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Tallie Z. Baram 1,3,4

1Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States,
2Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States,
3Department of Pediatrics, University of California, Irvine, Irvine, CA, United States, 4Department of
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Memory disruption commonly follows chronic stress, whereas acute stressors

are generally benign. However, acute traumas such as mass shootings or

natural disasters—lasting minutes to hours and consisting of simultaneous

physical, social, and emotional stresses—are increasingly recognized as

significant risk factors for memory problems and PTSD. Our prior work has

revealed that these complex stresses (concurrent multiple acute stresses:

MAS) disrupt hippocampus-dependent memory in male rodents. In females,

the impacts of MAS are estrous cycle-dependent: MAS impairs memory during

early proestrus (high estrogens phase), whereas the memory of female mice

stressed during estrus (low estrogens phase) is protected. Female memory

impairments limited to high estrogens phases suggest that higher levels of

estrogens are necessary for MAS to disrupt memory, supported by evidence

that males have higher hippocampal estradiol than estrous females. To test

the role of estrogens in stress-induced memory deficits, we blocked estrogen

production using aromatase inhibitors. A week of blockade protected male

and female mice from MAS-induced memory disturbances, suggesting

that high levels of estrogens are required for stress-provoked memory

impairments in both males and females. To directly quantify 17β-estradiol in

murine hippocampus we employed both ELISA and mass spectrometry and

identified significant confounders in both procedures. Taken together, the

cross-cycle and aromatase studies in males and females support the role for

high hippocampal estrogens in mediating the effect of complex acute stress

on memory. Future studies focus on the receptors involved, the longevity

of these effects, and their relation to PTSD-like behaviors in experimental

models.

KEYWORDS

stress, memory, estrogen, aromatase, hippocampus, PTSD, ELISA, mass spectrometry

Frontiers in Behavioral Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2022.984494
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2022.984494&domain=pdf&date_stamp=2022-09-08
mailto:rhokenso@uci.edu
https://doi.org/10.3389/fnbeh.2022.984494
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.984494/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Hokenson et al. 10.3389/fnbeh.2022.984494

Introduction

Studies on the effects of stress on memory have largely
centered on chronic stress, which is well established to
disrupt hippocampal memory (Kleen et al., 2006; Peay et al.,
2020). Whereas acute stress generally enhances memory (Uysal
et al., 2012; Brivio et al., 2020), acute traumatic events
composed of simultaneous physical, emotional, and social
stresses are increasingly recognized to provoke stress-related
mental illnesses, including PTSD, and associated spatial memory
impairments (Lawyer et al., 2006; Cherry et al., 2010, 2011;
Millan et al., 2012; Tempesta et al., 2012; Lowe and Galea, 2017;
Lowe et al., 2017; Musazzi et al., 2017; Novotney, 2018; Bell
et al., 2019; Harrison, 2019). Additionally, sex differences in
stress-related disorders are pronounced, with women generally
having higher rates or more severe symptoms (Christiansen and
Hansen, 2015; Olff, 2017).

We have previously discovered that exposure to
simultaneous short stresses [multiple concurrent acute stresses
(MAS)], impairs spatial memory and disrupts thin dendritic
spines in hippocampal CA1 in male rodents (Chen et al., 2008,
2010, 2016; Maras et al., 2014). Interestingly, in female mice, the
impacts of MAS are estrous cycle dependent. Surprisingly, MAS
impair memory when mice are stressed during early proestrus,
when levels of estrogens are high. Notably, spatial memory
was protected from MAS during estrus, characterized by lower
estrogens (Hokenson et al., 2021).

Proestrus-selective stress-induced memory disruptions were
unexpected. While estrogens can modulate stress hormone
release (Viau and Meaney, 1991; Lund et al., 2006; Heck and
Handa, 2019), estrogens are neuroprotective from stress (Wei
et al., 2014; Luine, 2016; Azcoitia et al., 2019). Others reported
that higher estrogen levels associate with deleterious effects of
stress (Shors et al., 1998; Gupta et al., 2001; Rubinow et al., 2004;
Shansky et al., 2004, 2009). These disparate findings suggest a
nuanced role of estrogens, where their interactions with stress
and memory are likely influenced by dose, origin, interaction
with other hormones, stressor type, and the brain regions and
networks involved (Holmes et al., 2002; McLaughlin et al., 2008;
Barha et al., 2010; Babb et al., 2014; Korol and Pisani, 2015;
Graham and Daher, 2016; Graham and Scott, 2018; Cohen et al.,
2020; Duong et al., 2020).

Given the profound effects of MAS on hippocampus (Chen
et al., 2008, 2010, 2013, 2016; Maras et al., 2014; Hokenson
et al., 2021), the important role of estradiol in learning and
memory for males and females (Frick et al., 2015, 2018; Luine
et al., 2018; Chen et al., 2021) and because hippocampal
estradiol levels are reported to be higher in male and proestrus
female compared to estrous female rats (Hojo et al., 2004;
Kato et al., 2013; Hojo and Kawato, 2018), we hypothesized
that high levels of hippocampal estradiol are required for, and
perhaps mediate, MAS-provoked memory impairments in both
male and female mice. Here we tested this notion by blocking

aromatase, an enzyme required for the production of estrogens,
for 1 week leading up to MAS. This blockade prevented
MAS-induced spatial memory deficits in male and female mice,
supporting a deleterious role of estrogens in MAS-induced
memory impairments.

We sought to quantify circulating and hippocampal estradiol
levels to confirm reported levels by sex and cycle (Hojo
et al., 2009; Kato et al., 2013; Hojo and Kawato, 2018) and
to assess the efficacy of aromatase inhibition. We identified
apparent reductions in the serum and hippocampal estradiol-
immunoreactivity in mice treated with aromatase inhibitors,
but analyses by mass spectrometry indicate that the compound
measured using ELISA might not be estradiol.

Materials and methods

Animals

C57BL/6J 2–5-month-old virgin male and female mice were
purchased from Jackson Laboratories or bred in-house. Two to
five same-sex mice were group housed in individually ventilated
cages (Envigo 7092-7097 Teklad corncob bedding, iso-BLOXTM

nesting) and had ad libitum access to water and food (Envigo
Teklad 2020x global soy protein-free extruded). The vivarium
was maintained between 22 and 24◦C on a 12-h light/dark cycle
(lights on 6:30 a.m.). Stress and behavior tests occurred during
the light phase.

Multiple concurrent acute stresses (MAS)

Male and female mice were assigned to a home-cage
(“unstressed”) control or a multiple concurrent acute stresses
(MAS) group (Figure 1A). Two to nine mice were individually
restrained in a ventilated 50 ml plastic tube and jostled on a
laboratory shaker in a room bathed with loud (90 dB) rap music
and bright lights for 2 h (Hokenson et al., 2020). Behavioral
tests were conducted 2 h post cessation of MAS, when plasma
corticosterone and total object exploration time is equivalent
between stressed and control animals (Maras et al., 2014; Chen
et al., 2016; Hokenson et al., 2021).

Estrous cycle monitoring

Estrous cycle phases were monitored daily via vaginal
cytology. Cells were stained with the Shandon Kwik-Diff Kit
(Thermo Fisher 9990700) and cycle phases were classified based
on relative cell type composition (Byers et al., 2012; McLean
et al., 2012; Hokenson et al., 2021). To account for the potential
effects of daily smearing on behavior, male mice were “faux”
smeared with a cotton swab (Sava and Markus, 2005). Smears
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were taken during the morning alongside the administration of
formestane/vehicle, 1 h prior to MAS.

Pharmacology

The conversion of androgens to estrogens (Figure 2A)
was blocked with subcutaneous administration of the steroidal,
aromatase inactivator formestane (4-Hydroxyandrost-4-ene-
3,17-dione, Sigma-Aldrich F2552; Yue et al., 1995; Nißlein and
Freudenstein, 2007) at 25 mg/kg/day (or corn oil vehicle) each
morning for 8 days, with the final dose given 1 h before
MAS. Treatments were assigned randomly but per cage to
avoid cross-contamination. Formestane cross-reacted with our
estradiol ELISA (a concentration analogous to max expected
levels was interpreted as having >200 pg/ml estradiol), thus
for estradiol quantification in serum and hippocampus we
employed mice treated intraperitoneally with the non-steroidal
inhibitor letrozole [4,4’-(1H-1,2,4-triazol-1-ylmethylene) bis-
benzonitrile, 2 mg/kg/day (Kafali et al., 2004)] or vehicle (1%
DMSO in saline). Only formestane was used for behavioral
studies. Corn oil and 1% DMSO in saline vehicle treated mice
were pooled for analyses of time in diestrus and uterine index.

Object location memory (OLM)

For OLM (Vogel-Ciernia and Wood, 2014; Figure 1A),
mice (n = 7–9/group) were handled (2 min/day, 6 days) then
habituated to an empty apparatus (10 min/day for ≥5 days)
leading up to MAS. Mice were trained (2 h after MAS) for
10 min with two identical objects. In the 5-min testing session
24 h later, one object was displaced while the other remained in
the same location (counter-balanced). Object investigation was
scored using BORIS version 7 (Friard and Gamba, 2016) by two
independent observers unaware of the experimental conditions
and was defined as the mouse’s nose pointed ≤1 cm toward
the object. Performance is expressed as the ratio of time spent
exploring the object in the novel vs. the familiar location (a
ratio of 1.0 indicates no preference). Two mice were excluded
for under exploration (<5 s during testing), one mouse was
excluded due to object bias during training (a ratio >2.0), one
mouse was excluded for incorrect cycle phase, and two mice
were excluded for being statistical outliers.

Tissue collection

Uterus dissection

Uteri, whose weights fluctuate with cycle and estrogen
manipulation (Yue et al., 1995; Zysow et al., 1997; Zhou
et al., 2010; Xiao et al., 2018), were weighed (wet weight) and

normalized to body weight by computing a “uterine index”
{[uterine weight (g)/body weight (g)] × 100; n = 7–14/group;
Hokenson et al., 2021}.

Serum and fresh-frozen hippocampus

Mice were euthanized by rapid decapitation. Trunk blood
was collected (within 1–2 min), clotted for 30 min (RT),
centrifuged (1,100 g, 15 min), then the clear supernatant (serum)
was collected and stored at −20◦C. For hippocampi, brains
were immediately removed from the skull. Hippocampus was
dissected on ice (2 min), flash frozen on dry ice, weighed, then
stored at−80◦C.

Tissue extraction

To remove interfering substances and enhance estradiol
signal, serum and hippocampi were extracted. 100 µl thawed
serum was extracted twice (5:1 ratio diethyl ether: serum).
After 30 min, samples were frozen in a methanol/dry ice bath
and the organic (unfrozen) phase was transferred to a new
glass tube, dried, then stored until analysis (Krentzel et al.,
2020; Proaño et al., 2020). Hippocampi (20 mg) were processed
using liquid-liquid and solid-phase extraction (Chao et al.,
2011; Tuscher et al., 2016). Fresh frozen hippocampus was
homogenized in 250 µl ice-cold 0.1 M phosphate buffer (PB)
via pestle (Zymo H1001). Ether extractions (repeated three
times) were performed by adding 375 µl diethyl ether, vortexing
(30 s), centrifuging (10,000 g, 10 min, 4◦C), and incubating
in a methanol/dry ice bath. The organic phase (unfrozen)
was transferred to a glass culture tube and dried (50◦C water
bath). 100% methanol: dichloromethane (1:1) was dripped
into the tubes and evaporated under an airstream. For solid-
phase extractions, solvents were eluted through C18 columns
(EmporeTM Extraction Cartridge C18-SD 3 ml, Supelco 66872-
U) with positive pressure (adapter Supelco 57020-U). Columns
were first conditioned [250 µl 100% methanol, then 250 µl
double-distilled water (×2)]. Samples were eluted (resuspended
in 250 µl of 0.1 M PB), washed (×2 250 µl double-distilled
water), and two organic elutions (250 µl 100% methanol) were
collected. Organic layers were evaporated under airstream/50◦C
water bath. Methanol: dichloromethane was again dripped into
tubes and evaporated under an airstream. Dried samples were
stored at −20◦C. An estradiol control was run during each
extraction round to calculate recovery (99%± 14%).

Estradiol enzyme-linked immunosorbent
assay (Estradiol ELISA)

Estradiol-immunoreactivity (estradiol-IR) was quantified by
the Calbiotech Mouse/Rat Estradiol ELISA Kit (ES180S-100,
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Supplementary Table S1). Samples (duplicates) were compared
to a standard curve generated by the provided standards.
Dried extracted serum (n = 2–9/group) or hippocampus
(n = 3–13/group) were resuspended in 1% BSA in 1× PBS [(Silva
et al., 2013) and correspondence with the manufacturer], a buffer
found to have little interference with the assay. Some serum
(n = 3–8/group) was dispensed directly onto the plate without
extraction as per the manufacturer’s instructions. Absorbances
were read (450 nm) with a microplate reader (BioTekr Synergy
HTX). Concentrations are expressed as estradiol-IR (picograms)
relative to grams hippocampus wet weight or serum volume after
correction for recovery.

Mass spectrometry

Dried extracted hippocampi (n = 2–7/group) were
resuspended in isopropanol. Thermo Q Exactive Plus
Hybrid Quadrupole-Orbitrap Mass Spectrometer coupled
with Vanquish UHPLC system was used. LC-MS system
was controlled by Xcalibur software (Thermo). Metabolite
separation was conducted by Xbridge BEH amide column
(2.1 × 150 mm, 2.5 µm particle size, 130 A◦ pore size; Waters,
Milford, MA). LC gradient was generated using LC solvents
(solvent A) 20 mM ammonium acetate, 20 mM ammonium
hydroxide in 95:5 acetonitrile: water, pH 9.45; (Solvent B)
acetonitrile. The chromatography gradient of solvent A and
solvent B was run at a flow rate of 150 µl/min: 0 min, 90% B;
2 min, 90% B; 3 min, 75% B; 4.5 min, 0% B; 6 min, 0% B; 7 min,
90% B; 9 min, 90% B; 10 min, 90% B. Autosampler temperature
was set to 4◦C and column temperature to 25◦C. MS analysis
was performed with a full-scan mode for measurement of
samples (m/z range 260–280, negative ion mode). Tissue
sample extracts were compared to standards: 17β-estradiol
(Cayman 10006315), 17α-estradiol (Cayman 20776), and
17β-estradiol-d2 (Cayman 9002846) dissolved in isopropanol.
To obtain MS/MS spectra for estradiol and hippocampus peak, a
Targeted Selected Ion Monitoring (Targeted SIM) mode coupled
with a data-dependent MS/MS (dd-MS2) scan was used. SIM
scans were acquired based on the inclusion of the parent ion
(271.1704 m/z) with a normalized collision energy (NCE) of
80. MS/MS spectra were then collected at a resolution of 70,000
(271.1704 m/z) with an automatic gain control (AGC) target
value of 1× 106 and maximum fill times of 100 ms. Hippocampi
were first spiked with 17β-estradiol-d2 prior to extraction and
raw ions of measured compound were adjusted to correct for
recovery (69% ± 4%) and then normalized to hippocampus
weight.

Statistical analyses

Analyses employed GraphPad Prism v9.3.1 (Windows).
Behavioral data were analyzed with 3-way ANOVA, with

factors of sex, drug, and MAS. Time in diestrus was analyzed
with 2-way repeated measures ANOVA with drug and time
as factors. Ordinary one-way ANOVA was used to analyze
estradiol concentrations. Brown-Forsythe ANOVA tests were
used when population standard deviations differed. If an
interaction was statistically significant (α = 0.05), post-hoc
tests with Sidak’s multiple comparisons (or Dunnett’s T3 for
Brown-Forsythe ANOVA) were performed. For estradiol
quantification, planned comparisons to compare across sex and
cycle or to examine the effects of the drug within sex were
employed. The correlation between estradiol-IR and uterine
index was computed with Pearson’s correlation. Outliers were
excluded by ROUT when applicable. Data are presented as
means± SEM.

Results

Aromatase inhibition with formestane
protects spatial memory from MAS in
male and female mice

To test the potential role of estrogens in the effects of MAS
on object location memory (OLM), aromatase was inhibited
in male and female mice for 1 week leading up to stress
(Figure 1A). Male mice exposed to MAS or female mice
experiencing MAS during early proestrus had poor spatial
memory when compared to controls (Figure 1B) as previously
described (Chen et al., 2016; Hokenson et al., 2021). Treatment
with the aromatase inhibitor formestane protected memory
in both sexes (Figure 1B). Three-way ANOVA showed an
effect of drug (F(1,54) = 6.28, p = 0.015) and an interaction
of drug × MAS (F(1,54) = 17.0, p < 0.001). There were no
effects of sex (F(1,54) = 0.21, p = 0.649) or MAS (F(1,54) = 2.98,
p = 0.090), nor interactions between drug × sex (F(1,54) = 0.80,
p = 0.376), sex × MAS (F(1,54) = 0.17, p = 0.683), or
drug × sex × MAS (F(1,54) = 0.69, p = 0.411). Post-hoc testing
indicated a difference in performance between vehicle MAS
males and formestane MAS males (t(54) = 3.51, p = 0.004)
and a difference between vehicle MAS (proestrus) females
and formestane MAS females (t(54) = 3.35, p = 0.006).
There were no differences between vehicle control males and
formestane control males (t(54) = 0.05, p > 0.999) or vehicle
control (proestrus) females and formestane control females
(t(54) = 1.59, p = 0.393, Supplementary Table S2).

Notably, differences in OLM were not attributed to
differences in object exploration or bias during training. During
training, the ratio of time spent exploring the object to be moved
over the familiar object did not differ across groups (Figure 1C,
Table 1). There was an effect of sex on total object investigation
time during both the training and testing sessions (Figures 1D,E,
Table 1), however, there were no effects of drug or stress on
exploration time (Table 1).
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FIGURE 1

Aromatase inhibition prevents MAS-induced object location memory deficits in male and female mice. (A) Mice were handled, then given daily,
subcutaneous administrations of the aromatase inhibitor formestane for 1 week leading up to MAS, concurrently with habituation to the object
location memory (OLM) apparatus. Two hours after MAS, mice were trained with two identical objects for 10 min then tested 24 h later. (B) During
the 5 min OLM test, vehicle treated male and proestrus female mice exposed to MAS had poor spatial memory compared to controls, however,
male and female mice treated with formestane prior to MAS preferentially explored the moved object (n = 7–9/group). (C) During OLM training,
mice did not display any object bias regardless of group assignment. (D) During OLM training, time spent investigating the objects did not vary
with drug or stress, but males had longer total investigation compared to females. (E) Likewise, during OLM testing, time spent investigating the
objects did not vary with drug or stress, but males had longer total investigation compared to females. #Main effect (p < 0.05). Post test p-values
are provided above the corresponding comparisons. Individual points represent individual mice. Data are presented as mean ± SEM.

Together these results replicate our prior findings that MAS
impair spatial memory in male and early proestrus female
mice. Blocking the production of estrogens with an aromatase
inhibitor leading up to MAS protects OLM in males and females,
suggesting that high levels of estrogens are required for MAS
to disrupt spatial memory.

Aromatase inhibition disrupts cycling and
decreases systemic estradiol levels

One week of aromatase inhibition with inhibitors
formestane or letrozole disrupted estrous cycling in female
mice, pausing cycles in the diestrus phase (low estrogens;
McLean et al., 2012). The percent of the observation period the
mouse spent in diestrus was increased during aromatase
inhibition compared to vehicle (Figure 2B). Two-way

repeated measures ANOVA identified an interaction of
drug × duration of diestrus (F(2,53) = 9.25, p < 0.001),
effect of drug (F(2,53) = 28.48, p < 0.001) and effect of
duration (F(1,53) = 24.18, p < 0.001), but no effect of subject
(F(53,53) = 0.77, p = 0.826). Post hoc results reveal a difference
of diestrus period length during treatment between vehicle
and formestane (t(106) = 7.47, p < 0.001) and vehicle and
letrozole (t(106) = 5.61, p < 0.001), but no difference between
formestane and letrozole (t(106) = 0.62, p = 0.901). There were no
differences in diestrus length between groups before treatment
(Supplementary Table S3).

Aromatase inhibition decreased uterine weights compared
to proestrus uteri (Figure 2C). There was a significant
difference in uterine indices (F*(3,25) = 31, p < 0.001, Brown-
Forsythe ANOVA). Post hoc results reveal differences in uterine
indices between proestrus and estrus (t(9.7) = 5.0, p = 0.003),
proestrus and formestane (t(13) = 4.7, p = 0.003), proestrus
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TABLE 1 Three-way ANOVA results of object bias during training and
objection investigation times during training and testing.

Object bias during training session

Factor F DFn, DFd P value

Drug 1.59 1,54 0.212
Sex 0.13 1,54 0.719
MAS 0.46 1,54 0.501
Drug× Sex 0.11 1,54 0.745
Drug×MAS 0.27 1,54 0.608
Sex×MAS 0.003 1,54 0.957
Drug× Sex×MAS 0.42 1,54 0.520

Object investigation time during training session

Factor F DFn, DFd P value

Drug 0.25 1,54 0.620
Sex 11.6 1,54 0.001
MAS 0.05 1,54 0.816
Drug× Sex 0.87 1,54 0.355
Drug×MAS 1.97 1,54 0.166
Sex×MAS 0.003 1,54 0.959
Drug× Sex×MAS 0.47 1,54 0.494

Object investigation time during testing session

Factor F DFn, DFd P value

Drug 0.32 1,54 0.577
Sex 6.30 1,54 0.015
MAS 0.49 1,54 0.486
Drug× Sex 0.08 1,54 0.785
Drug×MAS 0.64 1,54 0.426
Sex×MAS 2.16 1,54 0.148
Drug× Sex×MAS 0.17 1,54 0.684

and letrozole (t(7.1) = 11, p < 0.001), estrus and letrozole
(t(17) = 9.2, p < 0.001), and formestane and letrozole (t(16) = 6.5,
p < 0.001). Notably, there was no difference in uterine indices
between estrus and formestane mice (t(23) = 0.22, p > 0.999,
Supplementary Table S4).

Serum estradiol was quantified using ELISA. Because
formestane, with a steroid-like structure, was recognized by the
anti-estradiol antiserum, we quantified the hormone levels only
in samples from letrozole treated mice. There were differences in
serum estradiol-IR (F(4,21) = 5.82, p = 0.003, ordinary one-way
ANOVA, Figure 2D) between male vehicle and male letrozole
(t(21) = 3.16, p = 0.028), proestrus vehicle and estrus vehicle
(t(21) = 3.18, p = 0.027), and a near difference between proestrus
vehicle and female letrozole (t(21) = 2.63, p = 0.090, additional
post hoc comparisons described in Supplementary Table S5).
However, there was no difference between male and proestrus
estradiol (t(21) = 0.22, p > 0.999). In female mice, there was
a positive correlation between serum estradiol-IR and uterine
index across proestrus, estrus, and letrozole treatment (Pearson
R2 = 0.218, p = 0.014, Figure 2E). Of note, nearly all apparent
estradiol concentrations were below the lower detection limit of
the assay (3 pg/ml).

To improve the assay, we extracted serum prior to ELISA.
Extraction increased average concentrations and estradiol levels
differed across groups (F*(4,8.05) = 8.05, p = 0.007, Figure 2F;
Brown-Forsythe ANOVA). Though these post hoc comparisons
did not reach the threshold for significance, letrozole tended
to decrease estradiol-IR, proestrus levels tended to be higher
than estrus, and male levels were below female (Supplementary
Table S5). Together, these findings indicate that aromatase
inhibition, which protects male and female mice from MAS,
reduces systemic estradiol.

Systemic aromatase inhibition decreases
ELISA-measured hippocampal
estradiol-immunoreactivity, yet the
compound is not recognized as estradiol
on mass spectrometry

To test if hippocampal estradiol, reportedly high in males
and proestrus females (Kato et al., 2013; Hojo and Kawato,
2018; but see Caruso et al., 2013; Marbouti et al., 2020) enables
MAS-induced memory problems, we quantified hippocampal
estradiol across sex, cycle, and aromatase inhibition using
ELISA. Letrozole reduced apparent hippocampal estradiol-IR in
both sexes, however, levels were surprisingly lower in proestrus
females compared to estrous females and males (F(4,34) = 13.84,
p< 0.001, Figure 3A, ordinary one-way ANOVA). Post-hoc tests
revealed differences in hippocampal estradiol-IR between male
vehicle and male letrozole (t(34) = 5.05, p < 0.001), male vehicle
and proestrus vehicle (t(34) = 3.09, p = 0.024), proestrus vehicle
and estrus vehicle (t(34) = 2.84, p = 0.045), proestrus vehicle
and female letrozole (t(34) = 3.28, p = 0.014), and estrus vehicle
and female letrozole (t(34) = 5.23, p < 0.001), but no difference
between male vehicle and estrus vehicle (t(34) = 0.13, p > 0.999,
Supplementary Table S6).

To validate hippocampal estradiol levels, we analyzed
similarly processed tissue by mass spectrometry and detected
peaks with the expected molecular weight of 17β-estradiol
(271.17 g/mol). Quantifying measured ions/g of hippocampus,
concentrations in female proestrus were again lower compared
to male and estrous females (one-way ANOVA: F(2,10) = 11.40,
p = 0.003, Figure 3B). Post-hoc tests revealed a difference
in concentration between male and proestrus (t(10) = 3.00,
p = 0.040) and proestrus and estrus (t(10) = 4.42, p = 0.004), but
no difference between male and estrus (t(10) = 0.42, p = 0.968,
Supplementary Table S6).

However, further analyses indicated that the peak identified
in hippocampus was not estradiol. Elution times differed:
2.24 min for the compound, 2.47 min for 17β-estradiol standard
(Figure 3C). This unknown peak was not identified in extracted
water or estradiol samples. Given the identical molecular
weight, we hypothesized that the compound might be the 17β-
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FIGURE 2

Aromatase inhibition disrupts estrous cycling and decreases systemic estradiol levels. (A) Aromatase inhibitors, formestane and letrozole, block
the conversion of androgens to estrogens. (B) During treatment, aromatase inhibitors increase the percentage of time the female mouse
spends in the diestrus phase of the cycle (n = 7–24/group). (C) Uterine indices are decreased in estrus compared to proestrus mice. Treatment
with aromatase inhibitors likewise decreases uterine indices (n = 7–14/group). (D) Estradiol-immunoreactivity was quantified in serum directly
measured by ELISA (unextracted). Letrozole treatment tended to decrease estradiol levels and proestrus levels were elevated compared to estrus.
However, male vehicle serum estradiol levels were high, similar to proestrus female levels. Most values are below the lower limit of detection
of the assay (n = 3–8/group). (E) There is a positive correlation between estradiol-immunoreactivity in serum measured by ELISA and uterine
index in female mice (n = 20). (F) Estradiol-immunoreactivity was additionally quantified in serum that was extracted prior to ELISA. Again,
letrozole treatment tended to decrease estradiol levels and proestrus levels were elevated, though with even larger variability, compared to
estrus. With extraction, male serum estradiol levels were below female (n = 2–9/group). Post test p-values are provided above the corresponding
comparisons. Individual points represent individual mice and matched points represent a mouse at different time points. Data are presented as
mean ± SEM.

estradiol isomer: 17α-estradiol (Toran-Allerand et al., 2005).
While it was difficult to distinguish enantiomer peaks without
a chiral column or derivatization, the hippocampal peak still
eluted earlier, suggesting that the compound detected here,
and presumably through ELISA, was neither 17β-estradiol nor
17α-estradiol. We additionally examined MS/MS profiles of
the estradiol standard vs. hippocampus (Figures 3D,E). Based
on the disparate fragmentation patterns of estradiol standard
and hippocampus, we conclude that these are not the same
compound.

Therefore, we conclude that available commercial
methodologies identify a compound in hippocampus that
is not estradiol. Intriguingly, aromatase inhibition reduces its
levels, yet its identity remains to be established.

Discussion

Here we confirm that multiple acute concurrent stresses
(MAS) disrupt hippocampus-dependent memory in male mice,
and in females stressed during proestrus (Figure 1B; Chen

et al., 2016; Hokenson et al., 2021). High levels of estrogens
are required in both sexes, as reducing estrogens by inhibiting
aromatase prevents MAS from disrupting memory (Figure 1B).
These findings are surprising for both sexes. First, they support
a deleterious role of high levels of estrogens in females. Second,
they suggest a role for hippocampal estrogens in males. Whereas
hippocampal estradiol is reportedly high (Hojo et al., 2009;
Kato et al., 2013; Hojo and Kawato, 2018) there has been little
work on its putative role. Here we suggest the novel notion
that hippocampal estrogens in males may act to repress stressful
memories.

We previously established that MAS-induced memory
disruption and dendritic spine loss in males require convergent
activation of corticotropin releasing hormone receptor 1
(CRHR1) and glucocorticoid receptor (GR; Chen et al., 2008,
2016). As high levels of estrogens are required for memory
disruption in males and females (Figure 1B), these stress-
induced disruptions may rely on the synergistic activation of
estrogen receptors with CRHR1 and GR. Concurrent activation
of these receptors, which converge on RhoA-pCofilin signaling
(Chen et al., 2008, 2013; Kramár et al., 2009a,b, 2013),
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FIGURE 3

Systemic aromatase inhibition decreases hippocampal, ELISA-measured estradiol-immunoreactivity but estradiol was not detected by mass
spectrometry. (A) Estradiol-immunoreactivity in the hippocampus (pg/g of hippocampus wet weight) as measured by estradiol ELISA. Letrozole
reduces hippocampal estrogen. Estradiol in proestrus female hippocampus is lower than estradiol in male or estrous female hippocampus
(n = 3–13/group). (B) The number of ions in the measured peaks (m/z 271.17) normalized to g of the hippocampus. Again, concentration in
proestrus female hippocampus is lower than in male or estrous female hippocampus (n = 2–7/group). (C) The m/z 271.17 peak in hippocampus
samples elute at 2.24 min while a 17β-Estradiol standard elutes at 2.47 min, indicating that these peaks are not 17β-Estradiol. (D) MS/MS spectrum
of the [M-H]- ion (m/z 271.1704) for a 1:1 mixture of deuterated-labeled and unlabeled estradiol standards. (E) MS/MS spectrum of the [M-H]-
ion (m/z 271.1704) for an unknown compound identified in a male hippocampus. Post test p-values are provided above the corresponding
comparisons. Individual points represent individual mice. Data are presented as mean ± SEM.

may destabilize dendritic spines. Alternatively, estrogens may
influence the levels or activity of CRH or glucocorticoids.
Indeed, a potential role for estradiol in augmenting CRH
expression has been identified (Lalmansingh and Uht, 2008; Qi
et al., 2020).

Here we tested the potential role of high estrogens in
MAS-induced memory deficits using the aromatase blocker
formestane. While estradiol-IR reductions with letrozole were
generally quite large (Figures 2D–F, 3A), formestane-induced
reductions may be more modest. Indeed, formestane exerts less
aromatase inhibition (84%–93%) than letrozole (>98%; Lønning,
2003), and likewise less potently reduces plasma estrogens
(Jones et al., 1992; Geisler et al., 2002). Nevertheless, the
pronounced effects of formestane on cycling and uterine weights
(Figures 2B,C) and reported reduction in circulating estradiol
with similar doses (Yue et al., 1995; Nißlein and Freudenstein,
2007) suggest that estrogens were significantly reduced. While
estradiol, especially originating from the hippocampus, is critical
for memory in female and male mice (Martin et al., 2003;

Tuscher et al., 2016; Marbouti et al., 2020) control formestane
treated females had only a mild reduction in preference
for the moved object compared to control vehicle treated
females (Figure 1B), suggesting that reduction of estrogens was
incomplete. Alternatively, it is possible that week-long aromatase
inhibition could increase testosterone or have direct androgenic
properties (Séralini and Moslemi, 2001). While this may propose
a protective role of androgens, our current work using estrogen
receptor blockers suggest estrogen receptor activation plays a
direct role in MAS-induced memory impairment.

ELISA is widely used in animal and clinical research due
to its relatively low cost, convenience, high throughput, and
safety compared to radioactive assays (Sakamoto et al., 2018).
However, several issues were found here. Estradiol ELISAs
have difficulties quantifying low concentrations, such as in
males, ovariectomized, or aromatase-inhibited animals (Hsing
et al., 2007; Huhtaniemi et al., 2012; Schumacher et al.,
2015; Niravath et al., 2017). We have used the Calbiotech
ELISA to distinguish proestrus and estrous female unextracted
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serum (Hokenson et al., 2021). This was accomplished, though
nearly all values were below the lower limit of detection
(Figure 2D). These low values are not unusual given low mice
serum levels (Nilsson et al., 2015; Handelsman et al., 2020).
Surprisingly, male serum levels were unexpectedly high, similar
to proestrus females (Figure 2D). Purification may increase
estradiol-IR by removing interfering substances (Chao et al.,
2011; Tuscher et al., 2016; Boyaci et al., 2020; Krentzel et al., 2020;
Proaño et al., 2020). Indeed, extracting serum prior to ELISA
enhanced estradiol-IR and distinguished male and female values
(Figure 2F) but were higher than expected of mouse serum
(Nilsson et al., 2015; but see Marbouti et al., 2020, analyzed
by ELISA). Artificially high estradiol-IR could be due to the
tendency for ELISA to overestimate levels (McNamara et al.,
2010). Indeed, the Calbiotech plate may not distinguish between
intact vs. ovariectomized mice (Haisenleder et al., 2011).

Regarding hippocampal estradiol, we expected lower levels
in estrus females vs. proestrus females and males (Kato
et al., 2013). Instead, ELISA found the lowest estradiol-IR in
proestrus females (Figure 3A). Therefore, we turned to mass
spectrometry and given the high levels of apparent estradiol-IR
by ELISA (Figure 3A), anticipated that estradiol levels would
be quantifiable without derivatization. Indeed, we found peaks
of the expected molecular weight in our samples and, similar
to ELISA, a reduction in proestrus female levels (Figure 3B).
However, the peaks in the hippocampus were not estradiol based
on different retention times and MS/MS profiles (Figures 3C–E).
Only hippocampi were analyzed through mass spectrometry,
so it is unknown whether the same unknown peak is found
in serum, or if ELISA and mass spectrometry detect the same
compound. These factors lead us to conclude that ELISA-
measured estradiol values should be considered with extreme
caution (Schumacher et al., 2015).

We probably failed to detect estradiol with our current mass
spectrometry approach because estradiol quantities were too
low or extraction procedures insufficient. While large quantities
of tissue estradiol have been quantified without derivatization
(McNamara et al., 2010), other groups have successfully detected
small quantities through estradiol-specific derivatization (Kato
et al., 2013; Jalabert et al., 2022) or signal-enhancing additives
(Lozan et al., 2017).

In conclusion, aromatase inhibition protects male and
female mice from the memory impairing effects of MAS,
suggesting that high levels of estrogens are required for MAS to
disrupt memory. Future studies will probe the specific estrogen
receptors involved. Additionally, studies are clearly warranted to
definitively measure estradiol in murine hippocampus.
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