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ABSTRACT: In drug discovery, the in silico prediction of binding
affinity is one of the major means to prioritize compounds for synthesis.
Alchemical relative binding free energy (RBFE) calculations based on
molecular dynamics (MD) simulations are nowadays a popular approach
for the accurate affinity ranking of compounds. MD simulations rely on
empirical force field parameters, which strongly influence the accuracy of
the predicted affinities. Here, we evaluate the ability of six different small-
molecule force fields to predict experimental protein−ligand binding
affinities in RBFE calculations on a set of 598 ligands and 22 protein
targets. The public force fields OpenFF Parsley and Sage, GAFF, and
CGenFF show comparable accuracy, while OPLS3e is significantly more
accurate. However, a consensus approach using Sage, GAFF, and
CGenFF leads to accuracy comparable to OPLS3e. While Parsley and
Sage are performing comparably based on aggregated statistics across the whole dataset, there are differences in terms of outliers.
Analysis of the force field reveals that improved parameters lead to significant improvement in the accuracy of affinity predictions on
subsets of the dataset involving those parameters. Lower accuracy can not only be attributed to the force field parameters but is also
dependent on input preparation and sampling convergence of the calculations. Especially large perturbations and nonconverged
simulations lead to less accurate predictions. The input structures, Gromacs force field files, as well as the analysis Python notebooks
are available on GitHub.

■ INTRODUCTION
Prioritizing the synthesis of compounds by means of
computationally predicted binding affinities among equally
important absorption, distribution, metabolism, excretion, and
toxicity properties has become one of the central strategies in
small-molecule drug discovery.1 There are different methods,
ranging from data-driven artificial intelligence to more rigorous
physics-based models. Among the latter, the calculation of
relative binding free energies (RBFE) from alchemical
molecular dynamics (MD) simulations is probably the most
frequently used and accurate method, given the accessible time
scales for the size of the ligand−protein complexes. RBFE
calculations involve alchemical perturbations, where a ligand is
changed into another via a chemically unrealistic pathway. This
can only be achieved in silico, such as by changing the atoms of
one element into those of another. Following the alchemical
pathways across the thermodynamic cycle will result in the
same double free energy difference for the perturbation in
solvent and protein as when traversing the physical pathways,
i.e., monitoring the unbinding of one ligand and the binding of
another. However, the alchemical transitions offer a clear
sampling advantage over the physical ligand binding/
unbinding pathway, thus reducing the computational cost of
free energy calculations. In addition, RBFE calculations benefit
from the cancellation of errors arising from calculating the

separate solvation and protein legs for similar ligands.2 The
final result of the calculation is the relative affinity of the ligand
to a protein with respect to the other ligand. The reader is
referred to a recent review of alchemical methods and
recommendations for their use.3

Due to tremendous algorithmic advances, the development
of user-friendly software, and the continuous increase in
accuracy and computational power in the last decades, these
calculations are nowadays frequently utilized. However, the
calculations are still costly (compute costs of approximately
10 US$ per relative free energy difference4 and, in addition,
potential software licensing costs). The accuracy with respect
to experimental affinities is typically in the range of 1−2 kcal
mol−1 with the best performing cases arguably capable of
approaching experimental accuracy.5−11 When comparing to
experiments, there are mainly four sources of error
encountered in binding free energy calculations: system
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setup, force field (FF) parameters, sampling time, and
experimental uncertainty. First, the setup of the system has a
significant impact on the prediction accuracy. This includes the
exact chemical composition of the system, consisting of
proteins, ligands, solvents, potential ions, and cofactors.12 All
the molecules need to be in their relevant tautomeric and
charge states. Also, the initial coordinates of all atoms will
strongly affect the results, as well as the simulation parameters
mimicking the experimental conditions.13,14 Here, careful
preparation and well-considered parameters keep this error
contribution low, but this typically involves extensive manual
work. The potential pitfalls and best practices to circumventing
errors in system preparation were recently summarized.15

Furthermore, there are many approximations required to
model such systems, which include the number of degrees of
freedom treated, the treatment of finite-size effects, and
especially the FF parameters used in classical mechanic
simulations.
Another source of error in free energy estimates comes from

finite sampling. Current computational power allows reaching
microsecond simulation time scales, yet in large scale free
energy scans, shorter sampling (up to tens of nanoseconds) is
often employed. Depending on the system, such short
sampling times may not be sufficient to converge the
populations along the relevant degrees of freedom, e.g., ligand
pose changes, amino acid rotamer motions, and water
positions in the binding site. Therefore, the limited sampling
does not always ensure a proper representation of the
thermodynamic ensemble underlying the modeled system.
This issue may be minimized by employing different or
enhanced sampling protocols16 such as replica exchange17,18 or
related replica methods,19,20 metadynamics/local elevation,21,22

and umbrella sampling or well designed sampling (MC)
moves.23 Performing multiple-independent simulation repeats
allows for more reliable phase space exploration and
uncertainty estimation.24,25 Sampling improvements in relative
free energy calculations may also arise by optimally planning
the perturbations to be calculated,26−28 altering the alchemical
pathway,29−32 using different atom mapping as in the separated
topology approach,33 or using no atom mapping at all as in
enveloping distribution sampling.34−37 To sample the water
position sufficiently, enhanced water sampling protocols38,39

can be employed. Multiple options exist, such as explicit water
perturbations,40 Monte Carlo moves,23,41,42 or grand canonical
ensemble simulations.43−45

Finally, uncertainty in the experimental measurements for
the reference data limits the achievable prediction accuracy.11

Typically, one compares the result of calculations to the
experimentally measured bioactivity data, which itself has
errors and is only an approximation or model to the ideal or
true affinity. Additionally, the experimental data might be
unsuitable for comparison because the experimental conditions
differ from the simulation conditions (e.g., the temperature) or
because the experiment did not measure the same observables
(e.g., phenotypic vs functional assays). To keep this error low,
one should use high-quality and well curated data for the
comparison and above all appreciate the maximum expected
performance given the underlying experimental error.46

While some analyses suggest that the sampling, FF, and
experimental errors might contribute in a quantitatively similar
manner,47 generally, the magnitude of each source of error is
unknown and will likely be case-dependent. In the current
work, we concentrate on quantifying FF-related errors by

comparing six small molecule mechanic FFs in a benchmark of
relative protein−ligand binding free energy calculations. For
each FF, we obtained up to 1116 ΔΔG estimates across 22
protein targets. The large and diverse set of systems allows a
statistically meaningful comparison of not only distinct FF
families�GAFF, CGenFF, OPLS, and OpenFF�but also
different versions of OpenFF: v1.0, v1.2, and v2.0. With
OpenFF presenting a novel direction in FF development,48−50

here, we demonstrate the ability of this FF to deliver high
accuracy binding free energy predictions.

■ METHODS
Dataset. The employed benchmark dataset is listed in the

Supporting Information, Table S.1. A total of 22 protein
targets, 598 ligands, and 1116 alchemical perturbations were
considered.
In order to compare them to other calculations, we selected

benchmark sets from previously published literature. Eight
datasets originate from Wang et al.5 and contain the targets
JNK1, TYK2, BACE, MCL1, CDK2, THROMBIN, PTP1B,
and P38. Another eight datasets were assembled in the
benchmark study of Schindler et al.7 Furthermore, we included
protein−ligand systems that have appeared in various other
free energy perturbation (FEP) studies: GALECTIN-3,51

PDE2,52 PDE10,53 ROS1,54 and two additional BACE
datasets.55−58 To keep our results as comparable as possible
to prior calculations, we used the same input coordinates of the
prepared systems as were previously used in the studies of
Gapsys et al.,8 Schindler et al.,7 and Peŕez-Benito et al.54 The
input structures are provided in the protein−ligand-benchmark
repository, release 0.2.1.59

Calculation Details. pmx/GROMACS Nonequilibrium
Switching Approach. The prepared protein and ligand
structures were parameterized using the corresponding FF
parameters (see below). The remainder of the preparation and
the simulation protocol followed the nonequilibrium thermo-
dynamic integration protocol from the study of Gapsys et al.8

and is summarized as follows. For each perturbation, hybrid
coordinates and topologies were generated from the physical
end state ligand coordinates and topologies using pmx.60 A
mapping between the atoms of two molecules was established
following a predefined set of rules to ensure minimal
perturbation and system stability during the simulations. The
pmx method follows a sequential, dual mapping approach. In
the first step, pmx identifies the maximum common
substructure between the two molecules and proposes this as
a basis for mapping. In the second step, pmx superimposes the
molecules and suggests a mapping based on the interatomic
distances. Finally, the mapping with more atoms identified for
direct morphing between the ligands is selected. Additionally,
pmx incorporates a number of empirical rules to ensure
simulation stability, e.g., avoiding ring and bond breaking,
preventing mappings that result in disconnected fragments,
and disallowing mapping heavy atoms to hydrogens. The
obtained mapping is used to create hybrid structures and
topologies following a combination of single and dual topology
approach.
The two branches of the thermodynamic cycle were

prepared for simulation: ligand in water and ligand bound to
the protein. The systems were placed in a dodecahedral box
with a minimal distance of 1.5 nm to the box wall. The solutes
were solvated with the TIP3P61 water, and sodium and
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chloride ions were added to neutralize the system and reach a
150 mM salt concentration.
The Amber99sb*ILDN62−64 FF was used to parameterize

the proteins for the simulations with OpenFF and GAFF2.1x
ligand FFs. The ion parameters for these simulations were
taken from Joung and Cheatham.61 The Charmm36m65

protein FF was used in combination with the MATCH/
CGenFF ligand parameters.
To calculate relative free energy differences, first, every

system was simulated at equilibrium in its physical state, e.g.,
ligand X representing state A and ligand Y representing state B.
The simulation protocol involved energy minimization,
followed by a brief 10 ps NVT equilibration and finally a
production run for 6 ns in the NPT ensemble, where frames
were written to file every 47 ps. From the generated
trajectories, the first 48 frames (2.256 ns simulation time)
were discarded, and from the rest, 80 snapshots were extracted.
These configurations were used to perform rapid (50 ps)
alchemical transitions between the physical states: from state A
to state B when starting from the equilibrium ensemble
generated at the state A and vice versa. The whole procedure,
starting with energy minimization and ending with the fast
alchemical transitions, was repeated 3 times. Each repeat used
different random initial ion coordinates and initial velocities for
the NVT equilibration. All in all, the simulation time for one
leg of the thermodynamic cycle of 3 replicas adds up to 60 ns
for each double free energy difference. This is an equivalent
simulation time to a classical equilibrium FEP approach using
twelve 5 ns lambda windows, which happens to be the default
in the commercial FEP+ software and is used in many
published studies.5

The simulation temperature was kept at 298 K by means of
the stochastic dynamics integrator with a friction of 0.5 ps−1.66

This protocol is in line with that previously described in ref 8
except that ref 8 used MD integrator in combination with the
velocity rescaling thermostat67 with a time constant of 0.1 ps.
The pressure was controlled by means of the Parrinello−
Rahman barostat68 with a time constant of 5 ps, keeping
pressure at 1 bar. Electrostatic interactions were treated by
means of the particle mesh Ewald (PME) method69,70 with a
direct space cutoff of 1.1 nm, a relative strength of interactions
at a cutoff of 10−5, and a Fourier grid spacing of 0.12 nm. Van
der Waals interactions were switched starting at 1.0 nm
distance, and were completely turned off for the distances
reaching 1.1 nm. Dispersion correction was used to adjust
energy and pressure. Nonbonded interactions during the
alchemical transitions were softened. The functional form of
the softcore potential described in ref 29 (with the default set
of parameters) was used for the transitions in PDE2,
GALECTIN, BACE (Hunt), BACE, BACE (P2), CMET,
JNK1, TYK2, MCL1, CDK2, THROMBIN, PTP1B, and P38
systems. For the alchemical transitions in the other systems,
the softcore potential described in ref 71 was used with the
parameters α = 0.3 and σ = 0.25 nm. The bonds were
constrained by means of the LINCS algorithm.72

From the alchemical transitions, work values were collected,
and free energy differences were calculated based on the
Crooks fluctuation theorem73 using a maximum likelihood
estimator.74

Free Energy Perturbation Using FEP+. The free energy
calculations using Schrodinger’s FEP+5 were retrieved from
published results, and the calculation details can be found
therein.7,8,54 The calculations use the same input structures as

those available in the reference dataset as well as the same
alchemical perturbations.59 The previously published FEP+
results were generated by the automated Schrodinger protocol
with default settings, i.e., 5 ns simulation time, 12−24 λ points
per perturbation, Hamiltonian replica exchange, and the replica
exchange solute tempering protocol. The proteins and ligands
were parameterized using the OPLS3e FF with custom
parameters,75 as described in the respective publications.7,8,54

The results for targets BACE, BACE (HUNT), BACE (P2),
CDK2, GALECTIN, JNK1, MCL1, P38, PDE2, PTP1B,
THROMBIN, and TYK2 are retrieved from ref 8. Reference 7
is the source of the results for targets CDK8, CMET, EG5,
HIF2A, PFKFB3, SHP2, SYK, and TNKS2. Finally, the results
of targets PDE10 and ROS1 are taken from ref 54.
Small Molecule Force Field Parameterizations. Below,

we provide small molecule parameterization details. As the
simulation data was collected from multiple literature sources,
we summarize the particular FF version used for each system
in the Supporting Information, Table S.1.
Open Force Field. Open Force Field (OpenFF) parameters

were used in 3 different versions (Parsley v1.0.049 and v1.2.1
and Sage v.2.0.050). The OpenFF toolkit 0.8.448,76 was used to
parameterize the ligands with Austin Model 1-bond charge
correction (AM1-BCC) charges.77,78 In the following, the
three FFs are named OpenFF-1.0, OpenFF-1.2, and OpenFF-
2.0, without the last patch number of the release.
GAFF2.1x. GAFF parameters were assigned by means of

Antechamber79 and ACPYPE.80 The AM1-BCC partial charge
model was used.77,78 Off-site charges on chlorine and bromine
were added according to the rules, as described in ref 81. The
effect of the off-site charges in perturbations concerning
chlorine and bromine atoms is analyzed in the Supporting
Information, Figure S.15. We specify the FF as “GAFF2.1x” as
results across the dataset are pulled from two different studies,
with some systems using GAFF2.18 and a later study using
GAFF2.11.82 Table S.1 lists the exact FF used for each target.
CGenFF/MATCH*. Small molecule parameterization with

the CGenFF83 was performed by assigning atom types with the
MATCH84 tool and subsequently replacing the bonded
parameters with those in CGenFF v3.0.1. For the BACE
inhibitor sets, the MATCH algorithm was unable to identify
the appropriate atom types; therefore, in these cases, a web-
based atom-typing and parameter assignment server85,86 was
used in combination with the CGenFF v4.1 parameters. As for
GAFF2.1x above, virtual charged sites were added to chlorine
and bromine containing ligands (Supporting Information,
Figure S.15).87 Throughout the article, we refer to this
parameterization as CGenFF/MATCH* to mark that several
different tools were employed in the parameterization
procedure, which may lead to differences in assigned
parameters depending on the atom-typing, generalized FF
version, and even structure converter used.88

OPLS3e. The Schrodinger FF OPLS389 and OPLS3e75 were
used in the FEP+ results presented, which were taken from
published sources.7,8,54 Table S.1 lists the source of the results
for each target. For simplicity, we labeled all the FEP+ results
in the plots and tables as “OPLS3e”. Note that differences in
results between OPLS3e and the other FFs are not only due to
the FF parameters, but may additionally originate from the
different MD engine and sampling protocol.
Consensus Approach. For the consensus approach

“Consensus”, the results were averaged over the first repeat
of the simulations using OpenFF-2.0, GAFF2.1x, and
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CGenFF/MATCH*. This sums up to the same sampling time
as the results from the single FFs.

Two alternative consensus approaches were calculated,
which are presented in the Supporting Information. The first

Figure 1. Comparison of ΔΔG values of the perturbations obtained from calculations using the five force fields OpenFF-1.0, OpenFF-2.0,
GAFF2.1x, CGenFF/MATCH*, and OPLS3e and the consensus approach. (a) Overall RMSE comparison across all targets and all 1116
perturbations. (b) Illustration of significant differences between pairs of force fields. White matrix element with an equal sign (“=”) means that the
differences between the two force fields are statistically insignificant. Colored matrix element denotes a significant difference considering a 95%
confidence interval. Arrow in a blue matrix element points at the force field, which has the lower error (either left or down). (c) Comparison of all
experimental and calculated binding free energy differences for the OpenFF-2.0 Sage force field. All edges belonging to one target are shown in one
color in a segment of the circle. Radial distance denotes the experimental ΔΔGexp. Deviation of the calculation from experiment is shown on the
angular axis as deviation from the segment center (white background). Scale of this deviation is illustrated in the right segment and also coded in
background color. (d) RMSE values for each target separately. Each group represents a target set with the RMSE values between experimental and
calculated value for the respective force fields in different colors. Lower and upper bound of the 95% confidence interval are given as error bars.
Corresponding graph with MUE instead of RMSE can be found in the Supporting Information, Figure S.2.
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one was obtained from an average over GAFF2.1x and
OpenFF2.0 (referred to as “Consensus (OFF, GAFF)”), while
the second one was obtained as an average over GAFF2.1x,
OpenFF2.0, CgenFF/MATCH*, and OPLS3e (referred to as
“Consensus (all)”).
Analysis. All the graphs and analyses presented in this

article can be followed and reproduced with the Python
notebooks available at https://github.com/dfhahn/protein-
ligand-benchmark-analysis.90

Calculation of ΔΔG and ΔG Values. For the RBFE
(ΔΔG) values, we used the raw values without any cycle
closure correction as they reflect better potential shortcomings
of FFs. For the pmx results, we calculated the ΔΔG values as
averages over three repeats, and the standard deviation across
the repeats was used as an error estimate.
For the binding free energy estimates (ΔG), we calculated

the maximum likelihood estimate with the package arsenic91

for ΔΔG values coming both from FEP+ and pmx.
Metrics. The performance of the calculations employing

different FFs is evaluated based on various error and ranking
metrics. The aggregated statistics are calculated as the pairwise
root mean squared error (RMSE) and mean unsigned error
(MUE) of the calculated relative binding free energies (ΔΔG)
compared to the experimental values. These were calculated
for the individual target sets and the whole set of 1116 edges.
For the final binding free energies of ligands (ΔG), the

node-based RMSE and MUE were calculated, as well as the
ranking coefficients Kendall’s τK and Spearman’s ρ. Again, we
calculated the statistics for various subsets of the full dataset as
well as for the whole set of 598 ligands. For the calculation of

Kendall’s τK,overall considering the whole dataset, we calculated
the weighted average of the Kendall’s τK of all individual targets

N
N

1
K,overall

targets
target K,target=

(1)

where N is the sum of all considered ligands across targets,
Ntarget is the number of ligands of a target, and τK,target is the
corresponding Kendall’s τK of the target. Note that only
resulting RMSE values and Kendall’s τK are discussed in the
main text, but values for MUE and Spearman’s ρ can be found
in the Supporting Information.
Error Calculation. If not stated otherwise, all results are

given with a 95% confidence interval, obtained from boot-
strapping using 1000 bootstrap samples. The lower and upper
bounds of the interval are given as sub- and superscripts
behind the actual value.
Significance Test. To evaluate if there is a significant

difference between two calculated sets compared to the
experiment, we calculated the significance by bootstrapping
using a confidence interval of 95%.
Convergence Criteria for Perturbations. To discriminate

the error of FF parameters from sampling errors, the set of all
edges was filtered according to two convergence criteria
indicating issues with sampling. The first criterion is the
convergence criterion α based on the overlap of the work
distributions from the nonequilibrium sampling. α is defined in
the range −1 ≤ α ≤ 1 and is described in more detail in ref 92,
eq 5. The second criterion is the standard deviation of the
ΔΔG values σ(ΔΔG) over the three repeats. For a

Table 1. Comparison of the Five Force Fields OpenFF-1.0, OpenFF-2.0, GAFF2.1x, CGenFF/MATCH*, OPLS3e, and the
Consensus Approach Based on the RMSE of the ΔΔG Values of the Perturbationsa

N RMSE [kcal mol−1]

OpenFF 1.0 OpenFF 2.0 CGenFF/MATCH* GAFF 2.1x OPLS 3e Consensus

ALL 1116 1.71.61.8 1.71.61.9 1.81.71.9 1.71.52.0 1.31.31.4 1.51.41.6

BACE 58 1.00.81.2 1.10.91.3 1.31.01.5 1.10.91.3 1.61.31.9 1.10.91.3

BACE (HUNT) 60 1.10.91.3 1.31.01.4 1.51.41.8 1.21.01.4 0.90.81.0 1.21.01.5

BACE (P2) 26 1.10.91.3 1.21.01.3 1.20.81.6 1.10.81.3 0.80.60.9 1.10.81.3

CDK2 25 1.00.81.2 1.20.91.4 1.00.81.4 0.90.61.2 1.40.62.1 0.90.71.1

CDK8 54 1.71.42.0 1.61.31.8 2.11.82.4 1.21.11.5 1.51.31.8 1.41.21.6

CMET 57 1.91.42.6 2.21.33.3 1.71.22.4 2.11.42.9 1.31.11.7 2.01.22.9

EG5 65 1.71.42.2 1.11.01.4 1.81.62.2 2.11.62.5 1.31.11.6 1.41.11.5

GALECTIN 7 1.00.51.4 0.60.30.9 0.60.40.8 1.00.41.6 0.40.10.6 0.70.51.0

HIF2A 80 2.21.82.7 2.31.92.7 3.53.03.8 2.11.82.5 1.41.21.8 2.11.82.5

JNK1 31 0.90.71.2 1.10.81.4 0.90.61.2 1.00.81.4 0.70.60.8 0.80.51.1

MCL1 71 1.51.31.8 1.61.31.9 1.81.62.2 1.61.31.8 1.41.21.6 1.51.31.7

P38 56 1.31.11.6 1.00.81.4 1.31.11.7 0.90.81.1 1.00.81.2 0.90.71.0

PDE10 59 1.91.52.3 2.91.64.2 2.11.82.4 1.71.42.1 1.71.42.1 1.71.42.3

PDE2 34 1.30.91.7 1.10.81.4 1.51.22.0 1.00.71.4 1.20.91.6 1.20.71.7

PFKFB3 66 1.81.62.1 1.51.21.8 1.61.42.1 1.41.11.7 1.41.11.6 1.41.11.6

PTP1B 49 1.61.12.1 2.31.62.7 1.41.01.8 1.10.91.3 0.80.70.9 1.51.11.7

ROS1 61 2.31.83.3 1.81.42.2 1.31.11.6 1.91.52.3 1.51.21.6 1.61.21.9

SHP2 56 2.62.33.1 2.62.03.2 1.81.52.1 4.32.36.1 1.31.11.7 2.31.73.0

SYK 101 1.31.21.5 1.41.11.7 1.11.01.3 1.41.11.5 1.21.11.4 1.10.91.3

THROMBIN 16 1.31.01.6 1.31.11.5 1.50.52.1 1.00.61.2 1.20.91.7 0.60.40.8

TNKS2 60 0.90.71.1 0.90.71.1 1.61.31.9 0.90.71.2 1.20.91.5 1.00.81.3

TYK2 24 1.10.81.5 1.10.91.5 1.61.22.0 1.30.91.6 1.00.71.2 1.10.81.5
aEach row represents a target set (or “ALL” for all target sets combined) with a specified number N of perturbations followed by the RMSE
between experimental and calculated values for the respective FF. The upper and lower bounds of the 95% confidence interval are given as sub- and
superscript. All values are in kcal mol−1. The corresponding table with MUE instead of RMSE can be found in the Supporting Information, Figure
S.2.
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perturbation to be considered converged, both requirements α
< 0.8 and σ(ΔΔG) < 1.5 kcal mol−1 must be true.
Parameter Analysis. We performed a parameter analysis to

investigate the influence of certain OpenFF parameters on the
errors. For each perturbation, the FF parameters involved in
the perturbations were identified, i.e., only the parameters that
were either changed or annihilated during the perturbation.
For each parameter, the RMSE across all perturbations
involving this parameter was calculated. As parameters are
often used in the same combination (e.g., the bond, angle, and
torsion parameters describing an ester group), the correlation
between parameters used in the same edges was calculated
using the Matthew’s correlation coefficient,93 as it is suited to
correlate binary vectors (parameters either used or not used in
edges). The obtained correlation matrix between parameters
was then clustered with spectral clustering94 to identify groups
of parameters, which are used simultaneously in perturbations.
To analyze the influence of a parameter change from OpenFF-
1.0 to OpenFF-2.0 on the prediction error, the ΔRMSE of
parameter p was calculated as

p p pRMSE( ) RMSE ( ) RMSE ( )OpenFF 2.0 OpenFF 1.0=
(2)

where RMSEFF(p) is the RMSE between predicted ΔΔG with
FF and experimental ΔΔG of all perturbations involving a
perturbation of parameter p.

■ RESULTS AND DISCUSSION
Prediction Accuracy. Overall Performance of Various

Force Fields Analyzed Based on ΔΔG. The general summary
of the benchmark study is provided in Figure 1 illustrating all
performed RBFE calculations (1116 edges) for 22 targets. In
Figure 1c, we used the recent OpenFF, OpenFF-2.0 (Sage), to
exemplify the accuracy achievable with the open source FF.
The results for each target are shown in different colors in
separate segments of the circle. The radial distance denotes
experimental ΔΔGexp, showing that there are varying dynamic
ranges among the targets. The deviation of the calculation
from experiment ΔΔΔG = ΔΔGcalc − ΔΔGexp is shown on the
angular axis as a deviation from the segment center (white
background). Based on the ΔΔG values of the edges, a RMSE
of 1.71.61.9 kcal mol−1 (MUE = 1.21.11.3 kcal mol−1) was obtained.
This is in line with current industry standards.7

Overall, the open source FFs performed comparably to one
another and did not show significant differences in terms of
ΔΔG prediction for the results averaged over the whole set of
targets and chemical series (Figure 1a,b). The obtained RMSE
values from the experiment are: GAFF2.1x 1.71.52.0, OpenFF-1.0
1.71.61.8, OpenFF-2.0 1.71.61.9, and CGenFF/MATCH* 1.81.71.9 kcal
mol−1. It is interesting to note that a consensus variant
constructed as a linear combination over three open source
FFs significantly outperformed each of the open source FFs
considered separately (RMSE of 1.51.41.6). The OPLS3e FF
shows a significantly lower RMSE of 1.31.31.4 kcal mol−1 when
averaged over all ΔΔG values calculated in this work. Note
that more recent versions of FEP+ using the OPLS495 FF
should lead to more accurate results.10 However, we refrain
from comparing to OPLS4 results as there are no results
available using the same input structures.
Table 1 and Figure 1d list the per-target accuracy reached by

each FF in terms of ΔΔG RMSE from experimental
measurement. The corresponding ΔΔG MUE values can be
found in Table S.3 and Figure S.2. This illustrates well that the

prediction accuracy is case-dependent. For example, the
predicted ΔΔG for GALECTIN in Figure 1 all fall close to
the experimentally measured values. Whereas, several other
cases, e.g., HIF2A and SHP2, have a widespread distribution of
calculated relative free energy differences when compared to
the experimental measurement.
Although the aggregated RMSE statistics overall (Figure 1a)

or per-target (Figure 1d) do not show a significant difference
between the public FFs, the differences become more apparent
by looking at the number of outliers. Figure 2 shows the ratio

of perturbations with absolute errors versus experiments below
a certain threshold. Each box illustrates the distribution across
the various targets first and third quartiles, with the median
shown as a horizontal bar inside the box, and the whiskers
extend up to the minimum (least performing target) and
maximum (highest performing target), but at most up to 1.5×
(interquartile range) from the box edges (with outliers shown
as markers). We observed differences between the FFs in
minimum, median, and maximum ratios. For a threshold of 1
kcal mol−1 from experiment, the median across targets is at
50% of edges for OpenFF-1.0 and 52% for CGenFF/
MATCH*. This median ratio is notably higher for OpenFF-
2.0 (57%), GAFF2.1x (60%), OPLS3e (60%), and the
consensus approach (61%). Also, the trend of the ratio for
the worst performing targets is similar. For the public FFs, the
worse performing targets exhibit between 19 and 32% of edges
within a 1 kcal mol−1 threshold. For OPLS3e and the
consensus approach, this ratio is considerably higher at 44 and
42%, respectively.
These trends persist when looking at higher unsigned error

thresholds of 2, 3, or 4 kcal mol−1.
A strong target dependence of the accuracy of the results can

be clearly seen. For OpenFF-1.0 and a threshold of <1 kcal
mol−1 from the experiment (left blue box in Figure 2), only
23% of the edges agreed with the experiment within the
threshold for the worst-performing target (SHP2). On the
other hand, 78% of edges in the best-performing target
(TNKS2) were correct considering the threshold. This
difference between the worst- and best-performing targets
can be reduced with the consensus approach, which seems to

Figure 2. Ratio of calculated ΔΔG within various different absolute
error thresholds compared to the experimental value for the different
force fields. Box-and-whiskers show the distribution across the various
targets. Each box illustrates the first and third quartiles with the
median shown as a horizontal bar inside the box and the whiskers are
at 1.5× (interquartile range) from the box edges.
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correct for large outliers. Various reasons can lead to a
disproportionate number of outliers for a few targets. One
reason can be inaccuracies in the setup of the starting
structures. This could be the wrong starting poses of the
ligand, inadequate protein preparation, or unlikely protonation
or tautomeric states, both in the ligand and in the protein. If all
FFs show low performance for a specific target it suggests a
common preparation error. The protein and ligands might be
more flexible in certain targets, and the free energy estimate
only converges if two or more conformational states are
sampled sufficiently. Thus, more sampling or even enhanced
sampling would be needed to adequately model such a target.
Some targets have ligand sets with more difficult perturbations.
For example, charge changes, charge redistribution, or the
creation/annihilation of large moieties like cyclohexyl groups
are difficult perturbations, which either would require longer
sampling times, or are even better treated with absolute
binding free energy approaches.96,97 Some targets might
feature certain chemical moieties, which are not adequately
described by the respective FF. The use of inadequate
parameters may explain why the use of OPLS3e leads to
fewer outliers, as the use of custom parameters describes
specific chemistries better than a general FF.75,95,98 Finally, the
experimental results might not be entirely suitable for
comparing to calculated binding free energies.10 The MD
calculations may not mimic the exact experimental conditions
(temperature, ion concentrations, and cosolvents), or the assay
may only have limited correlation with the binding free energy
that is targeted in the RBFE calculations. But this has a limited
impact when comparing the different FFs, as they are all
compared to the same data.
Accuracy of Predicted ΔG. Figure 3 shows the trend in

significant differences between FFs changes when comparing
accuracy in terms of back-calculated absolute binding free
energies ΔG. In this analysis, in terms of RMSE to
experimental measurement, OPLS3e still significantly outper-
forms OpenFF-2.0 and CGenFF/MATCH*; however, its
difference to OpenFF-1.0 and GAFF2.1x is no longer
significant (Figure 3a,b). The consensus approach outperforms
the individual open source FFs, similarly as it was for the ΔΔG
comparison.
We also compared FF predictions in terms of their ability to

correctly rank binders based on their ΔG values by using
Kendall’s τK correlation coefficient (τK). This measure again
reveals the same two variants outperforming the others�
OPLS3e and the consensus approach. While the pattern of
significant differences between FFs is rather complex (Figure
3d), the differences are small in magnitude, showing that each
of the FFs can be trusted to yield a compound ranking of
similar quality. The Supporting Information, Figures S.5−S.8
illustrate aggregated statistics based on ΔG per target and
across all targets for all the FFs, including the consensus
approaches. The corresponding values can be found in the
Supporting Information, Tables S.6−S.9. Additionally, corre-
lation plots are provided for OpenFF-2.0, CGenFF/MATCH*,
GAFF2.1x, OPLS3e, and the consensus approach in the
Supporting Information, Figures S.9−S.12.
Determinants of the Prediction Accuracy. There are

numerous underlying causes for the differences in accuracy
in addition to the small molecule FF, e.g., sampling, specifics of
the calculation procedure, and initial system setup. In the
analysis in Figure 4, we attempted to elucidate the main

determinants underlying ΔΔG prediction accuracy related to
the convergence of an alchemical perturbation.
In particular, we noticed that larger calculated ΔΔG values

are associated with a larger error (Figure 4f). Namely, the
alchemical approach can be expected to become less accurate
when the predicted change in free energy of binding is large.
This effect is in turn explained by the difficulty in converging
such perturbations: predicted large free energy differences
correlate with the lack in convergence of the estimates (Figure
4d). While there are many factors influencing the convergence
of an alchemical perturbation, we observed that a simple count
of heavy atoms that need to be introduced/annihilated shows a
low, but statistically significant correlation (Pearson’s r = 0.08,
p-value <0.01) with the absolute error (Figure 4c) and larger
correlation with the convergence measure (Figure 4a). Similar
trends as for the heavy atom count can be seen in the
Supporting Information for the counts of rotatable bonds
(Figure S.22), counts of rings (Figure S.23), changes or
positions of the formal charges (Figure S.24), and the LOMAP
score26 (Figure S.25). In Figure 4, we used the ΔΔG values
and convergence metric α of the simulations using OpenFF-
2.0. Although the edges might show different levels of
convergence between the FFs (Figure S.13), overall we
found that the ratios of converged simulations differ
insignificantly among OpenFF-1.0, OpenFF-2.0, GAFF2.1x,
and CGenFF/MATCH* (Figure S.14). Moreover, we

Figure 3. Comparison of ΔG values of the ligands obtained from
calculations using the five force fields OpenFF-1.0, OpenFF-2.0,
GAFF2.1x, CGenFF/MATCH*, and OPLS3e and the consensus
approach. (a) RMSE comparison across all targets and 598 ligands.
(b) Illustrations of significance of differences between the different
sets. (c) Comparison of ranking metric τK across all targets and 598
ligands. (d) Illustrations of significance of differences between the
different sets. Colors denote the different metrics (green for RMSE
and purple for τK). In panels (b) and (d), a white matrix element with
an equal sign (“=”) means that the differences between the two force
fields are statistically insignificant. Colored matrix element means
there is a significant difference considering a 95% confidence interval.
Arrow in a colored matrix element points at the force field, which has
the lower error (either left or down).
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observed the same trends as described above for OpenFF-2.0
for the results calculated with OpenFF-1.0 (Figure S.16),
GAFF2.1x (Figure S.18), and CGenFF/MATCH* (Figure
S.19).
All in all, this simple trace through the dependencies in the

data already reveals some of the determinants limiting the
accuracy of our predictions. For larger perturbations, the
calculation convergence suffers, thus reducing the agreement
between the prediction and experiment. It is important to note,
however, that the identified signal is noisy, i.e., not every large
perturbation will be inaccurate and not all well converged
simulations will yield perfect binding free energy predictions.
The identified determinants for prediction accuracy are only
general trends in a complex picture.
In addition to these factors, the accuracy of the prediction

will also be influenced by the technical setup of the calculation
procedure. For example, it has been observed that even file
conversion by different software packages may introduce
artifacts in molecular structure.88 Also, combining small
molecule FFs with disparate charge models will have an effect
on the prediction accuracy.99,100 Differences between simu-
lation packages101 and free energy protocols102 will influence
the sampling and, subsequently, the final free energy estimates.
Considering the limited sampling used in the standard free

energy calculation protocols, the starting structure quality
often affects the prediction accuracy.12−14

OpenFF Improvement. Nonconverged Results Are Less
Accurate. The difference between the set of all results and the
converged set is illustrated in Figure 5a as histograms of
deviations between experimental and calculated values (see the
Methods Section for details about the convergence criteria).
Whereas all edges consisting of converged and nonconverged
perturbations show a large standard deviation of 1.72 kcal
mol−1, the filtered set of 850 converged edges has a reduced
standard deviation of 1.35 kcal mol−1, while the remaining 278
not converged edges are enriched in outliers resulting in a
larger standard deviation of 2.54 kcal mol−1. The convergence
criteria can therefore be used to flag calculations, which are
likely to have larger errors without prior knowledge of
experimental results.
Figure 5b,d and Table 2 compare three OpenFF versions by

means of RMSE between calculated and experimental ΔΔG
values for results obtained on a subset of 551 perturbations (of
which 340 are converged) in eight different targets. While the
intermediate version OpenFF-1.2 did not show an improve-
ment over OpenFF-1.0, OpenFF-2.0 significantly improved in
accuracy compared to the previous OpenFF-1.2 (Figure 5c).
This trend holds both for all edges and the converged set of
edges.
Effect of Force Field Parameter Change from OpenFF-1.0

to OpenFF-2.0. In Figure 6a, we highlight FF parameter
changes between two OpenFF versions, 1.0 and 2.0, and their
effect on the predicted free energy accuracy for the cases where
the effect is statistically significant. In these cases, various other
factors influencing the accuracy like starting conformations and
convergence cannot be the cause for the difference; therefore,
it is more likely that the underlying reason is the FF
parameters. For example, an ester group is described by its
angle (OpenFF code a15), bond (b20), improper (i2), and
torsion (t107, t110) parameters, which were modified between
the OpenFF releases. Altogether, the RMSE between the
predicted and experimental ΔΔG for the perturbations of the
ester groups drops by 0.5 kcal mol−1 when going from
OpenFF-1.0 to OpenFF-2.0 (Figure 6a). An example for a
perturbation involving an ester group is shown in Figure 6b: in
this case, the new OpenFF-2.0 parameters led to a reduction in
the error of ΔΔG by 1.1 kcal mol−1.
Similar trends are observed for the other significant changes

in FF parameters: the predicted free energy difference is more
accurate for the modified parameters. The largest improvement
in this analysis was observed for the changes in the hydroxyl
group bound to a sp2 carbon involving the bond (b18) and
torsion (t106) parameters. Figure 6c illustrates a case where
this improvement resulted in 1.3 kcal mol−1 increase in free
energy calculation accuracy.
There are only a few parameter groups that result in

decreased ΔΔG prediction accuracy for OpenFF-2.0 compared
to OpenFF-1.0. Namely, changes in parameters describing
sulfur-containing groups like thioethers (a38, b51) or
sulfonamides (t145, t148) and torsions (t13 and t14)
describing cyclopropyl groups appear to have a detrimental
effect on binding affinity accuracy.
The improvement of free energy results related to parameter

changes is remarkable as the parameters were designed on the
condensed phase and QM properties of small molecules. We
show that improving the latter properties also has a positive

Figure 4. Visualization of pairwise relationships between the change
in number of heavy atoms in the end states, the absolute error
between experimental and calculated values |ΔΔGpred − ΔΔGexp.|, the
calculated relative free energies ΔΔGpred (OpenFF-2.0), and the
average convergence measure α92 (averaged over three solvent and
three complex simulation legs). Subplots show linear regression plots
between the respective properties. Pearson’s correlation coefficient is
given in the graph together with its p-value indicated as stars (one,
two, or three stars for the confidence level of <0.05, <0.01, and
<0.001, respectively). For illustration purposes, the data was binned
into 20 bins and their average with standard deviation are shown as
dot with error bars. Regression was performed on the original data.
Panels a, c, d, and f mark the trends described in the text. More
detailed illustration of this figure is shown in the Supporting
Information, Figure S.17.
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and significant effect on the downstream free energy of binding
calculation results.

■ CONCLUSIONS
On a set of 598 ligands each binding to one of 22 targets, we
showed that the public FFs OpenFF-1.0 (Parsley), OpenFF-
2.0 (Sage), GAFF2.1x, and CGenFF/MATCH* are perform-
ing comparably based on aggregated statistics across the whole
dataset, both in terms of the RMSE of relative binding free
energies ΔΔG (perturbations) and the RMSE and Kendall’s
tau of binding free energies ΔG. The proprietary FF OPLS3e
performs significantly better, but a consensus approach based
on Sage, GAFF2.1x, and CGenFF/MATCH* is similarly
accurate based on ΔG regarding the RMSE and Kendall’s τ.
There is a clear target dependence, which can be attributed to
input preparation, protein (binding pocket) flexibility,
chemistry of ligands, and difficulty of perturbations (in terms
of heavy atom changes). While Parsley and Sage are
performing comparably based on aggregated statistics across
the whole dataset, there are differences in terms of outliers. A
parameter analysis revealed that improved parameters lead to
significant improvement in the accuracy of affinity predictions

Figure 5. Comparison of the three force fields OpenFF-1.0, OpenFF-1.2, and OpenFF-2.0 based on the ΔΔG values. Panel (a) shows the absolute
error distributions between experimental and calculated ΔΔG using OpenFF-2.0 for three sets of edges. First set in the left subpanel contains all
edges, the second set in the center contains only converged edges, and the third set in the right contains the not converged edges (which is the
difference set between the first and second set). See the Methods Section for more details about the convergence criteria. Different colors denote
the different targets and the black line is a normal distribution fitted to the data. Text in the panel lists the number of edges N, the center μ, and the
standard deviation σ of the normal distribution. Panel (b) shows the RMSE across all edges of 8 targets for the three force fields of the OpenFF
family. Blue bars correspond to all edges and the orange bars only to the converged ones. Panel (c) illustrates significant differences between the
force field sets shown in panel (b). White matrix element with an equal sign (“=”) means that the differences between the two force fields are
statistically insignificant. Blue matrix element denotes a significant difference considering a 95% confidence interval. Arrow in a blue matrix element
points at the force field, which has the lower error. Panel (d) shows the RMSE of the ΔΔG values per target for the three force fields OpenFF-1.0,
OpenFF-1.2, and OpenFF-2.0. Lower and upper bound of the 95% confidence interval are given as error bars. All values are in kcal mol−1.

Table 2. Comparison of the Three Force Fields OpenFF-
1.0, OpenFF-1.2, and OpenFF-2.0 Based on the RMSE of
the ΔΔG Values of the Converged Perturbationsa

N RMSE [kcal mol−1]

OpenFF 1.0 OpenFF 1.2 OpenFF 2.0

ALL 320 1.51.41.6 1.51.41.7 1.41.21.6

CDK8 27 1.30.91.6 1.31.11.6 1.41.11.9

CMET 35 1.51.12.0 1.50.92.1 1.41.01.9

EG5 29 1.61.22.1 1.61.22.1 0.90.81.1

HIF2A 45 1.81.52.3 2.41.92.9 2.31.82.8

PFKFB3 42 1.91.52.2 2.01.72.4 1.41.11.7

SHP2 17 1.91.42.5 1.31.01.6 1.71.32.1

SYK 74 1.71.32.1 1.00.91.2 0.90.81.1

TNKS2 51 0.80.60.9 0.90.71.0 0.80.61.0
aEach row represents a target set (or “all” for all target sets combined)
with a specified number N of perturbations followed by the RMSE
between experimental and calculated values for the respective FF. The
upper and lower bounds of the 95% confidence interval are given as
sub- and superscript. All values are in kcal mol−1. The values are
illustrated in Figure 5b,d.
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on more than 50 subsets of the dataset involving those
parameters, while six subsets involving certain parameters
showed lower accuracy. Thus, we can show that there is a
considerable improvement of successive OpenFF versions.
In the future, such a parameter analysis can be used to

identify potentially problematic parameters, which can then be
investigated and improved for next FF versions. Indeed, this
study also allowed us to identify parameters in well converged
but inaccurate perturbations, along with further calculations,
this provides future investigation and possible avenues for FF
improvement. However, for this to be successful, further work
would be valuable to reduce the influence of other (non FF
parameter) sources of errors like large or difficult perturba-
tions, inadequate input preparation, or insufficient sampling.
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