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Abstract

Sequential sampling models have provided accurate accounts
of people’s choice, response time, and preference strength
in value-based decision-making tasks. Conventionally, these
models are developed as Markov-type processes (such as ran-
dom walks or diffusion processes) following the Kolmogorov
axioms. Quantum probability theory has been proposed as an
alternative framework upon which to develop models of cog-
nition, including quantum random walk models. When mod-
eling people’s behavior during decision-making tasks, previ-
ous work has demonstrated that both the Markov and quan-
tum models have their respective strengths. Recently, the open
system model, which is a hybrid version of the Markov and
quantum models, has been shown to provide a more accurate
account of preference strength compared to the Markov and
quantum models in isolation. In this work, we extend the open
system model to make predictions on pairwise choice and re-
sponse time and compare it to the Markov and quantum ran-
dom walk models.
Keywords: open system model; random walk model;
decision-making; sequential sampling process; quantum cog-
nition

Introduction
As an individual evaluates different alternatives leading up
to a value-based decision (e.g., “What food would you like
for lunch?”), popular models of decision-making often as-
sume that preference accumulates over time for each alter-
native. Ultimately, once preference accumulates above a cer-
tain threshold for a given alternative, a decision is made, and
that alternative is selected. The process of preference accu-
mulation is commonly modeled as a sequential sampling pro-
cess, and these models have accurately been used to predict
individuals’ choice, response time, and preference strength
in value-based decision-making tasks (Busemeyer, Gluth,
Rieskamp, & Turner, 2019). Specifically, in a two-alternative
forced-choice task (2AFC), this sequential sampling pro-
cess is typically formalized as a Markov random walk on a
one-dimensional lattice of preference states (Bhattacharya &
Waymire, 2009), where the two terminal states correspond
to the two alternatives in the 2AFC. Note, this process has

also been formalized as a one-dimensional diffusion pro-
cess (Ratcliff, Smith, Brown, & McKoon, 2016), which is a
continuous-state version of the Markov random walk process.
As the decision-maker accumulates preference for a given al-
ternative, the preference state shifts in the direction of the
corresponding terminal state of that alternative. Assuming an
internally controlled stopping procedure (i.e., the decision-
maker is free to respond once they’ve made a decision rather
than being queued for a decision at a specific time), an alter-
native is selected when the preference state walks into one of
the corresponding terminal states (referred to as an absorbing
boundary random walk process).

As indicated by the name, random walk processes are in-
herently stochastic and therefore make probabilistic predic-
tions about individuals’ choice, response time, and prefer-
ence strength. Probabilistic models must specify an under-
lying probability theory that dictates how the probability of
events (measurement results) are generated from the model.
This step in developing cognitive models is often overlooked
and researchers tend to default to traditional probability the-
ory as axiomatized by Kolmogorov (1950). Recently, quan-
tum probability theory has been proposed as an alternative
framework upon which to develop cognitive models, includ-
ing random walk models (Busemeyer, Wang, & Townsend,
2006), and has been successful in accounting for seemingly
irrational behavior that pose challenges to traditional cogni-
tive models (Bruza, Wang, & Busemeyer, 2015).

Conceptual Differences Between Markov and
Quantum Random Walk Models
The transition from traditional to quantum probability the-
ory dramatically alters how uncertainty is incorporated into
each random walk process. In a Markov random walk, the
decision-maker’s preference state is represented as a defi-
nite state; whereas in a quantum random walk, the decision-
maker’s preference state is represented as a superposition
state.
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To grasp the difference between these two representations,
consider the probability of flipping a coin and it landing
heads-up versus the probability of it landing tails-up. There’s
a 50% chance heads and a 50% chance of tails, right? Not
exactly. If you were to know the exact state of the system
(i.e., the position at which you release the coin, the veloc-
ity at which you flip it, the density of air in the room, etc.),
you would be able to predict with 100% certainty which side
would land up. Therefore, the uncertainty incorporated into
our classical model of the coin flip is introduced due to our
(the modeler’s) lack of knowledge about the state of the sys-
tem. This is a sort of epistemic uncertainty that accompanies
modeling a system using a definite state (Busemeyer, Kvam,
& Pleskac, 2020).

To contrast the coin flip example with a quantum system,
consider measuring whether the spin of an electron is spin up
or spin down. Physicists have demonstrated that even if you
have complete knowledge of the state of the system, there is
still a 50% chance of measuring the spin of the electron to be
spin up and a 50% chance of measuring it to be spin down
(Hughes, 1989). Here, rather than uncertainty being incor-
porated as the result of our lack of knowledge of the system,
uncertainty is an intrinsic property of the system. This is a
sort of ontic uncertainty that accompanies modeling a system
using a superposition state (Busemeyer, Kvam, & Pleskac,
2020).

By using a definite state to model preference accumulation,
a Markov random walk assumes that the decision-maker is
explicitly aware of the location of their preference state along
the one-dimensional lattice. When a decision is made, a per-
son simply reads out their preference from a pre-existing def-
inite state. This is similar to how once we flip a coin, observ-
ing which side landed up simply reveals the state of the coin,
which we could have already known with 100% certainty if
we had complete knowledge of the system. Therefore, the un-
certainty included in the Markov random walk process is the
modeler’s lack of knowledge of the decision-maker’s prefer-
ence state.

By using a superposition state to model preference accu-
mulation, a quantum random walk assumes that the decision-
maker is uncertain about the location of their own internal
preference state along the one-dimensional lattice. When a
decision is made, a person constructs a definite preference out
of the superposition state. Therefore, the uncertainty included
in the quantum random walk process is the decision-maker’s
own lack of knowledge of their preference state, rather than
the modeler’s lack of knowledge.

Although a definite state sounds appropriate for some de-
cisions, such as if someone asks you your favorite color or
favorite sports team, a superposition state appears more apt
for other decisions, such as if someone asks you how you are
feeling.

As indicated earlier, random walk models are often evalu-
ated on their ability to account for choice, response time, and
preference strength in a value-based decision-making task.

Wang and Busemeyer (2016) found that the quantum model
provided a better fit compared to the Markov model when
accounting for choice in a sequential decision-making task.
But, when fit to pairwise choice and response time data, both
Busemeyer et al. (2006) and Fuss and Navarro (2013) re-
ported that the Markov random walk outperformed the quan-
tum random walk. Finally, when fit to joint choice and con-
fidence data (confidence is analogous to preference strength
in an evidence-based decision-making task), Kvam, Pleskac,
Yu, and Busemeyer (2015) concluded that the quantum ran-
dom walk outperformed the Markov random walk. Impor-
tantly, the quantum model can account for interference effects
in joint choice and confidence data (i.e., making a choice al-
ters the distribution of confidence ratings) which is not com-
patible with the Markov model. It appears that there are ben-
efits that accompany both models. Up to this point we’ve dis-
cussed random walk models as either being purely Markov or
purely quantum, but is necessary to treat Markov and quan-
tum random walk models as mutually exclusive?

Open System Model
Fortunately, that is not the case. The open system random
walk model combines quantum and Markov models in a hy-
brid fashion such that the quantum random walk and the
Markov random walk are merely two ends of a random walk
spectrum spanned by the open system model (Busemeyer,
Zhang, Balakrishnan, & Wang, 2020; Fuss & Navarro, 2013;
Martı́nez-Martı́nez & Sánchez-Burillo, 2016). Being a hybrid
version of the Markov and quantum models, the open system
model incorporates both epistemic and ontic uncertainty into
the random walk process, which is probably the most accu-
rate representation as both a decision-maker is uncertain of
the location of their evidence state and the modeler is also
uncertain of the location of the decision-maker’s superposi-
tion state (Yearsley, 2017).

When fit to preference strength data, Kvam, Busemeyer,
and Pleskac (2021) reported that the open system model out-
performs both Markov and quantum random walk models.
Kvam et al. (2021) also demonstrated that mean preference
strength systematically oscillates over time and that a deci-
sion causes an interference effect on the subsequent prefer-
ence strength. Both of these findings are incompatible with
the Markov model, which predicts a monotonic increase in
mean preference strength and no interference effect, but are
naturally accounted for by the open system and quantum
models. In addition to comparing quantum and Markov mod-
els, Fuss and Navarro (2013) also fit an open system model
to pairwise choice and response time data. They found that
the open system model produced a small advantage over the
Markov model. Although this is a promising result, the open
system model used in Fuss and Navarro (2013) has little con-
nection to previous Markov models of decision-making. This
model was developed as an array of parallel accumulators,
where each accumulator is assigned a phase. The phase dif-
ference between any two accumulators determines the degree
to which those two accumulators reinforce each other. With

3304



this formulation, the open system model in Fuss and Navarro
(2013) can be represented by a quantum random walk with a
single accumulator, but their forms are quite different.

In this article, we develop a more general open system
model to predict pairwise choice and response time data. This
model builds off of previous Markov and quantum models of
decision-making (Busemeyer, Zhang, et al., 2020) and also
incorporates a parameter that estimates the relative influence
of the Markov and quantum components on the random walk.
Rather than assuming an array of accumulators like the model
in Fuss and Navarro (2013), we assume a single accumulator.
Also, the dynamics of the open system model outlined here
are governed by the same tridiagonal intensity and Hamil-
tonian matrices that determine the dynamics of Markov and
quantum random walks, respectively. After developing this
more general open system model, we compare its perfor-
mance to that of the Markov and quantum models when fit
to pairwise choice and response time data.

Methods
Participants
A total of N = 63 participants were recruited through Prolific,
an online experimental platform, and paid $15 for completing
the study. To ensure quality and consistent data, we screened
participants so that they could only complete the study on
a desktop or laptop (excluding those on tablets and phones)
and they were of United States nationality. Three participants
were excluded from the analysis because they responded with
either 30 or -30 when they rated their relative preference be-
tween the two gift cards on more than 80% of the trials. This
indicated that they were not fully evaluating their preference,
rather defaulting to the extreme values.

Materials
On each trial, a pair of gift cards to hypothetical local restau-
rants were presented. All participants saw the same set of 49
gift card pairs, but the order of presentation was randomized
for each participant. The gift cards varied on 4 dimensions:
dollar value (which ranged from $10− $30), restaurant rat-
ing (which ranged from 1-5 stars), average price per meal at
the restaurant (which ranged from $5 − $20), and distance
from their home (which ranged from 0.1-10 miles). For the
first response on each trial, participants specified their choice
by either clicking a button labeled “Left”or a button labeled
“Right”. For the second response on each trial, participants
recorded their relative preference between the two gift cards
using a sliding scale from -30 to 30.

Procedure
During the experiment, there were 7 blocks with 7 trials per
block. At the beginning of a trial, a fixation cross was pre-
sented for two seconds. After that period, a pair of gift cards
were presented and participants were prompted to either press
the “Left” button to indicate that they prefer the left gift card
or press the “Right” button to indicate that they would prefer
the right gift card (for an example trial, see Figure 1).

Figure 1: Example of a gift card pair with the responses.

After pressing the “Left” or “Right” button, the gift cards
continued to be presented on the screen for a variable time
interval of either 3, 6, 9, 18, 30, or 45 seconds. Then, partici-
pants were asked to indicate their relative preference between
the two gift cards using a slider on a scale of -30 to 30, where
a response of -30 indicated that they preferred the gift card
on the left $30 more than the one on the right and a response
of 30 indicated that they prefer the gift card on the right $30
more than the one on the left, and a response of 0 means they
value them both equally. The second response was collected
for an unrelated research question. At the end of the exper-
iment, participants were asked what percentage of the time
they paid attention to each attribute (on a scale of 0 to 100) to
identify the importance they placed on each attribute.

Model Formulation
All three models outlined in this section are developed over
an arbitrary number of preference states (N), where the pref-
erence states are ordered according to preference strength for
one alternative relative to the other. The N preference states
form an orthonormal basis for each model. We set N = 21
when we fit the models to the experimental data, and the find-
ings of the 21 preference state models are reported in the Re-
sults section. We chose to use 21 states because the model fits
were worse with fewer states and adding more states beyond
21 did not improve fits. We did not use more than the neces-
sary number of states needed to obtain good fits (21) because
of the computational cost of the models.

Markov Model
We used a discrete-state, continuous-time Markov random
walk process with absorbing boundaries and N preferences
states. The decision-maker’s preference state (φ) is repre-
sented as a linear combination of the basis states (which are
the N preference states) such that the coefficient on each ba-
sis state represents the probability that the decision-maker’s
preference state is located in that basis state. Therefore, φ

encodes a probability distribution over the basis states.
The dynamics of the Markov random walk process are gov-

erned by the generator matrix (K). The generator matrix is a
tridiagonal matrix that is specified using two free parameters:
a drift rate vM ∈ (−∞,∞) which describes the rate at which the
probability distribution moves toward one alternative relative

3305



to the other and a diffusion rate σ2
M ∈ (0,∞) which describes

the rate at which probability flows out of a basis state and into
the adjacent states.

K =



−β α 0 . . . 0

β −λ
. . . . . .

...

0 β
. . . α 0

...
. . . . . . −λ α

0 . . . 0 β −α


where α = σ2

M − u · vM,β = σ2
M + u · vM,λ = α+β, and u ∈

[−40,40] is the utility of the gift card pair, which is defined
as the relative worth of one gift card to the other based on the
four gift card attributes.

The dynamics of the Markov random walk are described
by the Kolmogorov forward equation

d
dt

φ = K ·φ

which defines how the probability distribution changes over
time.

Quantum Model

We used a discrete-state, continuous-time quantum random
walk process with absorbing boundaries and N preference
states. The decision-maker’s preference state (ψ) is repre-
sented as a linear combination of the basis states, similar
to the Markov model. But, in the quantum model, the co-
efficient on each basis state represents the potential that the
decision-maker’s preference state is located in that basis state.
Rather than operating on probabilities like the Markov ran-
dom walk, the quantum random walk operates on probability-
amplitudes, or just amplitudes. Unlike probabilities, which
are real numbers between 0 and 1, amplitudes can be complex
numbers whose magnitude is between 0 and 1. The probabil-
ity of the decision-maker’s preference state being located in
a given basis state is equal to the squared magnitude of the
corresponding amplitude of that state. Therefore, ψ encodes
an amplitude distribution over the basis states.

The dynamics of the quantum random walk process are
governed by the Hamiltonian matrix (H). Similar to the gen-
erator matrix in the Markov model, the Hamiltonian matrix is
a tridiagonal matrix that is specified using two free parame-
ters: a drift rate vQ ∈ (−∞,∞) which is the slope (or constant
force) of the potential function that determines the relative
amount of amplitude flowing back into a basis state and a dif-
fusion rate σ2

Q ∈ (0,∞) which is the rate at which amplitude
flows out of a basis state and into the adjacent ones. Note, the
potential function does not necessarily need to be linear with
a constant force like the one specified here. We just chose a
linear potential function for simplicity.

H =



µ1 σ2
Q 0 . . . 0

σ2
Q µ2

. . . . . .
...

0 σ2
Q

. . . σ2
Q 0

...
. . . . . . µN−1 σ2

Q
0 . . . 0 σ2

Q µN


where µk = u · vQ · k, k is the index for state k, and u is the
same utility as in the Markov model.

The dynamics of the quantum random walk are described
by the Schrödinger equation

d
dt

ψ =−i ·H ·ψ

which defines how the amplitude distribution changes over
time.

Open System Model
We used a discrete-state, continuous-time open system ran-
dom walk process with absorbing boundaries and N prefer-
ence states. The decision-maker’s preference state (ρ) is rep-
resented using a density matrix, which is initialized as the
outer product of the preference state in the quantum random
walk ρ = ψ ·ψ†. The diagonal element in the j row and col-
umn represents the probability that the decision-maker’s pref-
erence state is located in that basis state.

Because the open system model is a hybrid of the Markov
and quantum models, the dynamics of the open system ran-
dom walk process are governed by both the generator matrix
(K) and the Hamiltonian matrix (H). The generator matrix
and Hamiltonian matrix take the same form as in the Markov
and quantum models, respectively, so the dynamics of the
open system model are specified using four free parameters:
vM ∈ (−∞,∞), σ2

M ∈ (0,∞), vQ ∈ (0,∞), and σ2
Q ∈ (0,∞).

The dynamics of the open system random walk are de-
scribed by the quantum master equation

d
dt

ρ(t) =−i · [H,ρ(t)]

+∑
j,k

γ jk ·
((

L jk ·ρ(t) ·L†
jk

)
−0.5 · {(L†

jk ·L jk),ρ(t)}
)

where γ jk is equal to the element at row j and column k in
the generator matrix (γ jk = K( j,k)) and L jk is a 21 by 21
matrix of 0’s, except at row j and column k there is a 1. The
first line of the right side of the quantum master equation

(
−

i · [H,ρ(t)]
)

is the quantum component of the random walk,
whereas the second line is the Markov component.

Note that when we define this equation, the two diffusion
parameters, σ2

M and σ2
Q, have similar interpretations. In the

Markov model, σ2
M describes the rate at which probability

flows out of a basis state and into the adjacent states; and in
the quantum model, σ2

Q describes the rate at which amplitude
flows out of a basis state and into the adjacent states. Since the
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open system model concurrently incorporates both Markov
and quantum components, we believe that probability and
amplitude should diffuse at the same rate (σ2 = σ2

M = σ2
Q).

To control the relative influence of the Markov and quan-
tum components on the open system random walk, we added
a weighting parameter, ω ∈ [0,1], to the quantum master
equation. With the addition of the weighting parameter, we
can reparameterize the master equation, still in terms of four
free parameters (ω, vM , vQ, and σ2)

d
dt

ρ(t) = (1−ω) ·
(
− i · [H,ρ(t)]

)
+ω ·

(
∑
j,k

γ jk ·
((

L jk ·ρ(t) ·L†
jk

)
−0.5 ·{(L†

jk ·L jk),ρ(t)}
))

where now H is defined using vQ as the force and σ2 as the
diffusion rate and K (which is where the γ jk is taken from) is
defined using vM as the drift rate and σ2 as the diffusion rate.
Note that when ω = 0, the open system model reduces to the
quantum random walk; and when ω = 1, the open system
model reduces to the Markov random walk.

Other Parameters
Non-decision Time To account for the time included in the
total response time that was not dedicated to the decision pro-
cess (e.g., motor response), we included a non-decision time
parameter in the models, TND.

Discrete to Continuous Response Time Distribution We
began by formulating each model as a continuous-time,
discrete-state random walk process with absorbing bound-
aries. The absorbing boundaries in each model are the two
terminal basis states. If the preference state is measured to be
in the first basis state, then the random walk process ends and
the decision-maker selects the left gift card. Similarly, if the
preference state is measured to be in the 21st basis state, then
the random walk process ends and the decision-maker selects
the right gift card. To implement absorbing boundaries, each
model must repeatedly evolve the preference state for some
amount of time (τ) and then measure the probability that the
state is in either of the terminal states. The evolution and sub-
sequent measurement of the preference state is referred to as
a step in the random walk. The probability that the prefer-
ence state is in either of the terminal states on step n is equal
to the probability that the random walk process ends after n
steps (and the probability that the response time t is given by
t = τ ·n+TND). The number of steps must be discrete, so the
response time distribution is discrete as well.

Although the current state-of-the-art 2AFC model, the
drift-diffusion model, is a continuous-time, continuous-state
model (which allows it to have a continuous response time
distribution), we could not directly compare the quantum
or open system model to the drift-diffusion model because
there is no continuous-time, continuous-state quantum ran-
dom walk. To work around this, we assumed that each step
in the random walk is exponentially distributed with rate g,

rather than deterministically occurring at a fixed interval. The
rate g∈ (0,∞) is fit as a free parameter. By assuming the mea-
surements are exponential distributed (described by a contin-
uous probability density) rather than occurring at determinis-
tic times as specified by a constant time interval, the response
time distribution of each random walk is continuous rather
than discrete.

Results
We excluded trials with response times larger than 20 s to
exclude trials where participants were likely not attending to
the task.

Model Comparison
The parameters for both the Markov and open system mod-
els were fit using maximum likelihood estimation. The like-
lihood of each model was converted to the G2 statistic to
perform model comparison (G2 = −2 · LL, where LL is the
log-likelihood of the model given the data and the set of pa-
rameters). Since the Markov and quantum models are nested
models of the open system model, we can perform a χ2 test
to determine whether we should reject the simpler models in
favor of the more complex open system model. The mean G2

value for each model across participants, and the number of
parameters used in each model, are displayed in Table 1

Table 1: Comparison of mean fits across participants.

Model Mean G2 k
Markov 222.69 4

Quantum 238.23 4
Open system 217.82 6

Comparing the mean fits of each model, ∆G2
M = 222.69−

217.82 = 4.87, ∆G2
Q = 238.23− 217.82 = 20.41, and ∆k =

6 − 4 = 2, where k is the number of free parameters,
χ2(∆G2

M = 4.87,∆k = 2) results in p = 0.087 and χ2(∆G2
Q =

20.41,∆k = 2) results in p = 3.7 · 10−5, so we do not have
enough evidence on average to reject the Markov model in
favor of the more complex the open system model but we do
have enough evidence on average to reject the quantum model
in favor of the open system model.

When looking at the individual participants using the same
χ2 test, we found that for 16 out of the 60 participants, there
was enough evidence to reject the Markov model in favor of
the open system model; and for all 60 participants, there was
enough evidence to reject the quantum model in favor of the
open system model.

Predicted Response Time Distributions
As an alternative to quantitatively distinguishing between
the different models by comparing their fits, observing each
model’s predicted response time distribution can illuminate
qualitative differences between the models. For example, the
response time distribution of a quantum random walk can be
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multimodal, whereas that of a Markov random walk must be
unimodal Busemeyer et al. (2006). Figure 2 illustrates the
predicted response time distributions using the best-fit param-
eters for participant 51 and utility = 1 for all three models.

Figure 2: Response time distributions using the best-fit pa-
rameters for participant 51 and utility = 1.

Figure 2 demonstrates that the open system model can pre-
dict multimodal response time distributions like the quantum
model. But, looking at the tails of each distribution, the tail
of the Markov and open system models are much smaller
compared to that of the quantum model. As a hybrid of
the Markov and quantum models, it appears as though the
open system models combined the advantageous features of
the two models to more accurately account for the observed
response times.

Weighting Parameter
The weighting parameter is a key component of the open
system model, as it controls the relative influence that the
Markov and quantum components have on the open system
(Busemeyer, Kvam, & Pleskac, 2020).

Figure 3: Histogram of the best fit weighting parameter
across the 60 participants.

As illustrated in Figure 3, most of the weighting parameters
pile up around 0.9, which suggests that the Markov compo-
nent of the open system model has a stronger influence on
the random walk compared to the quantum component. Al-
though, this finding could be due to the fitting program getting
stuck in local minima when optimizing the parameters of the
open system model. When fitting the model, we used the pa-
rameters of the Markov model as an initial guess. It would
make sense that, given the complexity of the open system
model’s parameter space, the optimization algorithm would
keep the weighting parameter near 1, as the initial parameters
are sure to give a decent fit (equal to the Markov) when the
weighting parameter is 1. The two sets of best fit parame-
ters with the weighting parameter between 0.2 and 0.3 could
provide a basis to further explore sets of starting parameters.

Discussion

When accounting for behavior during decision-making tasks,
both Markov and quantum random walk models have their
respective strengths. The Markov model excels at model-
ing pairwise choice and response time (Busemeyer et al.,
2006), whereas the quantum model excels at modeling pair-
wise choice and confidence/preference strength and naturally
predicts both interference effects and oscillations in prefer-
ence strength (Kvam et al., 2015, 2021). Being a hybrid of
the two, the open system model has the potential to combine
the best aspects of both models.

The potential of the open system model has already been
realized when predicting preference strength (Kvam et al.,
2021), and here, for the first time, we extended that model
to choice and response time. Although on average, we can-
not reject the Markov model in favor of the open system
model, we can reject the Markov model in favor of the open
system model for 16 out of the 60 participants. Given that
modeling choice and response time is the biggest strength of
the Markov model, the success of the open system model is
greatly encouraging and warrants further investigation. Plus,
the open system model significantly outperformed the quan-
tum model on all 60 participants, which demonstrates its im-
provement over the pure quantum model.

Going forward, we plan to examine each model’s abil-
ity to predict pairwise choice, response time, and preference
strength data. Since the open system model notably outper-
formed the Markov and quantum models when fit to mean
preference strength, and nearly outperformed the Markov
model when predicting pairwise choice and response time,
we are confident the open system model will outperform
the Markov and quantum models when predicting pairwise
choice, response time, and preference strength.

Acknowledgments

This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA9550-
20-0027.

3308



References
Bhattacharya, R. N., & Waymire, E. C. (2009). Stochastic

processes with applications. SIAM.
Bruza, P., Wang, Z., & Busemeyer, J. R. (2015). Quan-

tum cognition: a new theoretical approach to psychology.
Trends in cognitive sciences, 19(7), 383–393.

Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M.
(2019). Cognitive and neural bases of multi-attribute,
multi-alternative, value-based decisions. Trends in cogni-
tive sciences, 23(3), 251–263.

Busemeyer, J. R., Kvam, P., & Pleskac, T. (2020). Compari-
son of markov versus quantum dynamical models of human
decision making. Wiley Interdisciplinary Reviews: Cogni-
tive Science, 11(4), e1526.

Busemeyer, J. R., Wang, Z., & Townsend, J. (2006). Quantum
dynamics of human decision-making. Journal of Mathe-
matical Psychology, 50(3), 220–241.

Busemeyer, J. R., Zhang, Q., Balakrishnan, S., & Wang, Z.
(2020). Application of quantum—markov open system
models to human cognition and decision. Entropy, 22(9),
990.

Fuss, I. G., & Navarro, D. J. (2013). Open parallel coopera-
tive and competitive decision processes: A potential prove-
nance for quantum probability decision models. Topics in
Cognitive Science, 5(4), 818–843.

Hughes, R. (1989). The structure and interpretation of quan-
tum mechanics. Harvard university press.

Kolmogorov, A. (1950). Foundations of the theory of proba-
bility.

Kvam, P., Busemeyer, J. R., & Pleskac, T. (2021). Temporal
oscillations in preference strength provide evidence for an
open system model of constructed preference. Scientific
reports, 11(1), 1–15.

Kvam, P., Pleskac, T., Yu, S., & Busemeyer, J. R. (2015). In-
terference effects of choice on confidence: Quantum char-
acteristics of evidence accumulation. Proceedings of the
National Academy of Sciences, 112(34), 10645–10650.

Martı́nez-Martı́nez, I., & Sánchez-Burillo, E. (2016). Quan-
tum stochastic walks on networks for decision-making. Sci-
entific reports, 6(1), 1–13.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G.
(2016). Diffusion decision model: Current issues and his-
tory. Trends in cognitive sciences, 20(4), 260–281.

Wang, Z., & Busemeyer, J. R. (2016). Comparing quantum
versus markov random walk models of judgements mea-
sured by rating scales. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering
Sciences, 374(2058), 20150098.

Yearsley, J. M. (2017). Advanced tools and concepts for
quantum cognition: A tutorial. Journal of Mathematical
Psychology, 78, 24–39.

3309




