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A CLASS OF COVARIATE-DEPENDENT SPATIOTEMPORAL

COVARIANCE FUNCTIONS FOR THE ANALYSIS OF DAILY

OZONE CONCENTRATION1

By Brian J. Reich, Jo Eidsvik, Michele Guindani, Amy J. Nail

and Alexandra M. Schmidt

North Carolina State University, Norwegian University of Science and

Technology, MD Anderson Cancer Center, Duke University and

Universidade Federal do Rio de Janeiro, Brazil

In geostatistics, it is common to model spatially distributed phe-
nomena through an underlying stationary and isotropic spatial pro-
cess. However, these assumptions are often untenable in practice be-
cause of the influence of local effects in the correlation structure.
Therefore, it has been of prolonged interest in the literature to pro-
vide flexible and effective ways to model nonstationarity in the spatial
effects. Arguably, due to the local nature of the problem, we might
envision that the correlation structure would be highly dependent on
local characteristics of the domain of study, namely, the latitude, lon-
gitude and altitude of the observation sites, as well as other locally
defined covariate information. In this work, we provide a flexible and
computationally feasible way for allowing the correlation structure
of the underlying processes to depend on local covariate informa-
tion. We discuss the properties of the induced covariance functions
and methods to assess its dependence on local covariate information.
The proposed method is used to analyze daily ozone in the southeast
United States.

1. Introduction. The advance of technology has allowed for the storage
and analysis of complex data sets. In particular, environmental phenomena
are usually observed at fixed locations over a region of interest at several
time points. The literature on modeling spatiotemporal processes has been
experiencing a significant growth in the recent years. The main objective
of this research is to define flexible and realistic spatiotemporal covariance
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structures, since predictions for unobserved locations and future time points,
and the corresponding prediction error variances, are highly dependent on
the covariance structure of the process. An important challenge is to specify
a flexible covariance structure, while retaining model simplicity.

In this paper we are concerned with modeling ozone levels observed in
the southeast USA. We explore models for ozone which allow the covari-
ance structure to be nonseparable and nonstationary. Many spatiotemporal
models have been proposed for ambient ozone data for various purposes.
Guttorp, Meiring and Sampson (1994) and Meiring, Guttorp and Sampson
(1998) generate predictions using independent spatial deformation models
for each time period to evaluate deterministic models. Carroll et al. (1997)
combine ozone predictions with population data to calculate exposure in-
dices. Huerta, Sansó and Stroud (2004) and Dou, Le and Zidek (2010) use
a dynamic linear model to perform short-term forecasting over a small re-
gion, while Sahu, Gelfand and Holland (2007) use a dynamic linear model to
predict temporal summaries of ozone and examine meteorologically-adjusted
trends over space. Gilleland and Nychka (2005) seek a method for drawing
attainment boundaries. McMillan et al. (2005) present a mixture model
that allows heavy ozone production and normal regimes; the probability
of each depends on atmospheric pressure. Berrocal, Gelfand and Holland
(2010) combine deterministic model output with observations via a compu-
tationally efficient hierarchical Bayesian approach. Nail, Hughes-Oliver and
Monahan (2010) explicitly model ozone chemistry and transport with ad-
ditional goals of decomposition into global background, local creation and
regional transport components, and of long-term prediction under hypothet-
ical emission controls.

A challenging aspect of modeling ozone is its complex relationship with
meteorology. Tropospheric ozone is a secondary pollutant in that it is not di-
rectly emitted from cars, power plants, etc. Instead, it is formed from photo-
chemical reactions of precursors nitrogen oxides (NOx), and volatile organic
compounds (VOCs), which are primary pollutants. The reactions that form
ozone are driven by sunlight, so that ambient concentrations are highest in
hot and sunny conditions, and ozone, NOx and VOCs are transported on
the wind, so that emissions at one site affect ozone at another. It is therefore
natural to wonder whether meteorological variables affect not only the mean
concentration, but also its variance and spatiotemporal correlation. Of the
studies mentioned, Guttorp, Meiring and Sampson (1994), Meiring, Guttorp
and Sampson (1998), Huang and Hsu (2004) and Nail, Hughes-Oliver and
Monahan (2010) model the dependence of the covariance on covariates in
some form. Guttorp, Meiring and Sampson (1994) and Meiring, Guttorp
and Sampson (1998) allow the spatial covariance to vary by hour of the day,
while Nail, Hughes-Oliver and Monahan (2010) allow it to vary by season.
Huang and Hsu (2004) allow the covariance to vary as a function of wind
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speed and direction, and Nail, Hughes-Oliver and Monahan (2010) model
the transport of ozone using wind speed and direction.

We present a class of spatiotemporal covariance functions that allow the
meteorological covariates to affect the covariance function [Schmidt, Gut-
torp and O’Hagan (2011), Schmidt and Rodŕıguez (2011)]. This produces
a nonstationary covariance, since the correlation between pairs of points
separated by the same distance may be different depending on local me-
teorological conditions. Sampson and Guttorp (1992) were among the first
to propose a nonstationary spatial covariance function by making use of
a latent space wherein stationarity holds. Schmidt and O’Hagan (2003)
proposed a Bayesian model using the idea of the latent space where in-
ference is performed under a single framework. Higdon, Swall and Kern
(1999) use a moving average convolution approach based on the fact that
any Gaussian process can be represented as a convolution between a kernel
and a white noise process; nonstationarity results from allowing the kernel
to vary smoothly across locations. Fuentes (2002), instead, assumed that
the spatial process is a convolution between a fixed kernel and independent
Gaussian processes whose parameters are allowed to vary across locations.
Paciorek and Schervish (2006) generalize the kernel convolution approach
of Higdon, Swall and Kern (1999). On the other hand, Cressie and Huang
(1999), Gneiting (2002) and Stein (2005) present examples of nonseparable
stationary covariance functions for space–time processes. Although these
models provide flexible covariance structures, they usually have many pa-
rameters, which may be challenging to estimate.

Cooley, Nychka and Naveau (2007) capture nonstationarity using co-
variates (but not geographic coordinates) to model extreme precipitation.
Schmidt, Guttorp and O’Hagan (2011) extended the work of Schmidt and
O’Hagan (2003) by allowing both geographic coordinates and covariates to
define the axis of the latent space. They also provide a particular case of
the general model which has a simpler structure but is still able to capture
nonstationarity. Schmidt and Rodŕıguez (2011) apply this simpler version of
the model in the case of multivariate counts observed across the shores of
a lake.

In this paper we provide a more flexible covariance model that allows not
only the distance between covariates, but also the covariate values them-
selves to affect the spatial covariance. For example, the spatial covariance is
allowed to be different for a pair of observations with the same temperature
on a cold day than for a pair of observations with the same temperature on
a warm day. Following Fuentes (2002), we model the spatial process at lo-
cation s, µ(s), as a linear combination of stationary processes with different
covariances,

µ(s) =
M
∑

j=1

wj(s)θj(s),(1)
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where wj(s) are the weights and θj are independent zero-mean Gaussian
processes with covariance Kj . Fuentes (2002) models the weights as kernel
functions of space centered at predefined knots φj , so that Kj represents
the local covariance for sites near φj . In contrast, we specify the weights
in terms of spatial covariates, so that Kj represents the covariance under
environmental conditions described by the covariates.

The paper proceeds as follows. Section 2 introduces the model and Sec-
tion 3 discusses its properties. Model-fitting issues and computational details
are discussed in Sections 4 and 5, respectively. We analyze ozone data in Sec-
tion 6. We find that the spatial correlation is stronger on windy days, and
that temporal correlation depends on temperature and cloud cover. Section 7
concludes.

2. Covariate-dependent covariance functions. Let y(s, t) be the obser-
vation taken at spatial location s ∈ R2 and time t ∈ R. The response is
modeled as a function of p covariates x(s, t) = [x1(s, t), . . . , xp(s, t)]

T , where
x1(s, t) = 1 for the intercept. We assume that

y(s, t) = x(s, t)Tβ+ δ(s) + µ(s, t) + ε(s, t),(2)

where β is the p-vector of regression coefficients, δ is a Gaussian process
to capture the overall spatial trend remaining after accounting for x(s, t)Tβ

[Stein and Fang (1997)], µ(s, t) is a spatiotemporal effect, and ε(s, t)
i.i.d.
∼

N(0, σ2) is pure error.
The spatiotemporal process µ is taken to be a Gaussian process with

mean zero and covariance that may depend on (perhaps a subset of) the
covariates, x. As described in Section 1, we model µ as a linear combination
of stationary processes,

µ(s, t) =
M
∑

j=1

wj[x(s, t)]θj(s, t),(3)

where θj are independent Gaussian processes with mean zero and covari-
ance Kj and wj [x(s, t)] is the weight on process j. The motivation for this
model is that different environmental conditions, described by the covariates,
may favor different covariance functions. The weight wj [x(s, t)] determines
the spatiotemporal locations where the covariance function Kj is the most
relevant.

Integrating over the latent processes θj , the covariance becomes

Cov[µ(s, t), µ(s′, t′)|x] =

M
∑

j=1

wj [x(s, t)]wj [x(s
′, t′)]Kj(s− s

′, t− t′).(4)

With M = 1, only the variance of the process depends on the covariates, and
the correlation, K1(s− s

′, t− t′)/K1(0,0), is stationary. With M > 1, both
the variance and the correlation depend on the covariates.
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Fig. 1. Covariance functions for a one-dimensional spatial process with M = 2,
logit(w2(s)) = x(s), w1(s) = 1 − w2(s), K1(s − s′) = exp(−|s − s′|/0.02), and
K2(s− s′) = exp(−|s− s′|/0.50).

As an illustration of the flexible spatial patterns allowed by our specifica-
tion, Figure 1 plots the spatial covariance for two simple examples. In both
cases we assume a one-dimensional spatial grid with s ∈R, a single covari-
ate x(s), and that the spatial correlation is high in areas with large x(s).
Both examples have M = 2, logit(w2(s)) = x(s), w1(s) = 1−w2(s), K1(s−
s′) = exp(−|s − s′|/0.02), and K2(s − s′) = exp(−|s − s′|/0.50). Figure 1
shows the covariance for x(s) = s2 and x(s) = sin(4πs). For the quadratic
covariate, the second term has higher spatial correlation and the weight on
the second process is high for locations with large x(s), therefore, the spatial
correlation is stronger for s near −1 and 1 where x(s) is high. The spatial
covariance is not a monotonic function of spatial distance for the periodic
covariate. This may be reasonable if, say, x(s) is elevation and a site with
high elevation shares more common features with other high-elevation sites
than nearby low-elevation sites.

There is confounding in (4) between the scale of the weights wj and covari-
ances Kj , since multiplying the weights by the constant c > 0 and dividing
the standard deviation of Kj by c gives the same covariance. Therefore, for
identification purposes we restrict the squared weights for each observation
to sum to one,

∑M
j=1wj[x(s, t)]

2 = 1. Also, allowing the weights to be neg-

ative would result in a negative spatiotemporal covariance if wj[x(s, t)]> 0
and wj [x(s

′, t′)]< 0. In some situations this may be desirable, however, we
elect to restrict wj [x(s, t)] > 0 to ensure a positive spatiotemporal covari-
ance. Section 4 discusses weight selection in further detail.

An important consequence of the covariance construction in (3) is that
values of the process at two sites are uncorrelated unless at least one of theM
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weight functions is positive at both sites. Therefore, unlike other nonstation-
ary covariance models [e.g., Sampson and Guttorp (1992) and Higdon, Swall
and Kern (1999)], it may be difficult to separate strength of dependence from
severity of nonstationarity. For example, if M = 2, w1(s1) =w2(s2) = 1, and
w2(s1) = w1(s2) = 0, then not only is the covariance near s1 different than
the covariance near s2, but µ(s1) and µ(s2) are necessarily uncorrelated.
If this is deemed undesirable for a particular application, one alternative
would be to allow for dependence between the latent θj using a multivariate
spatial model. Another option would be to use only covariates in the weights
that have larger spatial range (perhaps pre-smoothed covariates) than the
latent θj processes, in which case this scenario is less likely. Section 3.2 pro-
vides further discussion about the relative roles of the spatial range of the
latent and covariate processes.

This covariance model has interesting connections with other commonly
used spatial models. For example, if we consider purely spatial data, as men-
tioned in Section 1, taking the weights to be kernel functions of the spatial lo-
cation alone, that is, wj[x(s)] =wj(s), gives the nonstationary spatial model
of Fuentes (2002). By modeling the weights as functions of the covariates, it
may be possible to explain nonstationarity with fewer terms, giving a more
concise and interpretable model. Also, with M = p and wj[x(s)] = xj(s)
for j = 1, . . . , p, we obtain the spatially-varying coefficient model of Gelfand
et al. (2003). In this model θj(s) represents the effect of the jth covariate
at location s. The motivation for the spatially-varying coefficients model
is to study local effects of covariates on the mean response. In contrast,
our objective is to model the covariance. For example, in a situation with
p= 20 covariates it may be sufficient to describe the spatial covariance using
M = 2 stationary processes where conditions that favor the two covariance
functions are described by weights w1 and w2 that depend on all p covariates.
Therefore, to provide an adequate description of the covariance, we assume
the weights are random functions of unknown parameters that describe en-
vironmental conditions (see Section 4) rather than taking the weights to be
the covariates themselves. Finally, setting the weights wj to be constant in
time and the latent processes θj to be constant over space gives the spa-
tial dynamic factor model of Lopes, Salazar and Gamerman (2008). Our
model differs from this approach since our weights (loadings) are functions
of spatial covariates rather than purely stochastic spatial processes.

3. Properties of the covariance model. In this section we discuss some
properties of the proposed model in (3) and the spatiotemporal covariance
function. For example, it is clear that even if the individual covariances Kj

are separable, stationary and isotropic, the resulting covariance (4) is in
general nonseparable, nonstationary and anisotropic. Below we discuss other
properties of the covariance model.



COVARIATE-DEPENDENT SPATIOTEMPORAL COVARIANCE FUNCTIONS 7

3.1. Monotonicity of the spatial covariance function. As shown in Fig-
ure 1, the covariance function can be a nonmonotonic function of spatial
distance, even if the underlying covariances Kj are decreasing. Intuitively,
this occurs only if the spatial range of the covariates is small relative to the
spatial range of the covariance functions Kj . More formally, assuming s ∈R
and the wj and each component of x are differentiable, then for any h > 0

∂Cov(µ(s), µ(s+ h)|x)

∂h
(5)

=
M
∑

j=1

wj(x[s])wj(x[s+ h])Kj(h)

[

w′
j(x[s+ h])

wj(x[s+ h])
+

K ′
j(h)

Kj(h)

]

,

both w′
j and K ′

j are derivatives with respect to h. Therefore, if the weights

wj(x[s]) and covariance Kj(h) are positive, a sufficient but not necessary
condition for a monotonic covariance is that w′

j(x[s + h])/wj(x[s + h]) +

K ′
j(h)/Kj(h)< 0 for all j. The ratios w′

j(x[s])/wj(x[s]) and −K ′
j(h)/Kj(h)

can be interpreted as the elasticity of the weight function (which depends
on both the weight function itself and the derivative of the covariate pro-
cess) and covariance function, respectively. This condition makes the initial
statement more precise, in that (5) is negative if the elasticity of the weight
function is less than the elasticity of the spatial covariance.

In the special case of a powered-exponential covariance model Kj(s, s+
h) = τ2j exp(−ρjh

κj ) and exponential weights wj(x) = exp(xTαj), where αj

is a vector of coefficients, (5) becomes

∂Cov(µ(s), µ(s+ h)|x)

∂h
(6)

=

M
∑

j=1

wj(x[s])wj(x[s+ h])Kj(h)[∆x(s+ h)Tαj − κjρjh
κj−1],

where ∆x(s+ h) denotes the vector of derivatives of x(s+ h) with respect
to h. The covariance is decreasing in h if ∆x(s+ h)αj < κjρjh

κj−1 for all j
and h. This shows that it is possible to allow the spatial covariance to depend
on covariates but retain monotonicity by restricting the parameters αj , κj
and ρj based on bounds on the covariate process derivatives.

3.2. Smoothness properties of the spatial process. The smoothness prop-
erties of a Gaussian process are often quantified in terms of the mean squared
continuity of its derivatives. For many spatial processes, including the non-
stationary model of Fuentes (2002), the smoothness of their process realiza-
tions is well studied [see Banerjee and Gelfand (2003), Banerjee, Gelfand and
Sirmans (2003)]. However, our model postulates a more general dependence
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of the covariance on spatial covariates. Hence, in this section we explore the
effect of that dependence on the smoothness properties of the realizations.
For notational convenience, we assume a one-dimensional spatial process
with s ∈ R; the results naturally extend to more general direction deriva-
tives by taking s = u

T
s for any unit vector u. We start by assuming the

covariates x are fixed; this assumption will be later relaxed.
Following the arguments of Banerjee and Gelfand (2003), we say that

the kth derivative (with respect to s) of the process µ (if it exists) is mean
square continuous at s if

lim
h→0

E[µ(k)(s)− µ(k)(s+ h)|x]2 = 0.(7)

For k = 0, we can substitute (3) in (7) and get

lim
h→0

E[µ(s)− µ(s+ h)|x]2

=

M
∑

j=1

lim
h→0

Kj(0)(wj[x(s+ h)]−wj[x(s)])
2(8)

+

M
∑

j=1

lim
h→0

2wj [x(s)]wj [x(s+ h)](Kj(0)−Kj(h)),

which shows that µ is mean square continuous if each latent process is
mean square continuous [limh→0Kj(h) =Kj(0)] and the weights are smooth
enough to satisfy limh→0(wj [x(s+h)]−wj [x(s)])

2 = 0 for all j, for example,
they are continuous functions of the continuous spatial covariates.

In some settings, it may be reasonable to consider x to be a random
process. We extend the discussion of Banerjee and Gelfand (2003) to the
case when the weights are functions of stochastic covariates. In this case,
to study the smoothness of µ requires considering variability in both the
latent θj as well as the covariates x. The covariates enter the covariance
model only through the stochastic weights Wj(s) = wj [x(s)]. Taking the
expectation with respect to both θj and Wj(s) gives

lim
h→0

E[µ(s)− µ(s+ h)]2

=

M
∑

j=1

lim
h→0

Kj(0)EWj
[Wj(s)−Wj(s+ h)]2(9)

+ 2
M
∑

j=1

lim
h→0

(Kj(0)−Kj(h))EWj
[Wj(s)Wj(s+ h)].

Therefore, under stochastic covariates, the process µ is mean square continu-
ous if and only if the latent processes θj and the weight processesWj are both
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mean square continuous. It is well known from probability theory that the
weight function Wj is mean square continuous, for example, if it is bounded
and the covariate processes are almost surely continuous. Mean square conti-
nuity also follows when wj is Lipschitz continuous of order 1 and the covari-
ate processes are mean square continuous. For example, the logistic weights
wj(x) = exp(xTαj)/[1 + exp(xTαj)] are both bounded and Lipschitz con-
tinuous of order 1, whereas exponential weights wj(x) = exp(xTαj) are not.

These results naturally extend from mean squared continuity to mean
square differentiability, and higher order derivatives. Since µ(s) is the sum

of stochastic processes Zj(s) =Wj(s)θj(s), then µ(k)(s) =
∑M

j=1Z
(k)
j (s). In

particular, for k = 1 the derivative process at s is

µ(1)(s) =

M
∑

j=1

θ
(1)
j (s)Wj(s) + θj(s)W

(1)
j (s).(10)

So the process µ is mean square differentiable if both Wj(s) and θj(s) are
mean square differentiable. Conditions analogous to those outlined above
for mean square continuity will assure that the weights are mean square
differentiable. More precisely, if the covariate processes x1(s), . . . , xp(s) are
mean square differentiable and the function wj(·) is Lipschitz continuous of
order 1, then the resulting process Wj(s) is mean square differentiable, and
so is µ(s).

One could go further to study sample path properties and almost sure
continuity of the induced spatial process, although the required proofs are
generally more difficult than the proofs of mean square properties. If both the
weight functions and latent processes are almost surely continuous, then the
induced spatial process is also almost surely continuous. Adler (1981) and
Kent (1989) provide conditions to verify almost sure continuity for spatial
fields.

3.3. Span of the covariance function. The covariance in (4) is quite flex-
ible. For example, consider partitioning the covariate space in N subsets
A1, . . . ,AN and

wj [x(s, t)] =
N
∑

i=1

ajiI(x(s, t) ∈Ai).

When x(s, t) ∈Ai and x(s′, t′) ∈Ak, the covariance becomes

Cov(µ(s, t), µ(s′, t′)|x) =

M
∑

j=1

ajiajkKj(s− s
′, t− t′).

Hence, each covariance Kj(s − s
′, t− t′) contributes to the mixture differ-

ently according to the levels of the covariates. Setting some of the weights
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aij = 0 allows Kj to contribute only to the covariance of terms with specific
combinations of covariates, for example, both observations have low wind
speed and high cloud cover. Also, by setting some of the aij < 0, it is possible
to specify negative correlation for observations with different levels of the
covariate. By increasing M and N , this argument shows how the covariate-
dependent weights can be used to describe quite general spatiotemporal
behavior depending on the covariates.

4. Priors and model-fitting. In this section we describe a convenient
specification of the model. For notational convenience, we assume that at
each time point observations are taken at spatial locations s1, . . . , sN ∈ R2

and that t ∈ {1,2, . . .}. The overall spatial trend δ is a Gaussian process
with mean zero and spatial covariance Ks

0 . We assume that δ’s covariance
is stationary, although one could allow δ’s covariance to be nonstationary
as well. We assume an autoregressive spatiotemporal model for the latent
processes θj ,

θj(s, t) = γjθj(s, t− 1) + ej(s, t),(11)

where γj ∈ (0,1) controls the temporal correlation and the ejt = [ej(s1, t), . . . ,
ej(sN , t)] are independent (over j and t) spatial processes with mean zero
and spatial covariance Ks

j . We use exponential covariance functions for Ks
j ,

j = 0, . . . ,M . We note that although this is a relatively simple specifica-
tion for the temporal component for each latent process, complex temporal
covariance structures can emerge from this mixture model. The covariance
between subsequent observations at a site is a mixture of M autoregressive
covariances that varies with space and time according to the covariates. This
approach could be very useful for modeling hourly ozone which is generally
low and steady at night, and high and volatile in the day, which could be fit
by including hour of the day as a covariate in the weights.

As mentioned in Section 2, there is confounding in (4) between the scale
of the weights wj and covariances Kj . Therefore, for identification pur-
poses we restrict the squared weights for each observation to sum to one,
∑M

j=1wj[x(s, t)]
2 = 1. Although there are other possibilities, we assume the

weights have the multinomial logistic form

wj [x(s, t)]
2 =

exp (x(s, t)Tαj)
∑M

l=1 exp (x(s, t)
Tαl)

,(12)

where α1, . . . ,αM are vectors of regression coefficients that control the ef-
fects of the covariates on the covariance. For these weights setting M = 1
gives w1[x(s, t)] = 1 and the model is stationary with covariance K1. The
choice of logistic weights also ensures mean square continuity of the pro-
cess realizations, as outlined in Section 3. For identification purposes, we fix
α1 = 0, as is customary in logistic regression.



COVARIATE-DEPENDENT SPATIOTEMPORAL COVARIANCE FUNCTIONS 11

The priors for the hyperparameters are uninformative. We use N(0,102)
priors for the elements of β and αj . The covariance parameters have priors

σ−2, τ−2
j

i.i.d.
∼ Gamma(0.1,0.1), and γj ∼Unif(0,1). Also, we takeKs

j (‖hs‖) =

exp(−‖hs‖/ρj), where hs is the distance between points after a Mercator
projection, scaled to correspond roughly to distance in kilometers, and ρj ∼
Unif(0,2,000).

The covariance and the effect of an individual covariate on the covari-
ance in (4) are rather obscure. This is due to the label-switching problem,
that is, the labels of the processes are arbitrary: for example, θ1 may corre-
spond to a high variance process for some MCMC iterations and to a small
variance process for others, making inference on individual parameters diffi-
cult. One remedy for the label-switching problem is to introduce constraints,
perhaps, Var(θ1)< · · ·<Var(θM ). However, ordering constraints on complex
functions such as spatiotemporal covariance functions is not straightforward.
Therefore, rather than summarizing the individual parameters in the model,
we summarize the entire covariance function for different combinations of
covariates. A simple way to summarize the effect of the kth covariate is in
terms of the posterior of the ratio of the covariance of two observations with
xk = 2 (standard deviation units above the mean) compared to the covari-
ance of two observations with xk = 0, assuming all other covariates are fixed
at zero (their mean). That is,

∆k(hs, ht) =

∑M
j=1((exp(αj1 + αjk))/(

∑M
l=1 exp(αl1 + αlk)))Kj(hs, ht)

∑M
j=1((exp(αj1))/(

∑M
l=1 exp(αl1)))Kj(hs, ht)

,(13)

where αjk is the kth element of αj and Kj(hs, ht) =Ks
j (‖hs‖)γ

|ht|
j . We also

inspect the ratio of correlations ∆̃k(hs, ht) = ∆k(hs, ht)/∆k(0,0). We con-
sider a covariate to have a significant effect on the variance if the posterior
interval for ∆k(0,0) excludes one. Similarly, we consider a covariate to have

a significant effect on the spatial (temporal) correlation if the posterior in-
terval for ∆̃k(hs,0) [∆̃k(0, ht)] excludes one.

Finally, we discuss how to select the number of terms, M . One approach
would be to model M as unknown and average over model space using
reversible jump MCMC. Lopes, Salazar and Gamerman (2008), Salazar,
Lopes and Gamerman (2011) use reversible jump MCMC to select the num-
ber of factors in a latent spatial factor model. However, this approach is
likely to pose computational challenges for large spatiotemporal data sets.
Therefore, we select the number of terms using cross-validation and as-
sume M is fixed in the final analysis. For cross-validation, we randomly
(across space and time) split the data into training (n = 63,881) and test-
ing (N = 3,367) sets. We fit the model on the training data and compute
the posterior predictive distribution for each test set observation. We then
compute the mean squared error MSE =

∑

i(Yi − Ȳi)
2/N and mean abso-
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lute deviation MAD =
∑

i(Yi − Ỹi)
2/N , where the sum is over the N test

set observations, Ȳi is the posterior mean, and Ỹi is the posterior median.
We also compute the mean (over the test set observations) of the posterior
predictive variances (“AVE VAR”), the median of the posterior predictive
standard deviations (“MED SD”) and the coverage probability of 95% pre-
diction intervals.

5. Computational details. We implement the model in R (http://www.
r-project.org/). Though implementation in WinBUGS (http://www.mrc-
bsu.cam.ac.uk/bugs/) would also be straightforward, run times might be
long for large data sets. We update θjt = [θj(s1, t), . . . , θj(sN , t)], β, σ2

and γj , which have conjugate full conditionals, via Gibbs sampling, and we
update αjk, ρj and νj using Metropolis–Hastings sampling with a Gaussian
candidate distribution tuned to give acceptance probability around 0.4.

Sampling using the dynamic spatial model in (11) allows us to update
the θjt as a block and avoid inverting large matrices. The alternative of
sampling after marginalizing out the latent θjt would require computing the
entire spatiotemporal covariance with elements given by (4), which would
likely give better mixing for small to moderate data sets. For our large data
set, however, matrix computations of this size are not feasible.

We monitor convergence with trace and autocorrelation plots for several
representative parameters. Monitoring convergence is challenging for this
model since the labels of the latent terms may switch during MCMC sam-
pling: exchanging α1, ρ1, ν1 and γ1, for example, with α2, ρ2, ν2 and γ2,
does not affect the covariance in (4). Rather than monitoring convergence
for these parameters individually, we therefore monitor convergence of the
covariance (4) at several lags and of the spatiotemporal effect µ(s, t) for
several spatiotemporal locations. For the application in Section 6 we gen-
erate 20,000 samples, discarding the first 10,000 as burn-in. For the expo-
nential covariances considered here this appears to be sufficient; however,
for smoother processes, such as those induced by the squared exponential
covariance, 20,000 iterations may not be sufficient.

6. Application to southeastern US daily ozone. To illustrate our spa-
tiotemporal covariance model, we analyze ozone in the southeast US. The
primary National Ambient Air Quality Standard (NAAQS) for ozone re-
quires the three-year average of the annual fourth-highest daily maximum
8-hour daily average concentration to fall beneath 75 parts per billion (ppb)
[CFR (2008), pages 16436–16514]. Our response variable is thus the square
root—to ensure Gaussianity—of the daily “8-hour ozone” metric. We fo-
cus on the 89 sites in North Carolina, South Carolina and Georgia shown
in Figure 2. This geographically heterogeneous region transitions from the
flat, low-altitude coastal plains in the east, to the gentle, rolling hills of the

http://www.r-project.org/
http://www.r-project.org/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
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Fig. 2. Plots of square root ozone (pbb). Panel (a) plots the average for each station (the
stations are marked with points) and panel (b) gives trace plots for each station in August
2005 (Day 1 is August 1, 2005).

piedmont, to mountains in the northwest, with a handful of urban islands
buffered by suburbs that give way to rural tracts. Since summertime ozone
concentrations are highest, and therefore most relevant for attainment deter-
mination, we extract daily 8-hour ozone concentrations, longitude, latitude,
elevation and site classification (urban, suburban or rural) for June–August,
1997–2005 (6444/73,692 = 8.7% missing) from the US EPA Air Quality
System (AQS) database, available via the Air Explorer web tool (http://
www.epa.gov/airexplorer/index.htm).

We obtain daily average temperature and daily maximum wind speed
from the National Climatic Data Center (NCDC) Global Summary of the
Day and daily average cloud cover from the NCDC National Solar Radiation
database. Since meteorological and ozone data are not observed at the same
locations, for each day we predict each meteorological variable at ozone ob-
servation sites using spatial Kriging implemented in SAS V9.1 Proc MIXED
with an exponential covariance function. Though Li, Tang and Lin (2009)
show that ignoring uncertainty when using spatial predictions of covariates is
not without consequence, accounting for that uncertainty is nontrivial. Since
our current focus is the development of the covariate-dependent covariance
model, we treat these predictions as fixed.

Covariates x(s, t) in the mean trend include the continuous variables tem-
perature, wind speed, cloud cover, elevation, longitude, latitude and a linear
trend in year, each standardized to have mean zero and variance one, and we
include two indicator variables identifying a station as urban or rural, leav-
ing suburban as the baseline. We have no detailed land-use covariates as in

http://www.epa.gov/airexplorer/index.htm
http://www.epa.gov/airexplorer/index.htm
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Paciorek et al. (2009), however, which would likely improve fine-scale predic-
tion. We consider all two-way interactions between the three meteorological
variables and quadratic effects of the meteorological variables. The covari-
ance is modeled as a function of only the main effects of these covariates.

6.1. Empirical variogram analysis. We begin studying the data by an-
alyzing the spatial variogram, defined as γ(h) = E([r(s, t)− r(s+ hu, t)]2),
where r(s, t) is the residual after accounting for the mean trend and u is
a unit vector. Though there is evidence that regression coefficient estima-
tion can be affected by disregarding spatial correlation [Reich, Hodges and
Zadnik (2006), Wakefield (2007), Paciorek (2010)], for simplicity we use ordi-
nary least squares, pooled over all observations, to estimate the mean trend.
We estimate the variogram as the mean squared difference between all pairs
of observations in a bin Dh, that is,

γ̂(h) =
1

|Dh|

∑

t

∑

(s,s′)∈Dh

[r(s, t)− r(s′, t)]2,(14)

where Dh is the set of pairs of points on the same day with ‖s − s
′‖ ∈

(h− ǫ, h+ ǫ) and |Dh| is the cardinality of Dh.
To explore the effects of each of the covariates on the spatial covariance,

we compute individual variograms for three categories of site pairings. In
the “low–low” category, both sites have values of the covariate below the
sample median for the covariate; in the “high–high” category, both have
values above the median; and in the “low–high” category, one has a value
below, and the other above, the median. Such variograms for cloud cover
and wind speed are given in Figures 3 and 4, respectively.

In Figure 3(a), the variogram is lowest for pairs of observations for which
both sites have high cloud cover, higher when both sites have low cloud
cover, and highest when one site has low and the other high cloud cover. Solar
radiation is required to turn NO2 into ozone or to create VOC’s that turn NO
into NO2. Therefore, under high cloud cover conditions, ozone levels would
be expected to drop close to background levels (a long-term equilibrium that
would exist in the absence of local emissions), which would be homogeneous
over a region of this size. Two sites for which cloud cover is low would be
expected to be less similar to each other than would two sites that both
have high cloud cover because the production of ozone via solar radiation is
now dependent on the spatially-varying precursors. For example, areas very
close to major sources of NOx (power plants and urban centers on workdays)
would have low ozone due to NOx scavenging, and moving downwind from
these sources, ozone would increase and then decrease. Finally, based on the
explanation above, it is clear that if one site has high cloud cover, so that
ozone production is minimal, and the other has low cloud cover, so that
ozone production is rampant, they would have very dissimilar ozone values,
so that the variogram would be highest for the low–high category.
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Fig. 3. Sample variograms for the ozone data by cloud cover. The data are plotted
separately for pairs of observations with both (“Low–Low”), one (“Low–High”) and nei-
ther (“High–High”) members of the pair with cloud cover below the median cloud cover.
Panel (b) plots the ratio of curves in (a), panel (c) uses log-transformed, rather than
square-root-transformed data, and panel (d) standardizes the residuals by the daily sample
standard deviation.

Wind speed does not generally affect the chemical reactions that create
or destroy ozone, but it does transport ozone and its precursors. One would
expect that within smaller subregions with higher wind speeds, distance is
effectively shortened so that spatial correlation would be higher, and two
sites in the “high–high” category would have lower variogram, followed by
those with “low–high,” then “low–low,” as we see in Figures 4(a) and 4(b)
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Fig. 4. Sample variograms for the ozone data by wind speed. The data are plotted sep-
arately for pairs of observations with both (“Low–Low”), one (“Low–High”) and neither
(“High–High”) members of the pair with wind speed below the median wind speed. Panel (b)
plots the ratio of curves in (a), panel (c) uses log-transformed, rather than square-root–
transformed data, and panel (d) standardizes the residuals by the daily sample standard
deviation.

for spatial lags below 250 km. The ordering of the categories is reversed for
larger spatial lags, where transport is less relevant.

In addition to computing these variograms for our square root ozone re-
sponse, we compute the variograms using residuals from a regression on the
log, rather than square root, of ozone, and the variogram of standardized
residuals, that is, r∗(s, t) = r(s, t)/st, where st is the sample standard devi-
ation of the residuals for day t. The variograms are affected more by the log
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Table 1

Validation set results. The summaries are mean squared error (MSE), median absolute
deviation (MAD), mean posterior predictive variance (AVE VAR), median posterior
predictive standard deviation (MED SD) and coverage probability of 95% intervals

(COV). All values are multiplied by 100

M

1 2 3 4 5

MSE 18.9 18.6 18.3 18.2 17.9
MAD 23.5 22.7 22.2 22.0 21.4
AVE VAR 18.3 17.0 16.7 16.4 16.7
MED SD 41.9 40.0 39.2 38.8 38.2
COV 95.7 95.5 95.3 95.3 95.2

transformation than by standardizing. The same general patterns remain
after standardizing, but new ones emerge after a log transformation. For
example, the ordering of the variograms for cloudy and sunny days switches
after a log transformation in Figure 3. The patterns of the log-transformed
responses also indicate covariate-dependent covariance, so it appears that
the transformation is important, but does not resolve nonstationarity.

6.2. Results. We fit five versions of the model, with the number of mix-
ture components varying from M = 1 to 5. We withheld 5% of the observa-
tions (3,687 observations), selected randomly across space and time. Table 1
compares for predictions of square root ozone for this validation set. For all
models, the prediction intervals have coverage greater than 0.95. The five-
component model minimizes all measures of prediction error and variance.
The ratio of mean squared error for the five-component model to that of
the stationary one-component model is 0.179/0.189 = 0.947, and the corre-
sponding ratio of average prediction variances is 0.167/0.183 = 0.913. The
nonstationary covariance thus gives a modest improvement in prediction ac-
curacy and uncertainty quantification. We also tried higher values of M and
found slight improvements in prediction, but elected to proceed with M = 5
for model simplicity.

The largest effect of nonstationary is in the measures of prediction uncer-
tainty. Figure 5 plots the prediction standard deviation for the observations
in the validation set for the stationary model with M = 1 and the non-
stationary model with M = 5. The standard deviation is smaller for the
nonstationary model for 72% of the observations, and varies far more across
observations for the nonstationary model (roughly from 0.25 to 0.80) com-
pared to the stationary model (roughly 0.35 to 0.65). To show that the con-
ditional coverage remains valid for both models, we separated the validation
set into five equally sized groups based on the ratio of standard deviations
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Fig. 5. Posterior predictive standard deviation for the observations in the validation set
for the stationary model with M = 1 compared to the nonstationary model with M = 5.

from the models with M = 5 to M = 1. The coverage of 95% intervals in
these five groups (from smallest to largest relative variance) is 0.97, 0.97,
0.96, 0.96 and 0.93 for the stationary model and 0.93, 0.96, 0.94, 0.97 and
0.96 for the nonstationary model.

Table 2 and Figure 6 summarize the covariate effects on the mean and
spatiotemporal correlation for the full data set with M = 5. The mean trend
accounts for most of the variability in square root ozone: though the sample
variance of the observations is 1.61 ppb, the posterior means of the spatial
effects δ(s) have variance 0.09 ppb. The statistical significance of the linear
and quadratic temperature terms and the positive effect of temperature on
variance are consistent with findings of Nail, Hughes-Oliver and Monahan
(2010) and others that ozone concentration is a monotone increasing nonlin-
ear function of temperature, and ozone variance increases with the mean. It
is reasonable that spatial correlation decreases as temperature increases due
to the fact that when the solar radiation is conducive to the chemical reac-
tions that produce ozone, that production is a function of local emissions,
and highly nonlinear in NOx emissions, which vary over space. Similarly,
it is reasonable that spatial correlation at short spatial lags increases with
wind speed because wind facilitates transport of ozone and its precursors.

As discussed in Section 6.1, the relationship between cloud cover and
ozone is quite complex. We find that cloud cover is negatively associated
with the mean and temporal correlation, and positively associated with vari-
ance and spatial correlation. As expected, mean ozone decreases and spatial
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Table 2

Summary of the model with M = 5 components. The remaining columns give the
posterior means (95% intervals) for the mean effects βk, the relative variance (∆k(0,0)),

the relative spatial correlation at lag 100 km (∆̃k(100,0)), and the relative temporal
correlation at lag 2 days (∆̃k(0,2)). βk, ∆k(0,0), ∆̃k(100,0), and ∆̃k(0,2) are scaled to

represent the effect of a two standard deviation increase in the predictor

Mean Variance Spatial cor. Temporal cor.

βk ∆k(0,0) ∆̃k(100,0) ∆̃k(0,2)

Temperature (F) 0.333 (0.331,0.358) 1.09 (1.06,1.12) 0.88 (0.86,0.90) 1.09 (1.03,1.16)

Wind speed (m/s) −0.028 (−0.037,−0.019) 0.96 (0.94,0.97) 1.05 (1.04,1.06) 0.97 (0.94,1.00)

Cloud cover (%) −0.154 (−0.173,−0.134) 1.12 (1.07,1.17) 1.05 (1.03,1.06) 0.57 (0.51,0.64)

Elevation (ft) 0.115 (0.078,0.183) 0.98 (0.96,1.01) 1.10 (1.09,1.11) 1.30 (1.24,1.37)

Urban 0.007 (−0.020,0.035) 1.00 (0.98,1.02) 0.95 (0.93,0.96) 0.99 (0.96,1.02)

Rural 0.045 (0.010,0.066) 0.57 (0.43,0.77) 0.94 (0.90,0.97) 1.17 (1.02,1.37)

Year 0.004 (−0.001,0.008) 1.01 (1.00,1.02) 1.03 (1.02,1.03) 0.95 (0.93,0.97)

Longitude 0.096 (0.018,0.187) 0.99 (0.94,1.03) 1.12 (1.10,1.13) 1.53 (1.43,1.62)

Latitude 0.185 (0.089,0.251) 0.70 (0.67,0.74) 1.05 (1.03,1.07) 0.48 (0.40,0.55)

Temp2 0.023 (0.014,0.032) – – –

WS2 0.004 (0.002,0.005) – – –

CC2 −0.020 (−0.029,−0.010) – – –

Temp×WS −0.005 (−0.013,0.003) – – –

Temp×CC 0.055 (0.044,0.068) – – –

WS×CC 0.004 (−0.003,0.012) – – –

correlation increases with cloud cover since ozone levels drop near low, het-
erogenous background levels in the absence of solar radiation. A possible
explanation for low variance and high temporal autocorrelation for sunny
days is the common southeastern summertime meteorological regime called
the “Bermuda high,” which is characterized by sunny skies and high at-
mospheric pressure indicative of a lower atmospheric boundary layer. The
lowered ceiling combined with low wind speed effectively reduce the volume
in which emissions interact, which, combined with high solar radiation, cre-
ates a simmering cauldron of ozone production. Because the Bermuda high
persists over several days and spans regions greater than or equal to the
size of our spatial domain, ozone production is high everywhere, so that the
variability is lower and the temporal correlation is higher.

Figure 6 plots the estimated spatial and temporal covariance for several
combinations of the covariates. Figures 6(a) and 6(b) show that the esti-
mated spatial correlation is lower for spatial lags less than 100 km for hot
days, and that temperature is less relevant at larger distances. This plot
also shows the mixture of exponential correlation functions gives a corre-
lation that is significantly different than a simple exponential correlation.
The mixture correlation function drops more quickly near the origin and
has a heavier tail than an exponential correlation. Cloud cover also affects



20 B. J. REICH ET AL.

Fig. 6. Posterior mean (thick lines) and 95% intervals (thin lines) of the spatiotemporal
correlation (4) for various combinations of the covariates. “Baseline” assumes that all
covariates are zero (the mean after standardization) for both observations. The other plots
assume that all covariates are zero with the exception of one covariate, which equals two
standard deviation units above the mean. Panel (b) plots the posterior of ratio of the
spatial correlations under high temperature and baseline conditions plotted in panel (a).
The spatial correlation is plotted as a function of spatial distance hs with temporal distance
ht = 0, and vice versa.

both the spatial covariance and temporal autocorrelation. Figure 6(c) shows
that the variance is higher on cloudy days, but the covariance has smaller
spatial range. Also, the temporal correlation in Figure 6(d) is higher for lags
one, two and three for sunny days.

Figure 7 compares the posterior mean of the stationary one-component
model to that of the nonstationary five-component model, and shows the
relationship between the spatial covariance of the latter model with temper-



COVARIATE-DEPENDENT SPATIOTEMPORAL COVARIANCE FUNCTIONS 21

Fig. 7. Data and spatial correlation estimates for two days for stationary (M = 1) and
nonstationary (M = 5) models. Panels (b), (d) and (f) plot the posterior mean of the
correlation between the point marked with a dot and the remaining sites.
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ature and elevation. Figure 7(b) shows the exponential decay in correlation
with increasing distance from the marked site for the stationary model; this
correlation function is the same for the two days under consideration, June 7,
1997, and July 27, 2005, which have the minimum and maximum tempera-
tures at the marked site. The temperature contours for those days are plotted
in Figures 7(c) and 7(e), and elevation contours are plotted in Figure 7(a).
The spatial correlation contours in the northwest of Figure 7(d) show the
negative effect of elevation on spatial correlation. The July 27, 2005 position
of the maximum temperature peak over the marked site clearly shows the
effect of temperature on the steepness of the decline in correlation at short
versus long lags seen earlier in Figure 6(a). The effect of elevation on corre-
lation is dwarfed by the effect of temperature, likely due to the positioning
of the temperature peak over the marked site combined with the magnitude
of the temperature at that peak.

7. Discussion. In this paper we present a class of spatiotemporal covari-
ance functions that allows the covariance to depend on environmental condi-
tions described by known covariates. Although fitting this, and other sophis-
ticated spatiotemporal models, likely requires expertise in spatial statistics
and computing methods, the method produces interpretable summaries of
the effect of each covariate on the mean, variance, and spatial and temporal
ranges. For the southeastern US ozone data, we find our nonstationary anal-
ysis improves prediction error, reduces prediction variance, and achieves the
desired coverage probabilities, while identifying several interesting covariate
effects on both the mean and covariance.

Our covariance model assumes that all nonstationarity can be explained
by the spatial covariates. However, in some cases a more flexible model would
be useful. One approach would be to add more pure functions of space and
time as covariates in the covariance to capture nonstationarity. An even more
flexible model would take the weights to be Gaussian processes, possibly
with means that depend on the covariates, to allow the weights to vary
smoothly through the spatial domain while still making use of the covariate
information.
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Schmidt, A. M. and Rodŕıguez, M. A. (2011). Modelling multivariate counts varying
continuously in space. In Bayesian Statistics 9—Proceedings of the Sixth Valencia Meet-
ing (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman,
A. F. M. Smith and M. West, eds.). Clarendon, Oxford.

Stein, M. L. (2005). Space-time covariance functions. J. Amer. Statist. Assoc. 100 310–
321. MR2156840

Stein, M. L. and Fang, D. (1997). Discussion of “Ozone exposure and population density
in Harris County, Texas,” by R. J. Carroll, et al. J. Amer. Statist. Assoc. 92 408–411.

Wakefield, J. (2007). Disease mapping and spatial regression with count data. Biostatis-
tics 8 158–183.

B. J. Reich

North Carolina State University

2501 Founders Drive, Box 8203

Raleigh, North Carolina 27695

USA

E-mail: reich@stat.ncsu.edu

J. Eidsvik

Department of Mathematical Sciences

Norwegian University of Science

and Technology

7491 Trondheim

Norway

M. Guindani

University of Texas

MD Anderson Cancer Center

1515 Holcombe Blvd.

Unit 1411

Houston, Texas 77030

USA

A. Nail

President, Honestat

919-838-9532

1105 Somerset Rd

Raleigh, North Carolina 27610

USA

E-mail: amynailstat@gmail.com

A. M. Schmidt

Universidade Federal do Rio de Janeiro

Instituto de Matemática
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