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Abstract

Whereas cognitive models of learning often assume direct ex-
perience with both the features of an event and with a true label
or outcome, much of everyday learning arises from hearing the
opinions of others, without direct access to either the experi-
ence or the ground truth outcome. We consider how people can
learn which opinions to trust in such scenarios by extending the
hedge algorithm: a classic solution for learning from diverse
information sources. We first introduce a semi-supervised vari-
ant we call the delusional hedge capable of learning from both
supervised and unsupervised experiences. In two experiments,
we examine the alignment between human judgments and pre-
dictions from the standard hedge, the delusional hedge, and
a heuristic baseline model. Results indicate that humans ef-
fectively incorporate both labeled and unlabeled information
in a manner consistent with the delusional hedge algorithm—
suggesting that human learners not only gauge the accuracy
of information sources but also their consistency with other
reliable sources. The findings advance our understanding of
human learning from diverse opinions, with implications for
the development of algorithms that better capture how people
learn to weigh conflicting information sources.

Keywords: semi-supervised learning; hedge algorithm; online
learning with expert advice

Introduction
Cognitive approaches to knowledge acquisition often pro-
pose that learning entails accurate supervision: on at least
some learning trials, people observe a stimulus x, generate a
predicted outcome ŷ, then receive true, accurate information
about the correct outcome y. Much of everyday experience,
however, involves neither direct experience of event features
(x) nor exposure to ground-truth labels (y). Instead, learning
arises from exposure to diverse and sometimes contradictory
opinions expressed by other individuals, any of whom may be
mistaken or deceptive—consider, for instance, reading on so-
cial media about whether vaccines are safe, whether members
of a political party are dishonest, or whether global warm-
ing is a hoax. In such cases opinions may diverge radically,
and exposure to both event features and ground truth may be
exceedingly sparse. How then do people decide which in-
formation sources they should trust when updating their own
beliefs?

In machine learning, the hedge algorithm provides a use-
ful starting point for addressing this question (Freund &
Schapire, 1999, 1997; Mourtada & Gaı̈ffas, 2019; Cesa-
Bianchi et al., 2007; Auer et al., 2002). In the typical setup

1, the model agent does not view the stimulus features x of
a given event, but instead receives opinions about the event
label from each of k information sources, all varying in their
accuracy or reliability. The agent must infer the correct label
from the opinions offered. During learning, the k opinions
are presented together with the ground-truth label, and this
information is used to update the weights (“trust”) given to
each source. The hedge algorithm provides a means of updat-
ing weights that is optimal in the sense that it guarantees low
bounds on learner regret, i.e., the difference between the se-
quence of decisions the agent makes over the course of learn-
ing and the best possible sequence of decisions it could have
made had the most accurate information source been known
from the outset.

When it comes to understanding human behavior, how-
ever, the hedge algorithm is limited, because it is fully
supervised—it still requires exposure to the ground truth la-
bel y on each learning episode. In many cases, such exposure
is sparse or non-existent: opinions from others vastly out-
number immediate experiences of the ground truth. That is,
human learning is semi-supervised, or even unsupervised at
times (Zhu et al., 2007; Kalish et al., 2011; Gibson et al.,
2013; LaTourrette & Waxman, 2019; Bröker et al., 2022).
The current paper develops a semi-supervised variant of the
hedge learning algorithm in which (a) the loss on super-
vised trials is exactly as specified by the standard hedge but
(b) on unsupervised trials, the learner generates a predicted
loss based on observed source opinions and current source
weights, then uses that predicted loss to update weights across
information sources. We refer to this algorithm as the delu-
sional hedge, because the learner effectively “hallucinates”
the loss on unsupervised trials. We then describe two exper-
iments in which human behavior in a simple learning task
is compared to predictions of the standard hedge model, the
delusional hedge, and a third heuristic model. The results
strongly suggest that human learning from diverse and con-
tradictory opinions is semi-supervised, in ways well-captured

1Machine learning uses the terms ”experts,” ”predictions,” and
”advice” to describe the learning problem, often termed “online
learning from expert advice”(Cesa-Bianchi & Lugosi, 2006; Bous-
quet & Warmuth, 2002; Littlestone & Warmuth, 1994). We are in-
terested in cases where information sources may have little expertise
or may even be duplicitous, so we use the term ”source” instead of
”expert,” ”opinion” instead of ”prediction” or ”advice”—hence “on-
line learning from diverse opinions.”
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by the delusional hedge model.

Preliminaries
Online SSL with Source Opinion
We consider an online semi-supervised learning (SSL) frame-
work where an agent must learn a binary classification from a
set of K information sources (also called “experts” in machine
learning) within a time horizon T . Each source has a decision
boundary unknown to the agent, denoted as θ1, . . . ,θK . At
each time step t, an instance (x,y) is drawn from the envi-
ronment (xt ,yt)∼ PXY . Each source k then provides a binary
opinion about the category label btk based on its respective
decision boundary θk (i.e., btk = −1 if xt < θk else 1). The
agent, without access to the instance xt , must rely only on
these k opinions to form a prediction ŷt about the true label.
After generating a prediction, the agent may or may not view
the ground-truth label y∗. Label visibility at each time step is
denoted by v1,v2, . . . ,vT , where vt ∈ {0,1}. When vt = 1, the
trial is labeled; otherwise, when vt = 0, the trial is unlabeled.
The learning settings can be characterized as follows: Fully
supervised setting: When ∑

T
t=1 vt = T , all trials are labeled.

Fully unsupervised setting: When ∑
T
t=1 vt = 0, all trials are

unlabeled. Semi-supervised setting: When 0 < ∑
T
t=1 vt < T ,

some trials are labeled and some are not.

Online Learning with Diverse Opinions Algorithms

Algorithm 1 (Delusional) Hedge Algorithm
Require: horizon T , learning rate η, K sources θ1, . . . ,θK , Pxy, la-

bel visibility v1,v2, . . . ,vT , weight of delusional loss α

1: for t = 1,2 . . . ,T do
2: Learner assigns trust to sources

ptk =
exp(−η∑

t−1
τ=1 ℓτk)

∑
K
i=1 exp(−η∑

t−1
τ=1 ℓτi)

, ∀k ∈ [K]

▷ When t = 1, ptk = 1/K because the sum is empty.
3: Environment draws an item and its label (xt ,yt)∼ PXY

4: Sources predict their labels ∀k, btk =

{
−1, xt < θk
1, xt ≥ θk

5: Learner summarizes source predictions
qt,−1 := ∑k:btk=−1 ptk, qt,1 := ∑k:btk=1 ptk

6: Learner makes label prediction ŷt ∼ Ber(qt,1)
7: If ground-truth label yt is available, updates with 0-1 loss;

otherwise, the learner hallucinates loss:

ℓtk =

{
1[btk ̸= yt ] label yt given (vt = 1)
α×qt,−btk label yt not given (vt = 0) ,∀k

▷ This is the expected 0-1 loss (weighted by α) to source
k, as if the true label were drawn from Ber(qt,1).

Hedge Algorithm. The hedge algorithm (Algorithm 1, omit-
ting blue text) is a classic method in online learning wherein a
learner iteratively updates its trust in a set of sources (Freund
& Schapire, 1999, 1997). At each time step t, the learner
assigns trust ptk to each source k based on their cumula-
tive losses (step 2). After the sources provide their opinions
(bt1, . . . ,btK) (step 3 and 4), the learner summarizes these
(step 5) and makes its own prediction ŷt (step 6) based on
its trust ptk in each source. When a ground-truth label yt is
revealed (vt = 1), the learner updates the cumulative loss for

each source based on their predictions, using a 0-1 loss func-
tion 1[btk ̸= yt ] (step 7). At the next time step, the learner up-
dates its trust ptk in each source based on the cumulative loss
using a softmax function with the learning rate η (step 2). In
standard hedge, the learner does not update its trust in the dif-
ferent sources when the label yt is not present (vt = 0). Thus
the agent learns whom to trust from supervised trials only,
adjusting its behavior accordingly from trial to trial. Theo-
retical analysis shows that standard hedge has a bound on the
worst-case regret of order O(

√
T logK) if the learning rate η

is properly chosen (Mourtada & Gaı̈ffas, 2019; Cesa-Bianchi
et al., 2007; Auer et al., 2002).

Delusional Hedge Algorithm. To accommodate unla-
beled trials, we propose the delusional hedge algorithm
shown in Algorithm 1 with blue text included. The key dif-
ference lies in step 7: when the true label yt is not revealed
(vt = 0) the delusional hedge computes a delusional loss
(qt,−btk ) for each source, defined as the sum of trust across
all sources with opposite predictions (i.e., for a source with
prediction btk, the delusional loss qt,−btk = ∑k′:btk′=−btk

ptk′ ).
This is equivalent to updating the trust based on the expected
0-1 loss if the true label were drawn from a Bernoulli distri-
bution Ber(qt,1). The delusional loss is weighted by a free
hyperparameter α > 0 so the agent can weight information
labeled and unlabeled instances differently. When α = 0,
this reduces to the standard hedge algorithm. Intuitively, the
idea is that, if the sources that disagree with a given source
k collectively are highly trusted, then the weight on k should
change a lot; if the disagreeing sources are not collectively
highly trusted, it should not change very much. Note that a
large change can accrue when (a) trust is relatively uniform
but many sources disagree with k, or (b) few sources dis-
agree with k but at least one is very highly trusted. Thus, the
delusional hedge provides a way of exploiting both consen-
sus amongst sources and high trust in specific sources when
learning from unlabeled trials.

Accuracy-Majority Heuristic. In the following experi-
ments we compare the two hedge variants to one another and
to a heuristic accuracy-majority model, where the agent fol-
lows the source with the highest cumulative accuracy at each
time step. When sources share the same top accuracy, the
agent follows the source whose prediction is most frequently
in the majority (i.e., has the highest ratio of being in the ma-
jority across all trials). In rare cases where ties still persist
after considering both accuracy and majority counts, the sub-
ject randomly selects one source to follow. While this heuris-
tic baseline lacks free parameters and thus cannot be com-
pared with hedge variants via likelihoods, we will see that it
generates distinct predictions that provide a useful contrast to
standard and delusional hedge algorithms.

Experiment 1
Behavioral Experiment Procedure. To evaluate the differ-
ent models we devised an experimental procedure capturing
key elements of the learning scenario. Participants imagined
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Experts’ Predictions Labeled Trial Unlabeled Trial

! = #

Expert’s Predictions
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$%&'(	(+ = +-)/01	(+ = −-)
3∗ = -4#

3"#$ = 4# 3%&''() = -#5. 4 3*)#$ = -74
! = 8##

Ground-truth Label

/! = #+1, if	*! ≥ ,∗
−1, if	*! < ,∗

“jam” “jam”“fresh” “jam” “jam”“fresh” “jam” “jam”“fresh”

Your Prediction: “fresh” Your Prediction: “fresh”

The correct answer
should be “fresh”.

The chef 
says:

Press the SPACE BAR to proceed. Press the SPACE BAR to proceed.

a

b c d

Do you think the fruit should be
eaten when fresh (press “F”) or
eaten in jam (press “J”)?

Figure 1: Human experimental setup. Panel (a) shows a 1D
space [0,300] where “fruits” are placed, with three sources
having different decision boundaries θ, and the true bound-
ary at θ∗ = 150. Panels (b)-(d) display the user interface: (b)
shows the three sources providing their opinions on the hid-
den fruit, while the participant makes a prediction; (c) reveals
the true label post-prediction in labeled trials; and (d) shows
the display omitting the label feedback in unlabeled trials.

they were stranded on a deserted island together with three
other survivors (“sources”), each providing advice on how
best to consume the native fruits, which could either be eaten
fresh or turned into jam. The fruits varied in shape along a
one-dimensional manifold x ∈ [0,300], and the correspond-
ing category (fresh or in jam, y ∈ {−1,+1}) was determined
by their position on the manifold relative to a true decision
boundary (θ∗ = 150) unknown to the participant (Figure 1a).
The joint probability distribution (x,y) ∼ Pxy determined the
quality of the fruit. In this experiment, x followed a uniform
distribution, x ∼ Px = U(0,300), while the outcome y is de-
termined based on whether x is less than or greater than θ∗. If
x < θ∗, the correct decision is to eat the fruit fresh (y = −1),
otherwise, the fruit should be turned into jam (y =+1).

All fruits were hidden in identical boxes and invisible to
the participant (Figure 1b); instead, the three sources looked
in the box and provided an opinion about the category based
on their own unique category boundary, with one source us-
ing a boundary far from the ground truth (θ f ar = 50), one
near the ground truth (θnear = 165), and one halfway be-
tween these (θmiddle = 107.5). The Near source, possessing
a boundary closest to θ∗, provided the most accurate predic-
tions, followed by the Middle source. The Middle source’s
advice always agreed with at least one other source, making
him most frequently in the majority. Additionally, the exper-
iment counterbalanced the face images of the sources, their
positional order, and the associations between −1/+ 1 and
the verbal labels of ”jam” or ”fresh” across participants.

Each trial began with a prediction phase (Figure 1b) in
which participants made a decision ŷt based on the three
sources’ opinions (btk), followed by a feedback phase in

which, if the trial was labeled (Figure 1c), the label yt was
revealed by ”source chef.” In the unlabeled trials (Figure 1d),
no label yt was presented. After 100 such trials, we measured
participants’ trust in each source, first asking participants to
select the most accurate source, then to choose the source
most often in the majority, and finally to rate each source’s 1)
knowledgeability, 2) accuracy, 3) trustworthiness, and 4) at-
tractiveness on a slider-based scale from −100 (“Not at All”)
to 100 (“Absolutely”). Attractiveness was included as a con-
trol rating task that should not be affected by trust learning.

Conditions of Different Supervision Levels. Label vis-
ibility of each trial, denoted as v1,v2, . . . ,vT , was stochas-
tically determined by the parameter pvisible which specifies
the probability that a trial’s label will be visible to the par-
ticipants, i.e., vt ∼ Ber(pvisible). We created five between-
subject conditions with different levels of supervision, rang-
ing from fully unsupervised (pvisible = 0) to fully supervised
(pvisible = 1). Intermediate values of 1/4, 2/4, and 3/4 corre-
spond to semi-supervised conditions.

Participants. Participants were undergraduates at a uni-
versity who participated in exchange for course credit. The
study was approved by the Institutional Review Board (IRB).
186 students were recruited, with 181 completing the experi-
ment. The participants were randomly assigned to one of the
five supervision conditions: 33 in condition pvisible = 0, 38 in
condition pvisible = 0.25, 35 in condition pvisible = 0.5, 38 in
pvisible = 0.75, and 37 in condition pvisible = 1.

Model Fitting. To fit the learning algorithms to human
data, we tuned the hyperparameters η (and α, if applica-
ble) for each participant using maximum likelihood estima-
tion based on the participants’ actual predictions ŷt and the
probabilities predicted by the algorithm qt,1 (step 6 in Algo-
rithm 1).

Results of Experiment 1
Online Learning Behavior. Figure 2 shows human be-
havioral responses against different learning algorithms over
time. In the fully unsupervised setting (the first row of the fig-
ure), participants predominantly followed the majority opin-
ion, predicting -1 when at least two sources predicted -1, and
predicting +1 otherwise. This tendency was more accurately
captured by the delusional hedge algorithm compared to the
standard hedge algorithm. In the fully supervised condition
(last row of the figure), when the majority of sources (Mid-
dle and Far) disagreed with the most accurate source (Near),
i.e., (bt, f ar,bt,middle,bt, f ar) = (1,1,−1) (third column), par-
ticipants initially followed the majority but gradually shifted
to align with the Near source. The standard and delusional
hedge algorithms are equivalent in this fully supervised con-
text and both mirrored this learning behavior. In the semi-
supervised conditions (0 < pvisible < 1), participants exhib-
ited a learning pattern similar to that in the fully supervised
setting when faced with the same scenario in the third col-
umn, albeit with a flatter slope as pvisible decreased. Both
the delusional hedge and standard hedge algorithms showed
learning curves in these conditions. To test the relative fit-
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Figure 2: Comparison of participant responses with the standard hedge algorithm, the delusional hedge algorithm, and the
accuracy-majority heuristic over 100 time steps. Each row represents a different level of supervision (from pvisible = 0 to
pvisible = 1), and each column corresponds to one of the four unique combinations of source opinions (bt, f ar,bt,middle,bt,near).
Within each line plot, the black line shows the moving average of the ratio of participants predicting ŷt = 1 (y-axis) over the 100
time steps (x-axis), and the blue, red, and purple lines represent the prediction probability of the standard Hedge algorithm, the
delusional hedge algorithm, and the accuracy-majority heuristic, respectively, averaged across participants at each time step.
Grey dots depict the proportion of participants with ŷt = 1 at each time step, with dot size denoting participant count.

ness of each algorithm to human data, we conducted a likeli-
hood ratio test, treating the standard hedge as a nested model
within the delusional hedge algorithm (where α = 0). Across
all conditions, the results significantly favored the delusional
hedge algorithm, λ(144) = 740.5, p < .001. Furthermore,
likelihood ratio tests conducted for each semi-supervised con-
dition consistently showed a better fit to the human data for
the delusional than the standard hedge algorithm, ps < .05
(Bonferroni corrected). Finally, the accuracy-majority heuris-
tic mode did not capture participant behavior well, showing
a much stronger tendency to follow the Near source when
pvisible > 0, espeically early in learning.

Final-State Trust in Algorithm Simulations. The first
row of Figure 3 shows the final-state trust levels (pT k)
assigned by both standard and delusional hedge algo-
rithms. Mixed-effect ANOVAs revealed significant pvisible
× source interactions for both algorithms (Delusional hedge:
F(2,537) = 123.28, p < .001; Standard hedge: F(2,537) =
90.07, p < .001). Post-hoc analysis showed distinct patterns:
for delusional hedge, the Near source consistently received
the highest trust for pvisible > 0, while the Middle source had

the highest trust in the fully unsupervised setting (pvisible =
0) due to delusional loss (pT,middle = 0.764). Conversely,
standard hedge algorithm assigned equal trust to all sources
(pT k = 1/3) in the unsupervised condition. Thus, the fully un-
supervised condition highlighted a clear distinction between
the standard hedge algorithm and the delusional hedge algo-
rithm.

Source Ratings. The participants’ self-report ratings (sec-
ond and third rows of Figure 3) were analyzed using a mixed-
effect ANOVA (5 pvisible conditions x 3 sources) for each rat-
ing type. When pvisible > 0, participants rated the Near source
as most accurate, trustworthy, and knowledgeable, followed
by the Middle source, ps < .001. Critically, in the fully un-
supervised setting, the Middle source was rated highest for
accuracy, trustworthiness, and knowledgeability, echoing the
delusional hedge algorithm’s behavior, ps < .05. Attractive-
ness rating showed no significant difference across sources,
F(8,352) = 0.818, p = .587.

The fourth row of Figure 3 shows participant choices about
which source was most accurate and which was most often
in the majority. For accuracy, a mixed-effect (5 pvisible con-
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Figure 3: Under five supervision levels (0 ≤ pvisible ≤ 1), the
trust assigned to each source at the final state (pT k) by the
standard hedge algorithm and the delusional hedge algorithm
(top row), along with the accuracy (or majority ratio if ac-
curacy is undefined) used by the accuracy-majority heuristic
(second row), as well as participants’ source ratings (third and
forth rows), and proportion of times each source was cho-
sen as most accurate or most often in the majority (bottom
row). The bars for sources color-coded as dark blue (Near),
blue (Middle), and violet (Far). The ratings and responses de-
signed to gauge participants’ trust in sources are color-coded
as green. The error bars display the standard errors.

ditions x 3 sources) ANOVA revealed (a) a significant main
effect of source for each pvisible condition (ps < .001) and (b)
a significant pvisible × source interaction (χ2(8) = 66.04, p <
.001): the Near source was chosen as most accurate when
pvisible > 0, ps < .001, but the Middle source was chosen
as most accurate when pvisible = 0, p < .001. The majority

choice, however, also showed a significant pvisible × source
interaction (χ2(8) = 20.92, p < .007) with post-hoc analy-
sis revealing that the Middle source was chosen significantly
more often than the Near source only when pvisible = 0,z =
3.94, p < .001.

Discussion. The delusional hedge algorithm better ex-
plained human data than the standard hedge algorithm, es-
pecially in the fully unsupervised setting. The accuracy-
majority heuristic model did not explain human behaviors
well. Although the delusional hedge also showed better fit to
human data in the semi-supervised conditions (as suggested
by the likelihood ratio tests), both algorithms yielded qual-
itatively similar predictions in learning to increasingly trust
the Near source—a similarity also observed in participants’
ratings of / decisions about the different sources, where both
algorithms assigned most trust to the Near source followed by
the Middle source. Experiment 2 creates scenarios where the
two algorithms make qualitatively distinct predictions, allow-
ing us to evaluate which algorithm aligns more closely with
human behavior in semi-supervised settings.

Experiment 2

Behavioral Experiment Procedure. The experiment com-
prised two phases. In the first, all participants saw the same
five labeled trials in which the Near source always produced
the correct label while and the other two always produced the
incorrect label. The following 95 trials were unlabeled, split
into two between-subject conditions. In the “M=F” condi-
tion, the Middle source always produced the same opinion
as the Far source, while in the M=N condition, the Middle
source always produced the same opinion as the Near source.
The experiment then concluded with the same procedure for
evaluating trust in the three sources from Experiment 1.

The rationale for the design is as follows: the five super-
vised trials should establish greater initial trust in the Near
source, and the same lower amount of trust for the Middle and
Far sources. Because the remaining trials are unsupervised,
standard hedge should then predict that this is how trust will
be allotted at the end of learning in both conditions: greater
trust for Near and equal trust for Middle and Far. The heuris-
tic model should make the same prediction. The delusional
hedge, however, should show different patterns in the two
conditions. When the Middle source always agrees with the
Near source, the delusional loss should cause it to increase in
trust on unsupervised trials. When the Middle source always
agrees with the Far source, there should be no difference in
trust between Middle and Far. Thus, the pattern of trust ob-
served in human learning can adjudicate these models.

Participants. We followed the same recruitment process as
Experiment 1. A total of 80 students were recruited, with 77
completing the experiment. The participants were randomly
assigned to one of the two unlabeled conditions: 39 in the
“M=F” condition, and 38 in the “M=N” condition.
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Figure 4: Under the “M=F” and “M=N” conditions, the trust
assigned to each source at the final state (pT k) by the stan-
dard hedge algorithm and the delusional hedge algorithm (top
row), along with the accuracy (or majority ratio if accuracy is
undefined) used by the accuracy-majority heuristic (second
row), as well as participants’ source ratings (third and forth
rows). The bars for sources color-coded as dark blue (Near),
blue (Middle), and violet (Far). The ratings designed to gauge
participants’ trust in sources are color-coded as green. The er-
ror bars display the standard errors.

Model Fitting. We used the same model fitting procedure
as in Experiment 1 to tune the hyperparameters η (and α, if
applicable) for each participant using MLE.

Results of Experiment 2
Final-State Trust in Algorithm Simulations. Following
our hypotheses, we focused on the trust pT k assigned to the
Middle and Far sources by both the standard and delusional
hedge algorithms under the two unlabeled conditions. For the
delusional hedge algorithm, a mixed-effect ANOVA on pT k
(2 unlabeled conditions × {Middle & Far} sources) revealed
a significant source × condition interaction: in the “M=N”
condition, the trust in the Middle source (pT,Middle = 0.128)
was significantly higher than in the Far source (pT,Far =
0.067), F(1,37) = 16.03, p < .001. In the “M=F” condition,
the Middle and Far sources had the exact same trust because

they always had identical predictions btk (both with pT k =
0.07). In contrast, for the standard hedge algorithm, another
mixed-effect ANOVA indicated no significant source × un-
labeled condition interaction as the Middle and Far sources
had the same levels of trust (“M=N” condition: pT,middle =
pT, f ar = 0.13; “M=F” condition: pT,middle = pT, f ar = 0.10).

Source ratings. Shown in Figure 4, a mixed-effect
ANOVA (2 unlabeled conditions × {Middle & Far} sources)
was performed for each rating type. For accuracy, trustwor-
thiness, knowledgeability ratings, the interaction was signifi-
cant, ps < .05, with post-hoc analysis showing that the Mid-
dle source was consistently rated as more accurate, trustwor-
thy, and knowledgeable than the Far source in the “M=N”
condition (ps< .01) but not the “M=F” condition (ps> .05).
Finally, the condition × source interaction was not significant
for attractiveness (F(1,75) = 0.22, p = .640). Overall, par-
ticipants’ trust measured by self-report ratings aligned with
the predictions of the delusional hedge algorithm.

Discussion. Experiment 2 suggests that human learners
make use of unsupervised data when assigning trust to dif-
ferent information sources. In contradiction to predictions
from the standard hedge, unlabelled trials increased the trust
given to an initially-untrusted source that often agrees with a
more-trusted source. Thus, more trust accrued to the Middle
source than the Far source only when the Middle source fre-
quently agreed with the Near source on unlabelled trials. This
suggests that, in semi-supervised settings, human trust is in-
fluenced, not only by the supervised accuracy of a source, but
also by the consistency of its advice with the reliable source—
a behavior predicted by the delusional hedge algorithm.

Conclusion

In many important real-world scenarios people learn, not
from a directly observed-event and corresponding ground-
truth label, but through experience with diverse and poten-
tially contradictory opinions of others. Understanding how
maladaptive beliefs emerge and persist in society requires
computational formalisms that can characterize how people
learn which opinions to trust in such scenarios. Machine
learning provides a rich source of potential hypotheses in the
form of models with well-understood properties and formal
guarantees. We have focused on one such model, the hedge
algorithm, showing how it can be adapted to semi-supervised
situations that may better capture the reality of human learn-
ing. Our experiments showed that people integrate both la-
beled and unlabeled data when learning from diverse opin-
ions, producing behaviors that align well with the predictions
of the delusional hedge algorithm. The work provides an ini-
tial starting point for bridging computational learning theory
and approaches to human social learning that, we hope, can
be extended through formal analysis of the delusional hedge
itself and through consideration of a broader range of ap-
proaches in both machine learning and cognitive science.
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