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Image-based deep learning method for plant disease diagnosing is promising

but relies on large-scale dataset. Currently, the shortage of data has become an

obstacle to leverage deep learning methods. Few-shot learning can generalize

to new categories with the supports of few samples, which is very helpful for

those plant disease categories where only few samples are available. However,

two challenging problems are existing in few-shot learning: (1) the feature

extracted from few shots is very limited; (2) generalizing to new categories,

especially to another domain is very tough. In response to the two issues, we

propose a network based on theMeta-Baseline few-shot learningmethod, and

combine cascaded multi-scale features and channel attention. The network

takes advantage of multi-scale features to rich the feature representation, uses

channel attention as a compensation module e�ciently to learn more from

the significant channels of the fused features. Meanwhile, we propose a group

of training strategies from data configuration perspective to match various

generalization requirements. Through extensive experiments, it is verified that

the combination of multi-scale feature fusion and channel attention can

alleviate the problem of limited features caused by few shots. To imitate

di�erent generalization scenarios, we set di�erent data settings and suggest

the optimal training strategies for intra-domain case and cross-domain case,

respectively. The e�ects of important factors in few-shot learning paradigm

are analyzed. With the optimal configuration, the accuracy of 1-shot task and

5-shot task achieve at 61.24% and 77.43% respectively in the task targeting to

single-plant, and achieve at 82.52% and 92.83% in the task targeting to multi-

plants. Our results outperform the existing related works. It demonstrates

that the few-shot learning is a feasible potential solution for plant disease

recognition in the future application.

KEYWORDS

few-shot learning, meta-learning, multi-scale feature fusion, attention, plant disease

recognition, cross-domain, training strategy, sub-class classification
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1. Introduction

Plant disease has always been a significant concern in

agriculture since it results in reduction of crop quality and

production (Campbell and Madden, 1990; Oerke and Dehne,

2004; Strange and Scott, 2005). Image-based auto-diagnosing

method is very accessible and economical for farmers. It is

especially friendly to those farmers who are in remote areas or

on a small scale. In recent years, deep learning methods are

widely used in image-based recognition (Lin et al., 2021). Many

networks have achieved excellent performance when trained

with relevant large-scale datasets. As we know, the performance

of deep learning network relies on data. As the network gets

deeper, the number of trainable parameters becomes larger and

the demand for data increases. Insufficient data can easily lead to

overfitting (Simonyan and Zisserman, 2014; Dong et al., 2021).

In plant disease recognition, the existing data resources are

limited. Meanwhile, creating a large-scale plant disease dataset

is difficult due to: (1) the number of species and diseases are very

huge; (2) disease identification and annotation requires expert

involvement; (3) some diseases are too rare to collect sufficient

samples. The long-tailed distribution of data is common in

nature and it is difficult to be used to train a balanced model.

In brief, creating large-scale dataset of plant disease is a time-

consuming and exhausting work (Deng et al., 2009; Singh et al.,

2020). Severe shortage of data has become a barrier to take

advantage of deep learning methods.

Generally, there are three ways to alleviate the problems

caused by data shortages. Data augmentation, as the most

common solution, augments instances by image scaling,

rotation, affine transformation, etc. Transfer learning method

delivers prior knowledge from source domain to target domain

and adapts to the target domain by a small amount of data. But

the two solutions cannot generalize to new categories in test,

which means that the classes in test must have been learned in

training. In addition to these two solutions, meta-learning, an

approach that mimics human learning mechanisms, has been

proposed in recent years. The objective of this solution is not

to learn knowledge, but to learn to learn. Different from the

conventional classification methods, few-shot learning (FSL) is

a kind of meta-learning method which can quickly generalize to

unseen categories with the supports of few samples.

One branch of FSL is metric-based method (Wang et al.,

2020). The principle is that the features of samples belonging

to the same category are close to each other, while the features

of samples belonging to different categories are far from each

other. The earliest representative work is Siamese Network,

which is trained with positive or negative sample pairs (Koch

et al., 2015). Vinyals et al. (2016) proposed the Matching

Networks, and they borrowed the concept “seq2seq+attention”

to train an end-to-end nearest neighbor classifier. Snell et al.

(2017) proposed Prototypical Network, which learns to match

the proto center of class in semantic space through few samples.

Sung et al. (2018) proposed Relation Network, which

concatenates the feature vectors of the support samples

and the query samples to discover the relationship of classes.

Li et al. (2019) proposed CoveMNet based on the covariance

presentation and covariance metric of the consistency of

distribution. The network extracts the second order statistic

information of each category by an embedding local covariance

to measure the consistency of the query samples with the novel

classes. Chen et al. (2020) proposed Meta-Baseline method,

which achieves good performance on some FSL benchmarks.

The accuracy achieves at 83.74% with 5-way, 5-shot task

of Tiered-ImageNet, and 90.95% with 1-way, 5-shot task

of Mini-ImageNet.

Recently, FSL has started to be used in research on plant

disease identification. Argüeso et al. (2020) used Siamese

Network on the dataset PlantVillage (PV). Jadon (2020)

proposed SSM-Net that uses the Siamese framework and

combines two features from a Conv and a VGG16. Zhong

et al. (2020) proposed a novel generative model for zero-shot

and few-shot recognition of citrus aurantium L. diseases by

using conditional adversarial auto-encoders. Afifi et al. (2021)

compared Triplet network, Baseline, Baseline++, and DAML on

PV and coffee leaf datasets. The results show that the Baseline

has the best performance. Li and Chao (2021b) proposed a

semi-supervised FSL method and tested it with PV. Nuthalapati

and Tunga (2021) introduced transformer into plant disease

recognition. Chen et al. (2021) used meta-learning on Mini-

plant-disease dataset and PV. Li and Yang (2021) used Matching

Network and tested cross-domain performance by mixing pest

data. These methods have been tried from various perspective

and have made important progresses. Nevertheless, FSL still has

two common challenging issues: (1) limited features extracted

from few samples are less representative for a class (Wang et al.,

2020); (2) the generalization requirements are very high and

various. In this work, we tackle the two issues by using multi-

scale feature fusion (MSFF) and improving training strategies.

CNN is widely used in image-based deep learning methods.

In a CNN architecture, the local features with more details

and small perceptive fields are extracted from low-level layers,

while the global features with rich semantic information and

large perceptive fields are extracted from high-level layers

(Goodfellow et al., 2016). MSFF is the technology using multi-

scale features which are extracted from different layers of

CNN (Dogra et al., 2017). In object detection and semantic

segmentation, many excellent networks are proposed by using

MSFF, such as Feature Pyramid Network (Lin et al., 2017), U-

net (Ronneberger et al., 2015), Fully Convolutional Network

(Long et al., 2015) etc. MSFF is also used in image restoration,

image dehazing and image super resolution etc. (Li et al.,

2018; Zhang and Patel, 2018; Zhang et al., 2018; Lan et al.,

2020). These methods fuse features by using dense connection,

feature concatenation or weighted element-wise summation

(Dong et al., 2020). In common, the mentioned methods
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have encoder-decoder framework. The multi-scale features

extracted from encoder are reused in decoder to enhance

feature representation. However, in conventional classification

task, MSFF is seldom used because the network does not

have decoder. Generally, only the top semantic features are

fed into classifier, but other scale features are abandoned. But

in fact, the high-level features and the low-level features are

not subordination relationship. The local features including

rich fine-grained features can be an effective compensation to

formulate a richer feature representation of sample (Lim and

Kang, 2019). In the data-limitation condition, it requires to

extract as many features as possible from a limited amount of

data. Therefore, in this work, we propose to leverage the MSFF

to enhance feature representation. Multi-scale features can be

fused in different ways. In our work, we use cascaded multi-scale

feature fusion (CMSFF).

The channels of feature maps increase after feature fusion.

But it does not mean that all channels are the same

significance. The contribution of each channel is different.

Some channels should be emphasized and some should be

suppressed. Attention can help to focus on the meaningful

channels. Attention mechanism plays important role in human

perception to selectively focus on salient parts in order to

capture visual structure better (Guo et al., 2021). It has been

leaded into some areas of machine learning such as computer

vision, natural language processing etc. and has significance to

improve performance (Hu, 2019; Hafiz et al., 2021). It not only

tells where to focus, but also improves the representation of

interests. Recently, some light-weight attention modules have

been proposed. Wang et al. (2017) proposed Residual Attention

Network that uses encoder-decoder style attention module.

Hu et al. (2018) introduced a compact module to exploit the

inter-channel relationship, which was named as Squeeze-and-

excitation module. Woo et al. (2018) proposed Convolutional

Block Attention Module that includes channel attention (CA)

and spatial attention. These light-weight attention modules can

be easily embedded into deep learning networks as plug-ins. In

this work, we use the CA to weight the accumulated channels

obtained from CMSFF. The CMSFF and CA is an effective

combination to enhance the representation of category under

few-shot condition.

As the definition of FSL, it is asked to generalize to novel

categories or novel domains. Generalizing to new categories

within the same domain of training is defined as intra-domain

classification, while generalizing to novel domain is defined

as cross-domain classification. Long-tail distribution of data

is common in plant disease datasets. To identify the part of

categories with few samples, the model can be trained with the

part of diseases that have more samples. This generalization

happens in the same domain. Cross-domain happens when a

set of categories with few shots is required to be identified

but does not belong to any dataset. Cross-domain adaption

happens between different datasets, which is more difficult than

intra-domain adaption. However, researchers found that it is

frequently encountered situation and inescapable for boosting

FSL to practical application. Guo et al. (2020) established a new

broader study of cross-domain few-shot learning benchmark

and pointed out that all meta-learningmethods underperform in

relation to simple fine-tuning methods, which indicates that the

difficulty of the cross-domain issue. Adler et al. (2020) proposed

a method of representation fusion by an ensemble of Hebbian

learners acting on different layers of a deep neural network,

which is from feature representation perspective. Li W.-H.

et al. (2022) proposed a task-specific adapters for cross-domain

problem from the perspective of network architecture. Qi et al.

(2022) proposed a meta-based adversarial training framework

for this problem, which is also from the perspective of network

architecture. As we know, there is no research that has been

done from a training strategy perspective. These efforts are the

kind of general explorations of using general benchmarks (e.g.,

ImageNet, CIFAR etc.) and rarely discuss specific domains. In

fact, different domain has its own characteristics and resources

to utilize when crossing domains. Hence, in this work, we

propose a set of training strategies to match various cases of

generalization using the available data resources.

The contributions of this work are summarized as: (1)

we propose a Meta-Baseline (MB) based FSL approach

merging with CMSFF and CA for plant disease recognition;

(2) we propose a group of training strategies to meet

different generalization requirements; (3) through extensive

comparative experiments and ablation experiments, we validate

the superiority of ourmethod and analyze various factors of FSL.

Comparing with the existing related works under the same data

conditions, our method has achieved at the best accuracy.

2. Materials and methods

2.1. Materials

In this research, three public datasets are used in our

experiments. Mini-ImageNet is a subset of the ImageNet, which

includes 100 classes and 600 images per class. We select 64

classes in our experiments. The second is PV (Hughes and

Salathé, 2015) released in 2015 by Pennsylvania State University.

It is the most frequently used and comprehensive dataset in

academic research up to now in plant disease recognition.

Totally, it includes 50,403 images which crosses over 14 crop

species and covers 38 classes, as shown in Table 1. Because

the number of samples in PV is unbalanced, we use the

data after augmentation and select 1,000 images per class to

keep balance. The third is the dataset of apple foliar disease

(AFD), which was published in FGVC8 Plant Pathology 2021

Competition. All images of AFD were taken in wild with

complicated backgrounds, as shown in Figure 1A. We perform

pre-processing to reduce the complexity of the surroundings
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TABLE 1 The 14 species and 38 categories in PV.

Species Class number Class name

Apple 4 Apple scab, black rot, cedar apple rust, healthy

Blueberry 1 Healthy

Cherry 2 Healthy, powdery mildew

Corn 4 Gray leaf spot, common rust, healthy, northern leaf

blight

Grape 4 Black rot, black measles, healthy, leaf blight

Orange 1 Haunglongbing

Peach 2 Bacterial spot, healthy

Pepper 2 Bacterial spot, healthy

Potato 3 Early blight, healthy, late blight

Raspberry 1 Healthy

Soybean 1 Healthy

Squash 1 Powdery mildew

Strawberry 2 Healthy

Tomato 10 Bacterial spot, early blight, healthy, late blight, leaf

mold, septoria leaf spot, spider mites, target, mosaic

virus, yellow leaf curl virus

TABLE 2 The algorithm of meta-learning.

Algorithm of meta-learning

Input: data_loader,n_way,n_shot,n_query,task_per_batch

Output: avg_acc, avg_loss

for i in epoch:

train :

for j in batch:

task = task(data_loader, n_way, n_shot, n_query, task_per_batch)

x0 · · · xn = fθ (task.x_shot)

x = mean(x0 · · · xn)

y = fθ (task.x_query)

logits = classifier(distance(x, y))

loss = cross_entropy(logits, task.label)

acc = compute_acc(logits, task.label)

loss.backwardpropagation& optimize

end for

validation : val

compute : avg_acc, avg_loss

end for

return: avg_acc, avg_loss

by removing background other than leaves. YOLO-v3 (Redmon

and Farhadi, 2018) is adopted to detect leaves in images which is

shown in Figure 1B. After segmentation and resizing, the images

with a single leaf in each image are used in this work, as shown

in Figure 1C.

The hardware configurations are: Graphics: Tesla V100-

DGXS-32GB; Video Memory: 32G × 4; Processor: Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20GHz; Operating System:

Ubuntu 18.04.6 LTS.

2.2. Problem formulation

In FSL paradigm, given two labeled sets with categories

Ctrain and Cnovel, Ctrain is used in training and Cnovel is used in

test. The two sets are exclusive,Ctrain∩Cnovel = ∅, whichmeans

that categories used in test are not seen during training. Data is

formulated to tasks and each task T is made up of a support set S

and a query set Q. The sample of S is denoted by (xs, ys) which is

a (image, label) pair and the sample of Q is denoted by (xq, yq).

In training, the label yq is used for calculating loss, which is

supervised learning.

An N-way, K-shot task indicates that the S contains N

categories with K samples in each category, and the Q contains

the sameN categories withW samples in each category. The goal

is to classify theN×W unlabeled samples of Q intoN categories.

For evaluation, the average accuracy is computed from many

tasks sampled from Cnovel, N ∈ Cnovel.

2.3. Architecture

2.3.1. Meta-Baseline framework

Like classical classification structure, our framework

contains two components: an encoder and a classifier, which is

illustrated in Figure 2A. The encoder noted as fθ is a CNN-based

network merging with CMSFF and CA. It is trained in two

stages: base-training and meta-learning.

In base-training, the network contains fθ and base-training

classifier, which is trained with image-wise data. The goal in

this stage is to learn the general features as prior knowledge.

Some large-scale general datasets with more classes and diverse

data, such as ImageNet, Mini-ImageNet etc. are good choices for

learning prior knowledge. The classifier can be linear classifier,

fully connected layer, SVM, or other classifiers. The cross-

entropy loss is calculated to update the parameters of fθ during

back propagation. After base-training is completed, the classifier

is removed and the trained model is delivered to the meta-

learning stage.

In meta-learning, fθ is initialized by the trained model from

base-training. Meta-learning is a concept of learning to learn.

So, the purpose is not to learn the knowledge of the training

classes, but to learn how to differentiate between classes. Aiming

at the objective, the classifier in meta-learning is replaced by

a distance measurement module. The classification result is

decided by the distances from the support samples to the query

sample. Meta-learning is a task-driven paradigm where training

data is formulated as N-way, K-shot tasks. Based on a simple

machine learning principle: test and training conditions must
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FIGURE 1

(A) The original samples of AFD. (B) The leaf detection result by YOLO-v3. (C) The samples of 10 classes after segmentation and resizing.

match (Vinyals et al., 2016), the data of Cnovel is also formatted

into tasks in test.

Given an N-way, K-shot task, K samples of a category c

in S are embedded into feature space by fθ and become K

feature vectors. A mean vector of the K vectors are calculated

as the centroid of c, which is consider as the representative of

category c:

ωc =
1

|Sc|

∑

xs∈Sc

fθ (xs) (1)

where, Sc denotes the samples of class c in S, |Sc| = K, xs denotes

each sample of class c. The query sample xq in an N-way, K-

shot task is also embedded by fθ . The probability that sample

xq belongs to class c is calculated as:

p(y = c|xq) =
exp(γ . < fθ (xq),ωc >)

∑
c′ exp(γ . < fθ (xq),ωc′ >)

(2)

where, < ., . > denotes the distance of two vectors, c′ denotes all

the classes in S, ωc′ denotes all the centroids of S, γ is a learnable

parameter to scale the distance. In training, we use cross-entropy

loss to update the parameters of the network. The algorithm of

meta-learning is shown in Table 2.

2.3.2. Distance measurement

After embedding, the 2D color image has been a high

dimensional vector in semantic space. The distance of query

sample to the class centroid is calculated by a distance metric.

Distance metric uses distance function which provides a

relationship metric between each element in the dataset. In

many machine learning algorithms, distance metric is used to

know the input data pattern in order to make any data-based

decision. The most common used measures to calculate the

distance between two vectors are cosine similarity, dot product

and Euclidean distance.

Cosine similarity is a measure of similarity between two

non-zero vectors of an inner product space. It is measured by

the cosine of the angle between two vectors and determines

whether two vectors are pointing in roughly the same direction.

It is the same as the inner product after normalization (Han

et al., 2012). In Euclidean geometry, the dot product of the

Cartesian coordinates of two vectors is widely used. It is often

called as inner product or projection product of Euclidean

space. The length of projection represents the distance of two

vectors. In mathematics, the Euclidean distance between two

high-dimensional vectors is the square root of the sum of the

squares of the distances in each dimension.

2.3.3. MSFF

Basically, the structure of MSFF includes two categories:

parallel multi-scale feature fusion (PMSFF) and cascaded multi-

scale feature fusion (CMSFF). The two fusion methods are

illustrated in Figure 2B. The PMSFF concatenates the features

from different layers of CNN simultaneously. The different

resolutions of feature maps are uniformed before concatenation.

Comparatively, the CMSFF fuses the different resolution feature

maps step by step. Taking Resnet12 as backbone network, four

convolutional blocks are linked. A group of feature maps of

double times of channels and half resolution is generated after

each block forwarding. In the backward fusion, small size feature

maps are two times up-sampled and concatenated with the

feature maps of previous block. After a series of up-sampling

and concatenation, all channels are fused together to be the fused

full-scale feature, noted as F. The CMSFF is used in this work.

2.3.4. CA

The CA is used to exploit the inter-channel relationship of

features by learning the weights of channels (Woo et al., 2018).

The structure of CAmodule is shown in Figure 2B. Each channel

of F is considered as a feature detector. The spatial dimension

of input feature map is aggregated by pooling operation. In

this module, average-pooling and max-pooling are conducted

simultaneously and two spatial context descriptors: Favg and
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FIGURE 2

(A) The network architecture of our method. The training includes two stages: base-training stage and meta-learning stage. The CMSFF+CA

Encoder is unfolded to CMSFF module and CA module. (B) The parallel multi-scale feature fusion and cascaded multi-scale feature fusion.

Fmax, are generated, respectively. Then they are forwarded to

a shared network which is composed of multi-layer perceptron

(MLP) with one hidden layer. The element-wise summation of

the two outputs from MLP goes through a sigmoid. Then the

channel attention mapMc ∈ R
C×1×1 is produced.

3. Results

We carried out 43 groups of comparison experiments

and ablation experiments to illustrate our method,

training strategies, and the effects of various factors.

The details of experiments and results are illustrated

and analyzed as below. The bold values listed in tables

indicate the highest results for each group under the same

conditions.

3.1. Data settings

The PV is separated into three parts for training, validation,

and test, respectively. According to the requirement of FSL:

the testing categories are novel, the classes of the three parts

do not intersect, Ctrain ∩ Cval ∩ Ctest = ∅. In this work,
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TABLE 3 Three data settings of PV used in our experiments.

ID Training Validation Test

PV-Setting-1

(22-6-10)

(PV-1-22): apple-3,blueberry-1,cherry-2,corn-3,grape-

3,orange-1,peach-2,pepper-1,potato-2,raspberry-1,soybean-

1,squash-1,strawberry-1

Apple-1,corn-1,grape-1,pepper-

1,potato-1,strawberry-1

(PV-1-10T): tomato-10

PV-Setting-2

(22-6-10)

(PV-2-22): apple-2,blueberry-1,cherry-1,corn-2,grape-

2,orange-1,peach-1,pepper-1,potato-1,raspberry-1,soybean-

1,squash-1,strawberry-1,tomato-6

Apple-1,corn-1,grape-1,potato-

1,tomato-2

(PV-2-10): apple-1,cherry-1,corn-1,grape-1,peach-

1,pepper-1,potato-1,strawberry-1,tomato-2

PV-Setting-3

(10-6-22)

(PV-3-10): apple-1,cherry-1,corn-1,grape-1,peach-1,pepper-

1,potato-1,strawberry-1,tomato-2

Apple-1,corn-1,grape-1,potato-

1,tomato-2

(PV-3-22): apple-2,blueberry-1,cherry-1,corn-2,grape-

2,orange-1,peach-1,pepper-1,potato-1,raspberry-

1,soybean-1,squash-1,strawberry-1,tomato-6

The total 38 classes are separated into three parts for training, validation and test, respectively. “Apple-1” means a class of apple species.

FIGURE 3

(A) The testing classes of PV-Setting-1. (B) The testing classes of PV-Setting-2. (C) The testing classes of PV-Setting-3.

PV is split to three settings as shown in Table 3. PV-Setting-1

is with 22 classes for training, 6 classes for validation, and 10

classes covered by tomato for test. The samples are shown in

Figure 3A, which are very similar with each other. PV-Setting-

2 is with 22 classes for training, six classes for validation,

and 10 classes belonging to nine different species for test. The

samples of this setting are shown in Figure 3B. PV-Setting-3

exchanges the training set and testing set of PV-Setting-1 and

keeps the same validation set as PV-Setting-1, using 10 classes

for training and 22 classes for test. The samples are shown in

Figure 3C. The three settings represent “sub-class” task, “train

more, test less” task and “train less, test more” task, respectively.

In addition, 10 classes of AFD and 200 samples per class are used

in this work for cross-domain testing purpose. Since all classes

belong to the same super-class: apple leaf, it is also a sub-class

classification task.

3.2. Training strategy

The domain of training is noted as source domain (SD), and

the domain of test is noted as target domain (TD). Data from

different domains can be used in the three stages: base-training,

meta-learning, and test. It is special that there are two training

stages of our method, and the datasets used in the two stages

could be different.We just consider the domain ofmeta-learning

stage as SD. When SD is the same as TD, it is intra-domain

adaption, otherwise, it is cross-domain adaption.

In order to mimic different adaption situations, we design

different data configurations. Five adaption configurations using

Mini-ImageNet, three PV settings, and AFD are proposed.

As shown in Figure 4, S1 uses a general dataset (e.g., Mini-

ImageNet) in base-training and meta-learning, then uses target

dataset (e.g., PV) in test, which is the adaptation from one
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FIGURE 4

The data formats used in base-training, meta-learning, and test. The five training strategies.

domain to another, denoted in Formula 3. S2 uses a general

dataset in base-training, target dataset in meta-learning and

test, which is denoted in Formula 4. S3 uses target dataset in

three stages, which is denoted in Formula 5. S4 uses general

dataset in base-training, similar-target dataset (e.g., PV) inmeta-

learning, and target dataset (e.g., AFD) in test, which is denoted

in Formula 6. When AFD is used in test, PV is considered as

a similar domain as the target domain, because they are both

associated with leaf diseases of the plants. S5 uses the similar-

target dataset in base-training and meta-learning, and target

domain dataset in test, which is denoted in Formula 7. S1, S4,

S5 are cross-domain, and S2, S3 are intra-domain.

S1 :G → G → T (3)

S2 :G → T → T (4)

S3 :T → T → T (5)

S4 :G → S → T (6)

S5 : S → S → T (7)

where, G denotes the general domain, T denotes the target

domain, S denotes the similar-target domain.

As shown in Table 4, e1, e2, and e3 are conducted with Mini-

ImageNet and PV-Setting-1 by using S1, S2, S3. e4, e5, e6 are

conducted with Mini-ImageNet and PV-Setting-2 by using S1,

S2, S3. e7, e8, e9 are conducted with Mini-ImageNet and PV-

Setting-3 by using S1, S2, S3. e10, e11, and e12 are conducted

with Mini-ImageNet, PV-Setting-2, and AFD by using S1, S4,

S5. For the 12 experiments, the training epoch is 100, and the

learning rate is 0.1 and decayed to 0.01 after 90 epochs in base-

training. In meta-learning, the training epoch is 50, and the

learning rate is 0.001. The validation task is 5-way, 1-shot, 15-

query. The backbone network is Resnet12. The distance metric

is cosine similarity.

3.2.1. Intra-domain

According to the definitions of SD and TD, e2, e3, e5, e6,

e8, e9 are intra-domain experiments, because the data used in

meta-learning and test is from the same dataset. The results

are shown in Table 4 and Figure 5A. In PV-Split-2, the accuracy

of e5 is better than e4 and e6. In PV-Split-3, the accuracy of

e8 is better than e7 and e9. What the two settings have in

common is that the disease classes belong to different plants.

To the diverse species cases, S2 is better than S1 and S3.

Especially when the number of species is bigger, the superiority

of S2 is more obvious. As listed, e6 gets close to e5, but e8

is much better than e9, which means that the general dataset

is better supported when the testing data is more diverse. A

broad prior knowledge is very useful for adapting to diverse

target. However, in PV-Split-1, e3 is the best one by using S3

because the testing data belongs to the same plant. So, the

features of testing data are intensive and the general date in

base-training is not helpful. Oppositely, the data belonging to

the same dataset is easier for adaption. In short, to the intra-

domain cases, if the testing classes are of super-classes, S2 is
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TABLE 4 The group of experiments with di�erent training strategies and di�erent data settings.

ID Method TS Base-training Meta-learning Test 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

PV-Setting-1

e1 MB S1 Mini Mini PV-1-10T 41.08 60.59 66.27 69.87 71.26 71.86 72.30

e2 MB S2 Mini PV-1-22 PV-1-10T 56.07 72.90 76.62 78.87 79.74 79.81 80.11

e3 MB S3 PV-1-22 PV-1-22 PV-1-10T 57.85 75.04 79.08 81.51 82.47 82.83 83.08

PV-Setting-2

e4 MB S1 Mini Mini PV-2-10 60.23 83.08 87.02 88.97 89.61 89.76 90.12

e5 MB S2 Mini PV-2-22 PV-2-10 80.88 91.75 93.44 94.27 94.53 94.70 94.84

e6 MB S3 PV-2-22 PV-2-22 PV-2-10 81.05 91.47 93.14 94.00 94.29 94.41 94.53

PV-Setting-3

e7 MB S1 Mini Mini PV-3-22 65.46 85.37 88.81 90.54 91.09 91.33 91.45

e8 MB S2 Mini PV-3-10 PV-3-22 78.74 88.96 90.58 91.52 91.97 92.05 92.17

e9 MB S3 PV-3-10 PV-3-10 PV-3-22 74.58 84.77 86.82 87.82 88.29 88.43 88.57

AFD

e10 MB S1 Mini Minit AFD-10 28.26 39.12 44.20 47.83 49.02 50.31 51.32

e11 MB S4 Mini PV-2-22 AFD-10 38.41 51.71 55.58 58.08 58.84 59.70 60.09

e12 MB S5 PV-2-22 PV-2-22 AFD-10 36.19 49,16 54.05 57.13 58.47 59.25 59.46

(Task in meta-learning: 5-way, 1-shot, 15-query; backbone network: Resnet12; batchsize: 128; Lr: 0.1 in base-training, 0.001 in meta-learning; distance metric: cosine similarity; Mini,

Mini-ImageNet; TS, training strategy).

the best strategy. If the testing classes are sub-classes, S3 is the

best strategy.

3.2.2. Cross-domain

Experiments e1, e4, e7, e10, e11, e12 are cross-domain cases.

e1, e4, e7, e10 are the experiments with the worst results in their

respective data settings by using S1, due to the big gap between

the general domain and target domain.

Comparing e10, e11 and e12, e11 has the highest accuracy

by using S4, which are shown in Table 4 and Figure 5B. e12

is not as good as e11 because too intensive features extracted

from monotonous samples leads to weaker adaptation. S4 is

the best training strategy for cross-domain cases, which uses

general dataset in base-training to learn the prior knowledge in a

wide range, and uses similar-target dataset in meta-learning for

adapting to new domain smoothly.

3.3. CMSFF and CA

Ablation experiments e13–e22 are conducted to show the

positive effects of CMSFF module and CA module, respectively.

The results are listed in Table 5. Under four data configurations:

PV-Setting-1, PV-Setting-2, PV-Setting-3, and AFD, we execute

8 experiments. The training settings are listed: Mini-ImageNet

is used in base-training; backbone network is Resnet12; distance

metric is cosine similarity; training strategy is S2 and S4. Taking

e2, e5, e8, e11 as the baseline, the CMSFF module is added

and the results of e13, e15, e19, e21 show the improvement of

CMSFF. e14, e18, e20, and e22 indicate that CA has further

improved the performances on the basis of CMSFF. e15 and

e17 are used to compare the PMSFF module with the CMSFF

module, and the results show that CMSFF outperforms PMSFF.

3.4. Sub-class classification

Sub-class is defined as the classes belong to the same entry

class. The PV-Setting-1 and AFD are sub-class classification

examples. Sub-class classification is also named as fine-grained

vision categorization which aims to distinguish subordinate

categories within entry level categories. Because the samples

belonging to the same super-class are similar with each other,

sub-class classification is a challenging problem.

In Table 4, the PV-setting-1 is the lowest accuracy group

among the three PV-settings, as the samples all belong to

tomato and are indistinguishable. The results of AFD group

are worse than PV-Setting-1, which is not only because of Sub-

class reason, also due to cross-domain and in-wild setting of

images. Even if the images of AFD are already pre-processed,

the backgrounds of images are still different from PV. Also, the

illumination condition, resolution, photography devices are all

different. Intuitively, the gap of features from SD to TD causes

the accuracy declining.
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FIGURE 5

(A) Intra-domain experiments with three data settings. (B) Cross-domain experiments with AFD. (C) The accuracy decreases as Way increases.

(D) Distance metrics.

3.5. Way and shot

N-way and K-shot are the configurations of the task that

indicate the difficulty of the task. Given a fixed K, the accuracy

decreases as N increases. The result of PV-split-1 with N-way,

10-shot is shown in Figure 5C. The accuracy drops down from

85.39% to 64.35% as N-way increases from 3 to 10.

All experimental results listed in Table 4 are executed

with fixed 5-way, which indicates that regardless of the data

configurations, all experiments follow the common trend:

accuracy increases with the number of shots. The accuracy

sharply increases as the Shot increases from 1-shot to 5-shot, and

tends to be stable when the Shot is larger than 10. After the shot

is larger than 20, the growth is not significant. From 1-shot to

50-shot, the increase of accuracy ranges from at least 10% to a

maximum of 32%.

The results show that the accuracy increases with the

number of shot and decreases with the number of way. More

ways means higher complexity, and more shots means more

supporting information. In existing researches, theN−way is set

to 5 generally. In application scenarios, the N is determined by

the number of target categories and should not be limited to 5.

For example, a plant may have more than five diseases, then the

ways should the same as the number of diseases that may occur

in the specific scenario. N-way and K-shot are a pair with trade-

off relationship. When expanding novel classes, we can increase

the number of shots as compensation to maintain accuracy. For

a new class to be identified, it is acceptable to collect 10 to 50
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TABLE 5 The ablation experiment results of MB, MB+CMSFF, and MB+CMSFF+CA.

ID Method TS 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

PV-Setting-1

e2 MB S2 56.07 72.90 76.62 78.87 79.74 79.81 80.11

e13 MB+CMSFF S2 61.20 77.09 80.92 83.03 84.05 84.34 84.56

e14 MB+CMSFF+CA S2 61.24 77.43 81.28 83.59 84.46 84.70 84.86

PV-Setting-2

e5 MB S2 81.05 91.47 93.14 94.00 94.29 94.41 94.53

e15 MB+PMSFF S2 81.46 91.86 93.51 94.57 94.81 94.88 95.03

e16 MB+CMSFF S2 82.21 92.32 93.87 94.71 95.03 95.15 95.31

e17 MB+PMSFF+CA S2 81.87 92.39 93.93 94.86 95.29 95.31 95.50

e18 MB+CMSFF+CA S2 82.52 92.83 94.39 95.29 95.65 95.73 95.74

PV-Setting-3

e8 MB S2 74.58 84.77 86.82 87.82 88.29 88.43 88.57

e19 MB+CMSFF S2 76.61 88.45 90.17 91.32 91.78 91.86 92.14

e20 MB+CMSFF+CA S2 78.15 89.57 91.24 92.46 92.67 93.02 93.07

AFD

e11 MB S4 38.41 51.71 55.58 58.08 58.84 59.70 60.09

e21 MB+CMSFF S4 40.77 54.14 57.68 60.13 61.30 62.03 62.69

e22 MB+CMSFF+CA S4 43.94 56.93 60.64 63.66 64.50 65.55 66.18

(Base-training: Mini-ImageNet; backbone network: Resnet12; distance metric: cosine similarity; TS, training strategy).

samples as its support set. However, the positive relationship of

shots and accuracy is not linear. The increase of accuracy as K-

shot has ceiling.When theK is larger than 30, the accuracy is still

growing but very slowly.

3.6. The diversity of meta-learning data

The number of classes in meta-learning is noted as Ntrain,

and noted as Ntest in test. Comparing e5 with e8, they are both

trained with Mini-ImageNet in base-training. e5 uses 28 classes

in meta-learning and 10 classes in test, which is the caseNtrain >

Ntest . The training set and testing set of e5 are exchanged in e8,

which is the case Ntrain < Ntest .

The training tasks and testing tasks are all formulated as 5-

way, which means that five classes are sampled in each task. The

N-way of task is the same in e5 and e8. However, the accuracy

of e5 is at least 2% higher than e8. It indicates that the size of

data used in meta-learning is a factor effects the performance.

Using more classes in meta-learning leads to positive results,

providing more diverse features and improving the robustness

of the model.

3.7. Distance metric

In this work, we compared three distance metrics: dot

product, cosine similarity, and Euclidean distance. The same

distance measurement module is used in meta-learning and test.

This is because even if there is no parameter to be trained in this

module, the losses calculated from the distance measurement

still affect the parameter updates in the iterations.

An appropriate distance metric significantly helps in

improving the performance of classification, clustering process

etc. Cosine similarity hits the best performance, as shown

in Table 6 and in Figure 5D. The reason is that the vectors

obtained from encoder are high dimensional vectors. The

cosine similarity has often been used to counteract the

problem of Euclidean distance in high dimensional space. The

normalization in cosine similarity also has positive effect.

3.8. Backbone networks

In this work, we compared different backbone networks:

Convnet4 (Snell et al., 2017), AlexNet (Krizhevsky et al., 2012),

Resnet12, Resnet18, Resnet50, Resnet101 (He et al., 2016),

DenseNet (Huang et al., 2017), MobileNet-V2 (Sandler et al.,

2018). The Convnet4 is the classical architecture used in FSL

which stacks four blocks of convolutional calculation. Different

networks include different sizes of trainable parameters. The

trainable parameters are more in base-training than in meta-

learning because the base-training classifier is removed in

meta-learning. The size of trainable parameters, learning rate

(Lr), training time, and epochs in the two training stages are

listed in Table 7. e25–e31 are conducted with the configuration:
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TABLE 6 The results of di�erent distance metrics.

ID Metric 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

e23 Dot product 77.58 86.2 87.52 88.05 88.55 88.65 88.88

e5 Cosine similarity 80.88 91.75 93.44 94.27 94.53 94.70 94.84

e24 Euclidean distance 75.96 89.17 91.52 92.64 93.17 93.23 93.42

(Method: MB; backbone network: Resnet12; batchsize: 128; Lr: 0.1 in base-training, 0.001 in meta-learning).

TABLE 7 The experiment e�ciencies of di�erent backbone networks.

Base-training Meta-learning

ID Backbone network Size Lr Training time Epoch Size Lr Training time Epoch

e25 Convnet4 215.6 K 0.01 40 m 100 113.1 K 0.001 31 m 50

e26 AlexNet 3.8 M 0.01 40 m 100 3.7 M 0.001 17 m 50

e5 Resnet12 8.0 M 0.1 1.2 h 100 8.0 M 0.001 18 m 20

e27 Resnet18 11.2 M 0.1 1.4 h 100 11.2 M 0.001 40 m 50

e28 Resnet50 23.6 M 0.1 2.3 h 100 23.5 M 0.001 38 m 30

e29 Resnet101 42.6 M 0.01 3.3 h 100 42.5 M 0.001 35 m 20

e30 DenseNet 791.1 K 0.1 3.8 h 100 769.2 K 0.001 1.9 h 50

e31 MobileNet-v2 3.6 M 0.1 2.2 h 100 3.5 M 0.001 1.0 h 50

(Bae-training: Mini-imageNet; meta-learning: PV-2-22; distance metric: cosine similarity).

TABLE 8 The results of di�erent backbone networks.

ID Backbone networks 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

e25 Convnet4 69.06 85.91 89.91 91.88 92.35 92.79 93.11

e26 AlexNet 68.35 83.12 85.73 87.00 87.27 87.44 87.92

e5 Resnet12 80.88 91.75 93.44 94.27 94.53 94.70 94.84

e27 Resnet18 78.58 89.16 91.36 91.96 92.26 92.44 92.78

e28 Resnet50 80.89 90.91 92.56 93.86 94.08 94.15 94.33

e29 Resnet101 74.93 85.59 87.63 89.12 89.67 89.91 89.91

e30 DenseNet 79.39 89.21 90.82 91.84 92.21 92.10 92.50

e31 MobileNet-V2 78.17 89.21 91.48 92.42 92.83 93.02 93.41

(Method: MB; backbone network: resnet12; batchsize: 128; Lr: 0.1 in base-training, 0.001 in meta-learning; Data: Mini-imageNet in base-training, PV-setting-2 in meta-learning and test).

Mini-ImageNet is used in base-training (100 epochs) and PV-2-

22 is used in meta-learning. The different number of iterations

is due to the different convergence speed in meta-learning. The

performances of the backbone networks are listed in Table 8.

Resnet12 and Resnet50 outperform the other networks, with

Resnet12 being more efficient.

In base-training and meta-learning, we use the validation

data to test the accuracy of 5-way, 1-shot tasks which is shown

in Figure 6. The black numbers on the black lines are the best

accuracy in base-training, and the black numbers on the red

lines are the best accuracy in meta-learning. The lifting ranges

of accuracy in meta-learning are marked in red numbers. It is

shown that the model trained in base-training stage already has

the identification ability with few shots to some extent, even

without training with tasks in meta-learning. However, in base-

training, themodel is already convergent by training with image-

wise data, and the accuracy of task testing no longer increases. In

fact, the model still has space to improve. Based on this, in meta-

learning, by using task-wise data, the accuracy has been further

promoted around 20% to 30%.

In recent years, the architectures of networks go deeper

and deeper. Some researchers proposed a question that do we

really need so deep networks? Our results show that a medium-

sized network outperforms other networks in this task. We

summarized two reasons: (1) In CNNs, the simpler and more

basic features are learnt in shallower layers, the more abstract

and complex features are learnt from deeper layers. From

shallower layers to deeper layers, the features transition from
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FIGURE 6

The best validation accuracy (%) of “1-shot, 5-way” task in base-training and meta-learning. The red digits represent the accuracy lifting ranges

(%) of meta-learning.

edges, lines, and colors, to textures and patterns, to complex

graphics, even to specific objects. For our specific task, even

humans (e.g. plant experts) rely more on color, shape, and

texture for disease identification. Hence, the too deep networks

may be not critical meaningful. (2) FSL is the kind of learning

task with limited data-scale. For a deeper network, it always has

large number of parameters needed to be updated. In the data-

limitation condition, too deep network could meet insufficient

updating of parameters in backpropagation due to the too

long backpropagation path. In parameter updating, shallower

networks are more flexible, while the deeper networks look

bulky. In short, it does not mean that deeper networks always

outperform shallower networks. The size of network should

match the specific task and data resources.

3.9. Compare with related works

In order to show the superiority of our method, we

conducted several experiments to compare with some recent

related researches. Argüeso et al. (2020) used Siamese Network,

Triplet Network, and PV as their experimental material. They

set a different data splitting: 32 classes are used for training

and the rest six classes (apple four classes, blueberry healthy,

cherry healthy) for testing. They listed results of three methods:

transfer learning, Siamese Network, and Triplet Network. Their

backbone network is Inception-V3. In order to be comparable,

we executed the experiments with the same data setting as their

work. Mini-ImageNet is used in base-training, 32 classes of PV

are used in meta-learning, and the rest 6 classes are used in test.

The results of e32–e34 are shown in Table 9.

We also compared with Li and Chao (2021b). They proposed

a Semi-supervised (SS) FSL approach. The baseline is a typical

fine-tuning model. The Single SS adds Semi-supervised step

on the top of baseline. The Iterative SS adds one more Semi-

supervised step on the top of Single SS. PV was also used

as their experimental material and set to three splits. Each

split has 28 classes for training and the rest 10 classes for

testing. They compared with Argüeso et al. (2020) too. We

also conducted experiments by our methods with the same

data settings as Li and Chao (2021b). The results of e35–e43

are shown in Table 9. All the comparison results are shown in

Figure 7.

The data settings of the two references are different from our

data settings. The results indicate that our method outperforms

the existing works with all data settings, which means that our

method is superior and robust.

4. Discussion

4.1. Motivation and contribution

The method learning from few samples is very promising

in plant disease recognition, which has wide range of

potential application scenarios for its saving of cost on

data. When expanding the range of application, a well-

established model of FSL can easily generalize to novel

species or diseases without retraining and providing large-

scale training data. However, some existing limitations of

the FSL itself and the specific applied areas are needed to

be considered. Our main contributions in this work are

two-folds: (1) we propose to merge the CMSFF in the

backbone network to enhance the feature representation, and

combine the CA to focus on the informative channels; (2) we

propose a group of training strategies to match the different

generalization scenarios.

4.2. Limitation and future work

The theoretical research of FSL is in the stage of rapid

development at present. Although FSL is very suitable for

plant disease recognition, the applications of smart agriculture

have just begun (Yang et al., 2022). In this research direction,
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TABLE 9 The results compared with related works.

ID Method 1-shot 5-shot 10-shot 20-shot

Data setting in Argüeso et al. (2020)

Finetuning (Argüeso et al., 2020) 18.2 25.4 30.3 41.1

Siamese contrastive (Argüeso et al., 2020) 50.2 64.2 70.2 74.1

Siamese triplet (Argüeso et al., 2020) 65.2 72.3 76.8 81.8

Single SS (Li and Chao, 2021b) 74.5 89.7 92.6 93.9

Iterative SS (Li and Chao, 2021b) 75.1 90.0 92.7 93.9

e32 Ours MB 76.4 91.0 93.2 94.2

e33 Ours MB+CMSFF 80.0 91.9 93.7 94.3

e34 Ours MB+CMSFF+CA 80.4 92.8 94.1 94.3

Data Split-1 of Li and Chao (2021b)

Baseline (Li and Chao, 2021b) 32.8 46.7 64 73.2

Single SS (Li and Chao, 2021b) 33.7 50.9 66.7 74.7

Iterative SS (Li and Chao, 2021b) 34 53.1 68.8 75.6

e35 Ours MB 55.7 72.8 76.7 79.5

e36 Ours MB+CMSFF 60.6 78.4 82.4 84.3

e37 Ours MB+CMSFF+CA 60.7 78.1 82.2 84.5

Data Split-2 of Li and Chao (2021b)

Baseline (Li and Chao, 2021b) 43.9 68.5 78.7 89.1

Single SS (Li and Chao, 2021b) 44.7 74.7 85.7 89.7

Iterative SS (Li and Chao, 2021b) 46.4 76.9 89.2 91.9

e38 Ours MB 77.1 91.1 92.9 93.8

e39 Ours MB+CMSFF 78.8 91.6 93.5 94.6

e40 Ours MB+CMSFF+CA 79.1 92.2 94.0 95.1

Data Split-3 of Li and Chao (2021b)

Baseline (Li and Chao, 2021b) 50.7 63.1 77.2 89.3

Single SS (Li and Chao, 2021b) 52.3 67.6 79.9 90.1

Iterative SS (Li and Chao, 2021b) 55.2 69.3 80.8 91.5

e41 Ours MB 78.1 89.4 91.4 92.6

e42 Ours MB+CMSFF 80.6 90.8 92.4 93.3

e43 Ours MB+CMSFF+CA 81.5 91.1 92.8 93.4

(Ours: backbone network: Resnet12; distance metric: cosine similarity; base-training: Mini-ImageNet).

there are still huge potential space needed to explore. In

here, we discuss the limitations of this work and some

future works.

1. Multi-disease. The PV and AFD used in this work as

target data which have a common characteristic that only single

disease is included in per image. In fact, once a plant is infected

by the first disease, it is easily infected by other diseases because

the immune system is attacked and becomes weak (Barbedo,

2016). Multiple diseases occur in a plant is more common in the

real field condition. But the combinations of different diseases

are too many to collect sufficient samples for each category

from classification perspective (e.g., three diseases of a species

generate 7 categories). The current researches prefer to solve

this problem by semantic segmentation. We do not cover this

challenging problem due to limitations of data resources in

this work.

2. Formulation of meta-learning data. The samples of PV

were taken under controlled condition (lab-settings), which have

a clean board as the unified background, the illumination is

under controlled, only single leaf in per image, only single

disease occurs in per leaf. The settings are simple and very

different from the in-wild conditions. That is the reason

many researches already achieved high accuracy by using deep

learning CNNs on PV (Hasan et al., 2020). But the samples of

AFD were taken under in-wild condition, which have complex

surroundings. When testing with AFD, we use PV in meta-

learning, mainly considering that both datasets are about plant

diseases. Since we did not find any other appropriate dataset, the
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FIGURE 7

The results compared with related works. (A) Our work compares with (Argüeso et al., 2020) and (Li and Chao, 2021b). (B) Our work compares

with Li and Chao (2021b) using the data split-1. (C) Our work compares with Li and Chao (2021b) using the data split-1. (D) Our work compares

with Li and Chao (2021b) using the data split-1.

degree of similarity of the data used in training and test was not

taken in account.

According to our hypothesis, the degree of similarity of

data used in meta-learning and test is higher, the adapting is

easier, and the result would be better. It is demonstrated that

the selection of meta-learning data is critical in this pipeline.

The data used in meta-learning stage should be determined by

the target. When the application scenarios cannot be predicted,

how to formulate an appropriatemeta-learning dataset is worthy

to study. Inspired by Nuthalapati and Tunga (2021) and Li

and Yang (2021), the effectiveness of a mixed dataset for meta-

learning will be considered.

3. Sub-class classification. For the application of plant

disease recognition, it is more meaningful to distinguish the

diseases belonging to the same species. What farmers need

more than anything else is a diagnostic assistant that can

identify similar diseases belonging to the same plant. Although

sub-class classification is difficult (Liu and Wang, 2021), it

is an inescapable work in plant disease recognition and the

performance is needed to be improved urgently. Fine-grained

features of the lesions being the distinguishable features to solve

this issue. In this direction, lesion detection and segmentation,

fine-grained visual classification are involved.

4. The quality and quantity of training data. Most of

the current researches of FSL deal with the configuration of

data used in test, but very little work has concerned the data

used in training. The common sense is that deep learning

networks rely on large-scale data. However, a new direction is

discussing the quality and quantity of training data recently (Li

and Chao, 2021a,c; Li et al., 2021; Li Y. et al., 2022). These works

indicate that part of data can achieve at the same performance

as full data. Date quality can be assessed, which can guide to

establish a dataset with enough diversity data while without

redundant samples. The networks of appropriate depth using

good data can achieve optimal results in many traditional CNN

classification tasks.

In this work, we use large-scale data in base-training and

meta-learning. The quantity of data follows the conventional

settings for comparison purposes. The data quality assessment

work is not involved in this work. For the specific topic of

plant disease, the data quality is very important. We know that

at different stages of development of plants and diseases, the

symptom appearances are very different. How to construct a

comprehensive set without redundant data to represent a disease

is a valuable work in the future (Barbedo, 2018).

5. Cross-domain.The significance of cross-domain has been

introduced in prior sections. We emphasize cross-domain again

because it is common when we cannot predict the species,

surroundings, and photo conditions in test. In this work, we

consider it from training strategies. There are many aspects to

explore in future work, such as network architecture, feature

distribution calibration etc.

5. Conclusion

In response to the two problems when using FSL for plant

disease recognition, we propose a network based on the MB

approach that merges CMSFF and CA to obtain a richer feature

representation. From experiments, we found that the CMSFF is

effective to obtain richer feature representation, especially under

the few-shot condition. The CA is an important compensation to

the CMSFF, which helps to focus on these meaningful channels.

Our method outperforms the existing related works, which

indicates that our method is highly robust. The CMSFF+CA

is an appropriate combination that fits for any algorithm that

needs enhance the feature representation. In addition, a group

of training strategies is proposed to meet requirements of

different generalization situations. Many factors are discussed
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in this work, such as backbone networks, distance metrics etc.

The limitations of this work and some new related research

directions are discussed.
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