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Abstract

Studying how individuals compare two given quantita-
tive stimuli, say d1 and d2, is a fundamental problem.
One very common way to address it is through ratio
magnitude estimation, that is to ask individuals not to
give values to d1 and d2 but rather to give their es-
timates of the ratio p = d1/d2. Several psychophysi-
cal theories (the most known being Stevens’ power-law)
claim that this ratio cannot be known directly and that
there are cognitive distortions on the apprehension of
the different quantities. These theories result in the so-
called separable representations (which include Stevens’
model). In this paper, we propose a general statisti-
cal framework that allows for testing in a rigorous way
whether the separable representation theory is grounded
or not. We conclude in favour of it, but strongly reject
Stevens’ model. As a byproduct, we provide estimates
of the psychometric functions of interest.

Keywords: Psychophysical experiments; Steven’s
model; separable representation.

The Theoretical Framework
We propose to a subject two stimuli d1 and d2 out of a set
of stimuli D and we ask him to state in what proportion
p they are with respect to each other. According to
Stevens’ (1946) psychophysical framework, we can see
this as a problem of magnitude estimation.1 We say
that a separable representation holds if a psychophysical
function ψ and a subjective weighting function W exist
such that the ratio p is in the following relation with d1

and d2:
ψ (d1)
ψ (d2)

= W (p) . (1)

Equation (1) corresponds to Narens’ (1996) model apart
from the fact that he does not necessarily suppose that
p is a number (but a numeral). Usually the equality
W (1) = 1 is supposed to hold, that is the individu-
als are able to correctly estimate ratios of equal stimuli;
moreover, ψ is defined up to a multiplicative constant
so that we can suppose that ψ (1) = 1. At last, it is
easily seen that both ψ and W are defined up to a power
transformation (i.e., if ψ and W are functions for which
a separable representation holds, then so are also ψr and

1Sometimes magnitude estimation denotes the case in
which a stimulus d1 and a ratio p are known and the sub-
ject has to choose another stimulus d2 such that the ratio
of the two stimuli is given by p, even if this should be more
correctly called magnitude production.

W r for any real r); this will lead us to impose a restric-
tion in our empirical investigation.

Several relations of this kind have been proposed in the
literature. The original Stevens’ model reduces simply
to the case in which ψ and W are power functions (see
e.g. Luce, 2001a, Section “Relations among the prop-
erties”). Remark that, as explained above, this case
is undistinguishable from the case in which W is the
identity function so that Stevens’ model can be recov-
ered as ψ (d) = dκ and W (p) = p (or alternatively as
ψ (d) = d and W (p) = p

1
κ ; this second formulation

will be used for our empirical investigation because of
its computational advantages). When criticizing what
he calls Stevens’s Assumptions (Narens, 1996, p. 109),
Narens (1996) states (pp. 110-111) that the fact that
W (p) = p seems to be “anything more than a coinci-
dence”.

Starting from the representation (1), Luce (2001b)
proposes a function of W based on hypotheses similar
to Prelec’s (1998) ones:

W (p) =

{
exp [−ρ (− ln p)η] p ∈ ]0, 1]
exp

[
ρ′ (ln p)η′

]
p ∈ ]1,∞[ (2)

Other examples of functions W are derived in Prelec
(1998) and discussed in Luce (2001b). Luce (2002, pp.
526-528) proposes some other forms for ψ and W .

The objective of this paper is to test whether Stevens’
power law model is appropriate or wether the separable
representation holds in a simple ratio magnitude estima-
tion experiment. Several papers have dealt with tests
of behavioral properties (Ellermeier and Faulhammer,
2000, Zimmer, Luce and Ellermeier, 2001, Steingrims-
son and Luce, 2003a, 2003b, based on the framework of
Luce, 2002, 2004) or tests of particular functional forms
(Hollands and Dyre, 2002). However, it seems to us that
this is the first time in the literature that a formal and
direct test of the formula (1) is conducted.

In the next Section we describe an experiment of ratio
magnitude estimation involving 69 subjects. Then, we
will show how the functions W (·) and ψ (·) can be es-
timated nonparametrically using polynomial regression
and how the representation (1) can be tested. At last,
the results are described.
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The Experiment
The experiment was conducted on 69 Italian students
(from 1st to 4th university year in Economics). The
language of the experiment was Italian. The experiment
was made on personal computers with 3 rounds of 23
subjects each. Each round lasted 1h30min and subjects
had the possibility of using pocket calculators and sheets
of papers if they wanted to. The first 30 minutes were
dedicated to reading together the written instructions
that each subject received when entering the computer
room and answering subjects’ questions.

Subjects were asked to rate on a 1-9 integer scale the
values of ratios of known probabilities, ratios of distances
of pairs of Italian cities from a reference point and ratios
of rainfalls in pairs of European cities; the ratios of the
real stimuli were choosen to lie within the stated range
1-9. We chose not to randomize the order in which the
three sub-experiments were to be performed. We namely
decided to assign deterministically each of the 6 possible
orders so that we knew from the start that none of the
subjects’ direct neighbors would work on the same sub-
experiment at the same time.

It was decided to use a monetary reward as an incen-
tive for subjects to perform the experiment as well as
possible. Subjects were explained at the beginning of
the experiment how the payment would be calculated.
Namely, payment was proportional to good performance
in the experiment.

Since in the following we will consider only the sub-
experiment concerning distances, we will discuss this one
in greater detail. We presented to the subjects 10 pairs
of Italian cities and we asked them to estimate the ratio
of their distances with respect to Milan: the 10 pairs
are given by all the possible combinations out of the five
cities Turin, Venice, Rome, Naples and Palermo. The
range of the stimuli goes from 124 to 885 km and the
range of the real distance ratios from 2 to 7.137.

Estimation and Inference

Log-log Transformation
The main problem with representation (1) is that it is not
directly amenable to statistical estimation. Therefore, in
order to get a simpler formulation, we write it as follows:

ln W [exp (ln p)] = ln ψ [exp (ln d1)]− ln ψ [exp (ln d2)] .

This is equivalent to a log-log transformation (see Luce,
2002, p. 526). We define:

π = ln p

δi = ln di

ln W [exp (·)] = w (·)
ln ψ [exp (·)] = Ψ (·) ;

the constraints W (1) = 1 and ψ (1) = 1 become respec-
tively w (0) = 0 and Ψ (0) = 0. This means that we can
write the separable representation (1) as:

w (π) = Ψ (δ1)−Ψ(δ2)
π = w−1 [Ψ (δ1)−Ψ (δ2)] .

It is sensible to suppose that, at least because of dis-
cretization errors, the relation holds approximately, that
is we can write:

π = w−1 [Ψ (δ1)−Ψ(δ2)] + ε, (3)

where ε is an error term. Remark that this is a special
case of a much more general specification, in which the
dependence of π on δ1 and δ2 is left unrestricted:

π = f (δ1, δ2) + ε. (4)

We will call SEP (for separable) the model of equation
(3) and UNR (for unrestricted) the model of equation
(4).

Even though the model of Equation (3) is restricted, it
is general enough to recover the main theoretical models
that can be found in the literature. Indeed, Stevens’
model is obtained simply by putting Ψ (δ) = κδ and
w (π) = π (or alternatively Ψ (δ) = δ and w (π) = π

κ ).
Model of Equation (2) proposed in Luce (2001b) and
Prelec (1998) becomes, in our logarithmic formulation:

w−1 (x) =




−

(
−x

ρ

) 1
η

p ∈ ]0, 1]
(

x
ρ′

) 1
η′

p ∈ ]1,∞[

When ρ or ρ′ is equal to 1, this reduces to a power law.
The statistical test of these functional forms is left to
further work.

Structure of the Data
Now we describe the structure of the data provided
by the experiment. For any individual h = 1, . . . ,H
with H = 69, we observe a vector of log-ratios πh =(
πh

1 , . . . , πh
C

)T where C = 10 is the number of possible
pairwise comparisons. For any stated log-ratio πh

i (which
corresponds to the i−th comparison for the h−th indi-
vidual), we know also the values of the lograrithms of
stimuli, say δi,1 = log (di,1) and δi,2 = log (di,2); remark
that the stimuli do not depend on the individual h. We
suppose the existence of a relation of the form

πh
i = f (δi,1, δi,2) + εh

i .

The case of interest is the one in which the function f
takes the form (3), but we will also consider below a more
general framework in which f is left unrestricted: this
will allow us to test the restriction through statistical
techniques. The residuals for the individual h are stacked
in a vector εh =

(
εh
1 , . . . , εh

C

)
: we suppose that the mean

and the covariance matrix are respectively E
(
εh

)
= 0

and V
(
εh

)
= Σ. The matrix Σ can take several al-

ternative forms, but we will not pursue the topic here.
Details are available from the authors upon request.

Statistical Theory
Our aim is to estimate functions w (·) and Ψ (·) using
statistical methods. Different theories assume different
forms for these functions. In a first time, we would like
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to compare the unrestricted model of Equation (4) and
the restricted model of Equation (3) to statistically test
whether there is enough empirical evidence that supports
the restricted model. Should it be the case, we would like
in a second time to compare the restricted model to its
further particulars, namely the models of Stevens and
the one of Luce and Prelec.

The key idea to perform a rigorous statistical analysis
of the problem is to use nonparametric methods. We
assume namely that the functions f (·), w−1 (·) and Ψ (·)
are smooth enough to be approximated by a polynomial
expansion. (Remark that this requirement is not very
constraining since all the proposed theorical models so
far suppose infinitely smooth functions.)

Let M , L and N be the respective orders of the poly-
nomials used to approximate f (·), w−1 (·) and Ψ (·) re-
spectively. Remark that f (·) is a function of two argu-
ments δ1 and δ2; the polynomials that approximate it
must therefore contains all the powers of δ1 and δ2 up
to order M . Remark also that the function of interest is
w (·), so that the approximation of w−1 (·) must be in-
verted to get the the approximation of w (·). It is easy to
see that the assumption W (1) = 1 (which is always as-
sumed) implies that these polynomials have no constant
term.

Summing up, for the UNR model the parameters to
be estimated are Σ and the (M+1)(M+2)

2 polynomial pa-
rameters, while for the SEP model the parameters are
Σ, and the L + N − 1 polynomial parameters. Stevens’
model is a restriction of SEP in which N = L = 1.

Supposing that the errors ε are distributed according
to a multivariate normal distribution, we can write the
loglikelihood and maximize it numerically in order to get
the maximum likelihood estimates. The UNR model is
quite simple to estimate, while the SEP model is very
complex and requires a particular algorithm derived by
the authors at this aim. More details are available upon
request.

The main problem is to select the number of terms in
the polynomial regressions (N , L and M). In order to
do so, we use the BIC (Bayesian Information Criterion;
see Schwarz, 1978), a method to penalize the likelihood
taking into account the number of parameters. In the
UNR model we just have to choose M , while in the SEP
model we have to choose both N and L. Our strategy
for the present case is to estimate several polynomial re-
gression models for different values of M and (N,L), to
choose the best UNR and SEP models according to the
BIC and to test the restrictions imposed by the separable
representation of equation (1), either through the BIC or
through likelihood ratio tests. Once the model has been
choosen, we can get the following estimates of the func-
tions some algebra gives the nonparametric estimates of
ψ and W .

The Results

Comparing the estimated models according to the BIC,
it turns out that the best model of class UNR arises
for M = 2, while the best model of class SEP for
(N,L) = (2, 3). The comparison of the best model of

2 4 6 8 10

1
2

3
4

5

p

W
(p

)

Figure 1: The subjective weighting function W .

the UNR type and the best model of the SEP type
shows that the SEP model appears to have a slight ad-
vantage over the UNR one. This suggests that a sep-
arable representation is supported by our experiment.
As we remarked above, the Stevens’ model arises when
(N,L) = (1, 1); since the values of N and L that ap-
pear as best are both different from 1, we cannot provide
support for the Stevens’ power-law model. This finding
is confirmed by the BIC value (that is −0.6566 for the
model in (3) and −0.7926 for Stevens’ model) and by a
likelihood ratio test (that takes the value 207.357 with 3
degrees of freedom, that is a p−value of 1.1 · 10−44).

Now we come to a deeper analysis of SEP, UNR and
Stevens’ models. Using the estimated parameters of the
model with (N, L) = (2, 3), it is possible to get an esti-
mate of the functions ψ and W . Figures 1 and 2 show re-
spectively the subjective weighting function and the psy-
chophysical function for the SEP model (solid line) and
Stevens’ model (dashed line). The functions have been
rescaled in order to have the same origin and the same
slope at the origin, but the different behavior of the func-
tions is evident. Figure 3 displays a three-dimensional
representation of the expected value of p as stated by
an individual (i.e. W−1

(
ψ(d1)
ψ(d2)

)
for d1 and d2 varying

in the range of the data) and Figure 4 shows the same
graph from above: the contour lines represent equal in-
teger values of p. The deviation from the true value of
the ratio (i.e. d1

d2
) is difficult to see. Therefore, in Figure

5 we have displayed a three-dimensional representation
of the deviation of the expected value of p from the true
one (i.e. W−1

(
ψ(d1)
ψ(d2)

)
− d1

d2
); Figure 6 shows the same

graph from above, with contour lines separated by 0.5
units.

Also Stevens’ model has been estimated. The pa-
rameter value is φ1 = 0.835 and this corresponds to

ψ (d) = d0.835 and p =
(

d1
d2

)0.835

(this has to be com-
pared with the estimated exponents in Stevens, 1961).
Figures 7, 8, 9 and 10 show the expected value of p and
its deviation from the true value: the graphs are quite
far from the corresponding ones for the SEP model.
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Figure 2: The psychophysical function ψ.
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Figure 3: Expected value of p in SEP model.
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Figure 4: Expected value of p in SEP model with contour
lines.
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Figure 5: Expected minus true value of p in SEP model.
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Figure 6: Expected minus true value of p in SEP model
with contour lines.
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Figure 7: Expected value of p in Stevens’ model.
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Figure 8: Expected value of p in Stevens’ model with
contour lines.
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Figure 9: Expected minus true value of p in Stevens’
model.
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Figure 10: Expected minus true value of p in Stevens’
model with contour lines.
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Figure 11: Expected value of p in UNR model.
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Figure 12: Expected value of p in UNR model with con-
tour lines.

At last, we show the same graphs (see Figures 11, 12,
13 and 14) for the UNR model: in this case, it can be seen
that the similarity with the corresponding SEP model is
much stronger.
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Figure 13: Expected minus true value of p in UNR
model.
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Figure 14: Expected minus true value of p in UNR model
with contour lines.
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