
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Nonparametric methods for learning from data

Permalink
https://escholarship.org/uc/item/7qj9t8vq

Author
Sajama, Sajama

Publication Date
2006
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qj9t8vq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Nonparametric methods

for learning from data

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

by

Sajama

Committee in charge:

Professor Alon Orlitsky, Chair
Professor Sanjoy Dasgupta
Professor Bhaskar Rao
Professor Nuno Vasconcelos
Professor Ruth Williams

2006



Copyright

Sajama, 2006

All rights reserved.



The dissertation of Sajama is approved, and it is accept-

able in quality and form for publication on microfilm:

Chair

University of California, San Diego

2006

iii



To Thomas John

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita, Publications, and Fields of Study . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A. Adapting to the charecteristics of data-sets . . . . . . . . . . . . . . 2
B. Non-parametric methods . . . . . . . . . . . . . . . . . . . . . . . . 4
C. Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A. Latent variable models . . . . . . . . . . . . . . . . . . . . . . . . . 9
B. Unsupervised dimension reduction . . . . . . . . . . . . . . . . . . . 11

1. Principal component analysis . . . . . . . . . . . . . . . . . . . . 11
2. Factor and latent trait analysis . . . . . . . . . . . . . . . . . . . 12
3. Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C. Supervised dimension reduction . . . . . . . . . . . . . . . . . . . . 13
1. Linear discriminant analysis . . . . . . . . . . . . . . . . . . . . . 14
2. Sliced inverse regression and principal hessian directions . . . . . 14
3. Mixture discriminant analysis . . . . . . . . . . . . . . . . . . . . 15
4. Kernel Dimensionality Reduction . . . . . . . . . . . . . . . . . . 16
5. Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III Semi-parametric exponential family principal component analysis (SP-
PCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A. Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . 18
B. The constrained mixture model . . . . . . . . . . . . . . . . . . . . . 21

1. Conditional distribution . . . . . . . . . . . . . . . . . . . . . . . 21
2. Latent distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C. Low dimensional representation . . . . . . . . . . . . . . . . . . . . 23
D. Discussion of the model . . . . . . . . . . . . . . . . . . . . . . . . . 24

1. The Gaussian case . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Reference vectors view . . . . . . . . . . . . . . . . . . . . . . . . 25

v



3. Visualization and data analysis . . . . . . . . . . . . . . . . . . . 26
E. Consistency of the maximum likelihood estimator . . . . . . . . . . 26
F. Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2. Pruning the mixture components . . . . . . . . . . . . . . . . . . 33
3. Convergence and computational complexity . . . . . . . . . . . . 34
4. Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

G. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1. Efficacy of SP-PCA in recovering the lower dimensional subspace 35
2. Use of SP-PCA as a low dimensional density model . . . . . . . . 36
3. Visualization results on discrete datasets . . . . . . . . . . . . . . 36

H. Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IV Supervised dimensionality reduction using mixture models (SDR-MM) . 44
A. Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . 44
B. Model with Gaussian components . . . . . . . . . . . . . . . . . . . 46
C. The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 48
D. Exponential family components . . . . . . . . . . . . . . . . . . . . . 51
E. Low dimensional representation . . . . . . . . . . . . . . . . . . . . 52
F. The optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . 52
G. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1. Classification results . . . . . . . . . . . . . . . . . . . . . . . . . 56
2. Visualization - Gaussian case . . . . . . . . . . . . . . . . . . . . 58
3. Visualization - Binary case . . . . . . . . . . . . . . . . . . . . . 59

H. Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

V Learning Distance metrics and its applications . . . . . . . . . . . . . . 63
A. Alternative distance metrics . . . . . . . . . . . . . . . . . . . . . . 63
B. Learning distance metrics . . . . . . . . . . . . . . . . . . . . . . . . 64
C. Unsupervised learning of distance metrics and applications . . . . . 64

1. Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . 66
2. Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3. Nonlinear interpolation . . . . . . . . . . . . . . . . . . . . . . . 68

VI Estimating and computing density based distances . . . . . . . . . . . . 70
A. Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . 70
B. Estimating density based distance metrics . . . . . . . . . . . . . . . 75

1. Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2. Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C. Computing density based distance metrics . . . . . . . . . . . . . . . 86
1. Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2. Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D. Approximating minimal geodesics . . . . . . . . . . . . . . . . . . . 95
E. Applications and experiments . . . . . . . . . . . . . . . . . . . . . . 96

vi



1. Semi-supervised learning using density based metrics . . . . . . . 96
2. Non-linear interpolation . . . . . . . . . . . . . . . . . . . . . . . 98

F. Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VII Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



LIST OF FIGURES

III.1 Subspace aligned variance approximated by clustered but slightly
spread out mixture component mean parameters ⊗ . . . . . . . . . 25

III.2 Norm of sines of canonical angles to the correct subspace to which
the distribution over ‘natural parameters’ of the Bernoulli mixture
are constrained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.3 Norm of sines of canonical angles to the correct subspace to which
the distribution over ‘natural parameters’ of the Poisson mixture
are constrained - Part 1. . . . . . . . . . . . . . . . . . . . . . . . . 38

III.4 Norm of sines of canonical angles to the correct subspace to which
the distribution over ‘natural parameters’ of the Poisson mixture
are constrained - Part 2. . . . . . . . . . . . . . . . . . . . . . . . . 39

III.5 Projection by various methods of binary data from 200 documents
each from comp.sys.ibm.pc.hardware (×), comp.sys.mac.hardware
(◦) and sci.med (.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

III.6 Projection by various methods of binary data from 100 documents
each from sci.crypt (×), sci.med (◦), sci.space (∇) and soc.culture.-
religion.christianity (+) - Part 1 . . . . . . . . . . . . . . . . . . . . 41

III.7 Projection by various methods of binary data from 100 documents
each from sci.crypt (×), sci.med (◦), sci.space (∇) and soc.culture.-
religion.christianity (+) - Part 2 . . . . . . . . . . . . . . . . . . . . 42

IV.1 Advantage of maximum conditional likelihood : Each class is a mix-
ture of spherical Gaussians. ♦ and ∗ denote means of gaussian com-
ponents of classes 1 and 2 respectively. In this case the subspace
mixture discriminant analysis finds is the same as the maximum
likelihood solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

IV.2 Advantage of maximum conditional likelihood : Two classes with
different covariance matrices. ♦ and ∗ denote means of gaussian
components of classes 1 and 2 respectively. In this case the subspace
mixture discriminant analysis finds is the same as the maximum
conditional likelihood solution. . . . . . . . . . . . . . . . . . . . . . 50

IV.3 Some two dimensional views of waveform dataset projected onto the
four basis vectors obtained using SDR-MM . . . . . . . . . . . . . . 59

IV.4 Some two dimensional views of waveform dataset projected onto the
four basis vectors obtained using kernel dimensionality reduction . . 60

IV.5 Some two dimensional views of waveform dataset projected onto the
four basis vectors obtained using mixture discriminant analysis . . . 61

IV.6 Two dimensional representation of binary data from the ICU data
set : patients who left the ICU alive are shown by ‘+’ and the
patients who did not by ‘◦’. . . . . . . . . . . . . . . . . . . . . . . 62

viii



V.1 Distance based on data density - the cluster case - point 2 is more
similar to point 3 than to point 1 . . . . . . . . . . . . . . . . . . . 65

V.2 Distance based on data density - the manifold case - point 2 is more
similar to point 3 than to point 1 . . . . . . . . . . . . . . . . . . . 65

VI.1 A notion of similarity that is a function of data density . . . . . . . 71
VI.2 Classification results comparing 1-NN (‘.’), DBD based 1-NN (‘x’)

and Randomized Mincut (‘o’) algorithms . . . . . . . . . . . . . . . 98
VI.3 Density-based non-linear interpolation using 1000 iid samples drawn

from a spherical, unit variance, zero mean Gaussian distribution. . . 99

ix



ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Alon Orlitsky, for introducing me to the

subject of statistical learning and for the constant guidance, support and help

he has given me throughout my Ph.D. program. He always encouraged me to

think independently and methodically when looking at research problems and I

am certain that the things I have learnt from him will help me well into the future.

I would like to thank Prof. Sanjoy Dasgupta who was generous with his

time and helped me greatly by discussing my research problems. I also gained a

lot from the several reading groups that he organized on topics related to machine

learning. I would like to thank Thomas John who helped the research presented

here in many ways including helping me with several of the proofs and algorithms

and for helping me understand differential geometry. I would like to thank Prof.

Bhaskar Rao, Prof. Nuno Vasconcelos and Prof. Ruth Williams for the many

things I learnt in their classes and for serving on my doctoral committee. Prof.

Toby Berger has advised and helped me several times over the last few years and I

am thankful for having had the opportunity to with him. I want to thank members

of my research group - Aldebaro, Anand, Junan, Krishna, Nikola and Prasad - and

other friends at UCSD and elsewhere who have enriched the years I have spent

here. Thojo, I will thank you personally.

The material presented in Chapter III has been published in Advances

in Neural Information Processing Systems 2005. The material presented in Chap-

ter IV has been published in the Proceedings of the International Conference on

Machine Learning 2005. The material presented in Chapter VI has been pub-

lished in the Proceedings of the International Conference on Machine Learning

2005 and as a chapter in the book ‘Semi-supervised Learning’, MIT press 2006.

The dissertation author was the primary investigator and the first author of these

publications.

x



VITA

1977 Born, Krishna, A. P., India

1998 Bachelor of Technology
Indian Institute of Technology, Mumbai, India

2001 Master of Science
Cornell University, Ithaca, New York

2006 Doctor of Philosophy
University of California, San Diego, California

PUBLICATIONS

Sajama and A. Orlitsky, “Estimating and computing density based distance met-
rics”, In Proceedings of the 22nd International conference on Machine learning,
Morgan Kauffmann Publishers 2005

Sajama and A. Orlitsky, “Modifying Distances”, In Semi-Supervised Learning, O.
Chapelle, A. Zien, and B. Scholkopf, Editors, MIT Press, Boston 2005

Sajama and A. Orlitsky, “Supervised dimensionality reduction using mixture mod-
els”, In Proceedings of the 22nd International conference on Machine learning,
Morgan Kauffmann Publishers 2005

Sajama and A. Orlitsky, “Semi-parametric Exponential family PCA”, In Advances
in Neural information processing systems, 17, MIT press 2005

A. Dhulipala, A. Orlitsky and Sajama, “Recent results on compression of large
alphabets”, In 41st Annual Allerton Conference on Communication, Control, and
Computing, 2003

A. Orlitsky, Sajama, N. P. Santhanam, K. Viswanathan and J. Zhang, “Practi-
cal algorithms for modeling sparse data”, In IEEE International Symposium on
Information Theory, 2004

FIELDS OF STUDY

Major Field: Engineering
Studies in Machine learning.
Professors Alon Orlitsky, Sanjoy Dasgupta, Bhaskar Rao, Nuno Vasconcelos,
Ruth Williams

xi



ABSTRACT OF THE DISSERTATION

Nonparametric methods for learning from data

by

Sajama

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics,

and Control)

University of California, San Diego, 2006

Professor Alon Orlitsky, Chair

Developing statistical machine learning algorithms involves making var-

ious degrees of assumptions about the nature of the data being modeled. Non-

parametric methods are useful when prior information regarding the parametric

form of the model is unavailable or invalid. This thesis presents non-parametric

methods for tackling various modeling requirements.

The first part of this thesis presents a pair of unsupervised and super-

vised linear dimensionality reduction techniques that are suitable for various data

types like binary and integer along with real-valued data. They are based on a

semi-parametric mixture of exponential family distributions where no parametric

assumptions are made about the latent distribution and the parametric form of the

noise distribution is to be chosen based on the data type, for example Bernoulli for

binary data, etc. A key feature of the unsupervised method is that it guarantees

asymptotic consistency of the estimated lower dimensional signal subspace, which

is not guaranteed for other recently proposed methods. The supervised method

finds the lower dimensional space that retains maximum possible information re-

garding the labels. We present efficient algorithms and experimental results for

these methods.

The second part of this thesis considers unsupervised learning of a den-

sity based distance. We decompose the errors that can arise in approximating

xii



these density based distances into estimation and computation components. We

prove upper and lower bounds on the rate of convergence of the estimation error

in terms of data dimensionality and smoothness of the data density. We present

a method for constructing a graph on the data and a performance guarantee on

the computation error when using this method. We also show an upper bound

on the approximation error that applies to approximating distances using nearest-

neighborhood based graphs and is applicable to several other similarity measuring

algorithms. Finally, we show that this graph construction enables consistent ap-

proximation of the minimal geodesics themselves for the non-linear interpolation

application and present experimental results.
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Chapter I

Introduction

Recent decades have seen an explosive growth in the amount of data

collected in fields spanning from social studies to marketing, online data analysis,

drug discovery and biological research. This growth in the amount of available

data has been made possible because of rapid growth in information technology

and is expected to continue to increase with further improvements in our ability to

collect and store data. The field of statistical machine learning is concerned with

modeling this data in order to extract useful information from it. In other words,

it involves coming up with a statistically accurate probabilistic summary of the

way the samples behave.

Traditionally, machine learning algorithms have been classified into two

main categories, unsupervised and supervised [43, 4, 5, 6, 7, 8]. Unsupervised

learning deals with the problem of selecting a model from model space Θ based

on a training set {xi}n
i=1 ⊂ X . In contrast to this, supervised learning works with

training data of the form {(xi, yi)}n
i=1 ⊂ X ×Y where xi’s are thought of as input

and the yi’s as output, and the model is selected so that it is possible to predict,

as accurately as possible, the output y corresponding any given input x.

1
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I.A Adapting to the charecteristics of data-sets

Developing algorithms that are practically applicable involves taking into

account the nature of the data and its collection process. This dissertation presents

methods that are adapted to work with these requirements imposed by the new

characteristics of data-sets like high dimensionality, high volume, heterogeneous

data types and differences in the relative costs of acquiring different components

of the data.

An important feature of data-sets that makes machine learning challeng-

ing is that they are increasingly high dimensional. It is well known that learning

becomes difficult as the dimension of the data sets increases. This difficulty is often

called the curse of dimensionality - a term that was first used in [9] to describe

the fact that the number of function evaluations required to perform optimization

(within some given error tolerance) by exhaustive enumeration grows exponentially

with the dimension of the space over which the function is defined. In the context

of function approximation this curse can be seen as follows : if we must approx-

imate a function of d variables and we know only that it is Lipschitz, say, then

we need order (1/ε)d evaluations on a grid in order to obtain an approximation

scheme with uniform approximation error ε.

To see how the number of samples needed grows rapidly with data di-

mension in the case of statistical estimation, consider a d+1-dimensional data-set

with the property that the first component y is dependent on the other compo-

nents x, through a model of the form yi = f(xi,1,xi,2, . . . ,xi,d) + noisei. Sup-

pose that we are only able to assume that f is a Lipschitz function of these

variables and that the noisei variables are in fact i.i.d. Gaussian with mean

0 and variance 1. It can be shown [11] that for any estimator f̂ , we have

supf E(f̂ − f(x))2 = Const
∑

N−2/(2+D), n −→ ∞. According to [10], the curse

of dimensionality in the context of statistical estimation refers to this slowing of

the rate of convergence of the minmax estimation error with increase in data di-
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mension. Note that by making certain stronger assumptions than the Lipschitz

assumption made for this previous result, it is possible to show rates of conver-

gence that are independent of the data dimension (see for example the function

approximation result in [12]).

A common way to deal with this difficulty in high dimensions is to reduce

the dimensionality of data, removing the ‘noise’ while retaining the useful or ‘signal’

part of the data. Chapters III and IV present methods for unsupervised and

supervised, linear dimensionality reduction. One way to understand the complexity

of a learning problem is to study the lower and upper bounds on the appropriate

approximation errors. In Chapter VI, we derive such bounds in the context of

unsupervised learning of a distance metric and show how the data dimension affects

the achievable and best possible error rates under various assumptions for the data

density.

Another aspect of data that needs to be accounted for in learning algo-

rithms is that it can often be heterogeneous, i.e., some components of the data

may be of a different type than being real valued. For example, text documents

are often represented as binary or integer data and black-and-white images are

represented as binary data. The dimensionality reduction techniques presented in

Chapters III and IV are specifically equipped to deal with such situations.

Another issue of practical importance is to be able to deal with training

data that is not complete. Often, certain parts of the training data are not available

because of limitations in data collection process, for example, survey data might

have missing components because of some people not wishing to share certain

information or dropping out of the program after some time. Another cause of

missing data could be that it is more expensive to collect some parts of the data

and so a choice might be made to collect more of the inexpensive data in relation to

the amount of expensive data. The case when the output variable yi is expensive to

collect and hence not available for a lot of the input variables xi in the training set

is known as semi-supervised learning [117]. The combination of expensive labeled
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data and inexpensive unlabeled data occurs in many important application areas

including text classification, computer vision and biological research (genetic or

proteomic). In Chapter VI, we present analysis of a measure of similarity between

data points which is based on a common assumption made in semi-supervised

learning methods.

I.B Non-parametric methods

As discussed before, learning methods are essentially concerned with se-

lecting a model from model space Θ based on the available training set. One

important feature of the learning method is how the model space itself is chosen.

For many statistical problems there are several possible solutions, differing in their

suitability for different types of underlying ‘truth’ that governs the data sample.

Learning methods are called parametric when they make inferences based on the

assumption that the underlying distribution has a particular parametric form. In

this case the model space Θ is indexed by the parameters of this distribution.

Nonparametric models differ from parametric models in that the model

structure is not specified a priori, but is instead determined from data. This does

not imply that non-parametric methods completely lack parameters, it only means

that the number and nature of the parameters is flexible and not fixed in advance.

A key feature of non-parametric methods is that they have certain desirable prop-

erties that hold under relatively mild assumptions regarding the underlying data

distribution. Non-parametric methods are widely applicable because they are of-

ten significantly better when the true form of the underlying distribution is not

known apriori and because of their relative insensitivity to outliers.

While nonparametric methods require no assumptions about the pop-

ulation probability distribution functions, they are based on some of the same

assumptions as parametric methods, such as randomness and independence of the

samples. Also, the price for wider applicability is that when reasonable parametric



5

assumptions can be made, parametric methods outperform non-parametric meth-

ods for small sample sizes.

In this paper we take advantage of this flexibility of nonparametric meth-

ods to model a wide range of distributions by modeling parts of our probabilistic

models non-parametrically. On the other hand, we retain the advantage of using

a parametric form, or more generally of using prior information, in order to con-

strain parts of our model in order to achieve good numerical results even in the

presence of limited data samples. For example in the case of the dimensionality

reduction methods, we assume that the ‘signal’ or lower dimensional distribution

is non-parametric while we assume that the noise added follows a parametric form

whose parameters are then estimated from the data. In the case of the density

based distance, we consider the case when no parametric assumptions are made

on the data density, but the function that maps the density to the measure of

similarity is assumed to be known. This approach helps us combine the advanta-

geous features of the parametric and nonparametric methods by making the model

flexible in the necessary parts and by lowering the sample complexity by making

assumptions in those areas where flexibility may not be as necessary.

I.C Dissertation outline

The first part of this dissertation considers the problem of dimensionality

reduction which helps extract the latent subspace or signal, reduces noise and acts

as a form of regularization. The probabilistic approach considered is also useful in

low-dimensional density modeling for sparse data and in visualization. In Chapter

II, we review related work on dimensionality reduction and motivate the need for

the new techniques that we subsequently propose.

In Chapter III, we propose an unsupervised dimensionality reduction

method suitable for various data types like binary and integer along with real-

valued data. It is based on a semi-parametric mixture of exponential family distri-
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butions where no parametric assumptions are made about the latent distribution

and the parametric form of the noise distribution is to be chosen based on the data

type, for example Bernoulli for binary data, etc. A key feature of this method is

that it guarantees asymptotic consistency of the estimated lower dimensional signal

subspace, which is not guaranteed for other recently proposed methods. We used

Lindsay’s theorem to propose an efficient expectation-maximization algorithm for

estimating the latent distribution non-parametrically.

To illustrate the properties of this method, we present experiments on

artificial data where binary and integer-valued samples are generated using a low-

dimensional mixture model with various latent distributions. We found that this

method outperformed other recently proposed methods in terms of recovering the

true lower-dimensional subspace. We also present an experiment demonstrating its

use as an effective density estimation method when data is sparse and showed im-

provement over another successful low-dimensional model, namely the probabilistic

principal component analysis. Finally, we present visualization experiments which

demonstrate that this method compares favorably to other methods in terms of

sending similar points to nearby locations in the lower dimensional representation.

In Chapter IV, we extend this semi-parametric approach to supervised

dimensionality reduction and propose a latent variable based method in which

the subspace is chosen to retain the maximum possible information regarding the

labels. Again, we present an efficient optimization algorithm for estimating the

model based on bound maximization. Using experiments on data from the UCI

repository, we demonstrate that this method yields more informative lower dimen-

sional subspaces than than the latest kernel based method, where the informative-

ness of the low dimensional projection is measured using classification results on

the projected data. We also illustrate the use of this method for supervised data

visualization using real-world datasets.

Semi-supervised learning is the name given to learning classifiers or re-

gression functions wherein one uses the unlabeled data along with labeled data in
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the learning process. This is an important problem since in many practical appli-

cations, labeling data is expensive while large amounts of unlabeled data can be

acquired easily. In the second part of this dissertation, we consider the problem of

learning a metric based on data density which has applications in semi-supervised

learning, clustering and non-linear interpolation. Unlabeled data help by allow-

ing us to learn which data points belong to the same high density region of the

data. Learning these density based metrics can help in incorporating into learning

algorithms the prior information that two points are likely to be similar to one

another if they belong to the same high density region. In Chapter V, we re-

view related work on semi-supervised learning, density based distances and other

learning situations that use this prior information.

In Chapter VI, we consider a definition of density based distances that

is based on a Riemannian manifold structure defined as a function of data den-

sity. We decompose the errors that can arise in approximating these density based

distances into estimation and computation components. Using techniques from

mathematical statistics, we prove upper and lower bounds on the rate of con-

vergence of the estimation error in terms of data dimensionality and smoothness

of the data density. We present a method for constructing a graph on the data

and showed a performance guarantee on the computation error when using this

method. We also show an upper bound on the approximation error that applies to

approximating distances using nearest-neighborhood based graphs and is applica-

ble to several similarity measuring algorithms, including the ISOMAP [79]. This

bound shows the effect of data dimensionality on the approximation error when

using a neighborhood-based graph to measure distances. Finally, we show that

this graph construction enables consistent approximation of the minimal geodesics

themselves for the non-linear interpolation application and presented experimen-

tal results comparing the use of these metrics to a recently proposed algorithm for

semi-supervised classification.



Chapter II

Dimensionality Reduction

Dimensionality reduction is the mapping of a high dimensional space into

a lower-dimensional space. It is an important pre-processing step in many learning

tasks because of increase in dimensionality of available data-sets which in turn is

caused by increase in the ease of acquisition and storage of data.

Ideally, if data is not noisy and inherently lies on a lower dimensional

space, we can do dimension reduction without loss of information. However, data

is often noisy and there must be a loss of information. Dimensionality reduction

is effective if the loss of information due to mapping to a lower-dimensional space

is less than the gain due to simplifying the problem. Advantages of dimension

reduction include reduction in computation time and in the number of parameters

of a learning task. It can lead to better classification or regression accuracy since

it can supress noise and act as a form of regularization. Lower dimensional models

also have the advantage of greater interpretability. Reducing dimensions plays an

important role in exploratory data analysis where it can help in visualizing the

data structure in terms of groups, outliers etc.

Two main approaches to dimensionality reduction are feature selection

and feature extraction. In feature selection, those dimensions of the data-set that

contain maximal information are retained and the others are discarded, i.e, the

mapping which defines dimensionality reduction is a projection along the axis

8



9

of the feature space. This has the advantage that fewer measurements need to

be made when more samples are collected in the future. In feature extraction,

the mapping which defines dimensionality reduction is a more complicated func-

tion than projection along the axes. In this dissertation, we will be presenting

linear feature extraction methods, where the lower dimensional space is a linear

space (a subspace with some displacement added) contained in the original higher-

dimensional space. Linear dimensionality reduction is used extensively in signal

processing, data compression, statistics, machine learning, machine perception,

and data mining. It is a core component of technologies as diverse as face recog-

nition, web searching, visual target tracking, audio source separation, and image

compression.

Optimal feature extraction involves picking the mapping which maximizes

some objective. In the case of unsupervised dimension reduction the goal is to ob-

tain good signal representation, i.e., the goal is to represent the samples accurately

in the lower dimensional space. When class labels are available and we are doing

supervised dimension reduction, the goal of feature extraction is to enhance the

class discriminatory information in the lower-dimensional space.

II.A Latent variable models

A latent variable model specifies a joint distribution of a set of random

variables, some of which are unobservable (and hence called latent variables). One

of the most important uses of latent variables is in dimensionality reduction where

it is used to capture in a small set, the interrelationships of many variables. This is

the idea behind factor analysis and the more recent applications of linear structural

models.

Another reason for the popularity of latent variables is that they occur in

many fields where statistical methods are used including social sciences and text

analysis. For instance, the occurrence or non-occurrence of words in a document is
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often modeled using a latent variable model where the latent variables are thought

of as representing the topic, authors writing style, etc. We will denote the collection

of manifest or observed random variables by x = (x1, x2, . . . , xd) and the collection

of latent or hidden random variables by θ = (θ1, θ2, . . . , θL). For the sake of

notational simplicity, we will not distinguish between random variables and the

values they take.

Since only x can be observed, any inference is based on its distribution

p(x) =

∫

p(θ)p(x|θ)dθ (II.1)

where p(θ) is the prior distribution over the latent variables. Given an observation

x, the posterior distribution over θ is given by the Bayes rule

p(θ|x) =
p(θ)p(x|θ)

p(x)
.

From Equation II.1, it is clear that p(θ) and p(x|θ) are not uniquely

identified for a given p(x). A commonly used simplification that improves this

identifiability situation is to assume that x1, x2, . . . , xd are independent when con-

ditioned upon the latent variable θ. This is a reasonable assumption since we

often wish to model the interrelationships between x1, x2, . . . , xd using the latent

variables θ. For the same reason the number of latent variables, L, is assumed to

be much smaller than d.

Many of the models we will be concerned with are instances of a Gen-

eral Linear Latent Variable Model (GLLVM). In this model, the conditional dis-

tribution is assumed to belong to the one-parameter exponential family, whose

parameter is determined by the latent variables.

p(xi|αi) = Fi(xi)Gi(αi) exp(αiui(xi)) i = 1, 2, . . . , d

where αi is some function linear function of θ. For a discussion of the properties

of this model please see [22].
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II.B Unsupervised dimension reduction

Unsupervised dimension reduction deals with the problem of finding a

suitable mapping from Rd to a lower dimensional space RL based on a training

sample x1,x2, . . . ,xn which are n samples of x.

II.B.1 Principal component analysis

Principal component analysis (PCA) is widely used for dimensionality

reduction with applications ranging from pattern recognition and time series pre-

diction to visualization. PCA finds a lower dimensional space that minimizes
∑

i ||xi − θi||
2, the sum of squared distances from data xi to their projections θi.

This is equivalent to choosing a subspace that maximizes the empirical variance of

the projections of the data points onto the subspace.

Two basic methods for performing the PCA computations are : the power

method and the Jacobi method. The power method computes the eigenvalues

one by one starting with the largest one (which is associated with the principal

component that contains most of the information), then moving to the next largest

and so on. This method is known to converge to the optimal solution [1]

In a quasi-probabilistic interpretation of PCA, each point xi is thought of

as a random draw from some unknown distribution P (x|θ), where P (x|θ) denotes

a unit Gaussian with mean θ ∈ Rd [13]. Then, PCA can be thought of as finding

a set of parameters θ1, . . . , θn that maximize the likelihood of the data subject to

the constraint that the parameters lie in a lower dimensional subspace. Note that

this interpretation does not mean that PCA is associated with a probability model,

since the parameters θi are assumed to be drawn arbitrarily from the subspace and

not according to any distribution.
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II.B.2 Factor and latent trait analysis

Factor analysis [22] was invented more than a 100 years ago by psychol-

ogist Charles Spearman, who used it to postulate that a general mental ability,

or g, underlies and shapes human performance in a variety of tests. Factor anal-

ysis aims to explain (most of) the variability of the observable random variables

in terms of a few latent variables called factors. It is based on a latent variable

model, a key feature of which is that the latent distribution P (θ) is assumed to

be Gaussian. Another feature of the factor model is that the conditional distri-

bution P (x|θ) models the additive noise and is also usually assumed Gaussian for

modeling real-valued data.

Factor analysis can be used to formulate a probabilistic alternative to

PCA called Probabilistic PCA (PPCA) [23, 24]. This probabilistic formulation

of PCA offers several advantages like allowing statistical testing, application of

Bayesian inference methods and naturally accommodating missing values [23].

Latent trait analysis (LTA), a form of latent structure analysis [2], is

used for the analysis of categorical data. This model is similar to PPCA in that it

assumes that the latent distribution is Gaussian. In order to model binary data,

this model assumes that the conditional distribution P (x|θ) is Bernoulli. Tipping

[15] proposes a binary data visualization technique based on the latent trait model.

II.B.3 Other methods

Collins et. al. [13] proposed a generalization of PCA using exponen-

tial family distributions. Like PCA, this generalization is not associated with a

probability density model for the data. Non-negative matrix factorization [19]

is another non-probabilistic generalization of PCA for special data types in which

the mean parameters of exponential family distributions are constrained to a lower

dimensional subspace and no distribution is assumed over the latent space.

Probabilistic latent semantic indexing (PLSI) [20] is a dimension reduc-

tion method based on a latent class model. In contrast with most methods we
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have discussed, in PLSI the latent distribution is not constrained to a lower di-

mensional subspace, but is instead constrained to be discrete over ` points, when

the objective is to reduce data dimension to `.

Generative topographic mapping (GTM) is a probabilistic alternative to

Self organizing map which aims at finding a nonlinear lower dimensional mani-

fold passing close to data points. An extension of GTM using exponential family

distributions to deal with binary and count data is described in [18, 21]. GTM

assumes that the latent distribution is uniform over a finite and discrete grid of

points. Both the location of the grid and the nonlinear mapping are to be given

as an input to the algorithm.

Tibshirani [28] used a semi-parametric latent variable model for esti-

mation of principle curves. The mixing density was not constrained to lie in a

subspace, only Gaussian mixture components were considered and each Gaussian

component was allowed to have arbitrary covariance matrix. This method makes

no assumptions/restrictions on the the relative positions of the mean parameters

of the Gaussian components and hence there is no topographic ordering on the

mixture component mean parameters obtained at the end of model estimation.

Hence, this method cannot be used to reduce dimensions when data is in more

than three dimensions and a reasonable ordering of component means cannot be

visually determined.

II.C Supervised dimension reduction

Supervised dimension reduction deals with the problem of finding a suit-

able mapping from Rd to a lower dimensional space RL based on a training sample

(x1, y1), (x2, y2) . . . , (xn, yn) which are n samples of (x, y), where y is the class label

for x. The goal is to maximize class discriminatory information contained in the

lower dimensional points to which the xi are mapped.
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II.C.1 Linear discriminant analysis

Linear discriminant analysis (LDA) is a standard tool used for classifi-

cation where an observation is classified to the class with centroid closest to the

observation, where the distance is measured in the Mahalanobis metric using the

pooled within group covariance matrix. This procedure is equivalent to assuming

that the feature vectors belonging to the two classes have a Gaussian distribution

with a different mean, but a common covariance matrix among the classes. If the

classes are further assumed to have equal prior probabilities, assigning an obser-

vation to the class that has maximum posterior probability is equivalent to the

classification rule used in LDA [4, 3].

Let c denote the number of classes that the output variable y belongs

to. The LDA classification rule means that all the relevant distance information

is contained in the at most c − 1 dimensional subspace of Rd spanned by the c

group centroids. A reduced form of LDA due to Fisher and Rao adds a graphical

component to the procedure. One finds the L (< c) dimensional subspace of

Rd in which the group centroids are maximally separated (once again using the

Mahalanobis metric confined to this subspace) and then classifies new data to the

closest centroid in the reduced space. This further reduction in dimensions, beyond

c can lead to illustrative graphical representations of the data points and also more

stable classifiers.

II.C.2 Sliced inverse regression and principal hessian directions

Sliced inverse regression (SIR) and Principal hessian directions (pHd) are

dimensionality reduction methods [53, 54] based on the following model of data

y = g(β1x, β2x, . . . , βLx, ε)

The random error ε is assumed to be independent of x, but its probability

distribution is unknown. This model leads to dimensionality reduction since the

relationship between x and y is determined only through β1x, β2x, . . . , βLx. The



15

βi’s are termed effective dimension-reduction (e.d.r.) directions. SIR and pHd are

two different methods of finding these directions.

SIR proceeds by partitioning the range of the response variable y into a

set of slices, and the sample means of the observations x are computed within each

slice. This can be viewed as a rough approximation to the inverse regression of x

on y. Noting that the inverse regression must lie in the effective subspace if the

forward regression lies in such a subspace, principal component analysis is then

used on the sample means to find the effective subspace. It can be shown [53]

that this approach can find effective subspaces, but only under strong assumptions

on the marginal distribution p(x) (the marginal distribution must be elliptically

symmetric).

Let f(x) be the regression function E(y|x), which is a d dimensional

function. pHd works with the Hessian matrix H(x), the p by p matrix with

the i − jth entry equal to ∂2

∂xi ∂xj
f(x). The Hessian matrix typically varies as x

changes unless the surface is quadratic. Difficulties associated with the curse of

dimensionality arise quickly if we were to estimate it for each location. Instead,

we turn to the average Hessian, H̄ = EH(x). The principal Hessian directions are

defined to be the eigenvectors of the matrix H̄Σx, where Σx denotes the covariance

matrix of x. With right-multiplication of x the procedure becomes invariant under

affine transformation of x. This is an important property to have for our purpose

of visualization and dimension reduction. It can be shown that the pHds with

nonzero eigenvalues are in the e.d.r. space.

II.C.3 Mixture discriminant analysis

As described in Section II.C.1, LDA can be obtained by maximum likeli-

hood estimation assuming that the classes are Normally distributed with a common

covariance matrix and different means, with the means constrained to lie in an L

dimensional subspace. Mixture discriminant analysis (MDA) [35] generalizes LDA

by approximating each of the classes by a mixture of Gaussians all of which have a
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common covariance matrix. In MDA, like in LDA, all the means of the Gaussians

are constrained to lie in an L dimensional subspace. The mixture model is esti-

mated using the EM algorithm [31] and the lower dimensional representation is

obtained by projecting the data points into the L dimensional space in which the

means lie. The authors describe further modifications to this method to improve

performance including shrinking the means of a single class toward a common

center and using flexible discriminant analysis [36].

Heteroscedastic discriminant analysis (HDA) extends LDA by allowing

each of the classes to have its own covariance with the expense of resorting to

numerical multivariate optimization to find the low-dimensional transform [37].

II.C.4 Kernel Dimensionality Reduction

Kernel Dimensionality Reduction (KDR) [34] solves a problem of feature

selection in which the features are linear combinations of the components of X. In

particular, it assumes that there is an L-dimensional subspace S such that

p(y|x) = p(y|ΠSx) (II.2)

for all x and y, where ΠS is the orthogonal projection of Rd onto S. A key feature

of KDR is that the distributions p(y|ΠSx) and p(x) are treated nonparametrically.

Using the fact that finding a subspace S with the property II.2 is equivalent to

finding a projection ΠS which makes y and (I − ΠS)x conditionally independent

given ΠSx, KDR turns the dimensionality reduction problem into an optimization

problem by expressing conditional independence in terms of covariance operators

on reproducing kernel Hilbert spaces.

II.C.5 Other methods

Many regression methods inherently perform some form of linear or non-

linear dimensionality reduction in the process of estimating the regressor. For

example, the classical two-layer neural networks involve a linear transformation in
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the first layer, which can be seen as attempting to estimate an effective subspace

based on specific assumptions about the regressor. Similar comments apply to pro-

jection pursuit regression [51], ACE [58] and additive models [52], all of which

provide a methodology for dimensionality reduction in which an additive model is

assumed for the regressor.

Some methods use approximations of the error rate based on Bhattacharyya

bound or on an interclass divergence criterion [59, 60, 61]. These approximations

make use of class-conditional density functions, and they must be accompanied

by a parametric estimation of the densities followed by numerical optimization

of the approximation. Gaussian assumption usually needs to be made about the

class-conditional densities to make optimization tractable.

A related dimension reduction problem is feature selection where the goal

is to select a subset of the features that have the most information about the labels.

For a recent review of feature selection methods, please see [57]. [56] presents a

method to select features based on the mutual information criterion.



Chapter III

Semi-parametric exponential

family principal component

analysis (SP-PCA)

In this chapter, we present a linear, unsupervised dimensionality reduc-

tion method. We show that it has the advantage of being provably asymptotically

consistent and demonstrate using experiments that is compares favorably to the

state of the art.

III.A Motivation and overview

Many of the dimension reduction methods recently proposed in the ma-

chine learning literature can be thought of as special cases of latent variable mod-

elling which is commonly used in statistics to summarize observations [22]. For

this reason, we use the language of latent variable models to describe these methods

in the process of motivating out approach.

As explained in Chapter II, PCA has a quasi-probabilistic interpretation

- it can be thought of as finding a set of parameters θ1, . . . , θn that maximize the

likelihood of the data subject to the constraint that the parameters lie in a lower

18
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dimensional subspace. Note that this interpretation does not mean that PCA is

associated with a probability model, since the parameters θi are assumed to be

drawn arbitrarily from the subspace and not according to any distribution. A prob-

abilistic formulation of PCA can offer several advantages like allowing statistical

testing, application of Bayesian inference methods and naturally accommodating

missing values [23].

Probabilistic PCA (PPCA) [23, 24] borrows from one popular latent

variable model called factor analysis to propose a probabilistic alternative PCA. A

key feature of this probabilistic model is that the latent distribution P (θ) is also

assumed to be Gaussian since it leads to simple and fast model estimation, i.e., the

density of x is approximated by a Gaussian distribution whose covariance matrix

is aligned along a lower dimensional subspace. This may be a good approximation

when data is drawn from a single population and the goal is to explain the data

in terms of a few variables. However, in machine learning we often deal with

data drawn from several populations and PCA is used to reduce dimensions to

control computational complexity of learning. A mixture model with Gaussian

latent distribution would not be able to capture this information. The projection

obtained using a Gaussian latent distribution tends to be skewed toward the center

[23] and hence the distinction between nearby sub-populations may be lost in the

visualization space. For these reasons, it is important not to make restrictive

assumptions about the latent distribution.

We present an alternative probabilistic formulation, called semi-parametric

PCA (SP-PCA), where no assumptions are made about the distribution of the la-

tent random variable θ. Non-parametric latent distribution estimation allows us to

approximate data density better than previous schemes and hence gives better low

dimensional representations. In particular, multi-modality of the high dimensional

density is better preserved in the projected space. When the observed data is com-

posed of several clusters, this technique can be viewed as performing simultaneous

clustering and dimensionality reduction.
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To make our method suitable for special data types, we allow the condi-

tional distribution P (x|θ) to be any member of the exponential family of distribu-

tions. Use of exponential family distributions for P (x|θ) is common in statistics

where it is known as latent trait analysis and they have also been used in several

recently proposed dimensionality reduction schemes [15, 18, 21, 13].

The dimension reduction methods which assume some parametric form

for the latent distribution [23, 15, 18, 21] do not guarantee consistent estimation of

the low-dimensional ‘data-space’ when the true latent distribution does not satisfy

the assumptions made. On the other hand PCA and Exponential PCA [13]

do not assume even the existence of a latent distribution. Consistent estimation

of the lower dimensional space is not guaranteed by Exponential PCA and it is

known that for some exponential family conditional distributions, this method has

significant asymptotic bias [14]. We show that using maximum likelihood approach

with the SP-PCA model guarantees consistent estimation of the low-dimensional

space modulo identifiability.

We use Lindsay’s non-parametric maximum likelihood estimation theo-

rem to reduce the estimation problem to one with a discrete prior with large enough

support set size. It turns out that this choice gives us a prior which is ‘conjugate’ to

all exponential family distributions, allowing us to give a unified algorithm for all

data types. This choice also makes it possible to efficiently estimate the model even

in the case when different components of the data vector are of different types. We

present experiments with SP-PCA (with Gaussian conditional density) and com-

pare it to PCA and PPCA [23]. We also present simulation results on binary and

count data which show that estimating the prior from data (instead of assuming

a parametric form) can improve the quality of low dimensional projections both

in terms of separating different populations and generalization to unseen samples.

These properties, along with the fact that our algorithm remains computation-

ally efficient for moderate values of projected space dimension, indicate that the

method is suitable for general purpose projection in the pre-processing stage.
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III.B The constrained mixture model

We assume that the d-dimensional observation vectors x1, . . . ,xn are out-

comes of iid draws of a random variable whose distribution P (x) =
∫

P (θ)P (x|θ)dθ

is determined by the latent distribution P (θ) and the conditional distribution

P (x|θ). This can also be viewed as a mixture density with P (θ) being the mixing

distribution, the mixture components labelled by θ and P (x|θ) being the compo-

nent distribution corresponding to θ. The latent distribution is used to model the

interdependencies among the components of x and the conditional distribution to

model ‘noise’. For example in the case of a collection of documents we can think

of the ‘content’ of the document as a latent variable since it cannot be measured.

For any given content, the words used in the document and their frequency may

depend on random factors - for example what the author has been reading recently,

and this can be modelled by P (x|θ).

III.B.1 Conditional distribution

We assume that P (θ) adequately models the dependencies among the

components of x and hence that the components of x are independent when condi-

tioned upon θ, i.e., P (x|θ) = ΠjP (xj|θj), where xj and θj are the j’th components

of x and θ. As noted in the introduction, using Gaussian means and constrain-

ing them to a lower dimensional subspace of the data space is equivalent to using

Euclidean distance as a measure of similarity. This Gaussian model may not be ap-

propriate for other data types, for instance the Bernoulli distribution may be better

for binary data and Poisson for integer data. These three distributions, along with

several others, belong to a family of distributions known as the exponential family

[29]. Any member of this family can be written in the form

logP (x|θ) = logP0(x) + xθ −G(θ)

where θ is called the natural parameter and G(θ) is a function that ensures that the

probabilities sum to one. An important property of this family is that the mean
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µ of a distribution and its natural parameter θ are related through a monotone

invertible, nonlinear function µ = G′(θ) = g(θ). It can be shown that the nega-

tive log-likelihoods of exponential family distributions can be written as Bregman

distances (ignoring constants) which are a family of generalized metrics associated

with convex functions [13]. Note that by using different distributions for the

various components of x, we can model mixed data types.

III.B.2 Latent distribution

Like previous latent variable methods, including PCA, we constrain the

latent variable θ to an `-dimensional Euclidean subspace of Rd to model the belief

that the intrinsic dimensionality of the data is smaller than d. One way to represent

the (unknown) linear constraint on values that θ can take is to write it as an

invertible linear transformation of another random variable which takes values

a ∈ R`,

θ = aV + b (III.1)

where V is an `×d rotation matrix and b is a d-dimensional displacement

vector. Hence any distribution PΘ(θ) satisfying the low dimensional constraints

can be represented using a triple (P (a), V,b), where P (a) is a distribution over

R`. Lindsay’s mixture non-parametric maximum likelihood estimation (NPMLE)

theorem states that for fixed (V ,b), the maximum likelihood (ML) estimate of

P (a) exists and is a discrete distribution with no more than n distinct points of

support [27]. Hence if ML is the chosen parameter estimation technique, the

SP-PCA model can be assumed (without loss of generality) to be a constrained

finite mixture model with at most n mixture components. The number of mixture

components in the model, n, grows with the amount of data and we propose to

use pruning to reduce the number of components during model estimation to help

both in computational speed and model generalization. Finally, we note that

instead of the natural parameter, any of its invertible transformations could have
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been constrained to a lower dimensional space. Choosing to linearly constrain the

natural parameter affords us computational advantages similar to those available

when we use the canonical link in generalized linear regression.

III.C Low dimensional representation

There are several ways in which low-dimensional representations can be

obtained using the constrained mixture model. If the distribution of x is a con-

strained mixture density described above, we would ideally like to represent a given

observation x by the unknown θ (or the corresponding a related to θ by Equa-

tion (III.1)) that generated it, since the conditional distribution P (x|θ) is used to

model random effects. However, the actual value of a is not known to us and all

of our knowledge of a is contained in the posterior distribution

P (a|x) =
P (a)P (x|a)

P (x)

Since P (x|a) =
∏d

j=1 P0(xj) exp(xjθj − G(θj)), where θj = bj + a1V1j +

. . .+ aLV`j, we can write the posterior as

P (a|x) =
exp(

∑d
j=1 xjθj −

∑d
j=1G(θj))

∫

a
P (θ) exp(

∑d
j=1 xjθj −

∑d
j=1G(θj))

Since a belongs to an `-dimensional space, any of its estimators like the

posterior mean or mode (MAP estimate) can be used to represent x in ` dimensions.

For presenting the simulation results in this chapter, we use the posterior mean

as the representation point. This representation has been used in other latent

variable methods to get meaningful low dimensional views [23, 15, 21].

Note that the distribution P (a|x) depends on x only through

d
∑

j=1

xjθj =
∑̀

l=1

al

d
∑

j=1

xjVlj

Hence x can also be represented [22] by the `-dimensional minimal sufficient
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statistic

{
d
∑

j=1

xjV1j , . . . ,

d
∑

j=1

xjV`j}

Yet another method is to represent x by that point θ on (V, b) that is

closest according to the appropriate Bregman distance (it can be shown that there

is a unique such θopt on the plane [13]). For the Gaussian case, this representation

is the usual Euclidean projection.

III.D Discussion of the model

III.D.1 The Gaussian case

When the exponential family distribution chosen is Gaussian, the model

is a mixture of n spherical Gaussians all of whose means lie on a hyperplane in the

data space. This can be thought of as a ‘soft’ version of PCA, i.e., Gaussian case

of SP-PCA is related to PCA in the same manner as Gaussian mixture model is

related to K-means. The use of arbitrary mixing distribution over the plane allows

us to approximate arbitrary spread of data along the hyperplane (see Fig. III.1).

Use of fixed variance spherical Gaussians ensures that like PCA, the direction

perpendicular to the plane (V, b) is irrelevant in any metric involving relative values

of likelihoods P (x|θk), including the posterior mean. To see why this is the case,

consider xp, the point on the hyperplane (V, b) closest to x. Now, P (x|θk) ∝

exp(−{||x,xp||
2 + ||xp, θk||

2}/2σ2) and for a fixed x, the factor involving ||x,xp||
2

is common to all θk’s on the hyperplane (V, b) and hence cancels out.

When using SP-PCA as a low-dimensional density model, σ should be

assumed to be unknown and estimated using ML along with other parameters

of the model. When SP-PCA is being used only to project data into a lower

dimensional space, we noticed that assuming a reasonable fixed variance (a few

times the minimum distance between data points) worked well.

Consider the case when data density P (x) belongs to our model space,

i.e., it is specified by {A, V, b,Π, σ} and let D be any direction parallel to the
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Figure III.1: Subspace aligned variance approximated by clustered but slightly

spread out mixture component mean parameters ⊗

plane (V, b) along which the latent distribution P (θ) has non-zero variance. Since

Gaussian noise with variance σ is added to this latent distribution to obtain P (x),

variance of P (x) along D will be greater than σ. The variance of P (x) along any

direction perpendicular to (V, b) will be exactly σ. Hence, PCA of P (x) yields the

subspace (V, b) which is the same as that obtained using SP-PCA (this may not

be true when P (x) does not belong to our model space). We found that SP-PCA

differs significantly from PPCA in the predictive power of the low-dimensional

density model (see Section III.G).

III.D.2 Reference vectors view

Dimension reduction using this model can be viewed as a ‘reference vec-

tors’ based method. In this view, each θi acts as a reference vector and using ML

estimation to find the distribution P (θ), is a natural way to find the appropriate

locations and relative weights (importance) for θi’s. In the estimation process,

the reference vectors are moved around so that they cluster toward the ‘centers’

of data clusters and the subspace on which they lie is moved as close as possible

to the data. The posterior mean representation is the weighted average of these

reference vectors where the weights are determined by how ‘far’ x is from each of

them. Hence, we expect SP-PCA to generate meaningful projections even when

data is not generated according to a constrained mixture model.
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III.D.3 Visualization and data analysis

SP-PCA can be used in several ways to visualize high dimensional data.

Firstly, the projections using posterior mean can reveal presence of clusters. Sec-

ondly, a topographic (contour) map of the posterior induced by data point x will

reveal which sections of the projected space (sub-populations) it is close to in the

appropriate Bregman divergence sense. If natural parameter vectors of two expo-

nential family distributions are close to each other, then so are the corresponding

mean parameters, since g, the one-one invertible function map between these two

parameter spaces is typically continuous. This means that if representations of

two data points are close to one another in the projected space, then so are the

data points in some directions. Also, plotting the estimated prior P̂ (θ) will indi-

cate clusters or reveal multi-modality in the pdf of X and examining the parameter

values corresponding to these modes will reveal distinguishing characteristics of the

clusters. However the actual values of the mixture parameters may not pass close

to data points if P (θ) is not concentrated along some hyperplane of dimension `.

III.E Consistency of the maximum likelihood estimator

We propose to use the ML estimator to find the latent space (V, b) and the

latent distribution P (a). Usually a parametric form is assumed for P (a) and the

consistency of the ML estimate is well known for this task where the parameter

space is a subset of a finite dimensional Euclidean space. In our model, one of

the parameters P (a) ranges over the space of all distribution functions on R` and

hence we need to do more to verify the validity of our estimator.

Before defining consistency, one issue we need to address is the non-

identifiability of some mixture distributions. Consider a parametric family of

cumulative distribution functions, F = {F (x/γ), γ ∈ Γ} (parameter γ takes

values in the parameter space Γ). The elements of Γ are said to be identifiable if

∀ γ 6= γ′, ∃ x s/t F (x/γ) 6= F (x/γ′). Exponential family mixture distributions
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are not identifiable in general (for an example see [30]).

If a set of distributions parametrized by a (V, b) and P (a) is not identifi-

able, it will not be possible distinguish some parameters from one another based

on the density p(x) and hence it will not be possible to recover the latent subspace

(V, b). Consider for example the following two mixtures of bernoulli distributions,

both of which represent the same distribution p(x) in a 3-dimensional binary space.

We use the convention of denoting mean parameters of exponential family distri-

butions using µ and the mixing distribution of a mixture using π1, . . . , πk where

k is the number of components in the mixture distribution. In terms of the mean

parameters, the two mixture distributions are

1. Distribution 1 : π11 = 0.25, µ11 = (1, 0.5, 0.5) and π12 = 0.75, µ12 = (1/3, 0.5, 0.5)

2. Distribution 2: π21 = 0.25, µ21 = (0.5, 0, 0.5) and π22 = 0.75, µ22 = (0.5, 2/3, 0.5)

These mixture distributions, when translated into the natural parameter space

correspond to

1. Distribution 1 : π11 = 0.25, θ11 = (∞, 0, 0) and π12 = 0.75, θ12 = (− log(2), 0, 0)

2. Distribution 2 : π21 = 0.25, θ21 = (0,−∞, 0) and π22 = 0.75, θ22 = (0, log(2), 0)

The natural parameters of the first distribution lie on a 1-dimensional

subspace parallel to the first natural parameter axis and the parameters of the

second distribution lie on a line parallel to the second natural parameter axis. It is

easily verified that though the signal subspace of both these distribution is vastly

different (the subspaces are perpendicular to one another), they induce the same

distribution on the 3-dimensional binary space and hence cannot be distinguished

from one another using samples from the binary space.

This, however, is not a problem for us since we are only interested in

approximating P (x) well and not in the actual parameters corresponding to the

distribution. Hence we use the definition of consistency of an estimator given

by Redner [25]. Let γ0 be the ‘true’ parameter from which observed samples are
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drawn. Let C0 be the set of all parameters γ corresponding to the ‘true’ distribution

F (x/γ0) (i.e., C0 = {γ : F (x/γ) = F (x/γ0) ∀ x}). Let γ̂n be an estimator of γ

based on n observed samples of X and let Γ̂ be the quotient topological space

obtained from Γ obtained by identifying the set C0 to a point γ̂0.

Definition 1. The sequence of estimators {γ̂n, n = 1, . . . ,∞} is said to be strongly

consistent in the sense of Redner if limm→∞ γ̂n = γ̂0 almost surely.

Consistency of estimating the subspace (V, b), under the assumption of

a conditional distribution model p(y|x) and some assumptions on pU , follows by

verifying that the assumptions of Kiefer and Wolfowitz [26] are satisfied. The

assumption that P (a) is zero outside a bounded region is not restrictive in practice

for Gaussian and Poisson distributions, since we expect the observations belong to

a bounded region of Rd. For the Bernoulli distribution, as we let θ → +∞, the

corresponding mean parameter µ→ 1 slower and slower (similarly with θ → −∞).

Hence if we take the subset to be large enough, there is no restriction within

computing precision.

Theorem 2. If P (a) is assumed to be zero outside a bounded subset of R`, the

ML estimator of parameter (V, b, P (a)) is strongly consistent for Gaussian, Binary

and Poisson conditional distributions.

Proof. Assume that the frequency function of the conditional distribution py|x

is f(x|s, a), where s ∈ Ω ⊆ Rk1 is a structural parameter and G(a) ∈ Γ is a

distribution over incidental parameters a ∈ Rk2. γ = (s, G) is a generic point in

the parameter space Ω × Γ. In the space Ω × Γ, we define the metric

δ(γ1, γ2) = δ((s1, G1), (s2, G2)) =

k1
∑

j=1

| tan−1 s1j−tan−1 s2j |+

∫

Rk2

|G1(z)−G2(z)|e
−|z|dτ(z)

Let γ0 be the ‘true’ parameter from which observed samples are drawn.

It follows from the proof of Kiefer and Wolfowitz’s Theorem [26] that to prove our

claim, it is sufficient to verify the following assumptions for the density models

that we are considering.
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Assumption 1 f(x|s, a) is a density with respect to a σ-finite measure µ on a

Euclidean space of which x is a generic point.

Assumption 2 It is possible to extend the definition of f(x|γ) so that the range

of γ will be in Ω̄ × Γ̄ and so that, for any {γi} and γ∗ in Ω̄ × Γ̄, γi −→ γ∗

implies f(x|γi) −→ f(x|γ∗) except perhaps on a set of x that has zero probability

according to the true distribution.

Assumption 3 For any γ in Ω̄ × Γ̄ and any ρ > 0, w(x|γ, ρ) is a measurable

function of x, where w(x|γ, ρ) = supf(x|γ′), the supremum being taken over all γ′

in Ω̄ × Γ̄ for which δ(γ, γ′) < ρ.

Assumption 4 For any γ ∈ Ω̄ × Γ̄ we have, as ρ ↓ 0,

lim E

[

log
w(x|γ, ρ)

f(x|γ0)

]+

<∞

Our model consists of a system Xi1, . . . , Xid, i = 1, 2, . . . , independent

draws of a d-dimensional random variable X. The distribution f(x|γ) is determined

by parameter γ = (s, G). Here s = (V, b) ∈ Ω = R(`+1)∗d is the structural part

of the parameter which determines the subspace to which natural parameters of

the exponential family distributions are constrained and G ∈ Γ is the distribution

according to which the natural parameters are picked on the subspace. Γ consists of

all the distributions G on R` such that the corresponding density function g(a) = 0

for ||a|| > B (B is some constant fixed apriori).

Hence the model f(x|γ), with parameter γ = (V, b, G) belonging to the

space Ω × Γ is specified by

a ∼ G (III.2)

θ = aV + b (III.3)

log f(xj |θj) = log f0(xj) + xjθj −G(θj) j = 1, . . . , d (III.4)

f(x|θ) =
d
∏

j=1

f(xj|θj) (III.5)

(III.6)
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From the definition of f(x|V, b, G), it follows immedietly that Assump-

tions 1 and 2 are satisfied. Assumption 3 is satisfied since both Ω and Γ are

separable spaces.

To verify Assumption 5, note that f(x|s, G) is uniformly bounded in x,

s and G (since the mean of the poisson is assumed to be bounded above). Hence

E[logω] <∞.

Also, to show that E[log f(Xj|γ0)] > −∞, it is sufficient to show that

E[log |Xj|]+ <∞ (by Lemma in Section 2 of [26]).

E[log |Xj|]
+ ≤ E[log(|Xj−g(θj)|+|g(θj)|)]

+ ≤ E[log(|Xj−g(θj)|+1)]++E[log |g(θj)|]
+

E[log |g(θj)|]+ ≤ ∞ since we have assumed that P (a) is zero outside a

bounded region and since g(θj) is a continuous function of a for all the distributions

we are considering. That E[log(|Xj−g(θj)|+1)]+ is ≤ ∞ follows from the fact that

variance of Poisson, Gaussian, Bernoulli and Exponential distributions is bounded

if a and hence θj are bounded. Note that this argument holds whether x correspond

to the mean parameters or the natural parameters. In fact, it would hold for x

corresponding to any 1-1, smooth, invertible transformation of the mean or natural

parameters.

Gaussian case when the common variance parameter σ is considered un-

known and estimated using ML: For this case, the ML estimator is consistent

if we make an additional assumption that σ is bounded below by a small constant.

This assumption ensures that f(x|s, G) is uniformly bounded in x, s and G and

hence E[logω] <∞ which is needed to satisfy Assumption 5.

III.F Model estimation

III.F.1 Algorithm

We present an EM algorithm for estimating parameters of a finite mixture

model with the components constrained to an `-dimensional Euclidean subspace.
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We propose an iterative re-weighted least squares (IRLS) method for the maximiza-

tion step along the lines of generalized linear model estimation. Use of weighted

least squares does not guarantee monotone increase in data likelihood. To guaran-

tee convergence of the algorithm, we can check the likelihood of data at the IRLS

update and decrease step size if necessary. Let x1, . . . ,xn be iid samples drawn

from a d-dimensional density P (x), c be the number of mixture components and let

the mixing density be Π = (π1, . . . , πc). Associated with each mixture component

(indexed by k) are parameter vectors θk and ak which are related by θk = akV +b.

In this section we will work with the assumption that all components of x corre-

spond to the same exponential family for ease of notation. For each observed xi

there is an unobserved ‘missing’ variable zi which is a c-dimensional binary vector

whose k’th component is one if the k’th mixture component was the outcome in

the i’th random draw and zero otherwise. If yl is a vector, we use ylm to denote

its m’th component.

Let A be an c × ` matrix whose k’th row is ak, B be an c × d matrix

all of whose rows equal b and Θ be an c× d matrix whose k’th row is θk. Hence

we can rewrite Equation (III.1) as Θ = AV + B. Our model is parametrized

by {Π, A, V, B}. As in the case of usual (unconstrained) finite mixture model

estimation, we introduce a ‘missing’ variable Z for use in EM derivation. For

each observed xi there is an unobserved zi, a c-dimensional binary vector whose

k’th component is one if the k’th mixture component was the outcome in the

i’th random draw and zero otherwise. Writing the complete data log likelihood

function,

log P (xn
1 , z

n
1/Π, A, V, B) =

n
∑

i=1

P (xi, zi/Π, A, V, B)

=
n
∑

i=1

c
∑

k=1

zik log πk +
n
∑

i=1

c
∑

k=1

d
∑

j=1

zik logP (xij/θkj)

The E-step is identical to unconstrained finite mixture case,
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ẑik = E(zik) =
πkP (xi/θk)

∑c
m=1 πmP (xi/θm)

; x̃kj =

∑n
i=1 ẑikxij
∑n

i=1 ẑik

In the M-step we update Π, V , b, and ak in the following manner

πk =

∑n
i=1 ẑik

∑n
i=1

∑c
m=1 zim

=

∑n
i=1 ẑik

n

A, V and b should be updated in such a way as to strictly increase the

value of the function ` or equivalently of L̃ given by

L(A, V,b) =

n
∑

i=1

c
∑

k=1

d
∑

j=1

ẑik{xijθkj −G(θkj)}

L̃(A, V,b) =

c
∑

k=1

d
∑

j=1

{θkjx̃kj −G(θkj)}

where,

x̃kj =

∑n
i=1 ẑikxij
∑n

i=1 ẑik

To optimize L̃(A, V,b), we could use alternating minimization (similar

to the algorithm in [13]) since the function to be optimized is convex in each

element of the matrices A, V and b. However, for the sake of speed, we propose

an iterative weighted least squares method along the lines of Generalized linear

models [29], i.e., we apply the Newton-Raphson (NR) procedure to find zeros of

the derivative of L̃(A, V,b). Use of NR does not guarantee monotone increase in

the value of L̃. However, L̃ always increases locally in the direction in which NR

moves the parameters and so we can move in small steps whenever NR stepping

leads to a decrease in L̃. Upon taking the first and second derivatives with respect

to the components of the matrix A, it turns out that each row can be updated

independently of the others in a given iteration. This decoupling is convenient

since it means smaller matrix operations. Similarly, we find that each column of

V and each dimension of b can be updated independently.
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ai is updated by adding δai calculated using

(VΩiV
′)δai = GRi ; [Ωi]qq =

∂g(θiq)

∂θiq
; [GRi]l1 =

d
∑

j=1

(x̃ij − g(θij))Vlj

Here the function g(θ) is as defined in Section III.B and depends on the

member of the exponential family that is being used. Each column of the matrix

V , vs, is updated by adding δvs calculated using

(A′ΩsA)δvs = GRs ; [Ωs]kk =
∂g(θks)

∂θks
; [GRs]l1 =

c
∑

k′=1

(x̃k′s − g(θk′s))Ak′l

Each component of vector b, bs, is updated by adding δbs calculated using

Hsδbs = GRs ; Hs =
c
∑

k′=1

∂g(θk′s)

∂θk′s

; GRs =
c
∑

k′=1

(x̃k′s − g(θk′s))

III.F.2 Pruning the mixture components

Redundant mixture components can be pruned between the EM iterations

in order to improve speed of the algorithm and generalization properties while

retaining the full capability to approximate P (x). We propose the following criteria

for pruning

• Starved components : If πk < C1, then drop the k’th component

• Nearby components : If max
i |P (xi|θk1) − P (x|θk2)| < C2, then drop either

k1’th or k2’th component

The value of C1 should be Θ(1/n) since we want to measure how starved a

component is based on what percentage of the data it is ‘responsible’ for. To mea-

sure the nearness of components we use the distance of between probabilities the

components assign to observations. If we were working with mixture of Gaussians,

we could have used the usual distance between mixture component parameters.
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However, for general exponential family distributions, the Euclidean distance be-

tween two components does not accurately reflect the difference in the distributions

that they represent. For example, for Bernoulli distributions with natural param-

eter θ, θ = 1000 is practically identical to θ = 10000 whereas θ = 0 is significantly

different from θ = 1. The ∞-norm of the difference between probability vectors

is used instead of its two-norm since we do not want to lose mixture components

that are distinguished with respect to a small number of observation vectors. In

the case of clustering this means that we do not ignore under-represented clusters.

C2 should be chosen to be a small constant, depending on how much pruning is

desired.

III.F.3 Convergence and computational complexity

It is easy to verify that our model satisfies the continuity assumptions

of Theorem 2, [32], and hence we can conclude that any limit point of the EM

iterations is a stationary point of the log likelihood function.

Time taken for the E-step is O(cdn) since for each data vector x and com-

ponent θ we need to compute P (x|θ) which is a product of d univariate densities.

In the M-step, each update of the parameter vector (A, V,b) involves computing

the hessian matrices and then inverting them. Using naive matrix multiplication

and inversion, the time taken is O(cd`2). Hence the computational complexity of

each iteration of the EM algorithm is O(cd`2 + cdn).

For the Gaussian case, the E-step only takes O(c`n) since we only need to

take into account the variation of data along the subspace given by current value

of V (as explained in Section III.D.1). The most expensive step is computation of

P (xi|θj), and this is a common problem faced in neural network training. [42]

gives a procedure for speeding up this computation using the k-d tree data struc-

ture by identifying relevant prototypes (for each x) thereby avoiding unnecessary

computation.
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III.F.4 Model selection

While any of the standard model selection methods based on penalizing

complexity could be used to choose `, an alternative method is to pick ` which

minimizes a validation or bootstrap based estimate of the prediction error (negative

log likelihood per sample). For the Gaussian case, a fast method to pick ` would

be to plot the variance of data along the principal directions (found using PCA)

and look for the dimension at which there is a ‘knee’ or a sudden drop in variance

or where the total residual variance falls below a chosen threshold.

III.G Experiments

In this section we present simulations on synthetic and real data to

demonstrate the properties of SP-PCA. In factor analysis literature, it is commonly

believed that choice of prior distribution is unimportant for the low dimensional

data summarization (see [22], Sections 2.3, 2.10 and 2.16). Through the examples

below we argue that estimating the prior instead of assuming it arbitrarily can

make a difference when latent variable models are used for density approximation,

data analysis and visualization.

III.G.1 Efficacy of SP-PCA in recovering the lower dimensional sub-

space

We present experiments demonstrating consistency properties of the Sum-

squared estimator (PCA), Variance Ignoring estimator (Var-Ig), Maximum condi-

tional likelihood estimator (MCL) and Semiparametric-PCA (SP-PCA). Figure

III.2 shows the canonical angles between estimated subspace and V0 when the con-

ditional distribution is Bernoulli and the natural parameters are constrained to true

lower dimensional subspace while Figures III.3 and III.4 show examples where

the conditional distribution is Poisson. These experiments demonstrate that the

subspace estimated by Exponential PCA can be very far from the true subspace.
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Table III.1: Bootstrap estimates of prediction error for PPCA and SP-PCA.

Density Isotropic PPCA SP-PCA Full
gaussian `=1 `=2 `=3 `=1 `=2 `=3 gaussian

error 50.39 38.03 34.71 34.76 36.85 30.99 28.54 343.83

In all of these experiments, we found that the limit points of Exponential PCA

subspace were either close to one of the axes or close to the true subspace. This

bias toward the axes is explained [14]. Another interesting thing we noticed is

that whether or not Exponential PCA converges to the true subspace can depend

strongly on the latent distribution (this is demonstrated in the Poisson example in

Figures III.3 and III.4).

III.G.2 Use of SP-PCA as a low dimensional density model

The Tobamovirus data which consists of 38 18-dimensional examples was

used in [23] to illustrate properties of PPCA. PPCA and SP-PCA can be thought

of as providing a range of low-dimensional density models for the data. The com-

plexity of these densities increases with and is controlled by the value of ` (the pro-

jected space dimension) starting with the zero dimensional model of an isotropic

Gaussian. For a fixed lower dimension `, SP-PCA has greater approximation capa-

bility than PPCA. In Table III.1, we present bootstrap estimates of the predictive

power of PPCA and SP-PCA for various values of L. SP-PCA has lower prediction

error than PPCA for ` = 1, 2 and 3. This indicates that SP-PCA combines flex-

ible density estimation and excellent generalization even when trained on a small

amount of data.

III.G.3 Visualization results on discrete datasets

We present experiments on 20 Newsgroups dataset comparing SP-PCA to

PCA, exponential family GTM [21] and Exponential family PCA [13]. Data for

the first set of simulations was drawn from comp.sys.ibm.pc.hardware, comp.sys.-
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Figure III.2: Norm of sines of canonical angles to the correct subspace to which the

distribution over ‘natural parameters’ of the Bernoulli mixture are constrained.

mac.hardware and sci.med newsgroups. A dictionary size of 150 words was chosen

and the words in the dictionary were picked to be those which have maximum

mutual information with class labels. 200 documents were drawn from each of

the three newsgroups to form the training data. Two-dimensional representations

obtained using various methods are shown in Fig. III.5. In the projection obtained
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Figure III.3: Norm of sines of canonical angles to the correct subspace to which

the distribution over ‘natural parameters’ of the Poisson mixture are constrained

- Part 1.

using PCA, Exponential family PCA and Bernoulli GTM, the classes comp.sys.-

ibm.pc.hardware and comp.sys.mac.hardware were not well separated in the 2D

space. This result (Fig. III.5(c)) was presented in [21] and the the overlap

between the two groups was attributed to the fact that they are very similar and

hence share many words in common. However, SP-PCA was able to separate the
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Figure III.4: Norm of sines of canonical angles to the correct subspace to which

the distribution over ‘natural parameters’ of the Poisson mixture are constrained

- Part 2.

three sets reasonably well (Fig. III.5(d)). One way to quantify the separation

of dissimilar groups in the two-dimensional projections is to use the training set

classification error of projected data using SVM. The accuracy of the best SVM

classifier (we tried a range of SVM parameter values and picked the best for each

projected data set) was 75% for bernoulli GTM projection and 82.3% for SP-PCA

projection (the difference corresponds to 44 data points while the total number

of data points is 600). We conjecture that the reason comp.sys.ibm.pc.hardware

and comp.sys.mac.hardware have overlap in projection using Bernoulli GTM is

that the prior is assumed to be over a pre-specified grid in latent space and the

spacing between grid points happened to be large in the parameter space close

to the two news groups. In contrast to this, in SP-PCA there is no grid and the

latent distribution is allowed to adapt to the given data set. Note that a standard

clustering algorithm could be used on the data projected using SP-PCA to conclude

that data consisted of three kinds of documents.

Data for the second set of simulations was drawn from sci.crypt, sci.med,
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Figure III.5: Projection by various methods of binary data from 200 documents

each from comp.sys.ibm.pc.hardware (×), comp.sys.mac.hardware (◦) and sci.med

(.)

sci.space and soc.culture.religion.christianity newsgroups. A dictionary size of 100

words was chosen and again the words in the dictionary were picked to be those

which have maximum mutual information with class labels. 100 documents were

drawn from each of the newsgroups to form the training data and 100 more to
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Figure III.6: Projection by various methods of binary data from 100 docu-

ments each from sci.crypt (×), sci.med (◦), sci.space (∇) and soc.culture.religion.-

christianity (+) - Part 1

form the test data. Figures III.6 and III.7 show two-dimensional representations of

binary data obtained using various methods. Note that while the four newsgroups

are bunched together in the projection obtained using Exponential family PCA [13]

(Fig. III.6(b)), we can still detect the presence four groups from this projection

and in this sense this projection is better than the PCA projection. This result

is pleasing since it confirms our intuition that using negative log-likelihood of
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(b) Test data - GTM

Figure III.7: Projection by various methods of binary data from 100 docu-

ments each from sci.crypt (×), sci.med (◦), sci.space (∇) and soc.culture.religion.-

christianity (+) - Part 2

Bernoulli distribution as a measure of similarity is more appropriate than squared

Euclidean distance for binary data. We conjecture that the reason the four groups

are not well separated in this projection is that a conjugate prior has to be used

in its estimation for computational purposes [13] and the form and parameters of

this prior are considered fixed and given inputs to the algorithm. Both SP-PCA

(Fig. III.6(c)) and Bernoulli GTM (Fig. III.7(a)) were able to clearly separate the

clusters in the training data. Figures III.6(d) and III.7(b) show representation of

test data using the models estimated by SP-PCA and Bernoulli GTM respectively.

To measure generalization of these methods, we can use a K-nearest neighbors

based non-parametric estimate of the density of the projected training data and

compare the percentage difference between the log-likelihoods of training and test

data with respect to this density. SP-PCA had smaller percentage change in log-

likelihood for most values of K that we tried between 10 and 40. This indicates that

SP-PCA generalizes better than GTM. This can be seen visually in the difference

in the projections of training and test data of sci.space (∇) in Figures III.7(a) and
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III.7(b).
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Chapter IV

Supervised dimensionality

reduction using mixture models

(SDR-MM)

In this chapter, we present a linear, supervised dimensionality reduction

method using exponential family mixture models and demonstrate using exper-

iments that it compares favorably with other state of the art, non-parametric

methods.

IV.A Motivation and Overview

We consider the problem of finding discriminative linear feature trans-

formations. Given a collection of d-dimensional training samples and their class

labels, the goal is to find an L-dimensional hyperplane in R
d such that the pro-

jected samples belonging to various classes are well separated. Our approach to

this problem, termed supervised dimensionality reduction using mixture models

(SDR-MM), is to model each class using a mixture model. The parameters of

the model include affine parameters for a subspace to which the mixture means

are constrained. Gaussian mixtures can approximate arbitrarily complex densities

44
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by lowering the minimum allowed variance and increasing the number of mixture

components. Hence, this approach is semi-parametric - the subspace is determined

by a set of affine parameters, while the distributions on the projected space are

approximated non-parametrically. We use maximum conditional likelihood (MCL)

estimation to determine the parameters of the lower dimensional subspace which

ensures that the predictive information in the feature vectors is retained in the

projected space. MCL has been widely used as a discriminative objective func-

tion for estimating hidden markov models in speech recognition and for Gaussian

mixture models in the context of classification in [40].

Some dimension reduction methods make restrictive parametric assump-

tions about the distributions. For example, Fisher’s linear discriminant analy-

sis (LDA) can be obtained by maximum likelihood estimation assuming that the

classes are Normally distributed with a common covariance matrix and different

means, with the means constrained to lie in an L dimensional subspace. Other

parametric methods include projection pursuit regression [51] and Generalized

additive models [52]. More recently, several semi-parametric methods have been

proposed for supervised dimensionality reduction including sliced inverse regres-

sion [53] and principal Hessian directions (pHd) [54]. Sufficient dimensionality

reduction [55] is designed for the unsupervised case and uses maximum entropy

principle for estimating the exponential models involved.

In terms of the density model used, the method most closely related to

SDR-MM is Mixture discriminant analysis (MDA) [35] which generalizes LDA by

approximating each of the classes by a mixture of Gaussians all of which have a

common covariance matrix. SDR-MM differs from MDA in two important ways.

Firstly, in SDR-MM, we use spherical Gaussian distributions while in MDA each

Gaussian has the same full-covariance matrix. While this may mean that SDR-

MM needs to use more mixture components for each class, the total number of

parameters to be estimated is often reduced from not having to estimate the d2

parameters of the covariance matrix. Secondly, in MDA, parameters are estimated
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using maximum likelihood, while in SDR-MM, the parameters are estimated dis-

criminatively by maximizing the conditional likelihood which also eliminates the

need for subclass shrinkage used in MDA.

The other dimensionality reduction method closely related to SDR-MM

is kernel dimensionality reduction (KDR) [34] which also chooses the lower di-

mensional subspace based on maximum mutual information principle. SDR-MM

differs from KDR in the way in which it measures the mutual information. While

SDR-MM uses conditional likelihood, the KDR objective function is based on cross-

covariance operators on reproducing kernel Hilbert spaces. A related method was

proposed in [38] in which instead of using the Shannon mutual information, a

Renyi-entropy based expression for mutual information is estimated.

Recently, several methods have been proposed for probabilistic formula-

tion of principal component analysis and its extension using the exponential family

of distributions (see for e.g., [50] and the references therein). In SDR-MM also, we

allow the mixture components to be drawn from the exponential family in order to

allow the method to be suitable for the various data types. SDR-MM is an adap-

tation of the unsupervised method - semi-parametric principal component analysis

(SP-PCA) [50] to the supervised scenario. We describe an simple and efficient

EM-like algorithm for model estimation which uses iteratively re-weighted least

squares in the maximization step. We present classification experiments which

show that SDR-MM compares favorably to three related methods - pHd, MDA

and KDR. We also show visualization examples for real-valued and binary data.

IV.B Model with Gaussian components

We are concerned with multi-class supervised problems where the feature

vectors x lie in R
d and the class labels y are drawn from the set {1, . . . ,M}. We

are given training data (x1, y1), . . . , (xn, yn), which are independent and identically

distributed samples, drawn from a probability distribution P (y)P (x|y). Each class

m is modelled by a mixture of cm number of Gaussians N (x|θ, σI) (σ common to all
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classes). Let c =
∑M

m=1 cm be total number of mixture components over all classes,

Π = {π1, . . . , πc} be the prior over these components and for each k ∈ {1, . . . , c},

let ψk(m) be given by

ψk(m) =







1 if mixture component k ∈ class m

0 otherwise

Let D(x,w) denote the squared Euclidean distance between x and w. The distri-

bution is given by

P (Y = m) =
c
∑

k=1

ψk(m)πk

P (x, Y = m) =
c
∑

k=1

πkψk(m)(2π)−d/2e−D(x,θk)/2σ2

.

In order to obtain low dimensional representation and measure discrimi-

native capability of feature transformations, we consider the constrained Gaussian

mixture model. The means of Gaussians from all classes are restricted to lie in

a lower (L) dimensional hyperplane in R
d. We represent this constraint on mix-

ture parameters using L × d rotation matrix V and d-dimensional displacement

vector b. Each mean θk belonging to this hyperplane can be represented by the L

dimensional vector ak

θk = akV + b.

We use the matrix A, whose k’th row is ak, to represent the mixture component

parameters. Hence the SDR-MM model is parameterized by Θ = {Π, ψ, A, V, b}.

The assumption that the mixture components are spherical Gaussians with com-

mon variance ensures that we measure the discriminative capabilities of linear

projection, since the direction perpendicular to the plane (V, b) is irrelevant in

any metric involving relative values of likelihoods P (x|θk). To see why this is

the case, consider xp, the point on the hyperplane (V, b) closest to x. Now,

P (x|θk) ∝ exp(−{D(x,xp) + D(xp, θk)}/2σ2) and for a fixed x, the factor in-

volving D(x,xp) is common to all θk’s on the hyperplane (V, b) and hence cancels

out.
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Like LDA and MDA, there is an inherent classifier associated with the

SDR-MM model trained for reducing dimensions. Since each class is modelled by

a mixture, the distribution P (y = m|x) can be obtained using Bayes rule and used

to label any given test vector x.

Use of spherical Gaussians We have already noted that use of fixed-

variance spherical Gaussians corresponds to measuring discriminative capability of

a linear subspace when training samples are projected onto it. That sphericality

is not a restrictive assumption follows from the universal approximation property

of RBF networks with spherical gaussian kernels [48]. The idea is that spread of

a given class along the subspace (V, b) can be approximated by spread of Gaussian

means belonging to that class, assuming that a small enough variance is chosen.

Use of full covariance matrices makes it necessary to regularize model estimation by

penalizing the objective function. The assumption that all Gaussians have common

spherical covariance reduces the number of parameters to be estimated by O(d2)

and thereby improves model generalization. Experimental results in section IV.G

support these intuitive arguments.

The SDR-MM method is a soft equivalent of prototype methods like LVQ

and its probabilistic nature allows data to simultaneously influence multiple proto-

types - attracting prototypes of the same class and repelling prototypes belonging

to a different class during MCL estimation - thereby generating a large-margin like

effect. This provides a simple alternative to subclass shrinkage used in MDA [35].

There is a tradeoff between regularization and approximation capability - smaller

variance is better for approximation and larger variance for the regularization effect

described above.

IV.C The objective function

We propose using conditional likelihood of the training data as the ob-

jective function for choosing appropriate feature transformations, i.e., we pick the
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lower dimensional space specified by (V, b) using MCL estimation.

(Vopt, bopt) = arg max
(V,b)

max
A,Π

n
∏

i=1

P (yi|xi,Θ). (IV.1)

Use of this objective function can be motivated in several ways. In a classification

problem, we are interested in finding a model which approximates the observed

empirical conditional distribution Pemp(y|x). Maximizing conditional likelihood

is equivalent to minimizing the KL divergence between Pemp(y|x) and the model

P(V,b)(y|x). Also, on a related note, MCL estimation is equivalent to maximum

mutual information estimation [40, 39]. Hence, this objective function is equiv-

alent to picking transformations that preserve maximum amount of the relevant

information (under the SDR-MM model) between distributions of x and y.

class 1
class 2Best Discriminant  

    MCL Solution   

ML Solution 

Figure IV.1: Advantage of maximum conditional likelihood : Each class is a mix-

ture of spherical Gaussians. ♦ and ∗ denote means of gaussian components of

classes 1 and 2 respectively. In this case the subspace mixture discriminant anal-

ysis finds is the same as the maximum likelihood solution.

We present simple examples of projecting two-dimensional samples onto

a line to illustrate how MCL estimation extends the applicability of previously

studies methods that are also, like SDR-MM, based on constrained mixture of

Gaussians. Figure IV.1 shows a two class example where each class is a mixture

of four spherical Gaussians. Projection using low-rank ML estimation fully merges

samples from the two classes while MCL estimated mixture model is able to find
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class 1
class 2

            
ML solution    

Best Discriminant  
   MCL solution    

Figure IV.2: Advantage of maximum conditional likelihood : Two classes with

different covariance matrices. ♦ and ∗ denote means of gaussian components of

classes 1 and 2 respectively. In this case the subspace mixture discriminant analysis

finds is the same as the maximum conditional likelihood solution.

the best discriminant (see also [40]). Figure IV.2 shows an interesting example

where each of the two classes are generated by a single Gaussian with almost the

same mean, but they have very different variance in one direction. If we used ML

estimation with no constraints on the covariance matrices to find a one-dimensional

subspace, we would get the ML solution subspace shown in figure IV.2, even if

each class is allowed to be modelled by a mixture of several Gaussians. This is

because no model can be better than the ‘true distribution’ in terms of likelihood of
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observed data (when data sample is large enough). However, since MDA imposes

common covariance constraints on all mixture components of all classes, the MDA

solution with three gaussian components for each class, coincides with the MCL

solution in this case.

Simulation studies [39] have found that MCL classifiers can compete

with and sometimes outperform other discriminative and generative classifiers. For

fixed (V, b), picking the Gaussian means which maximize conditional likelihood is

equivalent to estimating a discriminative mixture classifier based on data projected

onto the subspace given by (V, b) (see also section IV.B). Hence optimizing the

function ( IV.1) is equivalent to picking the best subspace for a discriminative

Gaussian mixture classifier.

IV.D Exponential family components

Using Gaussian means and constraining them to a lower dimensional

subspace of data space is equivalent to using a ‘soft’ prototype method where

the prototypes are real valued and D(x, θ), the distance between a point x and

prototype θ, is Euclidean. This Gaussian model may not appropriate for other data

types, for instance binary or integer data. The Bernoulli distribution may be better

for binary data and Poisson for integer data. These three distributions, along with

several others, belong to a family of distributions known as the exponential family

[29] and can be written in the form

logP (x|θ) = logP0(x) + xθ −G(θ).

Here, θ is called the natural parameter and G(θ) is a function that ensures that

the probabilities sum to one. Studies in the area of unsupervised dimensionality

reduction of special data types, have found that use of exponential family models

yields better low dimensional representations (e.g., [50] and the references therein).

Hence we extend the model described in section IV.B by using multivariate expo-

nential family distributions for mixture components in the place of fixed variance
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Gaussians,

logP (x|θ) =
d
∑

j=1

{logP0j(xj) + xjθj −Gj(θj)}, (IV.2)

where xj and θj are the j’th components of x and θ. Note that by using different

distributions for different components of the feature vector x, we can model mixed

data types.

IV.E Low dimensional representation

We discuss two of the several ways in which low dimensional representa-

tions can be obtained using the model Θ. The first method is to represent x by

that point θ on (V, b) that is closest according to the appropriate Bregman (expo-

nential family-based) distance. It can be shown that there is a unique such θopt on

the plane. This representation is a generalization of the standard Euclidean pro-

jection. The second method of low dimensional representation is based on Bayes

rule. Each feature vector x induces a posterior distribution over the latent domain

P (θi|x) = πiP (x|θi)/P (x). Under the SDR-MM model, all the information in x

about y is contained in this posterior distribution since y and x are independent

when conditioned upon the latent variable θ. Hence x can be represented by a suit-

able function of this posterior and we choose to use the mean. This representation

has been used successfully by several probabilistic methods in the unsupervised

case, to get meaningful low dimensional views.

IV.F The optimization algorithm

Several iterative algorithms have been proposed for MCL estimation of

mixture models, see for example [40, 39]. The common thread in these algorithms

is that each iteration involves evaluating a tight lower bound which touches the

objective function at the current parameter value. Model parameters are then up-

dated by maximizing this lower bound. This technique was called bound maximiza-

tion in [40] and is the basis of many iterative algorithms including the expectation
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maximization (EM) algorithm.

We use the idea of bound maximization and derive an algorithm for MCL

estimation under low rank constraint on mixture component parameters Θ. Let

Θt and Θt+1 denote the current and updated parameter values at iteration t. The

change in conditional log-likelihood at iteration t can be written as

∆l =

n
∑

i=1

{logP (yi|xi,Θ
t+1) − logP (yi|xi,Θ

t)}

≥
n
∑

i=1

c
∑

k=1

ẑik logP (θk,xi, yi|Θ
t+1)

−
n
∑

i=1

ρiP (xi|Θ
t+1) + constant,

where ẑik =
P (θk,xi, yi|Θt)

∑c
k′=1 P (θk′,xi, yi|Θt)

& ρi =
1

P (xi|Θt)
.

Here the first term was lower bounded using Jensen’s inequality (similar to the

EM algorithm) and the second term using logw ≤ w − 1. At each iteration, we

compute the lower bound by computing ẑik and ρi for i = 1, . . . , n and k = 1, . . . , c.

The lower bound is then optimized by alternately maximizing over each of Π, A,

V and b while holding the rest of the parameters constant.

The lower bound can be written as (ignoring constants since they do not

affect the optimization steps)

∆l =
∑

i

∑

k

ẑik log πk +
∑

i

∑

k

ẑik logψk(yi) (IV.3)

+
∑

i

∑

k

ẑik logP (xi|θk) −
∑

i

∑

k

ρiπkP (xi|θk).

Updating Π : Πt+1 is obtained by maximizing the Lagrangian (formed

using terms in ∆l involving πk)

L =

c
∑

k=1

{c1k log πk − c2kπk} + λ(

c
∑

k=1

πk − 1),

where c1k =
∑n

i=1 ẑik, c2k =
∑n

i=1 ρiP (xi|θk) and λ is a lagrange multiplier used to

impose the constraint that the latent distribution sums to one. This optimization
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is a little more complicated than its counterpart in the EM algorithm for ML

estimation since we have both linear and logarithmic terms. Differentiating L and

setting the derivative to zero, we get πk = c1k/(c2k − λ). We need to find λ that

satisfies f(λ) =
∑c

k=1 c1k/(c2k − λ) = 1. There is no explicit solution for this

equation, but it is easy to verify that at λ0 = mink(c2k − c1k), f(λ0) > 1 and that

as λ→ −∞, f(λ) → 0. Moreover, f(λ) is continuous and monotone in the region

[−∞, λ0] implying that there is a unique λopt such that f(λopt) = 1, which can be

found using bisection line search.

Optimizing A, V and b : For optimizing A and V, we use an it-

erative weighted least squares method similar to that used in fitting generalized

linear models [29], i.e., we apply the Newton-Raphson procedure to the equations

obtained by setting the derivative of ∆l to zero. Upon taking the first and second

derivatives with respect to the components of the matrix A, it turns out that each

row can be updated independently of the others in a given iteration. This decou-

pling is convenient since it means that updating the parameters involves smaller

matrix operations. Similarly, we find that each column of V and each component of

b can be updated independently. Update equations for A and V are given here, and

can be derived similarly for b (not included here because of space constraints). ∆l

depends on A, V and b only through the last two terms in equation IV.3. Hence,

ignoring constants, we want to maximize

c
∑

k=1

d
∑

j=1

(θkjx̃kj −G(θkj)z̃k) −
n
∑

i=1

c
∑

k=1

ρiπkP (xi|θk), (IV.4)

where, x̃kj =
∑n

i=1 ẑikxij and z̃k =
∑n

i=1 ẑik and P (xi|θk) is as defined before in

equation IV.2.

Each row of A, ar is updated by adding δar which is calculated using

(VΩrV
t)δar = GRr, where the d × d matrix Ωr and the L × 1 matrix GRr are
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given by

[Ωr]jj′ = {z̃r −
n
∑

i=1

ρiπrP (xi|θr)}
∂g(θrj)

∂θrj
δ(j = j′)

+

n
∑

i=1

ρiπrP (xi|θr)(xij′ − g(θrj′))(xij − g(θrj))

and

[GRr]s =

d
∑

j=1

vsjx̃rj − z̃rg(θrj)

−
n
∑

i=1

ρiπrP (xi|θr)(xij − g(θrj)).

Each column of the matrix V , vs is updated by adding δvs obtained by solving

(AtΩsA)δvs = GRs, where the c×c diagonal matrix Ωs, and the L×1 matrix GRs

are given by,

[Ωs]kk = {z̃k −
n
∑

i=1

ρiπkP (xi|θk)}
∂g(θks)

∂θks

+
n
∑

i=1

ρiπkP (xi|θk)(xis − g(θks))
2

and

[GRs]r =

c
∑

k′=1

ak′r{x̃k′s − z̃k′g(θk′s)

+

n
∑

i=1

ρiπk′P (xi|θk′)(xis − g(θk′s).}

Note that using the Newton-Raphson method does not guarantee monotone in-

crease in the value of L̃. Monotonicity can be enforced using standard optimization

procedures like line search or the trust regions method.

Computational complexity : Time taken for each iteration of this

algorithm is O(cdnL2). Computing ẑik and ρi involve computing P (xi|θk) which is
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expensive and is a common problem faced in maximum likelihood estimation and

in training of RBF networks. [42] gives a procedure for speeding up this procedure

using the k-d tree data structure by identifying relevant prototypes (for each x)

thereby avoiding unnecessary computation.

IV.G Experiments

We experimented with the Gaussian mixture model on four real-valued

datasets and with the Bernoulli mixture model on a binary set. As noted in section

IV.B, for the Gaussian mixture model, an appropriate variance should be chosen

to achieve the right tradeoff between regularization and approximation capability.

Also, the value of P (xi|θk) can become very small and lead to computational

difficulties if the variance is chosen to be too small. In the experiments reported

here, we used fixed variance Gaussians and the data was sphered. The variance was

selected by trying a few values ranging between 0.5 and 2 and choosing the variance

that maximized conditional log-likelihood (a part of the training set was used for

validation). As with most iterative optimization methods, the model estimated

by the SDR-MM algorithm depends on parameter initialization. We tried a few

different random starts and chose the model which gives highest conditional log-

likelihood on training data (validation was not used for this purpose).

IV.G.1 Classification results

Table IV.1: Description of data sets for the classification problem.

Data set data training test

dimension set size set size

Heart disease 13 149 148

Ionosphere 34 151 200

Breast cancer 30 200 369

Waveform 21 300 500
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Table IV.2: Accuracies for best SVM classifiers associated with projection onto

various lower dimensions.

Data set L pHd KDR MDA SDR-MM

Heart 1 52.37 80.68 77.84 80.81

3 68.92 77.43 77.97 80.95

5 73.31 76.82 80.74 81.49

Ionosphere 1 68.80 90.28 75.75 87.14

3 82.75 95.28 86.9 89.71

5 87.65 94.88 88.85 91.14

Breast 1 73.88 93.82 92.55 95.50

3 84.23 90.92 93.36 95.83

5 90.41 88.59 93.88 95.85

Waveform 1 - 59.32 60.58 60.98

2 - 82.80 84.40 85.16

4 61.6 79.08 83.78 84.36

Table IV.3: Calculated t-values for comparison between various dimension reduc-

tion methods followed by SVM classifier. Paired samples test of significance for

10-fold cross validation is significant with probability 0.05/0.01/0.001 if t-value is

higher than 2.23/3.17/4.59, respectively. Positive/negative t-value means that the

first/second classifier, respectively, is better than the other.

Data set L SDR-MM SDR-MM KDR

vs KDR vs MDA vs MDA

Heart 1 0.13 0.90 0.70

3 2.16 0.94 -0.17

5 4.60 0.91 -2.82

Ionosphere 1 -1.62 3.44 6.06

3 -3.34 1.94 7.37

5 -2.78 1.18 7.06

Breast 1 2.50 4.52 1.69

3 4.12 4.00 -1.68

5 5.23 2.44 -3.67

Waveform 1 2.11 0.47 -1.40

2 3.58 1.69 -4.18

4 6.53 1.08 -6.06
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We give classification results comparing SDR-MM with KDR, MDA and

pHd. We modified the matlab package of Kernel ICA [33] to obtain the KDR

results. The variance parameter for KDR was gradually decreased (between iter-

ations) to two as suggested in [34]. For the experiments with MDA and pHd, we

used the mda and dr packages in the R language. We used four data sets from

the UCI machine learning repository, viz. Heart disease, Ionosphere, Breast cancer

and waveform data sets (summarized in Table IV.1).

Table IV.2 shows classification results obtained by first projecting data

using the various methods and then using SVM to classify the projected data.

For MDA and SDR-MM, we obtained results similar to SVM using the inherent

classifier, that uses the probability densities estimated in the process of finding

the lower dimensional space (not shown here for lack of space). The classification

rates shown in the table are averaged 10-fold cross validation results. The t-values

of the paired significance tests comparing SDR-MM, MDA and KDR are given in

Table IV.3. We found that SDR-MM performs significantly better than KDR on

all of the data sets except one - the Ionosphere data. SDR-MM also did better

than MDA consistently, but the significance t-values were not (on an average) as

high as the comparison with KDR.

IV.G.2 Visualization - Gaussian case

For the visualization experiment we used the Waveform data set. We

trained a model with 30 Gaussian components (10 for each class) and with mean

parameters constrained to a four-dimensional subspace. The estimated matrix V

was processed using the Gram-Schmidt procedure to obtain orthogonal basis for

the lower dimensional subspace and the training data was projected onto this sub-

space. Figure IV.3 shows two views of this four-dimensional projected set. The

first two coordinates were sufficient to discriminate between the three classes since

the two-dimensional model achieves an error rate close to the minimum possible

(Bayes) error (see Table IV.2). However, we see that the third coordinate distin-
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Figure IV.3: Some two dimensional views of waveform dataset projected onto the

four basis vectors obtained using SDR-MM

guishes one class from the other two, indicating that maximum mutual information

based methods may be able to discover more discriminating information than what

is needed for classification. KDR projection gave similar lower dimensional views,

but with greater overlap among the three classes (figure IV.4). In the correspond-

ing projections obtained using MDA, shown in figure IV.5, the third and fourth

discriminants do not significantly discriminate between the classes.

IV.G.3 Visualization - Binary case

We demonstrate the binary data visualization capability of SDR-MM

with Bernoulli conditional distribution. While performing the experiments we

found that the algorithm was much more likely to get stuck in local minima when

the Bernoulli mixture components are used than in the Gaussian case. The visu-

alization shown in this section was obtained by running the SDR-MM algorithm

several times and picking the best view. For this purpose, we use the ICU data

set [49] which consists of a sample of 200 subjects who were part of a study on

survival of patients following admission to an adult intensive care unit (ICU). We

picked 190 patients and 16 binary features from this data-set.

The goal is to extract and understand features that predict whether a
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Figure IV.4: Some two dimensional views of waveform dataset projected onto the

four basis vectors obtained using kernel dimensionality reduction

patient will leave the ICU alive. The features considered include presence of coma,

cancer, fracture and infection, the patient’s gender and race and whether the admis-

sion to ICU was elective or due to an emergency. The two dimensional projection

obtained using MCL estimation of constrained Bernoulli mixture model is shown

in Fig. IV.6. We examined the basis vectors of the lower-dimensional parameter

space obtained using SDR-MM, and found that the features that change most sig-

nificantly along the horizontal direction are the type of admission (elective versus

emergency) and whether a fracture was involved. Along the vertical direction, the

feature with maximum change is presence of cancer.

The projected data can be visually divided into five clusters (figure IV.6).

Four of the clusters, numbered 1, 2, 4 and 5, were relatively ‘pure’, i.e., consist of

either people who left the ICU alive or those who did not, while cluster 3 consists

of both types of people. Some conclusions that can be readily drawn from this are

that people who elected to join ICU to receive medical attention survived with high

probability. Among those who joined the ICU because of an emergency, those who

joined because of a fracture survived with high probability (cluster 1), though some

of these (presumably with severe damage) did not survive. The type of service at

admission and type of admission are highly correlated for this cluster.
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Figure IV.5: Some two dimensional views of waveform dataset projected onto the

four basis vectors obtained using mixture discriminant analysis
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Figure IV.6: Two dimensional representation of binary data from the ICU data

set : patients who left the ICU alive are shown by ‘+’ and the patients who did

not by ‘◦’.



Chapter V

Learning Distance metrics and its

applications

In this chapter, we present a brief review of learning methods that use

alternate distance metrics and methods that learn such metrics. The distance

metric used to measure the similarity/dissimilarity between the data points is an

essential part of machine learning algorithms. Most classification algorithms, for

example, inherently use the assumption that two data points that are close to

one another (according to some metric) are likely to belong to the same class.

Similarly, k-means clustering assigns each data point to one of k clusters so as to

minimize a measure of dispersion within the clusters and this measure of dispersion

is measured in terms of distances between points.

V.A Alternative distance metrics

There are several instances when using a suitable distance measure is crit-

ical for the performance of learning algorithms. In Chapter II, we saw that several

dimensionality reduction methods use a distance measure (specifically, Bregman

distances) adapted to the data type, for example, a distance measure based on the

Bernoulli probability model was found to be better suited for use with binary data.

Another example of non-Euclidean distance metrics include use of cosine distance

63
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(cosine of the angle between two vectors) in information retrieval for text [99] and

audio [98]. Cosine distance improves performance of retrieval algorithms since it

reflects similarity in terms of the relative distributions of components and is not

influenced by one document being small compared to the other. Edit distance is

used for measuring similarity between strings, for example genes and text data.

V.B Learning distance metrics

Over the last decade, a lot of research has been done on learning the dis-

tance or similarity measures are from data instead of assuming them apriori. Early

work on learning distance metrics for classification used a modified distance met-

ric close to the boundary of the classes where points that lie across the boundary

should be considered more dissimilar than points on the same side of the boundary

[101]. There has been much work on learning representations and distance func-

tions in the supervised learning settings, and we briefly mention a few examples.

[102] considers the problem of learning a Mahalanobis metric when the user pro-

vides the learning algorithm with sets of points that are similar or dissimilar. [103]

optimize the metric with the goal that k-nearest neighbors always belong to the

same class while examples from different classes are separated by a large margin.

[104] presents a method for learning a distance metric from relative comparison

such as A is closer to B than A is to C.

V.C Unsupervised learning of distance metrics and appli-

cations

Work in the area of unsupervised distance metric learning is concerned

with adapting the distance to local data density. When data is available in clusters,

two points in the same cluster are likely to be more similar to each other than points

that belong to different clusters (see Figure V.1). Similarly, when data lies along

a lower dimensional manifold, distance along the manifold is likely to be a better
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measure of similarity than Euclidean distance (see Figure V.2). This notion of

similarity based on data density is the subject of the second part of this thesis

and has many applications including semi-supervised classification, clustering and

interpolation. In the following subsections, we review literature relevant to these

applications with an emphasis on methods based on this notion of similarity.

1 

2 3 

Figure V.1: Distance based on data density - the cluster case - point 2 is more

similar to point 3 than to point 1

1 

2 

3 

Figure V.2: Distance based on data density - the manifold case - point 2 is more

similar to point 3 than to point 1
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V.C.1 Semi-supervised learning

In the classical supervised learning setting, a rule for predicting the output

y corresponding any given input x is learnt based on training data of the form

{(xi, yi)}n
i=1 ⊂ X × Y . Semi-supervised learning [117] deals with the problems

where the labels yi are expensive to obtain and hence only a small fraction of

them are available. Expensive labeled data and inexpensive unlabeled data occurs

in many important application areas including text classification, computer vision

and biological research (genetic or proteomic).

The premise of semi-supervised learning is that the unlabeled samples xi

can be used in addition to the labeled samples in order to improve classification

accuracy. Most semi-supervised learning algorithms use the unlabeled data to

incorporate into the classification methods the prior knowledge (or assumption) of

the cluster or manifold assumption regarding similarity between points as shown

in Figures V.1 and V.2.

Many methods have been proposed to use the cluster assumption for semi-

supervised learning and we will only mention a few examples. Some early methods

were based on generative models [106, 72] which assumes that p(x, y) = p(y)p(x|y)

where p(x|y) is an identifiable mixture distribution, for example Gaussian mixture

models. The EM algorithm is then used to estimate this model where the fraction

of yi that are unavailable are treated as missing data. Most methods proposed

for semi-supervised learning are discriminative. Several methods penalize changes

in p(y|x) in the regions of high p(x) [75, 70]. [68] is a transductive method for

semi-supervised learning using support vector machines. Another class of semi-

supervised methods are based on regularization using graphs constructed on the

data points [71, 66, 107, 108].

There is a group of methods that use a more direct approach to incorpo-

rating the cluster or manifold assumptions - they define density based distances

and compute them before using these distances in various classification algorithms.

[105] suggests using manifold distance for semi-supervised learning and presents
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experiments with text and image data demonstrating improved classification ac-

curacy. [100] present experiments in which using manifold distances revealed

biologically relevant structures in microarray data.

In Chapter VI, we present our analysis of a density based distance that

is based on a Riemannian manifold that is a function of the local data density.

Several methods for semi-supervised learning work with such Riemannian metrics

[74, 63, 69, 64].

There has also been work [96, 95] on density based distances that can-

not be cast into the Riemannian manifold framework. These methods consider

a fully connected graph constructed on the points, where the edges are weighted

by the Euclidean distance between the two points (or a given dissimilarity, if the

points do not belong to an Euclidean space). In [95], this definition of distance is

modified (‘softened’) in order to avoid connection of otherwise separate clusters by

single outliers. They demonstrate how this kernel could be used in transductive

SVM for semi-supervised learning and present experimental results which show

improvement over the standard implementation of transductive SVM.

V.C.2 Clustering

Clustering is the process of organizing objects into groups whose members

are similar in some way. It is one of the most important unsupervised learning

problems since it has wide ranging applications including Information retrieval,

DNA analysis, marketing and insurance studies, computational linguistics and

astronomical data. One of the main challenges of clustering algorithms is that their

effectiveness depends critically on the definition of similarity or distance between

the objects.

Standard partitioning clustering algorithms like K-means or K-medoid al-

gorithms group together objects in such a way as to minimize intra-cluster variance

which is measured on the basis of an assumed distance metric. These algorithms

need the practitioner to pick the number of clusters which requires some apriori
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domain knowledge and the clusters they produce are necessarily convex, which is

quite restrictive.

A more recent class of clustering algorithms are density based [111, 110,

109]. The basic idea of density based partitioning algorithms is that a set of

data points in Euclidean space should be divided into a set of components with

two points belonging to the same component if it is possible to reach from the

first point to the second one by a sufficiently small step. Density based spatial

clustering of applicatons with noise (DBSCAN) [110, 109] is a very popular and

successful density based clustering method and several improvements, extensions

and applications have been proposed for DBSCAN in the data mining literature

[112, 113, 114, 115].

Some work on density based clustering has been reported in the machine

learning literature [63, 96]. [63] propose to use Riemannian metric based distances

along with standard clustering algorithms for density based clustering. [96] propose

using graphs constructed on the data points and using path lengths along this graph

to measure distances between points. Here the length of a path is defined to be the

maximum edge weight on the path and the effective density based distance between

any two points is defined to be the smallest path-length among all paths connecting

the two points. Using these distances, they show a robust and computationally

feasible method for clustering elongated high density regions.

V.C.3 Nonlinear interpolation

Non-linear interpolation is a problem that arises in image, speech and

signal processing [76]. One application is interpolating between two images from

a video stream, intermittently obtained over a weak link in low-bandwidth tele-

conferencing and video e-mail [116]. Such interpolation has also been used for

audiovisual speech recognition [77, 76]. [77] models the space of valid lip poses

within the image space and present interpolation techniques that can be used for

both analysis and synthesis. [76] use a Riemannian metric induced by a model
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of the data density that assigns smaller length to those paths that pass through

those regions where data density is high. This Riemannian metric then assigns a

length value to each path through the space (for example of images). Given any

two points, the shortest path(s) according to this metric is used as an interpolant

between the two points. They show that this interpolation can be done efficiently

in high dimensions for Gaussian, Dirichlet and Mixture models.



Chapter VI

Estimating and computing

density based distances

In this chapter, we analyze errors that occur while measuring a density

based distance defined in terms of a minimum path length. We analyze and bound

the errors that arise because of availability of finite sample and finite computational

resources.

VI.A Motivation and overview

When data is in Rd, the standard similarity measure used by learning

algorithms is the Euclidean distance. Semi-supervised learning algorithms rely on

the intuition that two data points are similar to each other if they are connected

by a high density region. For example, based on this intuition, in the case of the

two-dimensional data sample shown in Figure VI.1(a), point 2 is closer to point 3

than to point 1. In this chapter we consider measuring this density-based notion

of similarity directly in the form of a distance metric between all pairs of points

and then using this resulting metric in standard learning algorithms to perform

semi-supervised classification.

To see how a density-based distance (DBD) metric can be defined, let

us take a closer look at the two-strips example in Figure VI.1(b). Since there

70
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1

2 3

(a) According to the semi-supervised smoothness assumption point 2

has greater similarity (is closer) to point 3 than to point 1

1

2 3

P1

P3

P4

P2

(b) This notion of similarity can be written in terms of property of

paths between the points

Figure VI.1: A notion of similarity that is a function of data density
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is a path between Points 2 and 3 that lies in a high density region (for example,

P3), we assume them to be similar or ‘closer’. Conversely, since none of the paths

between points 1 and 2 (P1, P2, etc.) can avoid the low density regions, they are

‘farther’ according to the density based notion of distance.

This observation leads us to consider modifying the standard Euclidean

definition of the length of paths and to use the shortest path length as the density-

based distance metric. To make this definition work, those paths that leave the

high-density regions should be assigned longer length than those that do not. Note

that path length is defined as the sum of lengths of infinitesimally small path-

segments. One way to define a density based path length would be to assign

different lengths to path segments based on the data density at their location.

Hence, we use a modified definition of the path length Γ of a path γ in X

which depends on the data density p(x) and a suitably chosen weighting function

q : R+ → R+ via the relation

Γ(γ; p)
.
=

∫ LE(γ)

t=0

q(p(γ(t)))|γ′(t)|2dt

where |.|2 is the L2 norm on Rd. We can assume, without loss of generality, that

all paths are parametrized to have unit speed according to the standard Euclidean

metric on Rd and hence that LE(γ) = Euclidean length of curve γ and |γ′(t)|2 = 1.

The DBD between two points x′ and x′′ is defined to be

d(x′,x′′; p) = inf
γ
{Γ(γ; p)} (VI.1)

where γ varies over the set of all paths from x′ to x′′.

This DBD metric can be thought of as being induced by a corresponding

Riemannian manifold structure. To specify a Riemannian manifold structure on

Rd we need to specify the inner product on the space of tangent vectors at each

point in Rd. For Rd the tangent space at each point is just a copy of Rd itself.

Hence the Riemannian structure at each point is determined by specifying the inner

product between the d orthonormal unit vectors which span Rd, i.e., < ei, ej >
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∀ i, j = 1, . . . , d.

< ei, ej > = q2(p(x)) ×











1 if i = j

0 otherwise.

(VI.2)

Semi-supervised learning using density-based Riemannian metrics has

been considered by [74, 63, 69, 64]. In particular, [63] proposed using q(y) = 1
yα ,

exp(−αy) and α − log y, where α is a parameter that controls the path-segment

length in high density regions relative to the length in low-density regions. [69]

proposed q(y) = 1
χ(y)

where χ is a strictly increasing function. In this chapter,

following [64], we will assume that q(y) : [0,∞) −→ (0,∞) is any monotonically

decreasing, non zero function that is constant (=1 without loss of generality) for

small y. The assumption that q is decreasing ensures that paths in high-density

regions have smaller length and q > 0 ensures that paths are not assigned zero

length. Assuming that q(y) does not change rapidly for small y is necessary to

have uniform bounds on approximation errors when using graph-based lengths to

approximate path lengths. This is because the concentration of sample points in

the regions with sufficiently low density (low-concentration regions change with

sample size) is likely to be small. Hence using graph edges in these regions to

approximate paths will lead to large approximation errors, unless q is relatively

slowly changing in these regions.

Notice that all of these definitions of the Riemannian metric are non-

parametric and hence the space of possible metrics is as large as the space of

probability functions that we allow. A different approach was proposed by [74]

who suggested picking a Riemannian metric from a parametric set of metrics based

on an objective function which gives higher value to those metrics which reduce

path lengths for paths passing through high density regions.

Shortest paths according to such density-based distance (DBD) metrics

have been proposed for non-linear interpolation of speech and images [76, 77].

DBD metrics could also be used for clustering when the notion of clusters is of

‘connected regions’ of high density separated by ‘boundaries’ of low density [63].
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[74] proposes picking a Riemannian metric from a parametric set of metrics based

on an objective function which encourages metrics which reduce path lengths for

paths passing through high density regions.

There has also been work on density based distances that cannot be cast

into the Riemannian manifold framework ( [96, 95] ). These methods consider

a fully connected graph constructed on the points, where the edges are weighted

by the Euclidean distance between the two points (or a given dissimilarity, if the

points do not belong to an Euclidean space). In [96], the length of a path is de-

fined to be the maximum edge weight on the path and the effective density based

distance between any two points is defined to be the smallest path-length among

all paths connecting the two points. Using these distances, they show a robust and

computationally feasible method for clustering elongated high density regions. In

[95], this definition of distance is modified (‘softened’) in order to avoid connection

of otherwise separate clusters by single outliers. They demonstrate how this ker-

nel could be used in transductive SVM for semi-supervised learning and present

experimental results which show improvement over the standard implementation

of transductive SVM.

Errors in the knowledge of the DBD metric can arise from two sources,

viz., estimation and computation. Estimation error arises because the underlying

data density is not known a priori and the path length values need to be estimated

from the finite data sample {x1, . . . ,xn} according to the density. Even in the case

when the data density is known, computing the Riemannian distance involves the

variational problem of minimizing the Riemannian length over all paths between

two points. Computation error arises since this minimization cannot be done

perfectly when computational resources are limited.

This computation problem has been extensively studied (cf. [90]) and

finds applications in computational geometry, fluid mechanics, computer vision

and materials science. These methods involve building a grid in Rd whose size

is exponential in d. This is inconvenient for the learning scenario where the data
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dimension is usually high. It is therefore necessary to consider grids based on data

points, in which case the computational complexity grows at a rate polynomial in

sample size n. Heuristics for computing the minimum Riemannian distance using

graphs constructed on data sample have been suggested by [63, 69, 64].

In the sections that follow, we present asymptotically consistent methods

to estimate and compute these metrics and show bounds on the estimation and

computation errors of these metrics ([64]). We also discuss the various ways in

which density based metrics could be used for semi-supervised learning and present

experimental results.

VI.B Estimating density based distance metrics

In this section we consider the error in our knowledge of DBD metrics that

comes from the fact that we have a limited data sample, i.e., a set of d-dimensional

data points {x1, . . . ,xn} drawn iid from a probability density function p(x). In

other words, we are interested in the estimation of the path length function

Γ(γ; p)
.
=

∫ LE(γ)

t=0

q(p(x))|γ′(t)|2dt

(see Section VI.A) for any given path γ. Note that for a fixed path γ, Γ(γ; p)

is a functional of the density p(x). Several different ways of analyzing estima-

tors of functionals of data density have been studied in the statistics literature.

For bounding the error in estimating the DBD metric we borrow from the proof

techniques used by [81, 80].

To characterize the estimators of the path lengths and hence the DBD

metric, we use the definitions of upper and lower bounds on rate of convergence of

estimators proposed by [81]. Let W denote the set to which p is known to belong.

Definition 3. A convergence rate r is achievable if there is a sequence {Γ̂n(γ)} of

estimators such that

lim
c→∞

lim sup
n

sup
p∈W

Pr
p

(|Γ̂n(γ) − Γ(γ; p)| > cn−r) = 0
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Definition 4. A rate r > 0 is an upper bound to the rate of convergence if for

every sequence Γ̂n(γ) of estimators of Γ(γ; p),

lim inf
n

sup
p∈W

Pr
p

(|Γ̂n(γ) − Γ(γ; p)| > cn−r) > 0 ∀c > 0 (VI.3)

and

lim
c→0

lim inf
n

sup
p∈W

Pr
p

(|Γ̂n(γ) − Γ(γ; p)| > cn−r) = 1 (VI.4)

For statements in probability about random variables Tn, Qn, whose

distributions may depend on p(x), we will use the notation Tn = O(Qn) when

limc→∞ lim supn supf∈Ws
P (|Tn| > c|Qn|) = 0.

VI.B.1 Achievability

We are trying to understand the limits on rate at which the estimation

error can converge to zero as sample size n increases. Lower bounds on the achiev-

able rate of convergence can be shown by considering particular estimators and

analyzing their performance. This is the basic idea which leads to the first Theo-

rem in this section where we consider the plug-in estimators, Γ̂n for the path length

Γ, i.e.,

Γ̂n(γ) = Γ(γ; p̂n).

This estimator is obtained by plugging in the kernel density estimator p̂n for data

density in place of actual density p(x) into the expression for path length Γ. The

kernel density estimator is given by

p̂n(x) =
1

n hd
n

n
∑

i=1

K

(

x − xi

hn

)

where hn is the width parameter of the kernel which is chosen to be a function of

sample size n and K(x) is a d-dimensional kernel function. To bound how far this

plug-in estimator is from the true path length, we consider the ‘gradient’ of the

path length functional with respect to variations in density p(x). We can then use

the results on bias and variance of the kernel density estimators to derive a lower

bound on the rate of convergence of the estimation error.



77

To define an estimator for the DBD metric between two points in the

support of p(x), we could take the shortest estimated path length among all possi-

ble paths between the points. However, this is a large space of paths that contains

redundant paths like those that loop over themselves, etc. In order to prove a lower

bound on the rate of convergence of the DBD metric, we consider a smaller set

of paths, Sp, that nevertheless contains the shortest Riemannian paths between

all pairs of points in the support of p(x). Let the maximum Euclidean distance

between two points in the support of p(x) be L. Define,

Sp =
{

γ Γ̂n(γ) ≤ L+ c
}

,

where c is any strictly positive constant.

To see why it is sufficient to look within the set Sp, note that the straight

line joining any two such points has length less than L according to this density

based Riemannian metric (because we have defined the the weighting function q

to be less than or equal to 1). Hence, the shortest Riemannian path between any

two points will have length less than or equal to L. By the proof of Theorem 7,

for sufficiently large n, all paths of length Γ ≤ L will have estimated path length

Γ̂ ≤ L+ c. Hence for sufficiently large n, Sp will almost surely contain the shortest

Riemannian paths between all pairs of points in the support of p(x).

Given the estimator Γ̂n for the lengths of paths, and the set of paths to

consider, Sp, we define the estimator d̂n(x
′,x′′) of the DBD metric d(x′,x′′; p(x))

to be

d̂n(x
′,x′′) = inf

γ∈Sp
{Γ̂n(γ)}.

For proving these bounds, the function q that controls the path length is

assumed to have the following properties

[A1] q is monotonically decreasing function

[A2] infy q(y) > 0

[A3] q has bounded first and second derivatives
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One feature of the kernel density estimator is that, when the true data

density can be assumed to be smooth (have a certain number of derivatives), its

bias can be reduced by choosing an appropriate kernel. Let us denote by Ws, the

set of functions which have s or more continuous derivatives. We assume that p(x)

has the following properties —

1. p(x) ∈ Ws

2. p(x) has bounded support

3. ∃ C1 such that || 5 p(x)|| ≤ C1 ∀x

The smoothness parameter s measures the complexity of the class of un-

derlying distributions. Given that p(x) belongs to Ws, we base the density estimate

on the d-dimensional kernel K(x) = Πd
j=1k(xj). Here k is a one-dimensional kernel

with the following properties

k(x) = k(−x),
∫

k(x)dx = 1, sup−∞<x<∞ |k(x)| ≤ A <∞,

∫

xmk(x)dx = 0, m = 1, . . . , s− 1 and 0 6=
∫

xsk(x)dx <∞.

We use the following two Lemmas about well known (cf. [62]) properties

of the kernel density estimators.

Lemma 5 (Bias of the kernel density estimator). Let µ = (µ1, . . . , µd) be

a d-dimensional vector with µi ≥ 0, and let u = (u1, . . . , ud denote a vector in

Rd. Let |µ| =
∑d

j=1 µj, µ! = µ1! . . . µd!, uµ = uµ1

1 . . . uµd

d and Dµ = ∂µ1

∂u
µ1
1

. . . ∂µd

∂u
µd
d

.

Then, ∀x, the bias

Ep [p̂n(x)] − p(x) = shs
n

∫

u∈Rd

F (u,x)K(u)du1...dud,

where

F (u,x) =
∑

|µ|=s

uµ

µ!

∫ 1

T=0

(1 − T )s−1Dµp(x + Tu)dT.
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Lemma 6 (Variance of the kernel density estimator). ∀x, ∀ε ≥ 0, for

n ≥ N(ε) (where N(ε) is sufficiently large), the variance

Ep

[

(p̂n(x) −Ep [p̂n(x)])2
]

≤
(1 + ε)p(x)

nhd
n

∫

u∈Rd

K2(u)du.

Theorem 7 (Achievability). Uniformly over all pairs of points x′ and x′′ ∈

the support of p(x), the plug-in estimator d̂n(x
′,x′′) that uses the kernel density

estimator p̂n, achieves the rate of convergence r = s
2s+d

where the width of the

kernel density estimators hn = c

n
1

2s+d

, where c is a constant.

Proof. We begin by defining the derivative T of the functional Γ(γ; p) with respect

to changes δp(x) in p(x) to be

T (δp; p)
.
=

∫ LE(γ)

t=0

q ′(p(γ(t)))δp(γ(t))|γ′(t)|2dt

Hence, we can write

|Γ(γ; p̂n)−Γ(γ; p)−T (p̂n−p; p)| =

∣

∣

∣

∣

∣

∫ LE(γ)

t=0

[q(p̂n) − q(p) − (p̂n − p)q ′(p)] |γ′(t)|2dt

∣

∣

∣

∣

∣

,

where p and p̂n are evaluated at γ(t). By a proof similar to intermediate value

theorem, we know that q(y + δy) − q(y) − δyq ′(y) = q ′′(β)
2!
δy2 for some β in the

domain of q . Hence, for some constant C,

|Γ(γ; p̂n) − Γ(γ; p) − T (p̂n − p; p)| ≤ C

∫ LE(γ)

t=0

{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt.

Therefore,

|Γ(γ; p̂n) − Γ(γ; p)| ≤ |T (p̂n − Ep [p̂n] ; p)| + |T (Ep [p̂n] − p; p)|

+

∣

∣

∣

∣

∣

C

∫ LE(γ)

t=0

{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt

∣

∣

∣

∣

∣

.

We now bound each of these three terms in turn. The variance of the
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first term is bounded as follows

Ep

[

(
∫

t

q ′(p(γ(t))) {p̂n − Ep [p̂n]} |γ′(t)|2dt

)2
]

≤ L

(

max
β

q ′(β)

)2

Ep

[
∫

t

{p̂n −Ep [p̂n]}2 |γ′(t)|2dt

]

= L

(

max
β

q ′(β)

)2 ∫

t

Ep

[

(p̂n − Ep [p̂n])2] |γ′(t)|2dt

≤
(1 + ε1)L

2

nhd
n

(

max
β

q ′(β)

)2
(

max
x

p(x)
)

∫

Rd

K2(u)du.

The first inequality follows from the Cauchy-Schwarz inequality, and the

second equality follows from Fubini’s theorem. The third inequality is true for

sufficiently large n by Lemma 6. The constant L is the maximum Euclidean length

of the paths that we are considering and hence also upper bounds the length of

these paths according to the density based Riemannian metric. Since the variance

of T (p̂n−Ep̂n; p) is bounded as above for sufficiently large n, we can conclude that

T (p̂n − Ep [p̂n] ; p) = O

(

1

(nhd
n)1/2

)

.

The second term T (Ep [p̂n]− p; p) can be bounded in terms of the partial

derivatives of p(x) —

T (Ep [p̂n] − p; p) =

∫

t

q ′(p(γ(t)))(Ep [p̂n] − p)|γ′(t)|2dt

≤ (max q ′(β))hs
n

∫

t





∫

u







∑

|µ|=s

uµ

µ!
{Dµp(γ(t)) + ε2}







K(u)du



 |γ′(t)|2dt

= O(hs
n)

Here, we have used Lemma 5 and the inequality follows from uniform continuity

of Dµp and holds for sufficiently large n.

The third term, 1
2
(maxβ |q ′′(β)|)

∫

t
{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt can be

bounded by bounding the expectation of
∫

t
{p̂n(γ(t))−p(γ(t))}2|γ′(t)|2dt and then

using Markov’s inequality.
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Ep

[
∫

t

{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt

]

=

∫

t

Ep

[

(p̂n − f)2
]

|γ′(t)|2dt

=

∫

t

(Ep [p̂n] − p)2|γ′(t)|2dt+

∫ LE(γ)

t=0

Ep

[

(p̂n −Ep [p̂n])2
]

|γ′(t)|2dt

Using Lemma 5, we can conclude that

∫

t

(Ep [p̂n] − p)2p|γ′(t)|2dt = O(h2s
n )

It follows from Lemma 6 that

∫

t

Ep

[

(p̂n − Ep [p̂n])2
]

|γ′(t)|2dt = O(
1

nhd
n

)

Collecting the three terms and assuming that hn = c

n
1

2s+d

, we conclude

|Γ(γ; p̂n) − Γ(γ; p)| = O(
1

(nhd
n)1/2

+ hs
n +

1

nhd
n

+ h2s
n ) = O(

1

n
s

2s+d

).

VI.B.2 Upper bound

An upper bound on the rate of convergence, is a reflection of the inherent

difficulty of our estimation problem, since it states that you cannot do better than

this limit no matter what estimator you may come up with in the future. In the

second Theorem in this section, we show an upper bound by showing the existence

of a density function p0(x) and a sequence of densities {pn(x), n ∈ N} with two

opposing properties that hold at the same time. The first property is that pn(x)

and p0(x) are close enough that they cannot be distinguished from one another on

the basis of n samples and the second is that pn(x) and p0(x) are far enough away

from one another that the DBD metric between two fixed points according to the

two densities goes to zero slower than the rate given by the upper bound.
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Theorem 8 (Upper bound). No estimator of the DBD metric can converge at

a rate faster than r = 1
2
.

Proof. To prove this result, we show that there is a density function p(x) and

a shortest path between two points γ for which Γ̂(γ) cannot converge to Γ(γ; p)

faster than the rate r, irrespective of which estimator is used to obtain Γ̂(γ). The

technique, termed ‘the classification argument’ was used by [81].

Consider a density function p0(x) with the property that the set {x :

p0(x) > α} contains an open ball in Rd over which p0(x) is constant. Let γ be

any line segment contained in this open ball, let xm be any point in the relative

interior of γ and let x0 be any point in the ball which does not lie on the path γ.

Since p0(x) is constant over the ball, any line segment including γ is the shortest

path between its two end points. Let ψ be a non-negative, infinitely differentiable

C∞ function with compact support (for an example called ‘the blimp’ see [89]).

Define

wn(x)
.
= δNn− 1

2 {ψ(x − xm) − bnψ(x − x0)} .

Here, bn is chosen such that
∫

wnp0dx = 0. We define a sequence of

densities pn = p0(1 + wn). From the assumption [Ag1] that q is a monotonically

decreasing function and from the definition of pn, it follows that the straight line γ

is the shortest path between its end points under the Riemannian metric specified

by pn ∀ n. Since bn is a constant, it remains bounded as n −→ ∞.

Now by the classification argument of [81] (details are given below), to

prove our result it is sufficient to show the following two inequalities,

lim sup
n

n Ep0

[

w2
n(X)

]

<∞ (VI.5)

Γ(γ; pn) − Γ(γ; p0)

2
≥ CδN

(

n− 1

2

)

, (VI.6)

where C is some positive constant.

nEp0

[

w2
n(X)

]

=
nδ2N2

n

∫

p0(x) {ψ(y) − bnψ(y + (xp − x0))}
2 dx <∞
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For sufficiently large n, we have Γ(γ; pn) − Γ(γ; p0) = T (pn − p0; p0) +

O(
∫ LE(γ)

t=0
(pn−p0)

2|γ′(t)|2dt) ≥ (δNn− 1

2 ), since
∫ LE(γ)

t=0
(pn−p0)

2|γ′(t)|2dt = O(n−1).

Now, we show that using Equations VI.5 and VI.6, we can prove the two

conditions (Equations VI.3 and VI.4) needed to show that 1/2 is an upper bound

on the rate of convergence. Note that this part of the proof follows closely the

proof in [81] and we are restating it here in detail for completeness. Let µn and νn

denote the joint distribution of the iid random variables X1, . . . ,Xn under density

functions p0 and pn respectively. Let Ln denote the Radon-Nikodym derivative

dνn/dµn and set ln = loge Ln.

ln =

n
∑

i=1

log(1 + wn(Xi))

Using the Taylor expansion log(1 + z) = z − z2

2
+ z3

3
− + . . . and the fact that

|wn(x)| ≤ 0.5 for n sufficiently large,

∣

∣

∣

∣

∣

ln −
n
∑

i=1

wn(Xi)

∣

∣

∣

∣

∣

≤
n
∑

i=1

w2
n(Xi) ⇒ |ln| ≤

∣

∣

∣

∣

∣

n
∑

i=1

wn(Xi)

∣

∣

∣

∣

∣

+

n
∑

i=1

w2
n(Xi)

Now, since we choose bn such that Ep0
[wn(X )] = 0,

Ep0

[

(

n
∑

i=1

wn(Xi))
2

]

= nEp0

[

w2
n(X )

]

By Schwarz’s inequality

(

Ep0

[

n
∑

i=1

wn(Xi)

])2

≤ Ep0





(

n
∑

i=1

wn(Xi)

)2


 =
(

nEp0

[

w2
n(X )

])
1

2

Hence Ep0
[|ln|] ≤ (nEp0

[w2
n(X )])

1

2 +nEp0
[w2

n(X )]. This combined with Eqn VI.5

yields

lim sup
n

Ep0
[|ln|] <∞ and lim

δ−→0
lim sup

n
Ep0

[|ln|] = 0 (VI.7)

Hence, there is a finite, positive M such that lim supn Ep0
[| logLn|] < M .

Choose ε > 0 such that if Ln > (1 − ε)/ε or Ln < ε/(1 + ε), then | logLn| ≥ 2M .



84

By the Markov inequality

lim inf
n

µn

(

ε

1 − ε
≤ Ln ≤

1 − ε

ε

)

>
1

2
.

Let n be sufficiently large so that

µn

(

ε

1 − ε
≤ Ln ≤

1 − ε

ε

)

>
1

2
.

Put prior probabilities 1/2 each on p0 and pn. Then

P {p = pn|X1, . . . ,Xn} =
Ln/2

Ln/2 + 1/2
=

Ln

L+ n + 1

and hence

P {ε ≤ P {p = pn|X1, . . . ,Xn} ≤ 1 − ε}

= P

{

ε ≤
Ln

L+ n + 1
≤ 1 − ε

}

= P

{

ε

1 − ε
≤ Ln ≤

1 − ε

ε

}

≥
1

2
µn

(

ε

1 − ε
≤ Ln ≤

1 − ε

ε

)

≥
1

4

Therefore any method of deciding between p0 and pn based on X1, . . . ,Xn must

have overall error probability at least ε/4. Apply this result to the classifier p̄n

defined by

p̄n =











p0 if Γ̂n(γ) ≤ Γ(γ;p0)+Γ(γ;pn)
2

,

0 otherwise

It follows that

1

2
Pp0

(

|Γ̂n(γ) − Γ(γ; p0)| ≥
Γ(γ; pn) − Γ(γ; p0)

2

)

+
1

2
Pp0

{

|Γ̂n(γ) − Γ(γ; pn)| ≥
Γ(γ; pn) − Γ(γ; p0)

2

}

≥
ε

4

consequently,

sup
p∈Ws

Pp

{

|Γ̂n(γ) − Γ(γ; p)| ≥
Γ(γ; pn) − Γ(γ; p0)

2

}

≥
ε

4
.

and hence

lim inf
n

sup
p∈Ws

Pp

{

|Γ̂n(γ) − Γ(γ; p)| ≥
Γ(γ; pn) − Γ(γ; p0)

2

}

> 0.
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This along with Equation VI.6 proves the first requirement (Equation VI.3) for

1/2 to be an upper bound on the rate of convergence .

To prove the second part of the upper bound definition, we choose a

positive integer io ≥ 2 and put prior probability i−1
o on each of the io points

pni = p0 +
i− 1

io − 1
(pn − p0)

Now, ∃δ > 0 such that for sufficiently large n, any method of classifying p ∈

{pn1, . . . , pnio} based on X1, . . . ,Xn must have overall probability of error 1− 2/io.

This is because

P {p = pni|X1, . . . ,Xn} =
1 +

(

i−1
io−1

)

(Ln − 1)
(

Ln+1
2

)

io

and the optimum classifier to choose between pni is

p̄n =











p0 if Ln < 1

pn otherwise

which produces an error whenever one of pn2, . . . , pn(io−1) are chosen in the random

draw among the pni.

Note that

(pni + pn(i+1)) − (pn(i−1) + pn(i)) =

(

p0 +
1

2(io − 1)
(pn − p0)

)

So, considering the classifier

p̂ =

{

pni if |Γ̂n − Γ(γ; pni)| ≤
|Γ(γ; pn) − Γ(γ; p0)|

2(io − 1)

}

,

we get

∑

i

1

io
Ppni

{

|Γ̂n − Γ(γ; pni)| ≥
|Γ(γ; pn) − Γ(γ; p0)|

2(io − 1)

}

≥ 1 −
2

io

Consequently,

sup
p
Pp

{

|Γ̂n − Γ(γ; p)| ≥
|Γ(γ; pn) − Γ(γ; p0)|

2(io − 1)

}

≥ 1 −
2

io



86

lim
io−→∞

lim inf
n

sup
p∈Ws

Pp

{

|Γ̂n − Γ(γ; p)| ≥
|Γ(γ; pn) − Γ(γ; p0)|

2(io − 1)

}

= 1.

This along with Equation VI.6 proves the second requirement (Equation

VI.4) for 1/2 to be an upper bound on the rate of convergence .

VI.C Computing density based distance metrics

In Section VI.B, we analyzed the effect of using an estimate of the density

function in place of the density function itself. However, even if the density were

known, computing the Riemannian metric between two points is not an easy task.

This is a variational minimization problem since the distance is defined as the

infimum of path lengths over all paths joining the points (Equation VI.1). Isomap

([79, 78]) uses paths along a neighborhood graph to approximate paths along a

manifold embedded in Rd. [63, 69, 95] propose graph based methods to compute

density based metrics for use in semi-supervised learning. However, these heuristics

for approximating DBD metrics are not guaranteed to lead to a consistent distance

measure, i.e., they do not guarantee convergence of the graph shortest path length

to the Riemannian metric with increasing sample size. In this section we present

upper and lower bounds on the rate at which approximation error can converge to

zero when a particular graph construction is used for computing the Riemannian

metric.

VI.C.1 Achievability

We show that the rate 1/2d is achievable, i.e., we present a graph construc-

tion method which produces graphs such that with high probability the difference

between the shortest distance along the graph and the DBD metric is smaller than

c/n1/2d, for some constant c and for large enough n. In the proof, we use some

techniques from [79, 78].

We first describe the method for constructing the graph and assigning
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weights to the graph edges. In addition to the three assumptions made about the

weighting function q in Section VI.B, we assume that

[A4] q(y) = 1 ∀ y ≤ α.

Note that this is not overly restrictive since we can choose α to be small. As

discussed in Section VI.A, it is necessary to assume that q(y) does not change

rapidly for small y in order to have uniform bounds on approximation errors when

using graph-based lengths to approximate path lengths. Let Cp(α)
.
= {x : p̂(x) ≥

α} and let Cp(α; ε)
.
=
⋃

x∈Cp(α)B(x, ε) where B(x, ε) is a d-dimensional ball of

radius ε centered at x.

A point x ∈ Rd is high density if x ∈ Cp(α; ε). A maximal connected

set of high-density points is a high-density component. Since the density p(x)

has bounded support and integrates to one, it can be shown that there will be

only finitely many high-density components and hence Cp(α; ε) will be partitioned

into finitely many high-density components R1, . . . , Rk. Note that these are high

density components with respect to the estimated distribution p̂(x) and not the

‘true’ distribution p(x). Cp(α; ε) is being defined as a way to mollify the difficult

properties of Cp(α) which can have complex boundaries (e.g., dendrils defined in

[65]) and can have an infinite number of disjoint, maximally connected components.

The graph g is defined as follows. Its vertices are the observed data points

x1, . . . ,xn. Two nodes xi, xj are connected if at least one of the following holds:

1. The Euclidean distance between two nodes is at most ε. The weight of such

an edge is w(xi,xj) = q(p((xi + xj)/2))|xi − xj |2.

2. At most one of the nodes is high-density, they are at least ε apart and the

straight line joining the two nodes leaves Cp(α; ε). The weight of such an

edge is w(xi,xj) = |xi − xj |2.

We use three distance metrics between data points x and y, namely, the
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DBD metric

dM(x,y)
.
= d(x,y; p̂n) = inf

γ
{Γ(γ; p̂n)},

the graph distance

dg(x,y)
.
= min

P
(w(x0,x1) + . . .+ w(xm−1,xm)) ,

and an intermediate distance

dS(x,y)
.
= min

P
(dM(x0,x1) + . . .+ dM(xm−1,xm))

where P = (x0, . . . ,xm) varies over all paths along the edges of g connecting x = x0

to y = xm.

To lower bound the rate of convergence of the shortest path along graph

g to the DBD metric, we bound the difference between the graph distance and

DBD metric in Theorem 12. For this purpose we show the DBD metric and the

intermediate distance are close to each other in Lemma 9. Lemmas 10 and 11

state that the graph and intermediate distances are close.

Lemma 9 (Difference between DBD metric and intermediate distance).

If ∀x ∈ Cp(α; 2ε) ∃ some data point xi for which dM(x,xi) ≤ δ and if 4δ < ε, then

∀ pairs of data points x and y,

dM(x,y) ≤ dS(x,y) ≤

(

1 +
6δ

ε
+

8δ2

ε2

)

dM(x,y)

Proof. The first inequality dM(x,y) ≤ dS(x,y) is true by the definition of dM and

dS. Let γ be any piecewise-smooth path connecting x to y with length l. If we are

able to find a path from x to y along edges of g whose length dM(x0,x1) + . . . +

dM(xm−1,xm) is less than
(

1 + 6δ
ε

+ 8δ2

ε2

)

dM(x,y), then the right hand inequality

would follow by taking infimum over γ.

Note that it is sufficient to consider only those γ for which contiguous

segments outside Cp(α; ε) are straight lines. This is because, given any γ without
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this property, we can define a path γ′ such that the length of γ′ is less than the

length of γ by just replacing wiggly segment of γ outside Cp(α; ε) by straight lines

(recall that the density-based Riemannian metric has been defined to be constant

Euclidean in the region outside Cp(α)). We consider different cases based on the

regions the path γ passes through.

Case (a) : γ is wholly contained in one of the sub-regions Rk of Cp(α).

We use an argument similar to the one used in Isomap ([79, 78]). If l ≤ ε−2δ, then

x,y are connected by an edge which we can use as the path through the graph.

If l > ε − 2δ, we write l = l0 + (l1 + l1 + . . . + l1) + l0 where l1 = ε − 2δ and

(ε − 2δ)/2 ≤ l0 ≤ ε − 2δ. Now, cut up the arc γ into pieces in accordance with

this decomposition giving a sequence of points r0 = x, r1, . . . , rp = y, where each

point ri lies within a distance δ of a sample point xi. Using this construction, we

can write

dM(xi,xi+1) ≤ dM(xi, ri) + dM(ri, ri+1) + dM(ri+1,xi+1) ≤
l1ε

ε− 2δ
.

Similarly,

dM(x,x1) ≤ l0
ε

ε− 2δ
& dM(xp−1,y) ≤ l0

ε

ε− 2δ

Since l0
ε

ε−2δ
≤ ε, we find that each edge has manifold length ≤ ε and hence belongs

to g. Hence,

dS(x,y) ≤ l
ε

ε− 2δ
< l

(

1 +
4δ

ε

)

Case (b) : All segments of γ that lie outside Cp(α; ε) have length ≥ ε−2δ.

We consider the case when both the initial and final points, x and y lie in Cp(α; ε).

The case when one or both of the end-points lies outside can be similarly handled.

We divide the path γ into 2k + 1 sections, where k is the number of times γ goes

outside Cp(α; ε) i.e., — x . . . ro1 . . . rm1 . . . ro2 . . . rm2 . . . rok . . . rmk . . .y where the

sections roi−−rmi lie outside Cp(α). The dS and dM lengths of the interior segments



90

are related exactly as in Case (a) and hence we can write

dS(x,y) ≤
ε

ε− 2δ
{dM(x, ro1) + dM(rm1, ro2) + . . .+ dM(rmk,y)}

+ {2δ + dM(ro1, rm1)} + . . .+ {2δ + dM(rok, rmk)} .

Since each outside segment has a minimum length ε − 2δ, dM(x,y) ≥ (ε − 2δ)k.

Hence 2δk ≤ 2δ/(ε− 2δ)dM(x,y) and

dS(x,y) ≤

(

1 +
6δ

ε
+

8δ2

ε2

)

dM(x,y).

Lemma 10 (Difference between intermediate and graph distances - 1).

For all pairs of data points xi,xj connected by an edge in g with |xi − xj|2 ≤ ε,

(1 − λ1)dg(xi,xj) ≤ dS(xi,xj) ≤ (1 + λ1)dg(xi,xj)

where

λ1 = 2
max | 5x q(p(x))|2ε

minx q(p(x))

Proof. Let ε2 = dM(xi,xj)/2 and let B(line(xi,xj), ε2) =
⋃

x∈line(xi,xj)
B(x, ε2).

Rmin = min
x∈B(line(xi,xj),ε2)

q(p(x))) Rmax = min
x∈line(xi,xj)

q(p(x))

Now,

Rmin|xi − xj |2 ≤ dM(xi,xj) ≤ Rmax|xi − xj|2

and

dg(xi,xj) = |xi − xj |2q

(

p

(

xi + xj

2

))

.

We use the fact that the gradient of q is bounded, we can write

Rmax ≤ (1 + λ1)q

(

p

(

xi + xj

2

))

∀λ1 > 2
max | 5x q(p(x))|2ε

minx q(p(x))

Hence,

(1 − λ1)dg(xi,xj) ≤ dM(xi,xj) ≤ (1 + λ1)dg(xi,xj)
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Lemma 11 (Difference between intermediate and graph distances - 2).

For all pairs of data points xi,xj connected by an edge in g with |xi − xj|2 > ε,

(1 − λ2)dg(xi,xj) ≤ dS(xi,xj) ≤ (1 + λ2)dg(xi,xj)

where

λ2 =
2δ2 max | 5 q(p(x))|2

ε

Proof. Since q ≤ 1, dM(xi,xj) ≤ |xi − xj |2. Among the exterior edges, we only

need to consider those between nodes which are within δ of the boundary of Cp(α)

or outside Cp(α). This is because of the way we approximate paths which leave

Cp(α) in Theorem 9.

Rmin ≥ 1 − max
x

| 5 q(p(x))|2δ

Since for exterior edges dg(xi,xj) = |xi − xj |2, we can write

dM(xi,xj) ≥ 2δ (1 − max | 5 q(p(x))|2δ) + |xi − xj |2 − 2δ

≥ |xi − xj |2

(

1 −
2δ2 max | 5 q(p(x))|2

|xi − xj |2

)

≥ dg(xi,xj)

(

1 −
2δ2 max | 5 q(p(x))|2

ε

)

Hence,

(1 − λ2)dg(xi,xj) ≤ dM(xi,xj) ≤ dg(xi,xj) ∀λ2 ≥
2δ2 max | 5 q(p(x))|2

ε

Theorem 12 (Lower bound on the computing error). ∀ζ < 1/2d, a com-

puting error (uniform over all pairs of points x, y) of

(1 − λ)dM(x,y) ≤ dg(x,y) ≤ (1 + λ)dM(x,y)

with λ = cn−ζ can be achieved with probability ≥ δ′ for sufficiently large data

sample n ≥ N(δ′) (c is a constant).
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Proof. We show that the shortest path along the graph is within λ of the DBD

metric, by considering two cases based on the properties of the shortest path. We

define a new graph g2 on the data points which contains only a subset of the edges

in g. g2 contains all edges in g where |xi − xj |2 ≤ ε. In addition, it contains

edges in g that leave Cp(α; ε) and whose endpoints, xi and xj, lie within δ of the

boundary of Cp(α; ε). Note that g2 is sufficient to approximate all shortest paths

between data points. However, it is difficult to compute/generate and hence we

define a more dense graph g with the property that the extra edges are most likely

not going to be used in the shortest path unless they form a good approximation

to the shortest path along g2.

Case (a) : The shortest path along g lies entirely within the subset g2.

Using the Theorem from [87], we can conclude that the choice in Section VI.B

of kernel width, hn = 1

n
1

2s+d

and other properties assumed about p(x) ensure that

almost surely,

max
x

|pn(x) − p(x)| = O

(

√

(

(2s+ d) log(n)

n
2s

2s+d

)

)

This means that for sufficiently large n, ∀ points y in Cp(α; 2ε) have the property

that p(y) ≥ α − α1 for arbitrarily small α1. Using this fact and the δ-sampling

condition (see [79, 78]), we know that the requirement for Lemma 9 is satisfied

when n = Ω
(

(

1
δ

)d
log 1

δ

)

. This condition is satisfied with a choice of ζ < 1/2d and

letting δ = c1n
−2ζ and ε = c2n

−ζ) (c1 and c2 are constants). Let λ3 = max(λ1, λ2),

where λ1 and λ2 are defined in Lemma 10 and 11 respectively. Hence we can use

Lemmas 9, 10 and 11 to conclude that

(1 − 2λ3)dM(x,y) ≤ dg(x,y) ≤ (1 + 2λ3)

(

1 +
6δ

ε
+

8δ2

ε2

)

dM(x,y)

which implies that

(1 − λ4)dM(x,y) ≤ dg(x,y) ≤ (1 + λ4)dM(x,y),

where

λ4 = O(ε+
δ

ε
) = O(n−ζ).
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Case (b) : The shortest path, P , along g uses some edges that are not part of g2.

Consider any edge E connecting xl and xm in the shortest path along g that is not

in g2. We will show that there is a path through g2 that can closely approximate

this edge E and hence this shortest path. We consider the case when only one

section near the end point xm is more than δ in Cp(α; ε). The case when more

sections of E are in Cp(α; ε) can be similarly handled. Consider the boundary

point rb where the straight line starting at xm toward xl first touches the edge

of Cp(α; ε). By the δ-sampling condition, there is a data point xk within δ of rb.

Consider the path consisting of the edge xl–xk and the shortest path, P2, between

xk and xm through those edges of g that connect nodes within ε of one another.

Let d′
g2 be the length of a path that follows P except when it comes to edges not

in g2 in which case it follows paths P2 constructed to pass through g2. Let dg2 be

the length of shortest path along graph g2. From proof of case (a), we know that

(1 − λ4)dM(x,y) ≤ dg2(x,y) ≤ (1 + λ4)dM(x,y),

dg(x,y) ≤ d′
g2(x,y) ≤ (1 + λ4)dg(x,y)

and dg(x,y) ≤ dg2(x,y) ≤ d′
g2(x,y).

Hence,

(1 − 2λ4)dM(x,y) ≤ dg(x,y) ≤ (1 + λ4)dM(x,y)

VI.C.2 Upper bound

In Theorem 12, we showed that we can construct a neighborhood-based

graph on the data sample which can be used to approximately compute DBD met-

rics with a rate of convergence of 1/n1/2d. This is a very slow rate of convergence,

especially when data dimension, d, is high. The natural question that follows this

analysis is whether this dependence of the rate on the data dimension is because

of curse of dimensionality or whether it is merely because of the way the graph
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was constructed and analyzed. Theorem 13 shows that dimension does limit how

much we can reduce the approximation error, regardless of the particular graph

construction method we use, so long as we choose to use a neighborhood-based

graph. This result is true even when data lies along a manifold, but is noisy and

hence does not lie perfectly on the manifold, i.e., curse of dimensionality cannot

be overcome in the case of approximation error when using neighborhood based

graphs, even when the intrinsic dimension of data is small. For this reason, this re-

sult provides a lower bound on the approximation error of the ISOMAP algorithm

[79] as well.

Theorem 13 (Upper bound on the computing error). The computing error,

when using an ε-neighborhood based graph on the data sample, cannot converge

to zero faster than 1

n
1

d−1

with probability ≥ δ′ for sufficiently large data sample

n ≥ N(δ′).

Proof. This result is shown using an example for which the approximation error

when using the graph converges at rate 1/n
1

d−1 . Consider the case when data

density is uniform over any convex set. (Note that all continuous density functions

can be approximated by a constant function in a small enough neighborhood.) In

this case the graph construction method described at the beginning of this section

reduces to an ε- neighborhood graph (with high probability). Consider any two

points x′, x′′ in the interior of the support of the density. The shortest path between

x′ and x′′ is the straight line joining them. Consider a d-dimensional cuboid which

circumscribes a cylinder of radius δ/2 around this line. If none of the points in the

data sample lie in this cuboid, the approximation error in measuring the length of

this line along the graph edges will be at least of order δ. The probability of this

happening, (1 − cδd−1)n, can be lower bounded by a constant if δ is chosen to be

of order 1/n
1

d−1 .
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VI.D Approximating minimal geodesics

The support of p(x) with Riemannian metric defined by g(p(x)) is a closed

and bounded manifold, i.e., it is complete. Hence by Hopf-Rinow theorem [92]

any two points in the manifold are connected by a minimal geodesic. This minimal

geodesic may not be unique. An example with infinitely many minimal geodesics

between two points is the uniform distribution on the surface of a sphere in which

case each longitude is a minimal geodesic connecting the north and south poles.

We will show that the graph of the shortest path between any two points,

x′ and x′′, along the graph G constructed as described in Section VI.C converges

to the set of minimal geodesics connecting the points. To prove convergence of

the paths, we need to define a topology (or metric) on the space of paths. We use

a commonly used metric which leads to the compact-open topology [93] on the

space of paths (the proof can be modified for other metrics). Let Sp be the space

of paths of unit speed between x′ and x′′.

Definition 14. The distance between two unit speed paths, p1 and p2, is defined

to be

d(p1, p2) = sup
t∈R+

|p1(t) − p2(t)|2.

Let T be the quotient topology obtained using the compact-open topology

and the equivalence relationship between paths given by p1 ∼ p2 if lengths of p1

and p2 are equal.

Theorem 15. The graph of the shortest path along graph G converges to the set of

minimal geodesics in the topology T (see section VI.C for definition of the graph).

Proof. Consider path-length as a map into positive reals from the space of all

shortest paths along Gn between the points for all sample sizes n. Since we have

already shown that the length of the shortest path along G converges to the length

of a minimal geodesic, it is sufficient to show that length is a continuous function

on this subset of Sp with the quotient topology T . Let p2 be a minimal geodesic
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path and p1 be a shortest path along Gn for some n. Given that d(p1, p2) ≤ δ, the

difference between their lengths is

∣

∣

∣

∣

∫
∣

∣

∣

∣

dp1

dt

∣

∣

∣

∣

2

dt−

∫
∣

∣

∣

∣

dp2

dt

∣

∣

∣

∣

2

dt

∣

∣

∣

∣

≤ 3δ

for all n large enough such that the δ-sampling condition is satisfied with high

probability. Note that length is a continuous function only on this subset and not

on all of Sp.

VI.E Applications and experiments

VI.E.1 Semi-supervised learning using density based metrics

Given a density-based distance metric, any of the nearest neighbor based

methods (K-nearest neighbors, weighted K-nearest neighbors with various weights)

can be used for classification in a semi-supervised learning scenario. Let yi be the

label of xi and let classifier be sign(h(xi)). Let lM denote the Lipschitz constant

according to the manifold specified by q(p(x)). In this manifold, the lengths scale

locally as q(p(x)), hence it can be verified that for any function h on Rd

|lMh|2 = sup
x

1

q(p(x))
| 5x h|2.

[97] have shown that the 1-nearest neighbor classifier corresponds to

a large-margin classifier. In the case of the DBD metric, 1-NN is equivalent to

(using the modified Lipschitz constant according the density-based manifold), the

optimization problem

arg min
h

sup
x

[

1

q(p(x))
| 5x h|2

]

under constraints yih(xi) ≥ 1.

As p(x) increases, 1
q(p(x))

also increases and hence this optimization problem corre-

sponds to penalizing the gradient of the classifier function h in high density regions

and allowing h to change in the low density regions. This agrees with the intuition

that data points in the same high density region are likely to have similar labels.
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Please see [69] for a discussion on regularization appropriate for semi-supervised

learning and its relationship to modifying geometry based on the data density.

In this section, we present experimental results on data from the UCI

machine learning repository, summarized in Table VI.1. The three methods we

compare are standard 1-nearest neighbor, DBD metric based 1-nearest neighbor

and the randomized min-cut method ([66]). The randomized min-cut method

involves averaging over results obtained from several min-cuts and it is suggested

by [66] that those min-cuts which lead to a very unbalanced classification are to

be rejected. However, there is no clear way to choose this cut-off ratio. For the

results presented here we choose the cutoff to be slightly smaller than the ‘true’

ratio between the classes in the dataset. For the DBD based 1-NN implementation,

we chose the function q to fall exponentially with increase in density beyond α

which in turn was chosen to be smaller than the estimated density at all sample

points.

Table VI.1: Description of data sets for the classification problem.

Data set data data set class

dimension size ratio

Adult 6 1000 0.30

Abalone - 9 vs 13 7 892 0.29

Abalone - 5 vs 9 7 804 0.17

Digits - 1 vs 2 256 2200 1.00

We performed experiments for labeled set size varying between 2 and 20

and the accuracy results are shown in Fig. VI.2. We observed that DBD based

1-NN performed better than or similar to the standard 1-NN algorithm for all

datasets with small dimension. We conjecture that the reason DBD based 1-NN

performed worse than 1-NN for the digits example is because of difficulty in density

estimation in very high dimensions. DBD-based 1-NN algorithm performed better

than the other two when the number of labeled examples was very small, except

in the case of digits example. One interesting result was that of the two abalone
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(d) Digits - 1 vs 2

Figure VI.2: Classification results comparing 1-NN (‘.’), DBD based 1-NN (‘x’)

and Randomized Mincut (‘o’) algorithms

data examples, in which the randomized min-cut algorithm performed much better

than both NN algorithms in one case and much worse in the other.

VI.E.2 Non-linear interpolation

In density-based interpolation, given two points, our task is to find a

path that respects the statistical model of the data. In particular, the desired

interpolant should not pass through regions of space to which the modelled density
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Figure VI.3: Density-based non-linear interpolation using 1000 iid samples drawn

from a spherical, unit variance, zero mean Gaussian distribution.

f(x) assigns low probability [76]. Given a sample of points x1, . . . ,xn, we can find

an approximation to such a path by computing the weighted graph G as described

in section VI.C and tracing the shortest path between the two points through

the graph. We illustrate this using a simple example where data is drawn from a

single spherical Gaussian distribution with mean at (0, 0) and variance one in each

direction. The shortest path according to a DBD metric with g = exp(− f(x)−α
fmax−α

)

and based on 1000 data samples drawn from the Gaussian distribution is shown

in figure VI.3.
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Chapter VII

Conclusion

This dissertation is concerned with non-parametric techniques adapted

to various characteristics of the data-sets including their high dimensionality, large

volume, different data types (for example binary or integer), partially available

data etc.

In Chapter III, we presented an unsupervised dimensionality reduction

method that is applicable to binary, integer and other data types. This method

models data as consisting of a parametric noise that is added to an arbitrary (non-

parametric) distribution in a lower dimensional space. Unlike previous methods,

this algorithm is guaranteed to be asymptotically consistent (modulo identifiability,

see Section III.E) in finding the lower dimensional subspace. We demonstrated

using experiments that that this method recovers the true subspace when other

competing methods fail to do so. Using simulations on standard text and image

datasets, we demonstrated that it is effective in separating different populations, in

projecting similar observed data points close to one another in the representation

space and in generalization to unseen samples.

In Chapter IV, we argued that use of maximum conditional likelihood

estimation is a natural way to utilize mixture models in a supervised setting. We

presented an efficient, iterative EM-like algorithm to compute the best lower dimen-

sional subspace that contains maximum discriminating information. Experiments

100
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with data-sets containing class labels demonstrate the potential of this method to

learn transformations that lead to competitive classification accuracy results and

for supervised visualization of high dimensional data.

Despite a large amount of literature over several decades, dimensional-

ity reduction remains an active area for research. Our dimensionality reduction

method performs well while estimating the non-parametric prior and the lower

dimensional subspace from small data-sets (see Sections III.G.2 and III.G.3) and

this is critically dependent on the fact that we are estimating a linear subspace.

This is because of the strong regularization effect of the linearity of the subspace

that is being estimated. While the same theoretical results of consistency hold

when the lower dimensional signal subspace is not linear, a challenging problem

for future work would be making such a non-linear dimension reduction method

with non-parametric prior practically applicable.

While working with various data-sets for the simulation results presented

in Chapter III, we found that the objective function being optimized was very

non-linear for binary data and even more so when data was integer valued. Hence,

an open area for further work is devising approximations to this objective function

that are easily optimized or devising more effective optimization algorithms for

this function. Similar comments apply for the supervised dimensionality reduction

method presented in Chapter IV. Typically, supervised multi-class dimension

reduction experiments involve learning directions which discriminate among all

classes simultaneously. Finding projections suitable for separating pairs (or more

generally subsets) of classes can give better discriminative directions. Outputs

from these low-complexity classifiers can then be combined to obtain full clas-

sifiers with good performance. Another interesting extension would be to use

mixture modelling approach with a suitable objective function for semi-supervised

dimensionality reduction.

In Chapter VI showed that density-based distance metrics which satisfy

certain properties can be estimated consistently using an estimator obtained by
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plugging in the kernel density estimate of the data distribution. In terms of s, a

smoothness parameter that corresponds to how many times data density is known

to be differentiable and d, the data dimension, we showed that the rate of conver-

gence of such an estimator is s
2s+d

. We showed that no estimator can converge at

a rate faster than 1
2
. This contains both good and bad news. The knowledge that

we have consistent estimation is useful when applying the method to voluminous

data (for example web pages). However, we expect d to be high for many machine

learning applications and we might not be able to assume that the smoothness pa-

rameter, s, is very high. Hence, when using the plug-in estimator, the convergence

rate can be very slow for high-dimensional data.

We showed a graph construction method that can be used for consistent

computation of DBD metrics and shown that with high probability, the approx-

imation error when using this graph goes to zero faster than 1/n1/2d with high

probability. We also showed that shortest distance along a nearest-neighborhood

based graph on the data cannot converge to true distance faster than 1/n1/(d−1)

with high probability. We presented semi-supervised classification results that

demonstrate that using DBD metrics can sometimes improve performance over us-

ing simple Euclidean distance, when data density can be estimated with reasonable

reliability.

While we have given a theoretical understanding of DBD metrics, further

experimental investigation of their use for semi-supervised learning in needed to

make them a practically viable choice. While several papers have considered DBD

metrics, the only papers that present experimental results with real world data

use the 1-nearest neighbor algorithm ([74, 64]). Experiments using these metrics

with other classification algorithms, using parametric density estimation in place

of the kernel density estimator and studying alternative graph construction and

weighting methods for more accurate and efficient computation will be of practical

value.



Bibliography

[1] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 2nd
edition, 2002.

[2] Lazarsfeld, Paul F. and Neil W. Henry. Latent Structure Analysis. Houghton
Mifflin, Boston, 1968.

[3] C. Radhakrishna Rao. Linear statistical inference and its applications. John
Wiley and Sons, New York, 1965.

[4] Richard O. Duda, Peter E. Hart and David G. Stork. Pattern Classification.
Wiley Interscience, 2nd edition, 2000.

[5] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer series
in Statistics, 2001.

[6] K. V. Mardia, J. T. Kent and J. M. Bibby. Multivariate analysis. Academic
Press, New York, 1979.

[7] Brian D. Ripley. Pattern recognition and neural networks. Cambridge Uni-
versity Press, New York, 1996.

[8] W.N. Venables and B.D. Ripley. Modern applied statistics with S-PLUS.
Springer, New York, 3rd edition, 1999.

[9] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Univer-
sity Press, 3rd edition, 1961.

[10] D. L. Donoho. High-Dimensional Data Analysis: The Curses and Blessings
of Dimensionality. Lecture on August 8, 2000, to the American Mathematical
Society “Math Challenges of the 21st Century”, Available from http://www-
stat.stanford.edu/ donoho/, 2000.

[11] I. Ibragimov and R. Z. Khasminskii. Statistical estimation: asymptotic the-
ory. Springer, New York, 1981.

[12] A. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 8(3): 930-945, 1993.

103



104

[13] M. Collins, S. Dasgupta and R. E. Schapire. A generalization of principal
components analysis to the exponential family. In Advances in Neural Infor-
mation Processing Systems 14, 2002.

[14] Nathan Srebro and Tommi Jaakkola. Linear dependent dimensionality re-
duction. In Advances in Neural Information Processing Systems 15, 2003.

[15] M. Tipping. Probabilistic visualisation of high-dimensional binary data. In
Advances in Neural Information Processing Systems 11, 1999.

[16] Sajama and A. Orlitsky. Semi-parametric exponential family PCA. In Ad-
vances in Neural Information Processing Systems 17, 2005.

[17] Christopher M. Bishop, Markus Svensén and Christopher K. I. Williams.
GTM: The generative topographic mapping. Neural Computation, 10(1):215-
318, 1998.

[18] C. M. Bishop, M. Svensén and C. K. I. Williams. Developments of the gen-
erative topographic mapping. Neurocomputing, 21:203-224, 1998.

[19] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative ma-
trix factorization. In Advances in Neural Information Processing Systems
11, 2000.

[20] Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of
the 22nd Annual ACM Conference on Research and Development in Infor-
mation Retrieval, Berkeley, California, August 1999.

[21] A. Kaban and M. Girolami. A combined latent class and trait model for
the analysis and visualization of discrete data. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 23(8):859-872, 2001.

[22] David J. Bartholomew and Martin Knott. Latent variable models and Factor
analysis. Volume 7 of Kendall’s Library of Statistics. Oxford University Press,
New York, 2nd edition, 1999.

[23] M. Tipping and C. Bishop. Probabilistic principal component analysis. Jour-
nal of the Royal Statistical Society, Series B, 61(3):611-622, 1999.

[24] Sam Roweis. EM algorithms for PCA and SPCA. In Advances in Neural
Information Processing Systems, 10, 1998.

[25] R. Redner. Note on the consistency of the maximum likelihood estimate for
nonidentifiable distribution. The Annals of Statistics, 9(1):225-228, 1981.

[26] J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood estima-
tor in the presence of infinitely many incidental parameters. The Annals of
Mathematical Statistics, 27:887-906, 1956.



105

[27] B. G. Lindsay. The geometry of mixture likelihoods : A general theory. The
Annals of Statistics, 11(1):86-104, 1983.

[28] R. Tibshirani. Principal curves revisited. Statistics and Computation, 2:183-
190, 1992.

[29] P. McCullagh and J. A. Nelder. Generalized Linear Models. Monographs on
Statistics and Applied Probability. Chapman and Hall, 1983.

[30] Miguel A. Carreira-Perpinan and Steve Renals. Practical identifiability of
finite mixtures of multivariate Bernoulli distributions. Neural Computation,
12(1):141-152, 2000.

[31] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum likelihood from
incomplete data. Journal of the Royal Statistical Society. Series B (Method-
ological), 39(1):1-38, 1977.

[32] C. F. J. Wu. On the convergence properties of the EM algorithm. Annals of
Statistics, 11(1):95-103, 1983.

[33] Francis Bach. The kernel-ica package. http://www.cs.berkeley.edu/∼
fbach/kernel-ica/index.htm, 2002.

[34] Kenji Fukumizu, Francis R. Bach and Michael I. Jordan. Dimensionality
reduction for supervised learning with reproducing kernel Hilbert spaces.
Journal of Machine Learning Research, 5:73-99, 2004.

[35] T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures.
Journal of the Royal Statistical Society series B, 58:158-176, 1996.

[36] Trevor Hastie, Robert Tibshirani and Andreas Buja. Flexible discriminant
analysis by optimal scoring. Journal of the American Statistical Association,
89(428):1255-1270, 1994.

[37] N. Kumar and A. Andreou. Generalization of linear discriminant analysis in
a maximum likelihood framework. In Proceedings of the Joint Meeting of the
American Statistical Association,1996.

[38] Kari Torkkola and William M. Campbell. Mutual information in learning
feature transformations. In Proceedings of the 17th International Conference
on Machine Learning, 2000.

[39] Aldebaro Klautau, Nikola Jevtic and Alon Orlitsky. Discriminative gaussian
mixture models: A comparison with kernel classifiers. In Proceedings of the
20th International Conference on Machine Learning, 2003.

[40] T. Jebara and A. Pentland. Maximum conditional likelihood via bound max-
imization and the CEM Algorithm. In Advances in Neural Information Pro-
cessing Systems 11, 1998.



106

[41] L. K. Saul and D. D. Lee. Multiplicative updates for classification by mixture
models. In Advances in Neural Information Processing Systems 14, 2002.

[42] S. M. Omohundro. Efficient algorithms with neural networks behaviour.
Complex Systems, 1(2):273-347, 1987.

[43] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, New York, 1995.

[44] Katy S. Azoury and Manfred K. Warmuth. Relative loss bounds for on-
line density estimation with the exponential family of distributions. Machine
Learning, 43(3):211-246, 2001.

[45] Jurgen Forster and Manfred K. Warmuth. Relative expected instantaneous
loss bounds. In Computational Learing Theory, 2000.

[46] J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numer-
ical Optimization. Springer Verlag, 2003.

[47] B. G. Lindsay. The geometry of mixture likelihoods : A general theory. The
Annals of Statistics, 11(1):86-104, 1983.

[48] J. Park and L. W. Sandberg. Universal approximation using radial basis
function networks. Neural Computation, 3:246-257, 1991.

[49] S. Lemeshow, D. Teres, J. S. Avrunin and H. Pastides. Predicting the out-
come of intensive care unit patients. Journal of the American Statistical As-
sociation, 83:348-356, 1988.

[50] Sajama and Alon Orlitsky. Semi-parametric exponential family PCA. In Ad-
vances in Neural Information Processing Systems 17, 2004.

[51] Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression.
Journal of the american statistical association, 76:817-823, 1981.

[52] Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical
Science, 1:297-318, 1986.

[53] Ker-Chau Li. Sliced inverse regression for dimension reduction (with discus-
sion). Journal of american statistical association, 86: 316-342, 1991.

[54] Ker-Chau Li. On principal Hessian directions for data visualization and di-
mension reduction: Another application of Stein’s lemma. Journal of amer-
ican statistical association, 87:1026-1039, 1992.

[55] Amir Globerson and Naftali Tishby. Sufficient dimensionality reduction.
Journal of Machine Learning Research, 3:1307-1331, 2003.



107

[56] Roberto Battiti. Using mutual information for selecting features in super-
vised neural net learning. IEEE Transactions on Neural Networks, 5(4):537-
550, 1994.

[57] Isabelle Guyon and Andr Elisseeff. An Introduction to variable and feature
selection. Journal of Machine Learning Research, 3: 1157-1182, 2003.

[58] Leo Breiman and Jerome H. Friedman. Estimating optimal transformations
for multiple regression and correlation. Journal of the American Statistical
Association, 80:580-598, 1985.

[59] P.A. Devijver and J. Kittler. Pattern recognition: A statistical approach.
Prentice Hall, London, 1982.

[60] X. Guorong, C. Peiqi and W. Minhui. Bhattacharyya distance feature selec-
tion. In Proceedings of the 13th International conference on Pattern recogni-
tion, volume 2, pages 25-29, 1996.

[61] G. Saon and M. Padmanabhan. Minimum Bayes error feature selection for
continuous speech recognition. In Advances in Neural Information Processing
Systems 13, 2001.

[62] E. A. Nadaraya, Nonparametric estimation of probability densities and re-
gression curves. Kluwer Academic Publishers, 1989.

[63] P. Vincent and Y. Bengio. Density-Sensitive Metrics and Kernels. In Work-
shop on Advances in Machine Learning, Montreal, Quebec, Canada, 2003.

[64] Sajama and Alon Orlitsky. Estimating and computing density based distance
metrics. In Proceedings of the 22th International Conference on Machine
Learning, 2005.

[65] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data
using graph mincuts. In Proceedings of the 18th International Conference on
Machine Learning, 2001.

[66] Avrim Blum, John D. Lafferty, Mugizi Robert Rwebangira and Rajashekar
Reddy. Semi-supervised learning using randomized mincuts. In Proceedings
of the 21st International Conference on Machine Learning, 2004.

[67] X. Zhu, Z. Ghahramani and J. Lafferty. Semi-supervised learning using gaus-
sian fields and harmonic functions. In Proceedings of the 20th International
Conference on Machine Learning, 2003.

[68] Thorsten Joachims. Transductive inference for text classification using sup-
port vector machines. In Proceedings of the 16th International Conference
on Machine Learning, 1999.



108

[69] O. Bousquet, O. Chapelle and M. Hein. Measure based regularization. In
Advances in Neural Information Processing Systems 16, 2004.

[70] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy
minimization. In Advances in Neural Information Processing Systems 17,
2005.

[71] C. Kemp, T. L. Griffiths, S. Stromsten and J. B. Tenenbaum. Semi-
supervised learning with trees. In Advances in Neural Information Processing
Systems 16, 2003.

[72] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun and Tom M.
Mitchell. Text classification from labeled and unlabeled documents using
EM. Machine Learning, 39(2):103-134, 2000.

[73] O. Chapelle, J. Weston and B. Schoelkopf. Cluster kernels for semi-
supervised learning. In Advances in Neural Information Processing Systems
15, 2003.

[74] G. Lebanon. Learning Riemannian metrics. In Proceedings of the 19th Con-
ference on Uncertainty in Artificial Intelligence, 2003.

[75] Adrian Corduneanu and Tommi Jaakkola. On Information regularization.
In Proceedings of the 19th Annual Conference on Uncertainty in Artificial
Intelligence, 2003.

[76] L. K. Saul and M. I. Jordan. A variational principle for model-based morph-
ing. In Advances in Neural Information Processing Systems 9, 1997.

[77] C. Bregler and S. Omohundro. Nonlinear image interpolation using manifold
learning. In Advances in Neural Information Processing Systems 7, 1995.

[78] M. Bernstein, V. de Silva, J. C. Langford and J. B. Tenenbaum. Graph
approximations to geodesics on embedded manifolds. Manuscript, 2000.

[79] J. B. Tenenbaum, V. de Silva and J. C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.

[80] Larry Goldstein and Karen Messer. Optimal plug-in estimators for nonpara-
metric functional estimation. The annals of statistics, 20(3):1306-1328, 1992.

[81] Charles J. Stone. Optimal rates of convergence for nonparametric estimators.
The annals of statistics, 8(6):1348-1360, 1980.

[82] Luc Deveroye and Laszlo Gyorfi. Nonparametric density estimation : The L1
view. John Wiley, New York, 1985.

[83] H. G. Muller. Smooth optimum kernel estimators of regression curves, den-
sities and modes. Annals of Statistics, 12:766-774, 1984.



109

[84] J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Jour-
nal of Machine Learning Research, 6:129-163, 2005.

[85] Mikhail Belkin and Partha Niyogi. Semi-supervised learning on Riemannian
manifolds. Machine Learning, 56:209-239, 2004.

[86] F. J. Narcowich. Generalized Hermite interpolation and positive definite ker-
nels on a Riemannian manifold. Journal of Mathematical Analysis and Ap-
plications, 190:165-193, 1995.

[87] E. Gine and A. Guillou. Rates of strong uniform consistency for multivariate
kernel density estimators. Annales de l’Institut Henri Poincare (B) Proba-
bility and Statistics, 38(6):907-921, November 2002.

[88] Bruce E. Hansen. Exact Mean Integrated Squared Error of Higher-Order Ker-
nels, Unpublished manuscript, http://www.ssc.wisc.edu/∼ bhansen, June
2003.

[89] Robert Strichartz. The Way of Analysis. Jones and Bartlett, 1995.

[90] James A. Sethian. Level set methods and fast marching methods : evolving
interfaces in computational geometry, fluid mechanics, computer vision, and
materials science. Cambridge University Press, 1999.

[91] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom
M. Mitchell, Kamal Nigam and Seán Slattery. Learning to extract symbolic
knowledge from the World Wide Web. In Proceedings of the 15th Conference
of the American Association for Artificial Intelligence, 1998.

[92] John W. Milnor. Morse Theory. Princeton University Press, 1963.

[93] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[94] Steven Rosenberg. The Laplacian on a Riemannian manifold. Cambridge
University Press, 1997.

[95] O. Chapelle and A. Zien. Semi-supervised classification by low density sepa-
ration. In Tenth international workshop on artificial intelligence and statis-
tics, 2005.

[96] Bernd Fischer, Volker Roth and Joachim M. Buhmann. Clustering with the
connectivity kernel. In Advances in Neural Information Processing Systems
16, 2004.

[97] U. von Luxburg and O. Bousquet. Distance-based classification with Lips-
chitz functions. Journal for Machine Learning Research, 5:669-695, 2004.

[98] Jonathan Foote. Content-based retrieval of music and audio. Multimedia
Storage and Archiving Systems II, Proceedings of SPIE 3229:138-147, 1997.



110

[99] David A. Grossman. Information retrieval : algorithms and heuristics.
Kluwer, Boston, 1998.

[100] J. Nilsson, T. Fioretos, M. Hoglund and M. Fontes. Approximate geodesic
distances reveal biologically relevant structures in microarray data. Bioin-
formatics, 20(6):874-880, 2004.

[101] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classifi-
cation and regression. In Advances in Neural Information Processing Systems
8, 1996.

[102] E. Xing, A. Ng, M. Jordan and S. Russell. Distance metric learning, with
application to clustering with side-information. In Advances in Neural Infor-
mation Processing Systems 15, 2003.

[103] Kilian Q. Weinberger, John Blitzer and Lawrence K. Saul. Distance met-
ric learning for large margin nearest neighbor classification. In Advances in
Neural Information Processing Systems 18, 2006.

[104] Matthew Schultz and Thorsten Joachims. Distance metric learning for large
margin nearest neighbor classification. In Advances in Neural Information
Processing Systems 15, 2003.

[105] M. Belkin and P. Niyogi. Using manifold structure for partially labeled clas-
sification. In Advances in Neural Information Processing Systems, 2002.

[106] B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in reduc-
ing the small sample size problem and mitigating the Hughes phenomenon.
IEEE Transactions On Geoscience and Remote Sensing 32:1087-1095, 1994.

[107] X. Zhu, J. Kandola, Z. Ghahramani and J. Lafferty. Nonparametric trans-
forms of graph kernels for semi-supervised learning. In Advances in Neural
Information Processing Systems, 2005.

[108] V. Sindhwani, P. Niyogi and M. Belkin. Beyond the point cloud: from trans-
ductive to semi-supervised learning. In Proceedings of the 22nd International
Conference on Machine Learning, 2005.

[109] Jorg Sander, Martin Ester, Hans-Peter Kriegel and Xiaowei Xu. Density-
based clustering in spatial databases: The algorithm GDBSCAN and its
applications. Data Mining and Knowledge Discovery, 2(2):169-194, 1998.

[110] Martin Ester, Hans-Peter Kriegel, Jrg Sander and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of 2nd International Conference on Knowledge Discovery and
Data Mining, 1996.

[111] J. A. Garca, J. Fdez-Valdivia, F. J. Cortijo and R. Molina. A dynamic ap-
proach for clustering data. Signal Processing, 44(2):181-196, 1994.



111

[112] Yasser El-Sonbaty, M. A. Ismail and Mohamed Farouk. An efficient density
based clustering algorithm for large databases. In 16th IEEE International
Conference on Tools with Artificial Intelligence, 2004.

[113] Jae-Joon Hwang, Kyu-Young Whang, Yang-Sae Moon and Byung-Suk Lee.
A top-down approach for density-based clustering using multidimensional
indexes. Journal of Systems and Software, 73(1):169-180, 2004.

[114] Daoying Ma and Aidong Zhang. An adaptive density-based clustering algo-
rithm for spatial database with noise. In Fourth IEEE International Confer-
ence on Data Mining, 2004.

[115] M. Emre Celebi, Y. Alp Aslandogan and Paul R. Bergstresser. Mining
biomedical images with density-based clustering. In International Confer-
ence on Information Technology: Coding and Computing, 2005.

[116] D. Beymer, A. Shashua and T. Poggio. Example based image analysis and
synthesis. Technical report, MIT AI Lab, AIM-1431, 1993.

[117] O. Chapelle, B. Schölkopf and A. Zien, Semi-Supervised Learning. MIT Press,
Cambridge, 2006.




