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Abstract

A highly sensitive, circulating tumor cell (CTC)-based liquid biopsy was used to monitor 

gastrointestinal cancer patients during treatment to determine if CTC abundance was predictive of 

disease recurrence. The approach uses a combination of biomimetic cell rolling on recombinant E-

selectin and dendrimer-mediated multivalent immunocapture at the nanoscale to purify CTCs from 

peripheral blood mononuclear cells. Due to the exceptionally high numbers of CTCs captured, a 

machine learning algorithm approach was developed to efficiently and reliably quantify abundance 

of immunocytochemically-labeled cells. A convolutional neural network and logistic regression 
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model achieved 82.9% true-positive identification of CTCs with a false positive rate below 0.1% 

on a validation set. The approach was then used to quantify CTC abundance in peripheral blood 

samples from 27 subjects before, during, and following treatments. Samples drawn from the 

patients either prior to receiving radiotherapy or early in chemotherapy had a median 50 CTC ml−1 

whole blood (range 0.6–541.6). We found that the CTC counts drawn 3 months post treatment 

were predictive of disease progression (p = 0.045). This approach to quantifying CTC abundance 

may be a clinically impactful in the timely determination of gastrointestinal cancer progression or 

response to treatment.
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INTRODUCTION

Current approaches to treatment of gastrointestinal cancer typically involve a combination 

of chemotherapy and radiation followed by surgery (Palta et al. 2019; Wo et al. 2021). 

However, even with intensive trimodality therapy, recurrences are common leading to 5-year 

survival rates ranging from 73–90% for regional or localized colorectal cancer to just 14–

42% for regional or localized pancreatic cancer according to 2020 American Cancer Society 

statistics (ACS 2022). Treatment intensification with adjuvant therapies has been proposed 

to improve outcomes for patients at the highest risk of recurrence after primary therapy. 

However, current prognostic methods have undesirable limitations which hinder accurate 

treatment response assessment and patient stratification. Radiographic (imaging) approaches 

are expensive, cumbersome to patients, and limited in sensitivity (Nishino 2018). Pathologic 

biopsy following resectioning also suffers from complications and is limited to the primary 

tumors that are surgically accessible only. Liquid biopsy, referring to the sampling and 

analysis of tumor biomarkers from a peripheral blood sample, has emerged as a potential 

alternative and has demonstrated some promise in gastrointestinal cancer (Lee et al. 2019; 

Normanno et al. 2018). The only FDA-cleared circulating tumor cell (CTC) enumeration 

technology, CellSearch (Riethdorf et al. 2018), has been marketed for use with metastatic 

colorectal cancer (Cohen et al. 2008) since 2007. However, it has not been widely adopted 

as a tool for treatment monitoring, primarily due to its low sensitivity. Previously reported 

results using CellSearch are inconsistent, detecting CTCs from 75% or fewer patients with 

metastatic colorectal cancer (Cayrefourcq et al. 2015; Cohen et al. 2008; Gorges et al. 2016; 

Heitzer et al. 2013; Iwatsuki et al. 2013; van Dalum et al. 2015), 75% or fewer patients with 

gastric cancer (Hiraiwa et al. 2008; Iwatsuki et al. 2013; Pernot et al. 2017; Tsai et al. 2016), 

and less than 50% of patients with pancreatic carcinoma (Bidard et al. 2013; Dotan et al. 

2016; Khoja et al. 2012; Okubo et al. 2017). A new liquid biopsy platform that effectively 

detects blood-circulating biomarkers, such as CTCs, in a clinically significant manner is thus 

urgently needed.

We have previously described a novel technique that incorporated a nanostructured surface 

with biomimetic cell rolling for highly sensitive CTC detection and enumeration (Myung 

et al. 2018b; Myung et al. 2014a; Myung et al. 2011a; Myung et al. 2010; Myung et 
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al. 2018c). Peripheral blood mononuclear cells (PBMC) were separated from whole blood 

samples shipped to our laboratory and flowed through a flow chamber containing our 

engineered capture surface illustrated in Figure 1. Selective capture of CTCs occured 

by a two-step process. First, recombinant E-selectin selectively recruited leukocytes and 

CTCs to the capture surface (Hong et al. 2007), inducing biomimetic rolling behavior 

characteristic of the behavior on inflamed vascular cells (McEver and Zhu 2010). Secondly, 

poly(amidoamine) (PAMAM) dendrimers promoted multivalent binding of CTCs by 

conjugated antibodies (Jin et al. 2010; Myung et al. 2014a; Myung et al. 2011a; Myung et 

al. 2015). The dendrimers enhanced the avidity of antibody binding compared to conjugation 

with linear polymer tethers (Bu et al. 2020a; Poellmann et al. 2020; Poellmann et al. 

2022) and the specific antibodies can be tuned depending on the indication (Bu et al. 

2020c). A mixture of antibodies targeting epithelial cell adhesion molecule (EpCAM), 

epidermal growth factor receptor (EGFR), and human epidermal growth factor receptor 

2 (HER2) has previously demonstrated capture rates of 100% with a median 113 CTCs 

ml−1 in primarily head and neck squamous cell carcinoma (HNSCC) patients (Myung et al. 

2018b). Captured CTCs were distinguished from nonspecifically-bound white blood cells by 

immunocytochemistry for nucleated cells positive for pan-cytokeratin (CK) and lacking the 

leukocyte marker CD45.

While high CTC capture rates resulted in easy-to-read trends over the course of treatments 

(Myung et al. 2018a), the large numbers necessitated an efficient and consistent approach to 

enumeration. Manual validation of CTCs is particularly burdensome when CTC numbers 

reach 100s per sample. Image processing algorithms may be employed to both speed 

the process and minimize user-to-user variation. Unfortunately, straightforward algorithms 

that depend on relative signal and morphological parameters to identify CK+/CD45− 

cells have poor performance due to routine inconsistencies and imperfections typical with 

fluorescent imaging. Machine learning approaches have been reported for digital imaging 

and pathology applications in general (Erickson et al. 2017; Madabhushi and Lee 2016) 

and to identify immunofluorescently-stained CTCs specifically (He et al. 2020; Lannin et 

al. 2016; Nakamichi et al. 2019; Wang et al. 2021). We therefore developed and trained a 

convolutional neural network (CNN) (Albawi et al. 2017) for the accurate identification of 

CTCs on our capture surfaces. Importantly, the CNN can be retrained or updated with true 

positive CTCs from additional cohorts, continuously improving the accuracy of the approach 

over time. The development was critical for the efficient and accurate enumeration of CTCs 

on our surfaces.

In this work, a machine learning approach was developed and validated to identify and 

quantify immunofluorescently-labelled CTCs captured by biomimetic cell rolling and 

dendrimer-mediated multivalent binding. The approach was applied to a cohort of patients 

with gastrointestinal cancer, where we observed relatively high CTC counts in patient 

samples before receiving chemotherapy and radiation therapy (RT). We further correlated 

mid-RT and post-RT CTC counts with radiologic response to treatment, pathologic response 

to treatment, and eventual disease progression. The results suggest that this combination 

of highly sensitive CTC purification and machine learning-based enumeration may be a 

valuable tool for the diagnosis of gastrointestinal cancer and for the evaluation of patient 

response to radiation therapy.
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MATERIALS AND METHODS

Materials and dendrimer functionalization

Epoxy-functionalized glass slides were obtained from Tekdon (Myakka City, FL). 5,000 

MW, heterobifunctional amine-poly(ethylene glycol)-carboxymethyl polymer (PEG) was 

obtained from JenKem Technology (Plano, TX), while generation (G7) PAMAM dendrimers 

were obtained from Dendritech, Inc. (Midland, MI). Succinic anhydride, dimethyl 

sulfoxide (DMSO), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), 

N-hydroxysuccinimide (NHS), and 2-[4-(2-hydroxyenthyl)piperazin-1-yl]ethanesulfonic 

acid (HEPES) were obtained from MilliporeSigma (St. Louis, MO). The capture antibodies 

aEPCAM (AF960), aHER2 (AF1129), aEGFR (AF231), along with recombinant human 

E-Selectin/CD62E chimera protein, CF were obtained from R&D Systems (Minneapolis, 

MN). Vacutainer sodium heparin blood tubes were obtained from BD Biosciences (Franklin 

Lakes, NJ). Fetal bovine serum (FBS) was obtained from Thermo Fisher Scientific 

(Waltham, MA), phosphate buffered saline (PBS) from Corning (Corning, NY), Dulbecco’s 

Modified Eagle’s Medium from Corning , and Ficoll-Paque Plus from GE Healthcare 

(Uppsala Sweden). Paraformaldehyde was obtained from Polysciences (Warrington, PA), 

Triton X-100 from Thermo Fisher Scientific, bovine serum albumin (BSA) from Alfa Aesar 

(Haverhill, MA). Immunocytochemistry antibodies were anti-wide spectrum cytokeratin 

(ab9377) from Abcam (Cambridge, United Kingdom), anti-CD45 (555480) from BD 

Biosciences, and anti-CDX2 from Abcam. The secondary antibodies goat anti-rabbit with 

Alexa Fluor 647, and goat anti-rabbit with Alexa Fluor 555, and goat anti-mouse with 

Alexa Fluor 488, and (4’,6-Diamidino-2-phenylindole) (DAPI) were from Thermo Fisher 

Scientific.

Before added to capture surfaces, G7 PAMAM dendrimers were first purified 5 times by 

centrifugal filtration in DDI water with Amicon 10,000 MWCO centrifugal filters were 

obtained from EMD Millipore (Burlington, MA), followed by lyophilization for 2 days. The 

purified dendrimers were then partially carboxylated by reaction with succinic anhydride 

in dimethyl sulfoxide (DMSO) at a molar ratio of 358:1 between succinic anhydride and 

dendrimer, resulting in approximately 70% of terminal amines converted to carboxyl groups 

(Myung et al. 2011a), resulting in a net negative charge and preserving additional amines 

for EDC/NHS chemistry (Sunoqrot et al. 2013). The partially-carboxylated dendrimers were 

purified again 5 times using centrifugal filtration in DDI water, lyophilized for 2 days, and 

resuspended in DDI water to create stock solutions.

CTC capture surface preparation

Capture surfaces were fabricated as previously described (Myung et al. 2018b; Myung 

et al. 2014a; Myung et al. 2010). Briefly, epoxy-functionalized glass slides were placed 

in custom-fabricated jigs and treated with 1 ml solution at each step. First, slides were 

incubated overnight with PEG at 0.5 mg ml−1 in DDI water. Each of the PEG-immobilized 

slides was then activated with 15 mM EDC and 25 mM NHS in 1 ml DDI water for 

30 min. The partially carboxylated G7 PAMAM dendrimers at a concentration of 0.1 mg 

ml−1 in HEPES buffer (pH 8) were added to the surface and incubated overnight. The 

dendrimer-PEG-functionalized surfaces were activated once more with EDC and NHS for 
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30 min before treatment for 1 h with a mixture of antibodies each at 1 μg ml−1 in 1 ml 

HEPES buffered-saline at pH 8 (Bu et al. 2020b; Myung et al. 2019; Myung et al. 2018a; 

Myung et al. 2014b; Myung et al. 2011b). Lastly, the antibody-functionalized surfaces 

were incubated with 1 μg ml−1 recombinant human E-selectin in PBS for 1 h. The fully 

functionalized capture slides were stored at 4°C in PBS for up to four weeks prior to use.

Blood sample collection

Patient recruitment and blood collection was completed at the University of Iowa Hospitals 

and Clinics according to an IRB-approved protocols (#201802719). Approximately 8–12 

mL of blood from each patient was collected in a pair of sodium heparin tubes. The first 

2 ml of blood drawn were not collected to avoid collecting skin and other non-blood 

tissue in the sodium heparin tubes. The collected blood samples were shipped overnight in 

ambient conditions and were processed 18–48 h after the blood draw. Healthy donor sample 

collection was completed at University of Wisconsin Health University Hospital according 

to an IRB-approved protocol (2017–0129), with samples stored at ambient temperature and 

processed 12–24 h after blood draw.

Blood sample processing

Between 6–12 ml whole blood was mixed 1:1 with PBS containing 2% room-temperature 

and carefully layered on top of an equivalent volume of Ficoll-Paque Plus. The “buffy coat” 

consisting of peripheral blood mononuclear cells (PBMC) and CTCs was isolated and rinsed 

twice using centrifugation with 2% FBS in PBS at 2000 xg for 10 min. Sample processing 

did not proceed if the buffy coat included a significant amount of coagulated erythrocytes. 

The final cell pellet was resuspended in 0.1 ml DMEM supplemented with 10% FBS.

The fully functionalized capture slides were placed within custom-fabricated flow chambers 

consisting of parallel, rectangular flow channels defined by silicone o-rings. Channel 

dimensions were approximately 55 mm from inlet to outlet, 5 mm wide, and 0.15 mm high 

(Bu et al. 2020b; Myung et al. 2018a). An injection line (1/16” inner diameter, ~12” long) 

and a 5 ml syringe (Exelint International, Redondo Beach, CA) was primed with DMEM 

before pulling the cells into the end. The syringe was placed within a NE-10000 syringe 

pump (New Era Pump Systems, Farmingdale, NY) and the cells injected into one channel of 

the flow chamber. The first channel was connected to the second by a short stretch of tubing, 

and a final stretch of tubing led to a waste container. Cells were injected into a PBS-primed 

flow chamber for 25 min at a volumetric flow rate of 25 μl min−1, corresponding to 0.36 dyn 

cm−2, then 15 min at 90 μl min−1 (1.3 dyn cm−2) (Bu et al. 2020b; Myung et al. 2018a). The 

injection line and syringe were replaced with ones containing PBS, and the flow chamber 

was rinsed in the opposite direction for 15 min at 90 μl min−1. Finally, the flow chamber was 

disassembled and the surface-capture cells were fixed with 4% paraformaldehyde.

Immunocytochemistry and imaging

The captured cells after fixation were permeabilized with Triton X-100, blocked with 1 

wt% BSA in PBS, and stained with anti-wide spectrum cytokeratin (CK), anti-CD45, 

goat anti-rabbit with Alexa Fluor 647, goat anti-mouse with Alexa Fluor 488, and (4’,6-

Diamidino-2-phenylindole) (DAPI) (Myung et al. 2018a). Some samples were additionally 
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stained with anti-CDX2 and goat anti-rabbit with Alexa Fluor 555. The slides with stained 

cells were mounted and imaged at 10x magnification with a Zeiss Axio Observer fluorescent 

microscope equipped with a motorized stage, quadruple bandpass filter, Colibri 7 LED light 

source and Axiocam 503 camera. Tiled images encompassed the footprint of both flow 

channels. Colors were balanced manually in Zeiss ZEN software to eliminate excessive 

background and enhance contrast. Images were exported as single-channel jpegs separated 

into 16 slices and converted to 8-bit format for image analysis.

Convolutional neural network (CNN) training and validation.

A CNN and a corresponding graphical user interface were developed using Python (v3.0) 

with Keras (Chollet 2015) and TensorFlow (Abadi et al. 2016). The CNN architecture is 

included in Supplementary Information (SI). Cells identified as CTCs and several other 

types of red particles from 10 baseline scans were manually cropped from the exported 

images and used to train the CNN. True-positive CTCs were confirmed by two trained users. 

These CTCs consisted of a single, oval blue particle (nucleus) located entirely within a 

mostly solid-colored red particle (CK) with any overlapping or nearby green signal (CD45) 

indistinguishable from background or otherwise significantly weaker than nearby leukocytes 

in a shape that would indicate bleed-through or nonspecific binding.

An automatic thresholding algorithm was applied to each image before particle detection 

with OpenCV (v3.4.7.28). Each particle in the CK channel centered and cropped down 

to a 200 × 200 pixel image along with the corresponding DAPI and CD45 channels. A 

probability was generated for each image with the CNN, then exported along with additional 

morphological parameters to a separate spreadsheet. Composite images of all suspect CTCs 

were created and exported for manual validation by a pair of trained users. The process 

above was programmed into a graphical user interface for routine use. A logistic regression 

(Logit) model was generated in R (v4.0.3) (Team 2020) incorporating the CNN probability 

and additional morphological factors and signal intensities derived from all three channels. 

A probability threshold was determined from the combined CNN and logit model for 

counting a particle in the CK channel as a CTC.

The validation set consisted of all particles in the CK channel derived from a separate set of 

12 slides. Particles were manually classified as true positives by a pair of trained users and 

compared to the performance of the combined CNN and logit model.

Clinical correlation and statistical analysis

Time points corresponding to chemotherapy and radiation therapy (RT) treatment regimens 

and clinical outcomes were shared only after collection and quantification of CTC numbers. 

Patients were evaluated according to RECIST (Response evaluation criteria in solid tumors) 

(Nishino 2018) by a board-certified radiologist at the University of Iowa. Patients who 

underwent surgical resection were also assigned pathologic (yp) T and N staging according 

to the American Joint Commission on Cancer (AJCC) staging criteria 8th edition (Amin 

et al. 2017). Pathologic complete response (pCR) was defined as the complete absence of 

viable tumor cells in the primary tumor and regional lymph nodes in the resection specimen. 

Patients with locally advanced rectal cancer completed post-chemoradiation response 
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assessment with pelvic MRI and direct tumor visualization using flexible sigmoidoscopy 

+/− tumor site biopsy (as indicated). Clinical complete response (cCR) was defined as the 

absence of residual tumor on both endoscopic and MR evaluation. Wilcox signed rank tests 

were used to CTC counts between subjects with no evidence of disease (NED) at follow-up 

appointments to those with progression. Kruskal Wallace rank tests were used to compare 

CTC counts with tumor stage or RECIST outcome. Spearman rank correlation was also used 

to compare CTC counts across tumor staging criteria.

Results

Identification of CTCs by a machine learning algorithm

A convolutional neural network was developed, trained, and applied to count CK+/CD45− 

cells from our images. The intrinsic class imbalance (that is, low number of true positives 

and high number of true negatives) was addressed in two ways. First, only red particles 

with size and shape approximating a CK-positive cell were considered by the algorithm 

(Figure 2a). Second, red particles were classified as ‘suspected CTCs’ or one of five 

separate common false positive types (Figure 2b). The training sets consisted of 1,521 

true positive CTCs identified on 10 different pre-treatment samples. Additional 8,252 cells 

were identified across five classes of false positives, as categorized by CK−/CD45+, CK+/

CD45+, CK+/DAPI−, CK low, and debris or artifact. Each cell was subjected to 1000 

transformations (mirroring and rotations) to increase the size of the training set.

In order to generate a count of CTCs within a given sample, a binary threshold must 

be identified to distinguish CTCs from non-CTCs. The CNN output initially produced a 

highly skewed probability distribution, with many false positives assigned probabilities in 

excess of 99% (Figure S1a), making threshold selection difficult. Manual validation also 

revealed a high number of cells with excessive CD45 signal and misshapen nuclei wrongly 

identified as CTCs. We therefore tested the performance of a second approach – logistic 

regression – in sorting true positives from false positives using fluorescent signal strength 

and measures of morphology generated by the particle detection algorithm in OpenCV 

(including area, circularity, roundness, and solidity) and the relative offset of the centers 

of the CK particle and DAPI particle. The logit model was fit to a dataset of 600 cells 

manually classified as true positives or true negatives, resulting in a less-skewed probability 

distribution when incorporating the CNN probability (Figure S1b) or when run alone (Figure 

S1c). The CNN, the combined CNN-logit model, and the logit model alone were evaluated 

using receiver operating characteristics (ROC), which demonstrated a significant benefit to 

using the combined model (Figure S2). Table S1 lists the parameters driving the combined 

model, with CNN probability was the single most important parameter driving the logit 

regression probability (p < .001), followed by DAPI circularity (p < .001), CD45 signal (p 

= .005), and the relative positioning of the CK and DAPI particles (p = .034). Although 

other morphological parameters and signal strength did not have statistically significant 

model coefficients, their presence in the model nevertheless improved performance. The 

threshold for counting a CTC was set to the probability at which the true positive rate plus 

the false discovery rate equaled 1, resulting in a net count equal to the true count of the 

600 cell dataset. This threshold was 0.512 for the combined model (Figure S1e). We next 
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tested the algorithm with 0.512 threshold on a validation set of 165 true positive CTCs 

amongst 800,632 particles identified in the CK channel across 12 additional samples. Note 

that validation set had fewer true positives as a proportion of red particles than the test set. 

The performance was measured in terms of true positive CTCs amongst all red particles and 

in terms of CTCs amongst all identified nuclei. By both measures, the algorithm achieved 

a sensitivity of 0.829 and specificity exceeding 0.999. Accuracy was 0.997 in determining 

CTCs amongst all red spots and 0.998 in distinguishing CTCs from all cells. The area under 

the curve (AUC) of the ROC in Figure 2d exceeded 0.998 by both measures, while the 

precision-recall AUC (AUCPR) was 0.472. An example CTC amongst leukocytes on the 

capture surface is shown in Figure 2e. Example true positive CTCs are displayed in Figure 

2f and non-CTCs with low CNN probability are displayed in Figure 2g.

Enumeration of CTCs in gastrointestinal cancer

The machine learning algorithm described above was used for all clinical CTC enumerations 

from patient samples. Peripheral blood samples were collected from 27 subjects diagnosed 

with pancreatic (n = 16), rectal (n = 10), or esophageal (n = 1) adenocarcinoma (Table 

1). One subject was dropped from the study after a single time point. Blood samples 

were drawn at various times during treatment with chemotherapy (22 subjects), radiation 

therapy (RT) (23 subjects), and surgery (11 subjects). The first samples from 3 patients were 

discarded due to insufficient separation of a buffy coat layer, and two more failed to arrive 

for processing within 48 h.

CTCs were detected in samples from all patients. More specifically, four subjects with 

samples processed prior to chemotherapy had a median of 65.4 CTC ml−1 (range 10.0–

541.5), all well above the healthy donor median of 0.8 CTC ml−1 (Table 2). An additional 

four pre-treatment subjects had a median 53.0 CTC ml−1 (range 0.8–152.3) prior to 

receiving radiation therapy with one patient right at the healthy donor threshold. Median 

CTC counts for various time points in treatment are summarized in Table 2. Full results are 

included in supplementary information (Tables S3 and S4). No statistical relationships were 

observed between pre-treatment CTC counts and TNM staging criteria or primary tumor site 

(Table S5), which was consistent with previous results using this technology (Myung et al. 

2018b).

Five samples from two subjects were additionally co-stained for CDX2 to provide evidence 

that enumerated CTCs were characteristic of intestinal epithelial cells. Examples of cells 

stained with four markers are shown in Figure S3. The proportion of CDX2+ CTCs ranged 

from a low of 63% to a high of 97% (Figure S4). No cells were observed to express CDX2 

without CK. The results strongly suggest a gastrointestinal origin for the detected CTCs.

CTC abundance and response to treatment

CTC abundance and longitudinal trends may reflect treatment success. Figure 3, below, 

illustrates trends in CTC counts for four subjects over the course of the study. Figure 3a–b 

shows CTC trends for a pair of patients with no evidence of disease (NED) at their final 

visit. Samples drawn during chemotherapy or radiation therapy are indicated by horizontal 

lines. In many subjects with NED, CTC abundance during and following RT was relatively 
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low compared to pre-therapy counts. In contrast a subject identified as having a partial 

response (PR) (Figure 3c) following radiation treatment by radiologic RECIST criteria had 

elevated CTC counts during RT (>10 CTC ml−1). New metastasis was identified shortly after 

treatment and subsequent CTC counts rose dramatically. In a subject identified as having 

progressive disease (PD) immediately following RT (Figure 3d), a spike in CTC abundance 

was detected upon the same follow-up visit.

A majority of recruited subjects underwent neoadjuvant chemotherapy followed by 

radiation therapy (RT) and surgery (Table S3). The abundance or trends of CTCs during 

chemotherapy did not appear to correlate well with outcome (Table S4). However, 30 of 

33 samples collected during the course of chemotherapy (91%) had counts above 1.0 CTC 

ml−1. Clinical outcomes were compared to CTC abundance for the 16 subjects receiving 

RT and having blood draws analyzed immediately before (Pre RT) and during (Mid RT) 

treatment. Post-treatment (Post RT) counts were collected within 6 months of the end of RT, 

with a majority of subjects undergoing surgical resection within that time. Subject response 

to RT was determined by radiologic RECIST criteria as having a complete response (CR) 

with no NED at follow-up, PR with eventual NED, PR with recurrence, PD. Figure 4a 

shows no relationship between pre-treatment counts and radiologic outcomes. However, a 

clear relationship between poorer outcomes and increasing CTC abundance is seen at Mid 

RT (Figure 4b), within 3 months Post RT (Figure 4c), and between 3 and 6 months Post 

RT (Figure 4d). Only the 3 month data showed statistically significant differences in CTC 

counts between subjects with NED and recurrent disease (p = 0.045). Pre-treatment counts 

did not correlate with pathologic staging pre-treatment (rho = −0.042) (Figure 4e). However, 

a modest trend with post-treatment pathologic staging was seen with Mid RT counts (rho 

= 0.419) (Figure 4f). A similar relationship was observed when comparing the difference 

between post- and pre-treatment pathologic staging (rho = 0.389) (Figure 4g), with outliers 

in each case being subjects that ultimately had NED.

Receiver operating characteristic (ROC) analysis was used to compare the relative 

performance of Pre, Mid, and Post-treatment CTC abundance with disease recurrence. 

Results suggest that Mid-RT (area under the curve AUC = 0.73) and 6 month Post-RT (AUC 

= 0.75) were modestly predictive of the presence of disease following treatment (Figure 

4h). Averaging Mid- and Post treatment CTC abundance (Supplemental Figure S5) showed 

similar performance. In contrast, pre-treatment counts were not predictive (AUC < 0.5).

Discussion

Our highly sensitive CTC detection platform demonstrated unmatched levels of CTC 

capture in gastrointestinal patients. Significant barriers to routine use of blood tests 

for gastrointestinal cancer are the low sensitivity and relatively, often resulting in poor 

correlations with clinical outcome. The reported performance of CellSearch is in line with 

serum protein biomarkers for pancreatic cancer such as carcinoembryonic antigen (CEA) 

at 45% sensitivity (Meng et al. 2017), or serum carbohydrate antigen (CA) 19–9 and 

CA125 at 68% sensitivity (O’Brien et al. 2015). Alternative CTC enumeration technologies 

in development often report higher detection rates, but relatively low CTC counts. Size-

based purification techniques report median of 3 CTCs ml−1 or lower in patients with 
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gastrointestinal cancer (Khoja et al. 2012; Shim et al. 2020; Wu et al. 2015). Antibody-based 

purification techniques incorporated into microfluidic channels (Rhim et al. 2014; Tsai et 

al. 2016) are better, with median counts of 2–20 CTCs ml−1 for pre-treatment samples 

depending on tumor stage. The combination of dendrimer-mediated multivalent antibody 

capture and E-selectin-induced cell rolling reported here produced a median count of over 

50 CTCs ml−1 in patients before receiving treatment.

The machine learning approach to CTC identification proved to be an efficient and accurate 

technique to quantify CTC abundance. Many existing technologies, including CellSearch, 

require human validation of captured CTCs. Human validation is likely to be inconsistent 

from user-to-user. In our approach and other highly sensitive technologies, human validation 

may also be unacceptably time consuming. Image analysis algorithms are both faster 

and more consistent than human users but have difficulty coping with the variability 

inherent in fluorescent microscopy images of human tissue samples. The limit of relatively 

straightforward image analysis algorithms was demonstrated by the poor performance of 

the logit regression model compared to the CNN alone. This work strongly suggests that 

a machine learning approach is an appropriate middle-ground, achieving greater accuracy 

than statistical regression with the consistency of a computer algorithm. More importantly, 

the training set for the CNN may be expanded or replaced for other cancers or tumor 

markers. The CNN presented here would not detect CTCs expressing specific CK proteins 

that were not well-stained by the pan-CK antibody, or CTCs that express low levels of CK 

due to differentiation (Mikolajczyk et al. 2011; Serrano et al. 2014). Immunocytochemical 

detection of other tumor markers and subsequent CNN re-training may further enhance the 

sensitivity of this approach. The approach reported here was also optimized for isolated 

CTCs and may not accurately identify cell clusters, which may have a higher propensity to 

metastasize than individual CTCs (Giuliano et al. 2018). Such clusters are rarely observed 

on our biomimetic surfaces. They may break apart during rolling or otherwise avoid capture 

due to higher shear stresses than single cells.

Longitudinal trends of CTC abundance likely reflect treatment success, as we previously 

published primarily based on an HNSCC cohort receiving radiotherapy (Myung et al. 

2018b). The results strongly suggest that CTC abundance during and immediately following 

preoperative chemoradiation may predict outcome. However, some patients with confirmed 

recurrent disease had CTC levels below healthy donor controls. A moderate correlation 

was observed between mid-RT CTC counts and RECIST outcome. Consistent with our 

previous work, we observed a decrease in median CTC counts during and after RT. Three 

of 4 patients with CR, and 5 of 7 patients with eventual NED had a net decrease in CTC 

abundance when comparing pre- vs. post-RT counts. However, in this cohort, we observed 

a stronger correlation of outcome with mid-RT CTC count than with longitudinal trends. 

The identification of accurate biomarkers is particularly relevant to GI cancers. There is 

growing prospective evidence that patients with locally advanced rectal cancer who achieve 

complete responses to neoadjuvant chemotherapy and radiation may be eligible for non-

surgical management though uncertainties in accurately identifying complete responses and 

detecting early recurrences has limited its broader adoption. In pancreatic cancer, recurrence 

progression is extremely common and can be very difficult to assess radiographically after 

a Whipple resection in the setting of profound post-surgical changes. High CTC counts 
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during treatment may inform adjuvant treatment decisions. Alternatively, CTC abundance 

may help surgeons avoid a non-curative surgery after neoadjuvant therapy in patients with 

occult metastatic disease.

The wide diversity of treatment regimens made drawing further conclusions difficult. For 

instance, six pancreatic cancer patients received chemotherapy without any RT or surgery. 

All patients had detectable CTCs at levels higher than the healthy donor threshold for 

each sample collected during and following treatment (Table S4). However, consistent 

trends were not discernable, and all chemotherapy-only patients were reported as having 

residual or progressive disease following treatment. Although the abundance of CTCs 

during chemotherapy treatments may not have predictive value, they are present in high 

numbers. Further analysis of protein expression or transcription patterns may prove to be 

more predictive than abundance alone.

Conclusion

The effective treatment of gastrointestinal cancer is hindered by a lack of clinically relevant 

biomarkers. The enumeration of CTCs from peripheral blood samples has shown promise, 

but widespread clinical adoption will require new technologies capable of isolating the rare 

cells at high sensitivity and accuracy in enumeration. In this work, a highly sensitive CTC 

purification platform based on biomimetic cell rolling and dendrimer-mediated multivalent 

binding captured significantly more CTC than other published reports with gastrointestinal 

cancer. A machine learning approach was developed, validated, and deployed to efficiently 

count the large number of captured CTCs. The results suggested that CTC abundance during 

and immediately following treatment have potential as a predictive biomarker as we found 

that changes in CTCs during radiation therapy correlated with clinical outcome in most 

patients.
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Highlights:

• Nanostructured, biomimetic liquid biopsy captured high numbers of GI 

cancer CTCs

• Machine learning algorithm efficiently enumerated immunocytochemically 

labeled CTCs

• CTC abundance immediately following treatment predicted disease 

recurrence
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Figure 1. 
Purification of circulating tumor cells from peripheral blood mononuclear cells in 

a flow chamber by biomimetic cell rolling on E-selectin and dendrimer-mediated 

multivalent binding. The CTCs are distinguished from nonspecifically-captured cells by 

immunocytochemistry.
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Figure 2. 
Machine learning for CTC enumeration. a) Particles containing CK signal (red) were 

identified from scans of clinical samples, cropped, and cleaned. b) The CNN categorized 

the particle as a likely CTC or one of five false positives. c) The CNN probability was 

adjusted by logit regression to increase accuracy. d) ROC and precision-recall analysis of 

the machine learning algorithm. Blue line represents performance in terms of nuclei, red 

line represents performance in terms of spots in the CK (red) channel, dashed lines indicate 

‘no skill’ performance, and circle illustrates threshold used in clinical sample analysis. e) 

An example of a positively-identified CTC (red) on the capture surface amongst leukocytes 

(green). The number indicates the CNN probability. f) Examples of true positive CTCs. g) 

Examples of red particles with CNN probability too low to be counted as CTCs.
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Figure 3. 
Select CTC trends annotated with treatments and clinical observations for subjects (a) 08, 

(b) 10, (c) 13, and (d) 15.
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Figure 4. 
CTC abundance compared to radiological response to treatment a) prior to RT, b) during 

RT, c) within 3 months of completing RT, and d) within 6 months of completing RT. 

e) Pre-treatment counts did not correlate with pathologic staging prior to treatment. CTC 

abundance during RT did trend with f) pathologic staging of tumors post-treatment and g) 

the difference between post- and pre-treatment staging. h) ROC analysis of CTC abundance 

and disease recurrence. AUC for Pre-, Mid-, 3 month Post-, and 6 month Post-RT were 0.39, 

0.73, 0.57, and 0.75.
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Table 1.

Demographic characteristics and tumor staging of subjects prior to treatment

Age range 44–80

mean 62

median 64

Sex 17 male

10 female

Race 26 white

1 multi-racial

Tumor site 16 pancreatic adenocarcinoma

10 rectal adenocarcinoma

1 esophageal adenocarcinoma

T score 0 T1

7 T2

14 T3

6 T4

N score 10 N0

10 N1

7 N2

M score 15 M0

11 M1
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Table 2.

CTC counts grouped by treatment stage

Time Point n Median Minimum Maximum

Pre-Chemotherapy 4 65.4 10.0 541.5

Pre-RT without Chemo 4 53.0 0.8 152.3

Post-Chemo, Pre-RT 14 19.6 0.4 254.5

Mid-RT 17 7.4 0.2 55.5

Post-RT, prior to surgery 11 2.3 0.2 244.6

0–3 months post-treatment 15 9.1 3.1 150.0

3–6 months post-treatment 9 8.7 0.5 118.0
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