Approximately 1

3 of starter culture was collected via vacuum
filtration and flash freezing. The remaining 2

3 of starter culture was decanted before heterologous
induction using buffered methanol media (BMMY). Induced culture was split into equal volumes
before each subculture was collected 3 and 24 hours afterwards. Membrane-associated and cytosolic
ribosomes were isolated from cell lysates. Membrane-associated ribosomes include co-translationally
translocated proteins on the mitochondria and endoplasmic reticulum (ER). Cytosolic ribosomes
include intracellular proteins and proteins that post-translationally translocate into the ER. mRNA
footprint are isolated from ribosomes before Illumina sequencing. Ribo-seq libraries reveal host
protein synthesis under heterologous conditions.
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4 h. Linker-ligated samples were concentrated via isopropranol precipitation and

resolved using 15 % TBE-urea polyacrylamide gel. Imaged samples were diluted

and pooled to equivalent concentrations by their relative pixel intensities calculated

from BioRad imaging software after overnight extraction in RNA gel extraction

buffer.

Ligated and purified samples were rRNA depleted using streptavidin-coated

magnetic beads from the Ribo-Zero rRNA Removal Kit as recommended by man-

ufacturer. Depleted samples were precipitated, resolved using 15 % TBE-urea

polyacrylamide gel, and extracted as previously described.

RNA was reverse transcribed by adding 2 µL reverse transcription primer to

10 µL sample and incubating at 65 °C for 5 min to denature. Denatured sample was

then incubated with 4 µL 5X First Strand Buffer, 1 µL 10 mM dNTPs, 1 µL 10 mM

DTT, 1 µL 20 U µL−1 SUPERase · In and 1 µL 200 U µL−1 SuperScript II Reverse Tran-

scriptase at 50 °C for 30 min using thermal block. After incubation, sample was hy-

drolyzed by adding 2.2 µL 1 M NaOH and then incubated at 70 °C for 20 min using

thermal block. 28 µL RNAse free water was added to reverse transcription mixture

(~50 µL total) and concentrated using Oligoclean and Concentrator Kit. Concen-

trated RNA was then purified of reverse transcription primers using 12 % TBE-urea

polyacrylamide gel. RNA from gel slices was extracted using method previous

described. Extracted precipitants were resuspended in 11 µL 1:1000 SUPERase · In.

Single stranded cDNA samples were circularized by incubating 11 µL sample

in 2 µL CircLigase II 10x Reaction Buffer, 1 µL 50 mM MnCl2, 1 µL ATP, 4 µL 5 M

Betaine, and 1 µL 100 U µL−1 CircLigase II ssDNA Ligase at 60 °C for 3 h on thermal

block. The circularization process was inactivated by incubating sample at 80 °C for

10 min on thermal block.

Circularized samples were rRNA depleted, again, using probe-directed degra-
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dation via double stranded nuclease (DSN).138,139 Depletion probes were designed

using rRNA aligned Ribo-seq reads collected from GS115 MutS ALB cultured in

BMGY before methanol induction (Table 3.1). Circularized samples (10 µL) were in-

cubated with 4 µL 4x hybridization buffer, 1 µL 4x depletion probes at 200 µM, and

1 µL water. Mixture was denatured at 98 °C for 2 min and allowed to slowly anneal

at 65 °C for 5 h. Double stranded rRNA fragments were enzymatically degraded

by adding 2 µL 10x DSN master buffer, 1 µL DSN storage buffer, and 1 µL DSN

before incubation at 65 °C for 25 min. Reaction was stopped by adding 20 µL 10 mM

EDTA to DSN depleted sample mix. Samples were then purified using AMPure

XP beads. After DSN treatment, samples were digested using Exonuclease I to

degrade linearized DSN degraded DNA fragments as these may contain regions

complementary to PCR amplification primers. Samples were again purified using

AMPure XP beads.

Circularized samples were PCR amplified for 16 cycles using a 50 µL reaction

mixture (10 µL Q5 Reaction Buffer, 1 µL 10 mM dNTPs, 2.5 µL 10 µM forward primer,

4 µL circularized DNA sample, 0.5 µL Q5 High Fidelity DNA Polymerase and

29.5 µL RNAse free water) divided into 5 x 10 µL aliquots. Amplified sample

was resolved using 10 % non-denaturing TBE polyacrylamide gel and extracted

using previously described method. Libraries were quantified using Qubit 2.0

Fluorometer and sequenced using Illumina NextSeq.

3.2.3 Mapping of ribosome-protected reads to codons

Sequenced reads were trimmed and demultiplexed in an error-tolerant way using

Cutadapt.65,140 Reads were computationally rRNA subtracted by aligning them to

Komagataella pastoris GS115 genomic rRNA using HISAT2.56,66 Subtracted reads were
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mapped to the genome for Komagataella pastoris GS11546 using HISAT2 Sequence

alignment map (SAM) files were converted to sorted and indexed binary align-

ment map (BAM) files using Samtools and only included reads of high mapping

quality.67,141 Genomic alignments were loaded into R using the GenomicAlignments

package from Bioconductor.68 Genomic alignment ranges were converted to their 3’

end positions before determining p-site offsets. P-site offsets were determined using

the existing genome annotations136 and the RiboProfiling package in Bioconductor.69

Genomic alignment objects were used with p-site offsets to generate reads per codon

per gene (RPCPG) data tables.

3.2.4 Masking reads of ambiguously mapped codons

Codon masks were created by first parsing the coding sequence annotation file

associated with the reference genome into a fasta file simulating every possible

28 NT combination (approximate length of a ribosome protected mRNA fragment).

This fasta file was then aligned to reference genome twice, once to only include

reads with mapping quality greater than or equal to 60 (unambiguously assigned),

and another to include all reads (ambiguously assigned). Both alignment files’ were

used to generate RPCPG data tables using methods previously discussed. The

unambiguously assigned reads were subtracted from ambiguously assigned reads

and codons with a nonzero difference were included in mask. The first and last

five codons in genes’ open reading frames were masked to correct for variable read

quality at the beginning and ending of transcripts inherent to Ribo-seq.45
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3.2.5 Normalization and differential expression analysis

Read counts were normalized at the codon level using a metagene correction

strategy previously discussed in136 with some modification. Reads for the first

500 codon positions at the 5’end of all transcripts were scaled by their respective

codon-specific normalized metagene values. Normalized metagene values were

calculated for all codons in all ORFs and applied in the following manner: positions

1 to 100 were normalized with a rolling mean with a window of 10 codons and

positions 100 to 500 were normalized with a rolling mean with a window of 100

codons. Scaled reads per gene were calculated as the sum of a gene’s scaled codon

reads (codon positions less than or equal to 500) and unscaled codon reads (codon

position greater than 500).

Gene read count thresholds were calculated using an adapted method of Ingolia

et al..79 First, we summed the scaled reads per gene for each gene between biological

replicates. Each gene was grouped into 1 of 50 quantiles using the probabilistic

distribution of the summed scaled read counts between replicates. In calculating

the read count threshold for one replicate, the replicate’s scaled reads per gene were

normalized by the summed read count for their respective bin. The standard devia-

tion of normalized fractions across each bin were plotted against the summed read

value for each bin. Read count thresholds were calculated as the knee-point in the

exponential regression for this plotted curve. This process was repeated to calculate

unique read count thresholds for each biological replicate. Read count thresholds

were linearly regressed on the total reads for that replicate to conservatively predict

thresholds for all samples.

Scaled and filtered reads were normalized by their pseudo gene lengths (the-

oretical gene length minus number of masked codons) and sequencing depth to
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give corrected transcripts per million (cTPM). Genes were described as significantly

expressed if their cTPM values were among the upper 75th percentile of cTPM

values for that sample. For differential expression, genes were described by their

fold enrichment between samples if both samples had scaled read counts above

their respective read count thresholds. Fold enrichment scores were also used

to quantify differential expression between groups of genes categorized by their

ontological function. In cases where only one sample showed read counts above

their respective read count threshold, genes were simply described as enriched.

3.2.6 Classification of ORFs

Open reading frames for each genes were characterized using various predic-

tion softwares: clusters of orthologous groups were predicted using EggNOG

4.5,73 subcellular localization was predicted using DeepLoc,75 signal sequences

were predicted using SignalP 5.0,76 transmembrane domains were predicted us-

ing TOPCONS,77 and GPI-anchors were predicted using predGPI.78 ER-targeting

classifications were made for each gene using Ribo-seq data sets from subcellu-

larly fractionated GS115 Mut+ collected during log phase growth in YPD.136 These

data sets revealed expression from translating ribosomes in the cytosol and on

the membrane of the ER and mitochondria. The log2 ratio of cTPM scores for

genes in membrane and cytosolic fractions were used to generate membrane en-

richment scores. Membrane enrichment scores were used with protein sequence

predictions to determine which gene products are translocated into the ER co- and

post-translationally. Co-translationally translocated genes had greater than 2-fold

membrane enrichment. This classification was more broad to include membrane

proteins (containing more than two extracytoplasmic transmembrane domains),
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secreted proteins (containing an N-terminal signal sequence and at most one trans-

membrane domains near the C-terminus), and proteins without these features that

may target the ER using mechanisms involving the 3’UTR. Post-translationally

translocated genes show lesser than 2-fold membrane enrichment and contain a

predicted N-terminal signal sequence and less than or equal to one transmembrane

domain or a GPI-anchor at the C-terminus. Genes products that met these criteria

were filtered to remove those that were predicted to localize to mitochondria.

3.3 Results

3.3.1 Surveying translation with Ribo-seq

We used the high throughput technique Ribo-seq to measure protein synthesis

for GS115 Mut+ and GS115 MutS ALB cultures collected before, three hours after,

and twenty-four hours after methanol induction. Ribo-seq utilizes a non-specific

nuclease to degrade nucleic acids, including mRNA, that are not covered and

therefor protected by ribosomes. In order to sequence ribosome protected mRNA

fragments and reveal translational dynamics, ribosome derived RNA first needs

to be depleted. We found that previous strategies to remove rRNA contamination

in K. phaffii collected at log-phase growth in YPD media136 were not sufficient for

generating high quality Ribo-seq libraries where cells are collected at different

growth stages and in different media. Our datasets agreed with previous Ribo-seq

analyses79 and revealed that a subset of rRNA represented the majority of rRNA

contamination (Table 3.1). From the pre-induction sample, complimentary oligos

of this subset were used for probe-directed degradation using double stranded

nuclease (DSN). Using probe-directed DSN treatment, rRNA contamination was
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Table 3.1: Oligos designed for probe-directed degradation

Probe sequencea Read abundanceb

GTTGGTGCGTCTACGCATCTCCGAC 10,400,000
CCGTGGGTGAGACGGTCCTAAGGGC 1,400,000
CATACCCGTGAAAATTTGGTTTATT 1,000,000
TGTTATTCCCCCGCCCGTACTGACA 1,000,000
CAAAGAGGGTGATAGCCCCGTGGCA 760,000
CCTCCGCCCATTCTCAAACTTTAAA 600,000
AGGGCAGTAAAACCCGAAGAGCGTG 500,000
CAAAGAGGGTGATAGCCCCGTAGCA 450,000
TGTGTGGCGAAGACCTGCTTTAGTG 400,000
GAGTGTTCAAGGCAGTAGTTGAATA 300,000
ATACAGGGAGGGTGGGGTGAGT 300,000
CTAGACCCCCTCAGTGGGCCATTTT 300,000
GTTTAGTTCCATGAGGTAAAGCAAT 170,000
CGCCAAGGACGTTTTCATTAATCAA 165,000
ACTCTGGTGGAGGCCCGCAGCGGTT 130,000
TTATCGACCAACCCAGAACTG 95,000
CCATATCTAGCAGAAAGCACCGTTT 86,084
AACGGCGGGAGTAACTATGACTCT 75,000
AGAAACCTCCAGGCGGGGAGTTTGG 70,000
ATCGTTGCGAGAGCCAAGAGATCCG 566
a Complentary oligonucleotides to Ribo-seq sequences mapped most highly to GS115 rRNA
b Ribo-seq reads aligned to GS115 rRNA

reduced from 88 % to 10 % in the pre-induction sample, 87 % to 20 % in the 3 hour

post-induction sample, and 93 % to 62 % in the 24 hour post-induction sample.

Before induction and three hours after induction, nearly all reads mapped to open

reading frames (ORFs) as only 2 % of reads mapped to untranslated regions (UTRs).

Twenty-four hours after induction, however, we observed increased reads mapped

outside of annotated ORFs as nearly 7 % of reads mapped to UTRs. This was

particularly true for genes like GLN1 and GCN4 that have previously been shown

to have increased read density at 5’UTRs in response to stress79 (Figure 3.2).

Our data revealed genome wide coverage of expression as up to 96 % of K. phaf-

fii’s 5, 330 annotated protein-encoding genes were detected. Before making intra-

and inter-sample comparisons of expression levels, we first sought to normalize

reads (Figure 3.3). First, footprint sized fragments were used to generate compu-
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Figure 3.2: Ribosome abundance on transcripts under heterologous conditions Images are modi-
fied screen captures from Integrated Genome Viewer (MIT). All registers represent transcript reads
from GS115 MutS ALB cultures collected at different moments. The bottom band shows predicted
transcript boundaries for GLN1. The thick blue band shows the open reading frame (ORF) while the
thinner yellow band shows the untranslated regions (UTRs). a In the pre-induction sample cultured
BMGY media, the majority of reads map to ORFs. b Three hours after induction in BMMY media,
the majority of reads still map to ORFs. c After 24 hours of heterologous expression, a much higher
proportion of reads map to the 5’UTR.

tational masks for codons with a propensity to map to multiple locations of the

genome. Next, reads per codon for the first 500 codons were normalized in all genes

to account for positional counting biases in codons that were masked. Finally, we

determined gene read count thresholds for comparing expression between samples.

To calculate these thresholds, we used biological replicates in the GS115 MutS ALB

strain. In doing so, genes were binned according to the probabilistic distribution

of the summed read counts per gene between each replicate. Binned genes’ read

counts were normalized by the total read counts between both replicates. The stan-

dard deviation of each gene’s normalized reads with respect to their bin’s read count
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Figure 3.3: Determining reads per gene thresholds Biological replicates were used to determine
read count thresholds when comparing genetic expression between data sets. Total read counts per
gene were calculated by summing reads per gene for each replicate. Genes were binned according
to this total read count value. Replicate read fractions were calculated by dividing read counts per
gene by their bin value. Standard deviations of replicate read fractions were computed across each
bin. Standard deviations were fit to replicate reads per gene using a generalized exponential decay
model. Minimum read thresholds were calculated as the inflection point in this regressed curve.
When reads per gene are fewer than this threshold, counting errors predominate inter-replicate
variability. When reads per gene exceed this threshold, other sources of error predominate.

value was used to calculate read count thresholds necessary shown to reduce inter-

replicate variability. These thresholds were used to predict read count thresholds

for all samples (including those without replicates) as a function of their summed

reads. This conservatively calculated read count thresholds between 52 reads to

573 reads, where samples with greater total reads had greater count thresholds. This

criteria filtered approximately 1 % of total nascent chains calculated per sample.

3.3.2 Translational landscape under heterologous conditions

We used Ribo-seq to survey nascent chain production in GS115 Mut+ cultures

collected before methanol induction and 3 and 24 after methanol induction. We
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determined how cells differentially express proteins related to cellular processes and

signaling, information storage and processing, metabolism, and functions that have

yet to be characterized (Figure. 3.4). Summed nascent chain production for genes
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Figure 3.4: Nascent chains produced under heterologous conditions Nascent chain production is
compared in GS115 Mut+ cultured in buffered glycerol media (BMGY), and 3 hours and 24 hours
after induction using buffered methanol media (BMMY). The most significant genes differentially
expressed after 24 hours are those involved in metabolism and information storage and processing.

involved in cell processes and signaling is relatively conserved over time and is an

indication of these functions’ vitality. However, some genes involved in UPR like

IRE1 and HAC1 show 3.2-fold and 6.3-fold increased expression respectively after

24 hours of methanol induction. As well, the sum of nascent chains produced by

genes involved in ERAD show 1.-fold increased expression. From pre-induction to

24 hours after induction, the most significant changes in ontologically categorized

nascent chain production occur for those involved in information storage and

processing. Differential expression of these genes was predominated by those

involved in translation and ribosome biogenesis as their expression decreases by

76 % (Figure 3.5). Decreased expression of ribosomal proteins was accompanied by
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increased expression of RNA binding proteins like LHP1, where there was nearly

a 2-fold change. For metabolism, we find that differential expression is increased

across all genes but that those involved in the synthesis, transport, and catabolism

of secondary metabolites, lipids, and carbohydrates are most affected. While those

involved in amino acid transport and biosynthesis are not the most differentially

expressed as a whole, we do see differential expression for genes like GCN4, 20.6-

fold increase, and GLN1, 7.1-fold increase. After 24 hours of induction, the most

differentially expressed uncharacterized proteins are those predicted to localize

in the peroxisome, where energy production begins for methanol in the methanol

utilization (MUT) pathway.

In the MUT pathway, AOX is generated strictly in presence of methanol and

absence of glucose. While there are two genes that encode for AOX, the majority

of AOX activity in GS115 Mut+ is expressed through AOX1 as our datasets detect

32-fold greater expression from AOX1 than AOX2 after 24 hours of growth in

methanol based media. AOX is generated in the peroxisome and catalyzes the

breakdown of methanol into hydrogen peroxide and formaldehyde. We find 4.2-

fold increased expression of peroxisomal encoding genes after 24 hour growth in

methanol media. In the peroxisome, hydrogen peroxide is degraded into oxygen

and water by catalase (CTA1) which we see differentially expressed by 130.7-fold. As

hydrogen peroxide causes oxidative stress, we also observed increased expression

involved in oxidative stress responses for genes like YAP1, 5.3-fold, and GSH2,

12.6-fold. Formaldehyde is assimilated after converting to dihydroxyacetone (DHA)

and glyceraldehyde-3-phosphate (GAP) by dihydroxyacetone synthase (DAS1,

DAS2, and possibly TLK1). Our datasets show that translation of DAS2 occurs

more extensively than DAS1 as it produces 1.5-fold more nascent chains. Outside

of the peroxisome, formaldehyde is dissimilated into formate by formaldehyde
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Figure 3.5: Nascent chains produced under different conditions Nascent chain production is
compared in GS115 Mut+ cultured in buffered glycerol media (BMGY), and 3 hours and 24 hours
after induction using buffered methanol media (BMMY). Cells struggle to metabolize methanol
after induction and nearly all genes involved in metabolism are positively differentially expressed.
As this occurs, expression of genes involved in translation and ribosome biogenesis concomitantly
decreased.

dehydrogenase (FLD) and carbon dioxide by formate dehydrogenase (FDH) for

energy production. While we see a 19.3-fold increase in summed nascent chain

production for all genes involved in the MUT pathway, the greatest increases in
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expression are for FDH, AOX1 and CTA1 in that order.

3.3.3 Heterologous expression and host protein biogenesis de-

mands

We sought to understand how heterologous production affects host protein synthe-

sis by comparing translation in GS115 Mut+ and GS115 MutS ALB cultures. Prior to

heterologous induction, protein synthesis rates per gene are highly conserved be-

tween GS115 Mut+ and GS115 MutS ALB as they have a Pearson’s correlation of 0.97

(Figure 3.6). However, expression diverges significantly over time between the two
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Figure 3.6: Divergence of translational landscape after heterologous expression Prior to heterol-
ogous induction, nascent proteins produced per gene for GS115 Mut+ and GS115 MutS ALB are
highly correlated and have a Pearson’s R of 0.97. After heterologous induction with methanol media,
genetic expression diverges between the two strains where they have Pearson’s R correlations of
0.94 and 0.32 after 3 and 24 hours.

strains as they show Pearson’s correlations of 0.94 and 0.32 after 3 and 24 hours of

methanol induction. While both strains showed increased expression of metabolic

genes 24 hours after methanol induction, we observe 0.3-fold differences across

the board. Indeed, those involved in the MUT pathway were both more greatly

expressed over time but showed 0.2-fold differences in expression between GS115

Mut+ and GS115 MutS ALB. As methanol utilization produces hydrogen peroxide,
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genes associated with oxidative stress like CTA1 (0.2-fold), GSH2 (0.-fold), YAP1

(0.5-fold), GLR1 (0.5-fold), and peroxisomal proteins in general (0.3-fold) were all less

expressed in GS115 MutS ALB than they were in GS115 Mut+. The relative stoichiom-

etry of MUT pathway proteins were not largely changed, as GS115 MutS ALB’s

DAS1 and DAS2 showed a similar 1.5-fold difference in their relative expression

ratios as previously observed in GS115 Mut+. Trends of increased expression over

time but decreased expression of GS115 MutS ALB compared to GS115 Mut+ were

also shown for the UPR gene HAC1 (0.-fold difference), summed genes involved in

ERAD (0.-fold difference), and the amino acid biosynthesis genes GCN4 and GLN1

(0.-fold differences). However, some genes were opposite this trend. Those involved

in ribosome biosynthesis were negatively expressed over time in both strains but

showed 1.8-fold differences between strains. Grouped by their predicted localiza-

tions, extracellular proteins showed 3.5-fold differential expression between GS115

Mut+ and GS115 MutS ALB and represented the most changed group. A majority of

these proteins, 58 %, are involved in cell wall biogenesis or have unknown function

but have been previously speculated to be incorporated into the cell wall.136 Cell

wall biogenesis may challenge Sec-translocon availability as we also observe 3.9-fold

increased expression for genes encoding translocon subunits between strains.

Heterologous proteins traffic through Sec-translocons co-translationally while

host cell proteins may do so using co- or post-translational pathways. Each path-

way requires distinct translocons, and these translocons are composed of partially

overlapping sets of subunits, so we were interested in native proteins that use

each. We estimate 56 protein products to enter the ER post-translationally and

931 protein products to enter the ER co-translationally. Before induction, approx-

imately 13 % of nascent chains produced by each strain were predicted to enter

the secretory pathway. Of these proteins, there was a relatively equal amount that
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A B

Figure 3.7: Co-translational flux through the ER in GS115 Mut+ and GS115 MutS ALB 24 hours
after induction Non-mitochondrial proteins are predicted to enter the secretory pathway co-
translationally if they have greater than log2 membrane enrichment in YPD studies. Gene products
are grouped by ontological function using COG scores predicted by EggNOG v5.0. Cell sizes are
calculated using cTPM scores and represent relative quantities of nascent chains produced per gene.
a Co-translational trafficking in GS115 Mut+. b Co-translational trafficking in GS115 MutS ALB.

entered the ER co- and post-translationally. After 24 hours of methanol induction,

each strain produced a greater but relatively equivalent amount of the nascent

89



chains predicted to enter the early secretory pathway, approximately 16 %. How-

ever, the ratio of nascent chains entering the ER co- and post-translationally greatly

diverges between strains as 32 % were predicted to enter post-translationally for

GS115 MutS ALB while only 5 % were predicted for GS115 Mut+. Extracellular

and membrane proteins represented the majority, 92 %, of the 6.6-fold difference

in nascent chains predicted to enter the ER post-translationally between strains.

While GS115 MutS ALB and GS115 Mut+ both show approximately 2-fold increased

expression of co-translationally translocated proteins after 24 hours, the genes that

are differentially expressed between the two strains appear to be much different

(Figure 3.7). The most differentially expressed of these proteins are HRD3, involved

in ERAD, and LAS21, involved in GPI synthesis, as they show 54-fold and 3-fold

increased expression in GS115 MutS ALB than GS115 Mut+.

We asked which host cell proteins might limit entrance of heterologous pro-

teins into the ER by sequestering the most Sec-translocons at different stages of

heterologous expression in GS115 MutS ALB. In generating a “hit list” of host cell

proteins, we were interested in those that may limit bioproduction so we excluded

ER-resident proteins as their deletion potentially harms folding and secretion of

heterologous proteins. The variety and difference in levels of nascent chains enter-

ing the secretory pathway after methanol induction are greater for those entering

co-translationally than those entering post-translationally (Table 3.2). For nascent

chains that enter the ER co-translationally, a mixture of both membrane and secreted

proteins represent those that are the most highly expressed. Before methanol induc-

tion, the most highly expressed co-translationally translocated proteins are PST1,

PMA1 and BGL2. PST1 and BGL2 are non-essential secreted proteins involved in

cell wall maintenance. PMA1 is a long-lived essential membrane protein involved

regulating cytoplasmic pH. After methanol induction, the most highly expressed
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Table 3.2: Host cell proteins that sequester the most Sec-translocons in GS115 MutS ALB

Gene Description Classification Nascent chains
(cTPM)

Pre-induction
Co-translationally translocated a

PST1 Cell wall protein Secreted b 1,676.0
PMA1 Plasma membrane H+-ATPase Membrane c 1,103.0
BGL2 Endo-beta-1,3-glucanase Secreted 1,057.0

Post-translationally translocated d

SCV12161.1 Uncharacterized protein Secreted 12,800.0
XP_002494332.1 Uncharacterized protein Secreted 12,292.0
SPI1 GPI-anchored cell wall protein Secreted 11,689.0

24 hour post-induction
Co-translationally translocated

GAL2 Low affinity glucose transporter Membrane 6,304.0
YDR134C Putative lectin-like protein Secreted 5,366.0
ADY2 Acetate transporter (isoform 4) Membrane 4,431.0

Post-translationally translocated
SPI1 GPI-anchored cell wall protein Secreted 12,469.0
XP_002494332.1 Uncharacterized protein Secreted 12,154.0
SCV12161.1 Uncharacterized protein Secreted 11,447.0

a Membrane enriched
b Contains signal sequence and one or lesser transmembrane domains (TMD)
c Contains signal sequence and more than one TMD or no signal sequence and one TMD
d Not membrane enriched, contains signal sequence or C-terminal GPI anchor

co-translationally translocated proteins are GAL2, YDR134C, and ADY2. GAL2 and

ADY2 are non-essential membrane proteins involved in carbohydrate import and

acetate transport respectively. YDR134C is a non-essential secreted protein involved

in cell wall maintenance that is homologous to S. cerevisiae’s paralog of CCW12. For

nascent chains that enter the ER post-translationally, the most highly expressed

proteins are secreted and remain conserved before and after induction and are SPI1,

XP_002494332.1, and SCV12161.1. These proteins are relatively small and are likely

non-essential cell wall constituents as they are predicted to localize extracellularily.
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3.4 Discussion

The yields of heterologous protein products in yeasts often suffer from bottlenecks

in biogenesis.2,142 Current methods for increasing heterologous production are wide

ranging and include optimization of growth conditions143,144 including optimization

of methanol concentration for producing different protein products in K. phaffii,11

modification of mRNA structural elements,145 engineering signal sequences,146,147

and modification of genes involved in the secretory pathway.148–150 While these

strategies improve secretion, increases in production titers are incremental and

optimizations that work well in one condition may not work well in others.151,152

We hypothesize that cells’ biogenetic machinery has co-evolved under the demands

of their own proteome. Understanding how a production chassis’ uniquely derived

protein expression system operates under heterologous conditions may provide

unique insight to improve bioproduction.153,154 In K. phaffii, transcriptomic studies

have been used to identify gene targets differentially expressed during heterologous

production that may be overexpressed to improve bioproduction;155 many of these

genes like vacuolar VMA3, golgi COG6, and COPII vesicle SEC31 were also differ-

entially expressed between GS115 Mut+ and GS115 MutS ALB in our study. Other

studies in K. phaffii have shown that increased heterologous expression in lower

temperature conditions were due to lesser expression for genes involved in the

UPR and not to increased heterologous expression.48 We aimed to use -omics based

approaches so that we may identify bottlenecks that may hinder bioproduction in

our conditions.16,93,156 Indeed, researchers have recently calculated host proteome

biosynthesis demands in Chinese hamster ovary cells grown under heterologous

conditions for the guided depletion of non-vital mRNA to enhance growth rate,

improve product quality, and increase protein secretion.26,108
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Ribo-seq is a high throughput sequencing technique to measure protein syn-

thesis levels by inferring ribosome abundance at each codon in each transcript.80

As a metric tool, Ribo-seq more closely correlates with standard proteomics than

RNA-seq32 and is much higher throughput than mass spectrometry while maintain-

ing the ability to accurately predict mature protein stoichiometry.35,116 The utility

of Ribo-seq is not without inherent complications. Isolation of ribosome protected

mRNA footprints requires rRNA subtraction techniques that are multitudinous

in their variety.36,139,157,158 We present an rRNA subtraction technique that utilizes

commercially available depletion agents159 and probe-directed degradation with

DSN.158 This rRNA subtraction pipeline shows great success compared to yeast

studies using other strategies.37,160 However, the time required for sterile-filtration

before flash freezing varied between samples as they were collected at different

culture densities and with different amounts of secreted proteins in their media.

Ribosome integrity likely also varied as rRNA subtraction was more efficacious

for samples with filtration times and culture densities similar to the sample that

the depletion probes were designed against.39 Variable ORF sequencing depth be-

tween samples is consequential to non-uniform rRNA subtractions and complicates

differential expression analysis.

Common differential expression tools like DESeq2 and edgeR normalize read

counts without considering transcript length and assume that most genes are not

differentially expressed between biological replicates.161,162 This is not ideal for

complex Ribo-seq studies with few or no replicates that aim to quantify nascent

polypeptide chain synthesis and their biogenesis demands. Given that most genes

are translated at similar rates,116 calculating nascent chain synthesis requires tran-

script length considerations as shorter transcripts may express more nascent chains

than longer transcripts given the same time constraints and ribosome availability.
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The number of nascent chains dictates levels of sequestration for biogenesis factors

used in the secretion pathway like GPI-anchors,121 receptor-mediated transport

proteins,122,123 and translocatory ratcheting proteins located near Sec-translocons.114

Transcript length corrections are not trivial, however, as Ribo-seq library prepa-

ration collects ribosomes unevenly along transcripts.79,91 This is ameliorated at

the codon level, where Ribo-seq reads are scaled using metagene corrections to

computationally distribute them more evenly along transcripts35,136 to better cor-

relate with protein abundance.38 We present a novel method for calculating read

count thresholds in differential expression analyses that does not require biological

replicate for each sample, though at least three biological replicates are needed, and

uses metagene-scaled reads. This method utilizes a quantile regression similar to

other normalization techniques163,164 and relies on two assumptions: inter-replicate

variability is asymptotic at higher read counts38 and that inter-replicate variability

is linearly related to sequencing depth.165,166 Intra- and inter-sample comparisons

were made after normalizing for transcript length and sequencing depth using a

modified form of the transcripts per million (cTPM) metric.136

In K. phaffii, industrial bioproduction typically relies glycerol-based media for

cell growth and methanol-based media for heterologous induction.47,131,132 We com-

pared host protein synthesis between GS115 Mut+ and GS115 MutS ALB under

these conditions. While both strains are histidine auxotrophs, GS115 MutS ALB is

complemented with Saccharomyces cerevisiae derived HIS4. Differential expression

between strains in this regard, however, is not likely significant as glycerol- and

methanol-based medias used in this study are histidine sufficient. The most sig-

nificant difference between the two strains is that GS115 Mut+ and GS115 MutS

ALB metabolize methanol at different rates. Methanol is utilized as a substrate for

energy production using AOX generated by AOX1 and/or AOX2. In MutS strains,

94



AOX production relies solely on AOX2 expression as AOX1 is disrupted. Therefor,

growth in methanol media is slower for MutS than Mut+ as AOX is produced solely

from AOX2, which is expressed to a lesser extent than AOX1.15 Many heterologous

proteins are ideally expressed and glycosylated using the AOX1 promoter.167 For

these proteins, higher production titers are observed in the slow growing MutS

strain than the fast growing Mut+ strain.168 Observing protein synthesis of both

strains under these conditions provides insight into possible strategies for strain

engineering.

During the first step in the MUT pathway, peroxisomal AOX generates high

levels of H2O2 during methanol catalysis. We find that methanol metabolism leads

leads to increased expression of YAP1 and GSH2, where YAP1p is a required tran-

scription factor for GSH2 which expresses glutathione in the glutathione redox

system.169 These findings are accompanied by increased expression of genes like

GCN4 and GLN1 whose products import amino acids constituent of thiol-containing

peptides involved in redox reactions.170,171 While RNA-seq has been used to study

oxidative stress responses proceeding methanol metabolism,172 Ribo-seq is a more

sensitive and appropriate tool for quantifying protein levels as oxidative stress

increases the frequency of post-transcriptional modifications.32,173 For instance,

RNA-seq finds DAS1 and DAS2 equally expressed after methanol induction168

while Ribo-seq shows DAS2 to be more highly expressed than DAS1. Ribo-seq

also reveals translational dynamics that indicate methanol induced oxidative stress

responses. At many loci, we observe translation initiation events upstream ORFs

at 5’UTRs after methanol induction similar to other studies of H2O2 treated yeast

cultures.173 As well, our analyses are congruent with previously observed reductions

in protein synthesis rates consequential to oxidative stress174 as we find decreased

expression of genes encoding ribosome proteins and increased expression of genes
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encoding RNA-binding proteins thought to stabilize slowly translating transcripts

from degradation.175 Together, we find GS115 MutS ALB less affected by methanol

induced oxidative stresses than GS115 Mut+, likely due to lesser AOX expression

and subsequently lesser H2O2 generation. Compared to GS115 Mut+, GS115 MutS

ALB also shows lower overall expression levels for genes involved in the UPR and

ERAD. As heterologous production results in greater expression of these genes,48

and only GS115 MutS ALB expresses heterologous proteins between the two strains,

the potential ramifications that methanol induced oxidative stresses have on biopro-

duction can therefor be seen as significant. Engineering oxidative stress response

pathways in K. phaffii is appropriate for increasing methanol induced bioproduction.

Indeed, overexpressing stress response proteins has been previously been shown to

lower the UPR response while increasing secretion.154,169

We sought to understand how heterologous production affects early secretory

trafficking of host cell proteins. Highly expressed host cell proteins that enter the

early secretory pathway sequester biogenesis machinery that are limited in number

and processivity which may limit heterologous secretion. Host cell proteins may en-

ter the early secretory pathway co-translationally or post-translationally depending

on their protein sequence features and translational dynamics. The majority of pro-

teins using co-translational pathways are SRP-dependent and contain hydrophobic

targeting sequences like transmembrane domains,176 N-terminal signal sequences,99

and/or glycosylphosphatidylinositol (GPI) anchors.95 SRP is often pre-recruited

to the ribosome nascent chain complex (RNC)177,178 and thus binds quickly to an

emerging hydrophobic targeting sequence.21 Some proteins do not utilize hydropho-

bic targeting domains for co-translational translocation and are guided to the ER

using mechanisms involved the 3’UTR of their protein encoding transcripts.179 Some

proteins containing N-terminal signal sequences complete translation before they
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have time to reach the ER180 and are instead translocated post-translationally.181

These proteins typically contain few amino acids.21 For proteins that do not contain

an N-terminal signal sequence, GPI anchors at the carboxyl terminus allow them

to translocate post-translationally in an SRP-independent manner.95 As proteins

with similar features can enter the ER co- and post-translationally, we used protein

sequence features as well as Ribo-seq reads from cytosolic and membrane bound

ribosomes in GS115 Mut+ cultured in YPD136 to predict their trafficking pathways.

The assumption that proteins translocate similarly under heterologous conditions

relies on two previous observations: K. phaffii’s secretome does not change with dif-

ferent carbon substrates105 and that proteins’ ER translocation routes are contingent

on their sequence features and constituent number of amino acids.21,136

In comparing GS115 Mut+ and GS115 MutS ALB, the percentage of nascent

chains predicted to enter the ER similarly increased after 24 hours of methanol

induction. However, a significantly greater number of cell wall and membrane

nascent chains entered the ER for GS115 MutS ALB. The molecular organization of

the cell wall is dynamic. The mechanical strength of the cell wall is largely due to

the inner layer consisting of β 1,3-glucan and chitin.182 The outer of layer of the cell

wall consists of glycosylated mannoproteins covalently linked to the β 1,3-glucan-

chitin network directly or disulfide bound to other cell wall proteins. Cell wall

mannoproteins affect stability and resistance to stress.183–185 As the extracellular

and membrane proteins that largely constitute differences between strains are not

those shown to be inductively expressed from oxidation,186 it would appear that

reorganization of GS115 MutS ALB’s cell wall is instead consequent to stresses im-

posed by heterologous secretion. Therefor, the most highly expressed cell wall and

membrane proteins entering the ER at different stages of heterologous expression

offer novel insights for improving secretion.
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While the diversity and number of post-translationally translocated nascent

chains do not appreciably change after induction, their expression levels are

amongst the highest observed. Of this group, SPI1 is consistently one of the

most highly expressed proteins136,187,188 in K. phaffii. As such, the signal sequence

of SPI1’s paralog, SED1, has successfully been used to increase secretion of β

-glucosidase and endoglucanase-II.189 Before induction, the most highly expressed

co-translationally translocated gene products are from PST1, PMA1, and BGL2.

Interestingly, overexpression of RPP0 has been shown to increase heterologous

secretion by mechanisms suspected to decrease PMA1 expression.190 After

induction, the most highly expressed co-translationally translocated gene products

are from GAL2, YDR134C, and ADY2. As galactose is preferentially incorporated

into cell wall glucan over glucose,191 we speculate that GAL2 is differentially

expressed secondary to increased overall expression of cell wall mannoproteins.

This is particularly advantageous for strain engineering under the heterologous

conditions used for this experiment as methanol media does not contain galactose

and GAL2 disruption should not affect cell growth or viability. For K. phaffii

cultured in methanol media, depletion of available methanol as a carbon substrate

induces ADY2 and the subsequent uptake of lactic acid for energy production.192,193

This may indicate that GS115 MutS ALB may benefit from greater than 0.5 %

methanol concentrations or more frequent than once daily methanol spikes for

greater bioproduction. Previously, disruption of the cell wall mannoprotein

encoding gene, CWP2, increased heterologous secretion coincident to increased

expression of genes involved in ribosome biogenesis and decreased expression of

cell wall protein encoding genes like SED1 and CCW12 (paralogous to YDR134C in

S. cerevisiae).194 While future studies are required to elucidate the mechanisms, the

cell wall mannoprotein encoding genes SPI1 and YDR134C are viable targets for
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improving HSA secretion in K. phaffii cultured in methanol media.

3.5 Conclusions

Heterologous production is a complex phenomena that requires translational and

secretory machinery that is limited in number and processivity. Our analysis in K.

phaffii reveals invaluable insights into these conditions that are useful for process

control and strain engineering. First, Ribo-seq is a powerful tool for surveying host

proteome demands and requires semi-specific rRNA reduction strategies inherent

to different conditions. Second, heterologous conditions involving methanol in-

duction require tightly regulated levels of substrates and can be further improved.

Third, host protein flux through the ER change in response to heterologous protein

production. Finally, the variety and levels of host proteins entering the secretory

pathway are unique to different stages of heterologous expression.

99



Conclusion

Therapeutic biologics are enormously useful and the scope of their utility continues

to grow. However, biologics are among the most expensive treatment options avail-

able today. Expenses associated with producing biologics trickle down to patients

in magnitudes that become prohibitive in developed and especially developing soci-

eties. As such, a great deal of progress has been made to improve our understanding

of biogenesis networks so that production chassis can be more efficiently levied to

produce proteins with greater yields. The majority of these efforts have been made

in model organisms grown under conditions not utilized for heterologous protein

production. This is problematic, as the range of tractable species used as microbial

cell factories continues to expand. Organisms’ uniquely derived proteomes evolved

under the demands of their ecological niche, and strain modifications that improve

bioproduction in one organism do not transfer in their efficacy to another. Even

within the same organism, strain modification that improve bioproduction in one

condition are also not necessarily transferable to others. Thus, technologies and

strategies to improve our understanding of host expression systems for rational

strain engineering needs to be high throughput and adaptable to lesser understood

organisms. The work presented in this dissertation utilizes ribosome profiling

(Ribo-seq) as a tool to identify rational targets in Komagataella phaffii for increased

bioproduction.
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In chapter one, we develop a Ribo-seq pipeline for quantifying protein synthe-

sis in non-model organisms that includes library preparation, genome annotation

corrections, computation masking, and analysis. While the method for preparing

Ribo-seq libraries was certainly not pioneered in this study, several adaptations

were made to an existing library preparation protocol from Nicholas Ingolia’s re-

search group37 to include more recent advancements and findings in nucleic acid

research. These included modifications to cell lysis, sucrose gradient analysis for

optimization of nuclease digestion, ligation of adenylated linkers, reverse transcrip-

tion, and preliminary read processing. The library preparation strategy yielded

libraries with great fidelity and revealed that Illumina’s Ribo-Zero Gold kit for

rRNA reduction designed for S. cerevisiae was sufficient for reductions in K. phaffii

collected under the conditions used in this chapter. However, it is worth noting that

Illumina’s Ribo-Zero Gold kit for rRNA reduction is not effective for all ascomycetes.

While it was not discussed in this dissertation, we also used the described library

preparation strategy in Yarrowia lipolytica, Trichoderma reseii, and Ogatae polymorpha.

For these organisms, rRNA contamination was significant (greater than 95 %) and

likely a result of lower degrees of homology with S. cerevisiae and/or ribosome

translocation differences leading to nuclease generated rRNA fragments that es-

cape Illumina’s reduction kit. Indeed, this is the most limiting factor in Ribo-seq

non-model organisms. We recommend using our library preparation protocol

for one sample followed by sequencing with lesser read depth than HiSeq4000 or

NextSeq (Illumina sequencing instruments used for this dissertation) using Illumina

MiSeq. Sequenced reads may then be used for designing complementary probes for

targeted depletion with DSN as discussed in chapter three.

After development of the library preparation protocol, we found many loci

where Ribo-seq derived translational start and stop sites disagreed with prior an-
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notations. Since the length of a transcript is a critical parameter in interpreting

Ribo-Seq, improperly annotated translational start and stop sites lead to inaccurate

protein synthesis calculations. Evidence based modeling is ideally used for generat-

ing genome annotations as de novo gene predictors often misannotate open reading

frame boundaries and do not recognize very small genes, especially for organisms

like K. phaffii with tightly packed genomes. However, previous studies in K. phaf-

fii were previously limited to genome and RNA sequencing. We used Ribo-seq

(evidence for demarcating open reading frames) and long read RNA sequencing (ev-

idence for demarcating untranslated regions) to improve K. phaffii GS115’s genome

annotation. This new genome annotation led to better protein sequence feature

predictions, expanded previous genome annotations by several hundred genes, and

have been made publicly available on NCBI for other researchers to use. As such,

this strategy would also greatly benefit research for other non-model organisms

where genome annotations are curated using lesser sequencing based evidence than

K. phaffii’s previously was.

Ribo-seq reads are small and are susceptible to mapping to multiple locations in

K. phaffii’s tightly packed genome. We improved upon previous strategies to com-

putationally mask individuals codons that map to multiple locations in the genome.

This reduced biases inherent to canonical methods that either discard or randomly

assigned mapped reads. However, as Ribo-seq disproportionately maps reads at

the beginning of transcripts, masked codons located at the beginning of a gene will

disproportionately affect gene read counts than masked codons at the end of a gene.

We developed a metagene correction strategy to computationally distribute reads

more evenly along transcripts and ameliorate for codon mask location biases. In

doing so, we used metagene correct read counts and the ratio of masked codons

per gene to create novel metrics to quantify nascent chain production and ribosome
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sequestration. While ribosome distribution biases are widely observed in Ribo-seq

experiments, we observe varying degrees of distribution imbalances contingent on

the library preparation technique used. Ribo-seq experiments would benefit from a

formal comparison of current approaches’ effects on ribosome distributions along

transcripts. An optimized strategy would ideally capture ribosome distribution

imbalances secondary only to ribosome stalling and elongation rate changes. This

would greatly improve our understanding of how different conditions affect genes’

translational dynamics.

In chapter two, we use the Ribo-seq pipeline from chapter one with subcellular

fractionation to quantify demands on co- and post-translational ER translocation

pathways. Cells are a crowded environment comprised of thousands of endogenous

proteins. Therefor, isolating a heterologous protein is greatly simplified (in both

procedural complexity and cost) if it is secreted into the host media. However, entry

into the early secretory pathway has been shown to be the rate limiting bottleneck

in heterologous secretion. Subcellular fractionation allowed us to capture actively

translating ribosomes in the cytosol and on the membrane of the endoplasmic

reticulum. We used the log2 ratio of Ribo-seq reads from membrane and cytosolic

samples cultured in YPD to calculate membrane enrichment scores for each gene

product; these enrichment scores were used to categorize those co-translationally

translocated. As well, genes that were predicted to enter the secretory pathway

based on protein sequence features but failed to do so were categorized as post-

translationally translocated. Highly expressed proteins that enter the endoplasmic

reticulum through these pathways sequester biogenesis machinery limited in num-

ber and processivity. Host sequestration complicates heterologous translocation

into the endoplasmic reticulum and is therefor a significant contributor to the early

secretory bottleneck.
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For K. phaffii and S. cerevisiae, we found that a small number of host genes are

responsible for most of the proteins entering the secretory pathway. Of these genes,

GPI-anchored protein components of the cell wall represent the greatest number of

nascent chains within the secretory pathway. We also show that co-translational

translocation pathways in general must accommodate a wider variety of proteins

than post-translational pathways but that the number of proteins entering each

pathway is approximately equal. In both strains, a protein’s propensity to translo-

cate into the endoplasmic reticulum co-translationally was show to be contingent on

the number of its constituent amino acids. In contrasting K. phaffii and S. cerevisiae,

we show that orthologs may enter the endoplasmic reticulum through different

translocation pathways. As well, the most highly expressed genes whose products

enter the endoplasmic reticulum co- and post-translationally was distinct for each

organism. Thus, we show that while there are similarities in the expense of bio-

genetic resources needed to translocate proteins through the endoplasmic reticulum,

there are distinct differences in the set of proteins that sequester the most of those

resources between organisms. These differences help to explain why host modifica-

tions that are effective for increasing secretion in S. cerevisiae are not as effective in K.

phaffii. Future work would benefit by comparing translocation pathways for genes

of the same strain grown under different conditions. Elucidating differences in

translocation pathways for same genes would greatly increase our understanding

of endoplasmic reticulum targeting mechanisms.

In chapter three, we use the Ribo-seq pipeline from chapter one along with K.

phaffii’s translocation pathway characterizations from chapter two to characterize

host proteome demands of cultures grown under heterologous conditions. In K.

phaffii, industrial bioproduction typically relies on large scale growth in glycerol

media before transferring cells to methanol media for heterologous expression
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under the control of the AOX1 promoter. Two commonly used strains for this

purpose are GS115 Mut+ and GS115 MutS. The Mut+ strain produces AOX using

AOX1 and AOX2 whereas the MutS strain produces AOX using only AOX2, the

constitutively less active gene. As such, the Mut+ strain produces more AOX per unit

time than MutS, thus allowing it to grow more quickly secondary to its higher rate

of methanol utilization. Despite this, the MutS strain produces greater protein yields

than the Mut+ strain. We compared the translatomes of GS115 Mut+ and GS115

MutS ALB before and after methanol induction. In doing so, we further optimized

our Ribo-seq pipeline by incorporating more effective rRNA depletion strategies

than those commercially available and by developing a technique requiring minimal

biological replicates to determine read count thresholds for differential expression

analysis. This allowed us to answer two fundamental questions whose answers

provide great insight into identifying gene targets to rationally engineer K. phaffii for

increased bioproduction. Why does the slower growing MutS strain produce greater

heterologous yields than its faster growing counter strain? How does production

and secretion of heterologous proteins affect host protein synthesis and endoplasmic

reticulum trafficking?

In answering our first question, we show that the MutS strain may express

greater levels of heterologous proteins than the Mut+ strain for reasons other than

previously hypothesized explanations that the full force of its AOX1 promoter is

put solely towards heterologous expression. As Mut+ strains generate more AOX

than MutS strains, and AOX catalyzes methanol into formaldehyde and H2O2, we

found that the Mut+ strain also showed greater signs of oxidative stress than the

MutS strain. This occurred for nearly every oxidative stress marker we could detect

using Ribo-seq including translation initiation discrepancies, slower translation

elongation rates, increased expression for genes involved in oxidative stress re-
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sponses, the unfolded protein response, and endoplasmic reticulum associated

degradation, and significantly decreased expression of genes involves in translation

and ribosome biogenesis. While these markers were also observed in MutS, the sig-

nificant difference in their intensity compared to the Mut+ strain begins to explain

differences in their known production titers. From these findings, we recommend

overexpressing genes involved in handling oxidative stress (such as those involved

in the glutathione redox system) for heterologously producing K. phaffii cultured

in methanol conditions. As well, our findings also indicated that K. phaffii MutS

strains would benefit from greater methanol concentrations in their growth media

than Invitrogen recommends in their catalog as they also differentially expressed

genes indicative of carbon substrate deficits after 24 hours of growth in methanol

media. In answering our second question, we find protein components of the cell

wall to represent the greatest number of nascent chains entering the endoplasmic

reticulum for both strains. However, flux through the endoplasmic reticulum was

greater for GS115 MutS Albumin than GS115 Mut+. Additionally, highly expressed

cell-wall components entering the endoplasmic reticulum before induction were

distinct from the most highly expressed cell-wall components entering the endo-

plasmic reticulum after induction. Our analysis indicated genes for rational strain

engineering that would have not been predicted using other methods.

The methodologies described in this dissertation offer an optimized and logical

solution to identify targets for rational strain engineering. Immediate endeavors

involve application of insights described herein to increase heterologous protein

production in K. phaffii. Future endeavors beyond that lie in using this disserta-

tion as a manual to better understand and improve bioproduction in even lesser

understood organisms.
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Appendix

Bash processing

# Downloading SRA files
fastq-dump SRA_code -O output_directory --gzip

# Demultiplexing and read trimming with CutAdapt
## Adapters
810=NNNNNATCGTAGATCGGAAGAGCAC
811=NNNNNAGCTAAGATCGGAAGAGCAC
812=NNNNNCGTAAAGATCGGAAGAGCAC
813=NNNNNCTAGAAGATCGGAAGAGCAC
814=NNNNNGATCAAGATCGGAAGAGCAC
815=NNNNNGCATAAGATCGGAAGAGCAC
816=NNNNNTAGACAGATCGGAAGAGCAC
817=NNNNNTCTAGAGATCGGAAGAGCAC
universal=CTGTAGGCACCATCAAT

cutadapt --cut 2
-q 10
-a sample=$adapter
--minimum-length 6
--maximum-length 50
-o output-{name}.fastq.gz
input.fastq.gz

# RNA depletion with Hisat2
hisat2 -x rRNA_genomic.fna -U input.fastq.gz -p 8

--max-intronlen 1000
--un-gz depleted-output.fastq.gz
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-S rRNA.fastq.gz

# Creating sequence alignment maps with Hisat2
hisat2 -x genomic-annotation.fna

-U depleted-output.fastq.gz -p 8 --max-intronlen 1000
-S depleted-output.sam

# Index and sort sequence alignment maps with SAMtools
samtools view -bS -q 60 depleted-output.sam -@ 8

> depleted-output.bam

samtools sort -@ 8 depleted-output.bam
-o depleted-output.sort.bam

# Predicting signal peptide presence using SignalP 5.0
signalp -fasta protein_fasta.fna

-prefix protein_fasta.signalP

# Initial processing of DeepLoc output
| grep "#" -v | grep "Predicted" -v | grep "Localization"

-v | grep "Likelihood" -v | grep "Hierarchical" -v |
grep "Type" -v >

awk 'BEGIN{OFS="\t"; RS=""; FS="\n"}{print $1,$2}'

R processing

Ribo-Seq functions

naTozeroRle <- function(rleObject) {
ixNA <- which(is.na(S4Vectors::runValue(rleObject)))

if(length(ixNA) > 0) {
S4Vectors::runValue(rleObject)[ixNA] <- 0
S4Vectors::runLength(rleObject)[ixNA] <- 0

}
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return(rleObject)
}

applyShiftFeature <-
function(transcGRangesList, shiftValue) {

# Check parameter validity
# If missing shift value or if shift value does not
# inherit from numeric class
if(missing(shiftValue) ||

!inherits(shiftValue, "numeric")) {
shiftValue <- 0
warning("Incorrect shiftValue parameter! No shift is

performed!\n")
}

# Check transcGRangesList if of class GRangesList
if(!is(transcGRangesList, "GRangesList")) {

stop(
paste("transcGRangesList parameter is of class ",

class(transcGRangesList),
"instead of GRangesList!/n",
sep="")

)
}

# Determine transcript width from transcGRangesList
transcWidth <-

GenomicFeatures::transcriptWidths(start(
transcGRangesList),
end(transcGRangesList))

# Takes absolute value of shift value
absShiftVal <- abs(shiftValue)

# if width of transcript is smaller than the absolute
# shiftValue eliminate the transcript
ixSmallTransc <- which(transcWidth <= absShiftVal)
if(length(ixSmallTransc) > 0) {

transcGRangeList <- transGRangesList[-ixSmallTransc]
transWidth <-
GenomicFeatures::transcriptWidths(
start(transcGRangesList),
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end(transcGRangesList))
}

# If the shiftValue is positive, the start of the
#transcript is shifted
if(shiftValue > 0) {

usefulRangeOnTransc <- cbind(
startT = rep(absShiftVal + 1,

length(transcGRangesList)),
endT = transcWidth)

}
# Else it is the end of the transcript that we shift
else {

usefulRangeOnTransc <- cbind(
startT=1,
endT=transcWidth - absShiftVal)

}

# Make list of useful ranges using usefulRangeOnTrans
# (shifted values for transcript) across length of
# transcGRangesList
listeUsefulRanges <-

lapply(seq_len(length(
transcGRangesList)),
function(ixTransc){
usefulRangeOnTransc[ixTransc,

1]:usefulRangeOnTransc[
ixTransc, 2]

}
)

# For the remaining positions in the transcript, make
# 1bp bins of the genomic positions
# TranscriptLocs2refLocs function for converting
# transcript-based locations in to reference- based
# locations.
shiftedTransc <-

GenomicFeatures::transcriptLocs2refLocs(
listeUsefulRanges,
start(transcGRangesList),
end(transcGRangesList),
as.character(
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S4Vectors::runValue(strand(transcGRangesList))),
decreasing.rank.on.minus.strand=TRUE)

# Give names for shiftedTransc the names from original
# transcGRangesList
names(shiftedTransc) <- names(transcGRangesList)

return(shiftedTransc)
}

# countShiftReads
countReads <- function(
exonGRanges,
cdsPosTransc,
alnGRanges,
originalAln,
shiftValue,
motifSize) {

if(missing(cdsPosTransc)) {
stop("Missing cdsPosTransc parameter!\n")

}

if(length(exonGRanges) != length(cdsPosTransc)) {
stop(

"Different lengths for exonGRanges and
cdsPosTransc parameters!\n"

)
}

myCondNA <-
which(is.na(unlist(cdsPosTransc)) |

is.null(unlist(cdsPosTransc)))
if(length(myCondNA) > 0) {
stop("Non-null, non-NA values for the

cdsPosTransc parameter!\n")
}

if(missing(shiftValue) ||
!inherits(shiftValue, "numeric")) {
shiftValue <- 0
warning("Incorrect shiftValue parameter!
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No shift is performed!\n")
}

if(!is(exonGRanges, "GRangesList")) {
stop(paste(

"exonGRanges parameter is of class ",
class(exonGRanges),
" instead of GRangesList!\n", sep = ""))

}

if(!is(alnGRanges, "GRanges")) {
stop(paste(

"alnGRanges parameter is of class ",
class(alnGRanges),
" instead of GRanges!\n", sep = ""))

}

if (missing(motifSize) ||
!is(motifSize, "numeric") ||
motifSize %% 1 != 0 ||
motifSize <= 0 ||
!(motifSize %in% c(3, 6, 9))) {

warning("Param motifSize should be an integer!
Accepted values 3, 6 or 9.
Default value is 3.\n")

motifSize <- 3
}

exonGRangesRestrict <- exonGRanges[names(cdsPosTransc)]
if(length(exonGRangesRestrict) <= 5) {

stop(
"Less than 5 common transcripts btw exonGRanges

and cdsPosTransc!\n")
}
else {
if (length(exonGRangesRestrict) <= 10) {

warning("Less than 10 common transcripts between
exonGRanges and cdsPosTransc!\n")

}
}

transcWidth <-
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GenomicFeatures::transcriptWidths(
start(exonGRangesRestrict),
end(exonGRangesRestrict))

absShiftVal <- abs(shiftValue)

ixSmallTransc <- which(transcWidth <= absShiftVal)

if(length(ixSmallTransc) > 0) {
transcBig <- exonGRangesRestrict[-ixSmallTransc]
cdsPosTRanscBig <- cdsPosTransc[-ixSmallTransc]

}
else {

transcBig <- exonGRangesRestrict
}

overlapReads <-
suppressWarnings(

findOverlaps(originalAln, transcBig))

startOverlapReads <-
split(start(

alnGRanges[queryHits(overlapReads)]),
factor(subjectHits(overlapReads)))

overlapReadsRle <-
sapply(startOverlapReads, S4Vectors::Rle)

transcWithReads <-
transcBig[as.numeric(names(overlapReadsRle))]

cdsPosTranscWithReads <-
cdsPosTransc[as.numeric(names(overlapReadsRle))]

cdslengthwithreads <-
lapply(seq_len(NROW(cdsPosTranscWithReads)),

function(ixTransc) {
cdsPosTranscWithReads[[ixTransc]][2] -
cdsPosTranscWithReads[[ixTransc]][1] + 1

})

newTranscWidth <-
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GenomicFeatures::transcriptWidths(
start(transcWithReads),
end(transcWithReads))

cdsPosTranscShifted <- do.call(rbind,
cdsPosTranscWithReads) +

shiftValue

listeRangesCDS <-
lapply(seq_len(NROW(cdsPosTranscShifted)),

function(ixTransc) {
max(1,

cdsPosTranscShifted[ixTransc, 1]):
cdsPosTranscShifted[ixTransc, 2]

})

listeRanges5UTR <-
lapply(seq_len(NROW(cdsPosTranscShifted)),

function(ixTransc) {
if((cdsPosTranscShifted[ixTransc,

1] - 1) < 1) {
0

}
else {
max(1, shiftValue):(cdsPosTranscShifted[

ixTransc,1] - 1)
}

})

listeRanges3UTR <-
lapply(seq_len(NROW(cdsPosTranscShifted)),

function(ixTransc) {
(cdsPosTranscShifted[ixTransc, 2] +

1):min(newTranscWidth[ixTransc],
newTranscWidth[ixTransc] +

shiftValue)
})

binTransc <- applyShiftFeature(transcWithReads, 0)

strandInfo <-
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S4Vectors::runValue(strand(transcWithReads))

shiftedTranscMatches <-
lapply(seq_len(length(binTransc)), function(ixTransc) {

if(strandInfo[[ixTransc]] == "-") {
binTranscVal <- sort(binTransc[[ixTransc]],

decreasing = TRUE)
txtail <- tail(binTranscVal, n = 1)
binTranscVal <- c(binTranscVal,

seq(txtail-1, txtail-25))
}
else {

binTranscVal <- sort(binTransc[[ixTransc]])
txtail <- tail(binTranscVal, n = 1)
binTranscVal <-
c(binTranscVal, seq(txtail+1, txtail+25))

}

matchedReadsTransc <-
match(sort(overlapReadsRle[[ixTransc]]),

binTranscVal)

matchedReadsCDS <-
naTozeroRle(match(matchedReadsTransc,

listeRangesCDS[[ixTransc]]))

matchedReads5UTR <-
naTozeroRle(match(matchedReadsTransc,

listeRanges5UTR[[ixTransc]]))

matchedReads3UTR <-
naTozeroRle(match(matchedReadsTransc,

listeRanges3UTR[[ixTransc]]))

if(length(matchedReadsCDS) > 0) {
allCodonCounts <-
aggregate(S4Vectors::runLength(
matchedReadsCDS),
by = list(ceiling(
S4Vectors::runValue(matchedReadsCDS)/3)),

FUN = sum)
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if(motifSize <= 3) {
myCodonCounts <- allCodonCounts

}
else {

if(motifSize == 6) {
myCodonCounts <-
allCodonCounts[1:(nrow(

allCodonCounts) - 1), ]
}
else {

if(motifSize == 9) {
myCodonCounts <- allCodonCounts[2:(

nrow(allCodonCounts) - 1), ]
}

}
}

}
else {

nbrCodons <-
ceiling(length(listeRangesCDS[[ixTransc]])/

motifSize)
myCodonCounts <-
data.frame(cbind(1:nbrCodons,

rep(0, nbrCodons)))
}

nbrCodons <-
ceiling(cdslengthwithreads[[ixTransc]]/motifSize)

myCodonCounts2 <-
data.frame(cbind(1:nbrCodons, rep(0, nbrCodons)))

names(myCodonCounts) <- c("codonID", "nbrReads")
names(myCodonCounts2) <- c("codonID", "nbrReads2")

myCodonCounts3 <-
merge.data.frame(myCodonCounts,

myCodonCounts2,
by = 'codonID',
all = T)[,-3]
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names(myCodonCounts3) <- c("codonID", "nbrReads")

list(c(sum(S4Vectors::runLength(matchedReadsCDS)),
sum(S4Vectors::runLength(matchedReads5UTR)),
sum(S4Vectors::runLength(matchedReads3UTR))),

myCodonCounts3)
})

names(shiftedTranscMatches) <- names(transcWithReads)

countsFeatures <-
do.call(rbind,

lapply(shiftedTranscMatches, `[[`, 1))

colnames(countsFeatures) <-
c("CDS_counts", "fiveUTR_counts", "threeUTR_counts")

rownames(countsFeatures) <- names(shiftedTranscMatches)

chrInfo <-
S4Vectors::runValue(

GenomeInfoDb::seqnames(transcWithReads))
startInfo <- min(start(transcWithReads))
endInfo <- max(end(transcWithReads))
cdsInfo <- do.call(rbind, cdsPosTranscWithReads)
cdsLength <- cdsInfo[, 2] - cdsInfo[, 1] + 1
cdsStart <- cdsInfo[, 1]
cdsEnd <- cdsInfo[, 2]

countsData <-
cbind(as.character(rownames(countsFeatures)),

as.character(unlist(chrInfo)),
as.character(unlist(strandInfo)),
startInfo, endInfo, newTranscWidth, cdsStart,
cdsEnd, cdsLength, countsFeatures)

colnames(countsData) <-
c("gene", "chr", "strand", "transc_genomic_start",

"transc_genomic_end", "transc_length", "orf_start",
"orf_end", "orf_length", colnames(countsFeatures))

codonReadCoverage <-
lapply(shiftedTranscMatches, `[[`, 2)

133



names(codonReadCoverage) <- names(shiftedTranscMatches)

return(list(as.data.frame(countsData),
codonReadCoverage))

}

plotSummarizedCov <- function (covSummarized)
{

if (!inherits(covSummarized, "list")) {
stop("The covSummarized object is not a list!\n")

}
else {

if (!is(covSummarized[[1]], "GRanges")) {
stop("The covSummarized object is not a list of

GRanges objects!\n")
}

}
listPlotSum <- lapply(covSummarized, function(iSumCov) {

maxPeak <- max(iSumCov$values)
maxPeakPos <- start(iSumCov)[which(iSumCov$values ==

maxPeak)]
if (maxPeak <= 100) {

yLab <- "% of reads"
}
else {

yLab <- "Number of Reads"
}
iPlot <- ggplot(iSumCov, ggplot2::aes(start, values)) +

geom_line(color = black) + geom_point(color = black) +
xlim(0, 30) +
labs(x = "Distance from start codon (nt)",

y = yLab,
title = "Calculating p-site offset") +

scale_y_continuous(labels = comma_format()) +
paper_theme

return(iPlot)
})

return(listPlotSum)
}
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load_gff <- function() {
cat("\nPlease provide directory to GFF file\n")
annotation.gff <- readline("Choice: ")

txdb <- GenomicFeatures::makeTxDbFromGFF(
annotation.gff, format = "gff3", circ_seqs = character())

txids <- AnnotationDbi::keys(txdb, keytype="TXNAME")
cdsTransc <-

GenomicFeatures::cdsBy(txdb, by = "tx", use.names = T)
exonGRanges <-

GenomicFeatures::exonsBy(txdb, by = "tx", use.names = T)
cdsPosTransc <-

RiboProfiling::orfRelativePos(cdsTransc, exonGRanges)

tx <- list(
"txdb" = txdb,
"txids" = txids,
"cdsTransc" = cdsTransc,
"exonGRanges" = exonGRanges,
"cdsPosTransc" = cdsPosTransc)

assign("tx", tx, envir = .GlobalEnv)
}

Quicker wrangling

# Necessary for computations of multiple samples, uses
# non-standard evaluation

obey <- function(string) {
eval(parse(text = string), envir = .GlobalEnv)

}

# Calculating standard deviation from mean for data curves
# Used in to bin genes for protein length vs. enrichment
# and to calculate read count thresholds

quant_sd <-
function(data, predictor, response, quantiles = 5) {
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dt <- deparse(substitute(data))

pred <- deparse(substitute(predictor))
pred.dt <- paste0(dt, "$", pred)
cat.sd <- paste0(pred, ".sd")
obey(paste0(

"pred.range <- as.character(floor(quantile(", pred.dt,
", probs = seq(0, 1, ", as.character(1/quantiles),
"))))"

))

response <- deparse(substitute(response))

for (i in 1:(length(pred.range) - 1)) {

obey(paste0(
"pred.mean <- mean(", dt, "[", pred, " >= ",
pred.range[[i]], " & ", pred, " <= ",
pred.range[[i + 1]], "]$", response, ")"

))
obey(paste0(
"pred.sd <- sd(", dt, "[", pred, " >= ",
pred.range[[i]], " & ", pred, " <= ",
pred.range[[i + 1]], "]$", response, ")"

))
obey(paste0(
dt, "[", pred, " >= ", pred.range[[i]],
" & ", pred, " <= ", pred.range[[i + 1]], " & ",
response, " >= ", pred.mean, " - 3*", pred.sd, " & ",
response, " <= ", pred.mean, " + 3*", pred.sd, ", ",
cat.sd, " := 3]"

))
obey(paste0(
dt, "[", pred, " >= ", pred.range[[i]],
" & ", pred, " <= ", pred.range[[i + 1]], " & ",
response, " >= ", pred.mean, " - 2*", pred.sd, " & ",
response, " <= ", pred.mean, " + 2*", pred.sd, ", ",
cat.sd, " := 2]"

))
obey(paste0(
dt, "[", pred, " >= ", pred.range[[i]],
" & ", pred, " <= ", pred.range[[i + 1]], " & ",
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response, " >= ", pred.mean, " - ", pred.sd, " & ",
response, " <= ", pred.mean, " + ", pred.sd, ", ",
cat.sd, " := 1]"

))
obey(paste0(
dt, "[", pred, " > ", pred.range[[i]], " & ",
pred, " <= ", pred.range[[i + 1]], " & ",
"is.na(", cat.sd, "), ",
cat.sd, " := 4]"

))
}

}

# Convert zero values to NA

zero_na <- function(DT, list = names(DT)) {
invisible(lapply(

list, function(.name)
set(DT, which(DT[[.name]] == 0),

j = .name, value = NA)))
}

# Convert specified value to NA

val_na <- function(DT, var, list = names(DT)) {
invisible(lapply(

list, function(.name)
set(DT, which(DT[[.name]] == var), j = .name, var = NA)

))
}

# Convert NA value to zero

na_zero <- function(DT, list = names(DT)) {
invisible(lapply(

list,function(.name)
set(DT, which(is.na(DT[[.name]])),

j = .name,value = 0)))
}

# Convert NaN value to NA

137



nan_na <- function(DT, list = names(DT)) {
invisible(lapply(

list,function(.name)
set(DT, which(is.nan(DT[[.name]])),

j = .name,value = NA)))
}

# Convert NaN value to zero

nan_zero <- function(DT, list = names(DT)) {
invisible(lapply(
list,function(.name)

set(DT, which(is.nan(DT[[.name]])),
j = .name,value = 0)))

}

# Convert infinite values to NA, necessary when comparing
# enrichment scores where membrane/cytosol ribosomes have
# zero reads

inf_na <- function(DT, list = names(DT)) {
invisible(lapply(

list,function(.name)
set(DT, which(is.infinite(DT[[.name]])),

j = .name,value = NA)))
}

# Calculate enrichment scores between membrane/cytosol
# samples

calc_enrich <- function(df, output, mem, sol) {
output <- enquo(output)
mem <- enquo(mem)
sol <- enquo(sol)

es_name <- quo_name(output)

df %>% mutate(!! es_name := log2(((!! mem) / 1e6) /
((!! sol) / 1e6)))

}
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# Calculate nascent chains and ribosome usage

calc_expression <- function(df, output, input,
norm = NULL) {

output <- enquo(output)
input <- enquo(input)
norm <- enquo(norm)

output <- quo_name(output)

if (grepl("tpm", output)) {
df %>%

mutate(rpk = (!! input)/((!! norm)/1e3)) %>%
ungroup() %>%
mutate(!! output := rpk/(sum(rpk)/1e6)) %>%
select(-rpk)

} else if (grepl("rpm", output)) {
df %>%

group_by(.id) %>%
mutate(num = sum(smoothed)) %>%
group_by(mask, add = TRUE) %>%
mutate(den = sum(smoothed),

den = first(den)) %>%
ungroup() %>%
mutate(rScaleFactor = num/den,

rpm = nbrReads * rScaleFactor) %>%
filter(mask == FALSE) %>%
mutate(rpm = rpm/(sum(rpm, na.rm = TRUE)/1e6)) %>%
group_by(.id) %>%
mutate(rpm = sum(rpm, na.rm = TRUE)) %>%
select(-num, -den, -rScaleFactor)

}
}

load_files <- function() {

cat("\nHow many files would you like to analyze?\n")

num.files <- suppressWarnings(as.integer(readline()))

if (is.na(num.files)) {
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cat("\nPlease provide answer as an integer!\n\n")
} else {

files <- c()
sample_names <- c()
for (i in 1:num.files) {

cat(paste0(
"\nPlease input directory for file # ", i, "\n"))

files[i] <- readline("Choice: ")

cat("\nWhat sample is this?\n")
sample_names[i] <- readline("Choice: ")

}
cat("\n")

assign("files", files, envir = .GlobalEnv)
assign("sample_names", sample_names, envir = .GlobalEnv)

}
}

Mask generator

# Necessary functions
strpick <- function(string, split = " ", pos = NA) {
nStr <-

length(unlist(strsplit(string, split, fixed = TRUE)))
str <- unlist(strsplit(string, split, fixed = TRUE))

if (is.na(pos)) {
return(str)

}
else {

if (nStr == 1) {
return(str[[nStr]])

}
else if (pos > nStr) {

return(str[[nStr]])
}
else {

return(str[[pos]])
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}
}

}

partition_sequence <- function(string, footprint = 28) {
gene.l <-
length(unlist(strsplit(string, "", fixed = TRUE)))

gene.seq <- unlist(strsplit(string, "", fixed = TRUE))

if (gene.l <= footprint) {
stop(paste0(

"Gene length too low to partition for ribosome
profiling (",
footprint, " nt footprints)!\n")

)
}
else {

txt.fasta <- ""
for (i in 1:(gene.l - footprint)) {

start <- i
start
end <- i + (footprint - 1)
end
txt.sample <-
paste0(gene.seq[start:end], collapse = "")

if (i == 1) {
txt.fasta <- txt.sample

}
else {

txt.fasta <- paste0(txt.fasta, "\n", txt.sample)
}

}
cmd <- paste0(

"ORF scrambled... ", i, " unique fragments ",
footprint, " nucleotides long produced. \n"

)
cat(cmd)
return(txt.fasta)

}
}

# Read CDS fasta file using Biostrings
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annotation_cds <-
"cds-fasta-path"

dna_fasta <- Biostrings::readDNAStringSet(annotation_cds)
seq.names <- names(dna_fasta)
gene.seq <- paste(dna_fasta)

# Make table of genes and their sequences
dna_dt <- data.table(seq.names, gene.seq)

# Get gene id (this changes depending on the way that
# Biostrings reads names)
dna_dt[, id := sapply(seq.names,

function(x) strpick(x, split = " ",
pos = 1))]

# Get gene name (not all files will produce a gene name)
dna_dt[, gene.name := sapply(seq.names,

function(x) strpick(x,
split = " ",
pos = 2))]

# Tidy up data table
dna_dt[, seq.names := NULL]
setcolorder(dna_dt, c('id', 'gene.name', 'gene.seq'))

# Partition DNA sequences into 28mer fragments and generate
# DNA fasta filerepresenting pseudo Ribo-seq data. Use
# this data to run Hisat2 on to get sort.bam files needed
# to create mask
dna_dt[,

gene.seq.mix := lapply(
gene.seq,
function(x) partition_sequence(x))]

output_txt <- "kphaffii_mix.txt"

write.table(dna_dt$gene.seq.mix,
file = output_txt,
quote = FALSE,
row.names = FALSE,
col.names = FALSE,
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sep = '\n')

output_sam <- "kphaffii_mix.sam"

annotation.hisat <-
"genomic-fasta-path"

command <- paste0(
"/Users/Shared/Repository/miniconda3/envs/seq/bin/hisat2 ",
"-x ", annotation.hisat, " ",
"-U ", file.txt, " ",
"-p 7 ",
"-r ",
"-S ", output.sam

)
system(command)

Protein sequence predictions

# Analysis of protein sequence features from protein fasta
# files
annotation.protein <- "protein-fasta-path"

protein.fasta <-
Biostrings::readAAStringSet(annotation.protein)

seq.names <- names(protein.fasta)
protein.seq <- paste(protein.fasta)
rm(protein.fasta)
protein.dt <- data.table(seq.names, protein.seq)
protein.dt[, id := as.character(lapply(

seq.names, function(x) strsplit(x, " ")[[1]][[1]]
))]
setkey(protein.dt, 'id')
protein.dt[, protein.l := nchar(protein.seq)]
protein.dt <- protein.dt[, .(id, protein.l, protein.seq)]

# Generating best match homology from blastP outputs
blast.file <- "blastP-output-path"
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blast.dt <- as.data.table(read.delim(
file = blast.file,
header = FALSE,
col.names = c("id", "match.id", "aln.percentage",

"aln.length", "mismatches", "gapOpenings",
"query.start", "query.end", "match.start",
"match.end", "evalue", "bitscore")

))
setkey(blast.dt, id)

unique.ids <- unique(blast.dt$id)

for (i in 1:length(unique.ids)) {
cat(paste0("Generating best match for ",

unique.ids[[i]], "...\n"))

gene <- blast.dt[id == unique.ids[[i]]]

tmp <- gene[evalue == min(gene$evalue)]
if (nrow(tmp) > 1) {tmp <-

tmp[bitscore == max(tmp$bitscore)]}
if (nrow(tmp) > 1) {tmp <- tmp[1]}

if (i == 1) {tmp.dt <- tmp} else {
tmp.dt <- rbind(tmp.dt, tmp)}

}

blast.dt <- tmp.dt[,.(id, match.id)]

# Signal peptide predictions from SignalP 5.0

signalp.dt <- as.data.table(
read.delim2(

file = "signalp5.0-output-path",
col.names = c("id", "prediction", "sp.perc",

"other.perc", "position"),
as.is = c(1:5), header = FALSE

)) %>%
slice(3:nrow(signalp.dt)) %>%
mutate(sp.sp = if_else(

prediction == "SP(Sec/SPI)", TRUE, FALSE),
position = na_if(position, "")) %>%
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mutate(sp.l = str_sub(position, 12, 13)) %>%
select(-prediction, -other.perc) %>%
rename("sp.position"="position")

# GPI predictions from GPI pred
gpipred.dt <- as.data.table(

read.delim2(file = "gpipred-output-path",
col.names = c("id", "gpi.fpr",

"gpi.omega"),
as.is = c(1:3),
header = FALSE))

gpipred.dt[, id := gsub(">", "", id)]
gpipred.dt[, gpi.fpr := gsub("FPrate:", "", gpi.fpr)]
gpipred.dt[, gpi.omega := gsub("OMEGA:", "", gpi.omega)]
gpipred.dt[, gpi.aa := sapply(
gpi.omega,
function(x) unlist(strsplit(x, "-",

fixed = TRUE))[[1]])]
gpipred.dt[, gpi.index := sapply(

gpi.omega,
function(x) unlist(strsplit(x, "-",

fixed = TRUE))[[2]])]
gpipred.dt[, gpi.omega := NULL]
gpipred.dt[,

gpi.specificity.index :=
(1 - as.numeric(gpi.fpr)) * 100]

gpipred.dt[, gpi.prediction := 0]
gpipred.dt[gpi.specificity.index >= 99.0,

gpi.prediction := 1]
gpipred.dt[gpi.specificity.index >= 99.5,

gpi.prediction := 2]
gpipred.dt[gpi.specificity.index >= 99.9,

gpi.prediction := 3]

# Subcellular localization predictions from DeepLoc
file_name <- "deeploc-output-path"

deeploc.dt <- read_csv(file = file_name,
col_names = TRUE) %>%

rename(id = `Entry ID`, dl.loc = "Localization",
dl.type = "Type") %>%

145



select(id, dl.loc, dl.type)

# Signal peptide and transmembrane domain predictions from
# TopCons

annotation.TopCons <- "topcons-output-path"

if (exists("annotation.TopCons")) {
sys.cmd <- paste0(

"awk '{print $7,$4,$3}' ", annotation.TopCons
)
topcons.dt <- as.data.table(system(sys.cmd, intern = TRUE))
topcons.dt[, id := as.character(lapply(

V1, function(x) strsplit(x, " ")[[1]][1]))]
topcons.dt[, tc.sp := as.logical(lapply(

V1, function(x) strsplit(x, " ")[[1]][2]))]
topcons.dt[, tc.tmd := as.integer(lapply(

V1, function(x) strsplit(x, " ")[[1]][3]))]
topcons.dt[, V1 := NULL]
setkey(topcons.dt, "id")

}

# Transmembrane domain predictions from TMHMM

annotation.TMHMM <- "TMHMM-output-path"

if (exists("annotation.TMHMM")) {
prob.cmd <- paste0(

"grep \"prob\" ", annotation.TMHMM
)
probs <- as.data.table(system(prob.cmd, intern = TRUE))
probs[, id := as.character(lapply(

V1, function(x) strsplit(x, " ")[[1]][2]))]
probs[, tmd.tmhmm.p := as.numeric(lapply(

V1, function(x) strsplit(x, " ")[[1]][14]))]
setkey(probs, "id")

pred.cmd <- paste0(
"grep \"predicted\" ", annotation.TMHMM

)
preds <- as.data.table(system(pred.cmd, intern = TRUE))
preds[, id := as.character(lapply(
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V1, function(x) strsplit(x, " ")[[1]][2]))]
preds[, tmd.tmhmm.n := as.numeric(lapply(

V1, function(x) strsplit(x, " ")[[1]][8]))]
setkey(preds, "id")

tmhmm.dt <- merge(preds[,
.(id, tmd.tmhmm.n)],

probs[, .(id, tmd.tmhmm.p)],
all = TRUE)

rm(preds, probs)
}

# Ontological predictions from EggNOG 2.0
egg_file <- "eggnog2.0-output-path"

if (TRUE) {
## Read eggnog output file into R as a data table, setkey
## to 'id'
eggnog.dt <- as.data.table(read.delim2(

file = egg_file,
header = FALSE,
na.strings = c("NA|NA|NA", ""),
col.names = c("id", "egg.ortholog", "egg.value",

"egg.score", "egg.tax",
"eggnog.name", "egg.GO",
"egg.EC", "kegg.ko", "kegg.pathway",
"kegg.module", "kegg.rxn",
"kegg.rclass","egg.brite", "kegg.tc",
"egg.CAZy", "BiGG.rxn", "egg.annotlvl",
"egg.og","egg.bestog", "eggnog.cog",
"description.eggnog")

))
eggnog.dt <- eggnog.dt[,.(id, eggnog.name, eggnog.cog,

description.eggnog)]
setkey(eggnog.dt, 'id')

## Convert cog score output into list of cog scores
eggnog.dt[, eggnog.cog := as.character(eggnog.cog)]
eggnog.dt[is.na(eggnog.cog), eggnog.cog := "S"]
eggnog.dt[, eggnog.cog := strsplit(eggnog.cog, '')]
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## Create NEW data table by duplicating id n times,
## where n = length(cog.list), and pairing with unique
## cog score from cog.list
for (i in 1:nrow(eggnog.dt)) {

dt <- as.data.table(eggnog.dt$id[[i]])

for (j in 1:length(unlist(eggnog.dt[dt]$eggnog.cog))) {
eggnog.cog <- unlist(eggnog.dt[dt]$eggnog.cog)[j]
tmp <- copy(dt)
tmp[, V2 := eggnog.cog]
if (j == 1) {
dt.hold <- tmp

} else {
dt.hold <- merge(dt.hold, tmp, all = TRUE)

}
}
if (i == 1) {

dt.final <- dt.hold
} else {

dt.final <- merge(dt.final, dt.hold, all = TRUE)
}

}
cog.dt <- dt.final; rm(dt.final)
names(cog.dt) <- c('id', 'eggnog.cog')

## Create cog.table with relative cog frequency for
## hierarchichal clustering
cog.table <- as.data.table(table(cog.dt$eggnog.cog))
names(cog.table) <- c('eggnog.cog', 'cog.n')
cog.table[, cog.freq := cog.n/(sum(cog.table$cog.n))]
setkey(cog.table, "cog.freq")
egg.hierarchy <- rev(cog.table$eggnog.cog)

## Cluster duplicated cog scores into highest frequency
## cog from cog.table
while (nrow(cog.dt[duplicated(cog.dt$id)]) > 0) {

dt <- cog.dt[duplicated(cog.dt$id)]

id <- dt$id[[1]]
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obey(paste0("match.list <- dt[, id == '", id, "']"))
potentials <- dt[match.list]$eggnog.cog

tmp.best <- length(egg.hierarchy)
for (i in 1:length(potentials)) {

place <- lapply(egg.hierarchy,
function(x) grep(potentials[[i]], x))

place <- which(place == 1)
if (place < tmp.best) {
tmp.best <- place

}
}
best.fit <- egg.hierarchy[[tmp.best]]
obey(paste0("cog.dt[id == '", id,

"', eggnog.cog := '", best.fit, "']"))
cog.dt <- unique(cog.dt)
cat(paste0(

"\nCHANGE: ", id,
"'s COG value will be changed to ", best.fit, "\n"))

cat(paste0(
"Duplicates left: ",
as.character(nrow(cog.dt[duplicated(cog.dt$id)])),
"\n"))

}

eggnog.dt <- eggnog.dt %>% slice(-(1:3))
cog.dt <- cog.dt %>% slice(-(1:3))

eggnog.dt <- merge(
eggnog.dt[,.(id, eggnog.name, description.eggnog)],
cog.dt,
all = TRUE)

## Get COG tranlsations
cog.def <- as.data.table(read.delim2(

file = "def-COG-path",
header = TRUE,
as.is = (c(1:4)),
col.names = c("eggnog.cog", "category", "subcategory",

"color")
))

149



eggnog.dt <- merge(eggnog.dt, cog.def,
by.x = "eggnog.cog",
by.y = "eggnog.cog",
all = TRUE)

setcolorder(eggnog.dt, c(2:4,1,5:7))
setkey(eggnog.dt, id)
eggnog.dt <- eggnog.dt[!is.na(id)]
eggnog.dt[, color := sapply(color,

function(x) rand_color(x))]

rm(cog.def, cog.dt, cog.table, dt, dt.hold, tmp)
}

Ribo-Seq pipeline

# Load files and annotation file that will be used for
# analysis
load_files()
load_gff()

# Convert reference to BAM files.
files <- lapply(files, Rsamtools::BamFile)

# Convert aligned reads from BAM file into GAlignments
# object.
aln <- lapply(files, GenomicAlignments::readGAlignments)

# Convert GAlignments object to End (3') positions.
alnGRanges <-

lapply(aln, RiboProfiling::readsToStartOrEnd,
what = "end")

# Returns a GRanges object containing the flank size around
# the transcriptional
# start site (TSS) for selected coding sequence (CDS).
flank_size <- 30
oneBinRanges <- lapply(seq(length(files)),

function(x)
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RiboProfiling::aroundPromoter(
txdb = tx$txdb,
alnGRanges = alnGRanges[[x]],
percBestExpressed = 0.01,
flankSize = flank_size))

# Create histogram of match length distribution of reads.
matchLenDistr <- lapply(aln, RiboProfiling::histMatchLength)

# Create vector of match lengths with read counts greater
# than 3000.
match_lengths <- lapply(seq(length(files)),

function(x)
as.numeric(as.character(unlist(

matchLenDistr[[x]][[1]]$
matchSize)))[
which(matchLenDistr[[x]][[1]]$

counts > 3000)])

# Calculate summarized read coverages around TSS for
# specified match lengths.
listPromoterCov <-

lapply(seq(length(files)),
function(x) RiboProfiling::readStartCov(
alnGRanges = alnGRanges[[x]],
oneBinRanges = oneBinRanges[[x]],
matchSize = match_lengths[[x]],
fixedInterval = c(-flank_size,

flank_size),
renameChr = "aroundTSS",
charPerc = "sum"))

# Calculate psite offsets from listPromoterCov.
shift <- sapply(seq(length(files)),

function(x) as.numeric(
listPromoterCov[[x]]$sumUp@ranges@start[
which.max(listPromoterCov[[x]]$

sumUp@elementMetadata@
listData$values)]))

# Applies psite offset on read start along trascript and
# returns the following:
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# 1. Information on ORF including names, position, lengths,
# and counts on 5'UTR, CDS, and 3'UTR after offset is
# applied.
# 2. List of dataframes for each ORF containing read counts
# per codon.
counts <- lapply(seq(length(files)),

function(x) countReads(
exonGRanges =

tx$exonGRanges[names(tx$cdsPosTransc)],
cdsPosTransc = tx$cdsPosTransc,
alnGRanges = alnGRanges[[x]],
originalAln = aln[[x]],
shiftValue = shift[[x]],
motifSize = 3))

# Collapses list of dataframes for each ORF containing read
# counts per codon
# into one dataframe.
counts <- lapply(seq(length(files)),

function(x) ldply(counts[[x]][[2]]))

# Apply masking to read count dataframe.
masked <- lapply(seq(length(files)), function(x)

full_join(mask, counts[[x]], by = c(".id", "codonID")) %>%
filter(codonID > 5 & codonID <= theory.l - 5) %>%
replace_na(list(nbrReads = 0)) %>%
select(-single.reads, -multiple.reads, -diff, -theory.l))

# Calculate average reads per codon for first 100 codons per
# gene to reduce biases associated with increased read counts
# at beginning of transcripts.
rpc <- lapply(seq(length(files)), function(x)
masked[[x]] %>%
filter(codonID <= 100 & mask == FALSE) %>%
group_by(.id) %>%
mutate(rpc.100 = mean(nbrReads),

rpc.100 = na_if(rpc.100, 0)))

# Normalize reads per codon by average reads per codon for
# first 100 codons and determine reads per gene to establish
# cut off criterion for metagene analysis
norm <- lapply(seq(length(files)), function(x)
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full_join(masked[[x]], rpc[[x]]) %>%
filter(mask == FALSE) %>%
group_by(.id) %>%
fill(rpc.100) %>%
replace_na(list(rpc.100 = 0)) %>%
mutate(rpc.100 = na_if(rpc.100, 0),

norm.100 = nbrReads/rpc.100,
rpg = mean(nbrReads)) %>%

replace_na(list(norm.100 = 0)))

# Perform metagene analysis using non-enriched genes with
# adequate reads per gene and average reads per codon for
# first 100 codons. Metagene analysis calculates average
# normalized reads per codon for all genes. This average
# normalized read per codon is smoothed using a rolling mean
# and rolling median.
meta.counts <- lapply(seq(length(files)), function(x)

norm[[x]] %>%
filter(.id %in% not_enriched & rpg > 0.5 &

rpc.100 > 0.5) %>%
group_by(codonID) %>%
summarise(counts = sum(norm.100 > 0)))

meta <- lapply(seq(length(files)), function(x)
full_join(norm[[x]], meta.counts[[x]]) %>%
filter(.id %in% not_enriched & rpg > 0.5 &

rpc.100 > 0.5) %>%
group_by(codonID) %>%
mutate(meta = if_else(counts >= 2,

mean(norm.100,
trim = 0.05,
na.rm = TRUE),

median(norm.100,
trim = 0.05,
na.rm = TRUE))) %>%

select(codonID, meta) %>%
distinct() %>%
ungroup() %>%
arrange(codonID))
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meta.dt <- lapply(seq(length(files)), function(x)
meta[[x]] %>%
full_join(meta[[x]] %>%

filter(codonID >= 0 & codonID <= 100) %>%
mutate(
smoothed = rollapply(meta,

width = 10,
FUN = mean,
partial = TRUE))) %>%

full_join(meta[[x]] %>%
filter(codonID > 100 &

codonID <= 500) %>%
mutate(smoothed = rollapply(
meta,
width = 100,
FUN = mean,
partial = TRUE))) %>%

full_join(meta[[x]] %>%
filter(codonID > codon_limit[[x]]) %>%
mutate(smoothed = rollapply(
meta,
width = 1000,
FUN = median,
partial = TRUE))) %>%

filter(!is.na(smoothed)) %>%
mutate(smoothed = na_if(smoothed, 0)) %>%
fill(smoothed))

# Scale number of reads per codon per gene after normalizing
# reads per codon per gene by smoothed metagene reads per
# codon. Use scaled reads per codon per gene to calculate
# expression in RPM and cTPM.
scaled <- lapply(seq(length(files)), function(x)

full_join(masked[[x]], meta.dt[[x]]) %>%
group_by(`.id`) %>%
mutate(num = sum(smoothed, na.rm = TRUE)) %>%
group_by(mask, add = TRUE) %>%
mutate(den = sum(smoothed, na.rm = TRUE)) %>%
filter(mask == FALSE) %>%
mutate(rScaleFactor = num/den,

crpm = nbrReads * rScaleFactor) %>%
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replace_na(list(crpm = 0)) %>%
ungroup() %>%
mutate(crpm = crpm/sum(crpm)*1e6,

scaled = if_else(codonID <= 500,
nbrReads/smoothed, nbrReads)) %>%

mutate(scaled = if_else(is.na(scaled), 0, scaled)) %>%
group_by(`.id`) %>%
mutate(crpm = sum(crpm),

reads = sum(nbrReads),
scaled = sum(scaled)) %>%

select(-den, -num, -rScaleFactor, -codonID, -meta,
-smoothed, -nbrReads, -mask) %>%

distinct() %>%
calc_expression(output = ctpm,

input = scaled,
norm = pseudo.l) %>%

select(-pseudo.l, -scaled) %>%
mutate(rpm = reads/sum(reads)*1e6) %>%
relocate(.id, reads, rpm, crpm, ctpm) %>%
rename(id = .id,

!! paste0(sample_names[[x]], ".reads") := reads,
!! paste0(sample_names[[x]], ".rpm") := rpm,
!! paste0(sample_names[[x]], ".crpm") := crpm,
!! paste0(sample_names[[x]], ".ctpm") := ctpm))

# Collapse different samples' dataframes into one dataframe
# and calculate membrane enrichment.
dt <- Reduce(function(x, y) full_join(x, y), scaled) %>%

mutate(id = if_else(id == "HSA-T1", "HSA", id))

Python processing

Sucrose gradient analysis

# Visualizing sucrose fractionation bands to determine
# ideal RNAse concentration for nuclease digestion
import pandas as pd
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import matplotlib.pyplot as plt
from scipy import integrate
from directory_modifications import File

class Fraction(File):
def __init__(self, file_name):

self.cell_line = file_name.split('/')[-2]
File.__init__(self, file_name)

def load_data(self):
csv_file = self.show_full_name()
df = pd.read_csv(csv_file,

skiprows=range(0, 42),
usecols=lambda x:

x.strip() in ['Position(mm)',
'Absorbance'])

return df

def get_cell(self):
return self.cell_line

def _range_for_max(data_list):

min_val = 15
max_val = 25

data_range = []
for data in data_list:

tmp_range = [i for i,
j in enumerate(data['x']) if min_val < j < max_val]
data_range.append(tmp_range)

return data_range

def integrate_peak(file_object):
data_list = order_data(file_object)
subset_peak = _range_for_max(data_list)
data_peak = _subset_data(data_list, subset_peak)
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whole_integration = []
for data in data_list:

tmp_int = integrate.trapz(data['y'], data['x'])
whole_integration.append(tmp_int)

peak_integration = []
for data in data_peak:

tmp_int = integrate.trapz(data['y'], data['x'])
peak_integration.append(tmp_int)

print('Percentage of 80s peak absorbance:\n')
for i in range(len(file_object)):

percentage = peak_integration[i]/
whole_integration[i] * 100
print('%s: %.2f %%' % (file_object[i].get_name(),
percentage))

else:
print()

return

def order_data(file_object):

neighbors = 15
data_list = []
for file in file_object:

df = file.load_data()
df_rolling_mean =
df.rolling(neighbors).mean().fillna(0)
headers = list(df_rolling_mean)
x = df_rolling_mean[headers[0]]
y = df_rolling_mean[headers[1]]
data_dic = {'x': x, 'y': y}
data_list.append(data_dic)

return data_list

def single_plot_data(file_object):

data_list = order_data(file_object)
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data_range = _range_for_max(data_list)
(max_places, max_val) = _find_max_indices(data_list,
data_range)

integrate_peak(file_object)

plt.plot(data_list[0]['x'], data_list[0]['y'],
label=file_object[0].get_cell() + ' ' +
file_object[0].get_name(),
linewidth=1,
alpha=0.85)

plt.xlim(10, 70)
plt.ylim(min(data_list[0]['y']), max_val + 0.01)

plt.xlabel('Position (mm)')
plt.ylabel('Absorbance (280 um)')
plt.title('Sucrose Fractionation Absorbance Readings')
plt.legend(shadow=True)

print('Would you like to display (d) or save (s) image?')
choice = input('Choice: ').strip()
print('\n')

if choice == "d":
plt.show()

elif choice == "s":
print('What would you like to name output file?')
file_name = input('Choice: ').strip()
print('\n')
plt.savefig("UVspec/Sucrose_Fractions/images/" +
file_name + ".svg", format="svg")

return

def plot_data(file_object):

# Load data from files. Store each file into x and y
# values as a dictionary of x and y keys with lists
# containing
# data. Each file's data is read into one of these
# dictionaries and stored in a list containing all of the
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# data.
data_list = order_data(file_object)

# Determine range of values to look for max
data_range = _range_for_max(data_list)

# Determine indices of max peak with data_range
(max_places, max_val) = _find_max_indices(data_list,
data_range)

minimum_count = min(max_places)
place_holder = max_places.index(minimum_count)

data_shift = _shift_data(data_list, max_places,
place_holder)

integrate_peak(file_object)

# Plot data
minimum = min(data_list[0]['y'])

plt.figure()
for i in range(len(file_object)):

plt.plot(data_list[i]['x'] - data_shift[i],
data_list[i]['y'],

label=file_object[i].get_cell() + ' ' +
file_object[i].get_name(),
linewidth=1,
alpha=0.85)

if min(data_list[i]['y']) < minimum:
minimum = min(data_list[i]['y'])

plt.xlim(10, 75)
plt.ylim(minimum, max_val + max_val/10)

plt.xlabel('Position (mm)')
plt.ylabel('Absorbance (280 um)')
plt.title('Sucrose Fractionation Absorbance Readings')
plt.legend(shadow=True)

print('Would you like to display (d) or save (s) image?')

159



choice = input('Choice: ').strip()
print('\n')

if choice == "d":
plt.show()

elif choice == "s":
print('What would you like to name output file?')
file_name = input('Choice: ').strip()
print('\n')
plt.savefig("UVspec/Sucrose_Fractions/images/" +
file_name + ".svg", format="svg")

return

def _find_max_indices(data_list, data_range):
max_places = []
max_val = 0
for index in range(len(data_list)):

tmp_data = data_list[index]['y']
tmp_data_range =
tmp_data[data_range[index][0]: data_range[index][-1]]
tmp_max = max(tmp_data_range)

if tmp_max > max_val:
max_val = tmp_max

tmp_place = tmp_data[tmp_data == tmp_max].index[0]
max_places.append(tmp_place)

return max_places, max_val

def _shift_data(data_list, max_places, place_holder):
data_shift = []
for i in range(len(data_list)):

tmp_shift = data_list[i]['x'][max_places[i]] -
data_list[i]['x'][max_places[place_holder]]
data_shift.append(tmp_shift)

return data_shift
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def _subset_data(data_list, subset):
sub_data = []
for i in range(len(data_list)):

data_y = data_list[i]['y']
data_x = data_list[i]['x']

subset_y = data_y[subset[i][0]: subset[i][-1]]
subset_x = data_x[subset[i][0]: subset[i][-1]]

data_dic = {'x': subset_x, 'y': subset_y}
sub_data.append(data_dic)

return sub_data
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