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UCRL 16775  

SINGLE-CH,AJ= CALCULATION OF itir SCATTERING 

USING THE MADELSTAM ITERATION* 

N. F. Balit 

Lawrence Radiation Laboratory 
• 	 University of California 

Berkeley, California 

• 	 March 21, 1966 

ABSTHACT 

The Mandelstam iteration with appropriate cutoff is shown to 

be a practical technique for the study of strong-interaction dynamics 

in the framework of the strip approximation. Comparison with known 

potential (nonrelativistic) scattering problems shows that the method 

is accurate enough to allow workable numerical calculations. 

Calculations of single channel relativistic t7t scattering with an 

elementary p potential are reported. 

* Work performed under auspices of the U. S. Atomic .iergy 

Commission. 
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I. INTRODUCTION 

In a previous paper1  the Mandeistam iteration technique was 

'4 	 analyzed in the context of the strip approximation and shown to be, 

in principle, a workable method for the calculation of strongly 

interacting amplitudes. In this paper we describe some preliminary 

calculations which use this technique to study a single-channel zero- 

spin case 	- it), and which assures us that this aproach is numerically 

feasible. 

In Section II we describe the calculation method in detail. 

Section III is devoted to a.comparison of solutions of potential 

problems obtained by the iteration method and by integration of 

Schroedinger's equation. Section IV describes some preliminary 

calculations in the fully relativistic it - it problem. These solutions 

'are compared. with solutions of the equivalent problem obtained by the 

N/D technique of the "New Strip Approximation." 2  

II. CALCULATION METHOD 

• 	The iteration technique involves the integration of the pair 

of coupled equations, 

* 
__________ 	 (t', s) M(t", s) 	• ps( s t.) = 	 ff dt' dt" -' 	

• 	 (2.1) 
2it q (s) 	 1/2 [q

2 (s), t,t',t" 

OD 

M(t,$) = v 5 (t,$) + 	f 	, 	p 5 (s',t) , 	(2.2) 

We use the notation of Ref. 1. 
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with 	 : 

K(q2  y,y',y") = y2  + y'2 + y"2 - 2( 	+ 	y'y") - 	 (2 3) 

and 

g(s) = q(s) 	 (2.4) 

for potential scattering, and 

2q(s) 
g(s) 	 h(s,$) 	 (2 .5) 

(s) 

for relativistic scattering,where 

2 
q5  (s)  

Here h(s,s1 ) is a cutoff function equal to unity below s1  and 

rapidly going to zero above S1  . As usual t' and t' integrals 

in Eq. (2.1) are carried over the region where K is positive. 

A detailed study of:the solution of a similar set of equations 

has been made by Bransden et al., 3  and it is continued here. 

A computer program designed to solve these equations has been 

written, and it operates as follows: given an Initial potential discontinuity 

function Vt5(t,$) for all s and t , it can, using (2.1), compute 

ps(st) for, a limited range of t 	Equation (2.2) then allows one 

to compute M. (t, s) for this same range of t , which upon return to 



-3- 

Eq. (2.1), can be further extended. The trick is that due to the 

nature of the region of integration in Eq. (2.1), to compute ps(s,t) 

for t , say, equal to t 1  , only values of M(t,$)  for t less 

than t1  are required. This ttiterationv process can, in principle, 

be repeated indefinitely. However, aftera sufficient number of 

iterations, we can expect that the power behavior of the disontinuity 

function 	(t,$) will emerge, dominated by the leading Regge pole 

in 5, 

n(s) t 	 (2.6) 

and it is unnecessary to proceed any further. The trajectory function 

a(s) and residue function p(s) can then beobtained from the relations, 

£nJM(t,$)! = 2nf(s)J + Re a(s) In t 

(2.7) 

arg ((t,$)) = arg((s)) + Im a(s) £n.t 

by simple least-squares straight-line fit to 2nIM(t,$) and 

arg ((t, s)) over a sufficiently large range of In t . The functions 

a(s) and p(s) can now be used to define by anal, -tic continuatIon. 

the scattering amplitude 

1 r M (t,$) 
M5 (s,t) 	 dt' 	 (2.8) 

• 	t'-t 	• 	 • 	• 
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even if the above integral does not converge, as will be the case if 

a resonance is present. 

The program to carry out this calculation is reasonably 

straightforward if a bit complicated. Accuracy in the integrals is 

of great importance if stable solutions are to be obtained.. Particular 

care has to be exercised in Eq. (2.1) close to the boundaries of the 

t and t" integrals, as the denominator vanishes there like an 

inverse sauare root. 

As it is evident from this description of the calculation, 

only the leading trajectory is detected. In principle, once this 

trajectory were known, its effect could be £ubtracted, and lower 

trajectories could then be calculated. At present it seems unlikely 

that the overall accuracy of the method is enough to allow this 

subtraction to be carried out successfully. 

I II. POTENTIAL HWBLEM 

The potential scattering problem involving the exchange of 

spin zero partidles can be solved by this method without any cutoff. 

This allows us to check the accuracy and reliability of the iteration 

solution by comring it with solutions obtained by direct integration 

of Schroedinger's equation. For this purpose, an attractive potential  

with the discontinuity 

Ac 	
for t> l m 2  , 

V 5(t,$) = (t - tR) 	
2 	

(3.1) 

=0 	for tlm2 
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was chosen. It corresponds to a superposition of Yukawa potentials of 

range close to l/(tR)  and it attempts to mel the exchange of a 

spin zero particle of width € . Although a single Yukawa potential 

'4 
would: perhaps have been preferable, its corresponding discontinuity 

is a & function which makes its numerical treatment awkward. 

The same potential can then be.used to integrate Schroedinger's 

equation. As we are mainly interested In comparing trajectory and 

residue function5 this Integration can be best performed numerically, 

using a modified version of P. G. Burke and C. Tate's ThGE program. 1  

In Figures 1 through Gwe exhibit a(s) and (s) for the 

iterative and the Schroedinger solution of this problem for different 

values of the width € , and strength A . It is seen that the 

agreement is in general quite good throughout the ranges of s 

explored. In particular, the iterative calculation seems to give 

reasonable residue functions .(s), which are usually.more difficult 

to calculate than the trajectory functions a(s) 

As It can be expected, the agreement is poorer for narrower 

or stronger potentials, the errors arising mainly from inaccuracies 

in the. (2.1) integration. Also it was noted that the residue functions 

of potentials whose trajectories did not rise mudh above zero were 

rather poorly determined. This is probably due to error buildupin 

p(s,t), which in these case does not increase much as a function of. t 

All trajectories shown were obthined at t 19600 m . It 

is necessaryto go that far in • t to eliminate oscillations which 

appear in M(t,$) franinterfe'ence with lower trajectories. 
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All these cicu1ations were performed in a CDC 6600 computer, 

and required about 7 minutes per set. 

IV. RATIVISTIC 	- 	SCATTERING 

Having ascertained the accuracy of the iteration procedure in 

nonrelativistic problems, we turn to the interesting case, relativistic 

itir scattering. As pointed out in Ref. 1, the major difference between 

the potential and relativistic problems is the necessity of introducing 

a cutoff, as otherwise the integral in Eq. (2.2) cannot be performed. 

The.cutoff procedure adopted is the one suggested in Ref. 1, which has 

• the advantage of both being mathematically tractable and at the same 

time modeling closely the strip t' structure assumed for the amplitude. 

To this end, the function h(ss 	in • Eq. (2.5)  was set. to 

1 
• 	• 	 h(s,s1 ) = 	 / 

1 + exp[(s - 

The solutions of the relativistic problem can be expected to 

depend rather critically on S1  as it presumably represents the 

extremely complicated higher •s structure of ps(s,t)  arising from 

the increasing number of inelastic channels open to the reaction. 

However, if the strip approximation is a sensible one, the dependence 

on L s should not be too severe. 

In tl{ese preliminary calculations, the iteration technique was 

used to calbfl ate the trajectory and residues of the p and Pomeranchu 

(I = 1 and 	= 0) trajectories in it - it scattering with an 
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"elementary' t  p exchanged in the u and t channel as potential. 

No attempt to obtain self-consistent or "bootstrap" solutions was 

made, as the presumably important Pomeranchuk repulsion 7  was entirely 

neglected. These calculations are not expected to reproduce too 

closely the physical values of the positiOn and widths of the resonances 

involved. 

The input potential was taken to be 

1 	2 

vts(t,$)I = 2ll 	 + S) 	tR )2 

[ 	 + F2 tR I 
where tR  and F are the mass and the width of the input p particle, 

and 	is the familiar,  it - it crossing matrix. The leading factor 

of 2 is introducedto take into account the effect of the potential 

in both the t and u channels. The parameters F , s 1  , and 	were 

then adjusted to obtain reasonable output trajectories, consistent with 

the physical situation. It was found, however, that L has little 

effect over the lower part of the trajectory, which is mainly controlled 

by F and sl  • The cutoff point s 
 is expected to be anywhere from 

about 200 to 600 m2 , the width of the resonance region which 

characterizes the strip approximation, 2  and F is known experimentally 

to be 0.9 ci 	
6 

For parameters in this region, it is possible to obtain a 

continuum of solutions which yield a trajectory with Re a(28) = 1 in 

the I = 1 partial wave, including one for F slightly higher than 

the physical width of the p meson. The real andimaginary parts of 

a. for two stich examples are shom in Figs 7 to 10 corresponding to 



-8- 

(a) r = 1.1 m and s = 100 m 
2,  and (b) r = i.6 th and 

s1  = 256 m 2  . For case (b) we also show theeffect of changing 

the parameter t from 30.0 Tn 2  to 100.0 m 2  . As it can be 

readily seen, this has little effect for low positive energies, but 

becomes more important towards the high end of the strip and at large 

negative energies, where this calculation is not expected to be accurate 

anyway. Although neither set of trajectories is very close to the 

physical one, the second one seems to be the better, as it is initially 

steeper, more in accordance with the experimentally determined 

trajectories. 7  In case (a) the I = 0 trajectory rises up to J = 2 

to produce the f °  resonance while in case.(b) the trajectory does 

not reach J = 2 for a real value of s but probablydoes for a 

slightly complex.one. Also, as expected, no trajectory above J = 0 

is. observed for I = 2 , as in this case the p potential .is repulsive. 

The width of the output p meson is in both cases too large: 

3.7 rn in case (a) and 2.7.m.  in case (b).. This is not surprising, 

as we have not yet included the effect of the Pomeranchuk trajectory, 

which can be expected to narrow this resonance. . 

As we approach the high end of the strip all trajectories bend 

downwards, as they can be expected to.do if they satisfy a dispersion 

relation of the form 

a(s) = a() 
+ 	f 	l( : t)  ds' , 	 ( 1 2) 

S O 

as the imagiPary part of a(s) should go to zero outside the strip 
9 



We also show for comparison the 0 < s part of the trajectories 

calculated using the New Form of the Strip Approximation and the N/D 

method. It is seen that for this particular potential, it is not very 

different from the iterative solution. However, this is quite reasonable, 

as we are dealing witha purelyattractive elementary potential, where 

the N/D solution can be expected to perform rather well. Even so, the 

trajectories are flatter than the corresponding iterative ones, 

indicating that it will probably be easier to obtain steeper trajectories 

required by experiment with the new technique, onece a better input 

• pOtential is used. The flatness of the N/D trajectories persists 

for s > 0 , where their effect can be seen by calculating cross 

sections. This lack of slope in turn implies that the N/D method 

• will require considerably stronger potentials than the iterative method 

to giie the correct mass to the p and f °  resonances. Thus, for 

s > 0 the N/D calculation yeilds less binding than the iterative one. 

All trajectories shtn were calculated at t = 10 000 

The time required to perform these calculations in a CDC 6600 was about 

# minutes per value of the isotopic spin. The time needed to solve the 

N/D equations for an equivalent range of J is about.i.7 minutes, so 

the iterative method cannot be said to be much more complicated than 

the N/D. 

As a final point, we would like to indicate that these results 

are substantially different from thos obtained by Bransden et al. 3  

* 

	

	 in a similar calculation using almost the same input potential Th.'ansden 

et a? were unable to obtain trajectories rising up to J = 1 in the 
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I = 1 partial wave for a pure p input, and were forced to include 

an elementary f °  in the potential.*  

The main differences between our calculation and theirs are 

improved accuracy and the different cutoff scheme. Their solution 

involves the smooth cutoff the the potential .Vs(t,$)  past a given 

s , and introduces no cutoff in ps(s,t).  It can be easily checked. 

that both these differences play an important role in the discrepancy 

between the two calculations. It is our impression that our cutof 

procedure is the more natural one, as it does not interfere with the 

power blowup of the potential in the s direction, and also allow 

simple mathematical justification, as seen in Ref..•l. 

To summarize, we can say that the above calculations seem to 

show that the Yandelstam iteration technique is indeed a -  feasible one 

from the computational point of view. It is aulte able to produce 

reasonable output trajectories from a simple elementary particle input 

potential, and it offers many advantages over the more usual N/D 

approach without,an outrageous increase in the necessary computations.. 

At present attempts are being made at calculating fully 

Reggeized input potentials which will inbiude Pomeranchuk replusion 

effects. Also a more ambitious self-consistent scheme-is being 

considered whereby the output p(s,t) function obtained -after the 

above iterations have been comDleted is used to compute a new potential 

V5 (t,$) by means of crossing. This potential could then be used in a 

tlmaittiu to restart-the whole calculation.  

* This point Is rather questionable, as has been pointed out by Chew the 

inclusion of tne 	as an elementary particle vastly exaggeratesits 

effect. 
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FIGURE CITI0iS 

Fig. 1. Real p1tad iraginary parts of 	a for 	A = 15 , 0, € = 3.0 , 

= 6.o.   ---j  Itertj 	- 	- S'riroed.r'ge: 

14 Fg 2 RoaLa ncll iarprcof 	E for 	Al5 0 ,=30 

6— . 	:terative Schxoea.inger. 

Fig. 3.. Real an irzginary 	arts of 	cx for 	A = 35.0  

6 Schroe.i'ger 

Fig end  pt - sof for 	A-350 €=30, 

- 6.o., terc,tiv Scroeger. 

Fig. 5. Real an inrv parts of 	cx for 	A 	50.0 , € = 3.0 , 

= 6 a - -, - :tert 	e Scroo1ger 

rg 6 Real ai i'i 	-'arv partc of 	$ for 	A 	50.0 € = 3 0 

= 6 0 -- - 	tera 	'e Schrociger 

Fig 7 Real part of 	a 	rrrolen, caoe (e 	, 	1 1 1 	0 

- - N/D 	solto 

Fig 6 In-.agiar part of 	a 	--t 	cblci cese 	(a),  

Fig 9 Real part of 	a 	 case (b). 	---- I = I , = 30. 0 

= 0, 	= 300 ;. 	 1=1, = 100.0 ; 

I = 0, 	.= 100,0 ; —'—'-.N/D solution. 

Fg 10 Irnagra:v part of 	cx 	r-r 	;ro1e'ii, 	ease  

=300 - 	--I--0 	A=303 =l,L-lC00 
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