
UCSF
UC San Francisco Previously Published Works

Title
Persistent mucus plugs in proximal airways are consequential for airflow limitation in 
asthma

Permalink
https://escholarship.org/uc/item/7qk318rg

Journal
JCI Insight, 9(3)

ISSN
2379-3708

Authors
Huang, Brendan K
Elicker, Brett M
Henry, Travis S
et al.

Publication Date
2024

DOI
10.1172/jci.insight.174124

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qk318rg
https://escholarship.org/uc/item/7qk318rg#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1

C L I N I C A L  M E D I C I N E

Conflict of interest: BKH, BME, TSH, 
and JVF are listed as inventors on a 
provisional patent application related 
to the Quantitative Assessment of 
Airway Mucus Pathology (qAAMP) 
as a biomarker and companion 
diagnostic tool in pulmonary disease.

Copyright: © 2024, Huang et 
al. This is an open access article 
published under the terms of the 
Creative Commons Attribution 4.0 
International License.

Submitted: August 8, 2023 
Accepted: December 13, 2023 
Published: February 8, 2024

Reference information: JCI Insight. 
2024;9(3):e174124. 
https://doi.org/10.1172/jci.
insight.174124.

Persistent mucus plugs in proximal 
airways are consequential for airflow 
limitation in asthma
Brendan K. Huang,1 Brett M. Elicker,2 Travis S. Henry,3 Kimberly G. Kallianos,2 Lewis D. Hahn,4 
Monica Tang,1 Franklin Heng,5 Charles E. McCulloch,6 Nirav R. Bhakta,1 Sharmila Majumdar,2 
Jiwoong Choi,7 Loren C. Denlinger,8 Sean B. Fain,9 Annette T. Hastie,10 Eric A. Hoffman,9  
Elliot Israel,11 Nizar N. Jarjour,8 Bruce D. Levy,11 Dave T. Mauger,12 Kaharu Sumino,13 Sally E. Wenzel,14 
Mario Castro,7 Prescott G. Woodruff,1,5 and John V. Fahy1,5 for the NHLBI Severe Asthma Research 
Program (SARP)15

1Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and 2Department of Radiology 

and Biomedical Imaging, UCSF, San Francisco, California, USA. 3Department of Radiology, Duke University, Durham, 

North Carolina, USA. 4Department of Radiology, UCSD, San Diego, California, USA. 5Cardiovascular Research Institute and 
6Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA. 7Division of Pulmonary, Critical Care 

and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas, USA. 8Division of Allergy, Pulmonary, 

and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA. 
9Department of Radiology, University of Iowa, Iowa City, Iowa, USA. 10Department of Internal Medicine, Section for 

Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA. 
11Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, 

Massachusetts, USA. 12Division of Biostatistics and Bioinformatics, Penn State College of Medicine, The Pennsylvania 

State University, Hershey, Pennsylvania, USA. 13Division of Pulmonary and Critical Care Medicine, Washington University, 

St. Louis, USA. 14Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, 

Pennsylvania, USA. 15The NHLBI SARP centers are listed in Acknowledgements

BACKGROUND. Information about the size, airway location, and longitudinal behavior of mucus 
plugs in asthma is needed to understand their role in mechanisms of airflow obstruction and to 
rationally design muco-active treatments.

METHODS. CT lung scans from 57 patients with asthma were analyzed to quantify mucus plug 
size and airway location, and paired CT scans obtained 3 years apart were analyzed to determine 
plug behavior over time. Radiologist annotations of mucus plugs were incorporated in an image-
processing pipeline to generate size and location information that was related to measures of 
airflow.

RESULTS. The length distribution of 778 annotated mucus plugs was multimodal, and a 12 mm 
length defined short (“stubby”, ≤12 mm) and long (“stringy”, >12 mm) plug phenotypes. High mucus 
plug burden was disproportionately attributable to stringy mucus plugs. Mucus plugs localized 
predominantly to airway generations 6–9, and 47% of plugs in baseline scans persisted in the same 
airway for 3 years and fluctuated in length and volume. Mucus plugs in larger proximal generations 
had greater effects on spirometry measures than plugs in smaller distal generations, and a model 
of airflow that estimates the increased airway resistance attributable to plugs predicted a greater 
effect for proximal generations and more numerous mucus plugs.

CONCLUSION. Persistent mucus plugs in proximal airway generations occur in asthma and 
demonstrate a stochastic process of formation and resolution over time. Proximal airway mucus 
plugs are consequential for airflow and are in locations amenable to treatment by inhaled muco-
active drugs or bronchoscopy.

TRIAL REGISTRATION. Clinicaltrials.gov; NCT01718197, NCT01606826, NCT01750411, NCT01761058, 
NCT01761630, NCT01716494, and NCT01760915.
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Introduction
Severe forms of  asthma are characterized by airflow obstruction that does not always normalize with treat-
ments that target excessive airway smooth muscle tone or airway inflammation (1). Persistent airway mucus 
plugs are prevalent in severe forms of  asthma and represent a plausible mechanism of  chronic airflow 
obstruction in these patients (2, 3). In addition, mucus plugs in chronic obstructive pulmonary disease are 
associated with more severe airflow obstruction (4) and increased risk of  mortality (5). Furthermore, mucus 
plugs occur in patients taking corticosteroid treatment (2), indicating that treatment of  inflammation is 
not sufficient to prevent formation of  these plugs. Specific treatments of  mucus plugs could involve drugs 
to decrease the formation of  new mucus plugs, drugs to remove existing plugs, or mechanical approaches 
such as mucus clearance devices or bronchoscopy. The rational development or selection of  best treatments 
to remove mucus plugs requires quantitative data about their structural features and airway tree location, 
but this information is currently lacking.

Measuring the size and shape of  mucus plugs requires volumetric information. Analogous to methods 
to quantify the 3-dimensional (3D) geometry of  solid tumors in the lung (6), the 3D geometry of  airway 
mucus plugs can be reconstructed from sequences of  2D CT lung images. In addition, the location of  
mucus plugs in the airway tree can be determined using methods of  airway segmentation (7). The use 
of  these image-based methods to study the physiological consequences of  mucus plugs is feasible in the 
SARP-3 program because the deep phenotyping protocol in SARP-3 includes repeated CT lung scans and 
detailed lung function measures (8). Our overarching goal for this study was to characterize the size, shape, 
and location of  mucus plugs in patients with asthma over time and to determine how these mucus plug 
features influence airflow obstruction and air trapping.

Results
Annotations of  mucus plugs in CT lung scans provide potentially novel measures of  airway mucus plug burden. A pre-
viously described mucus plug “segment score” (Supplemental Figure 1A; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.174124DS1) is generated when a radiologist 
assigns a point to each bronchopulmonary segment in a CT lung scan that has at least 1 airway occluded by 
mucus (2). Although of  proven utility (2–4), the segment score has a limited range of  values (values 1–20), 
is not fully quantitative, and does not provide information about the airway location of  a mucus plug or its 
shape and size features. To address these limitations and answer research questions related to mucus plug 
characterization, we optimized methods in which annotators (thoracic radiologists) used a Digital Imaging 
and Communications in Medicine (DICOM) viewer to place elliptical markings on airways occluded by 
mucus in 2D axial slices of  CT lung scans (Figure 1A and Supplemental Video 1). A clustering algorithm 
(9) applied to these elliptical annotations allowed the plugs to be segmented, reconstructed in 3D, and 
enumerated (Figure 1B). In this way, thoracic radiologists generated 12,476 unique annotations related to 
778 individual whole mucus plugs in CT scans from 57 patients with asthma, whose clinical characteristics 
are shown in Table 1. By assigning a point for each elliptical annotation within a patient’s CT lung scan, a 
patient-specific “mucus slice score” could be calculated from the sum of  these points (Supplemental Figure 
1B). The mucus slice scores correlate with the mucus plug segment scores (Supplemental Figure 1D) but 
provide more quantitative information and a larger range of  values. The total number of  discrete mucus 
plugs per patient, which we denote as the “mucus plug score,” is another total mucus plug burden score 
with similar advantages (Supplemental Figure 1, C and E).

Mucus plugs are heterogeneous in size and cluster into “stubby” and “stringy” phenotypes. To quantify the 
shapes and sizes of  mucus plugs, the voxels for each mucus plug were extracted (Supplemental Video 2), 
and the size of  each plug was computed and quantified. We found that the length, diameter, and volume of  

FUNDING. AstraZeneca, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Sanofi–Genzyme–
Regeneron, and TEVA provided financial support for study activities at the Coordinating and Clinical 
Centers beyond the third year of patient follow-up. These companies had no role in study design 
or data analysis, and the only restriction on the funds was that they be used to support the SARP 
initiative.
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individual mucus plugs varied across 1 or more orders of  magnitude (Figure 1, C–E, and Table 2), indicat-
ing a high degree of  heterogeneity in the size of  mucus plugs in asthma. To quantify the volume of  mucus 
plugs within each patient, we generated a total mucus volume measure, which also varied by multiple 
orders of  magnitude  (Figure 1F).

The distribution of  mucus plug lengths appeared to be multimodal (Figure 2A), and assessment of  
model fit by Akaike information criterion revealed that a Gaussian mixture model with 3 underlying distri-
butions had the highest likelihood (Supplemental Figure 2). Based on a length of  12 mm separating the 2 
dominant populations in the model, we defined 2 plug phenotypes based on length — short plugs that were 
12 mm or less in length, denoted as “stubby,” and long plugs that were more than 12 mm in length, denoted 
as “stringy.” In this way, we found that, among 778 plugs, 448 were stubby and 330 were stringy (example 
renderings are shown in Figure 2A). Information on the numbers of  stubby and stringy mucus plugs within 
each patient allowed determination of  the mucus plug volume in each patient attributable to stubby versus 
stringy plugs. As shown in Figure 2B, the patients with the highest total mucus volumes achieved these 
levels mainly because of  volume contributed by stringy mucus plugs.

Because eosinophilic inflammation — eosinophil counts and levels of  eosinophil peroxidase (EPX) 
in blood and sputum — are known to be linked to mucus plug segment scores in asthma (2), we explored 
whether the size of  individual mucus plugs was influenced by eosinophilic inflammation. We found that 
the average mucus plug length and volume in patients were positively correlated with blood eosinophil 
counts and sputum EPX levels (Supplemental Figure 3, A–D).

Mucus plugs in CT lung images primarily localize to airways that are 2–4 mm in diameter. By segmenting 
lung parenchyma and airways on a lobar basis, every mucus plug could be localized to a specific airway 
branch and lobe (Figure 3A). This information allowed the creation of  a patient-specific “airway mucus 
plug map,” a visualization of  the location of  each mucus plug within the branching airway tree (Figure 3B). 
To summarize the airway generations occluded by all 778 mucus plugs, we generated a frequency distribu-
tion plot that shows that mucus plugs are located primarily in generations 6, 7, 8, and 9 (Figure 3C). We 
estimated these airways to be typically 2–4 mm in diameter in the CT lung scans analyzed (Figure 3C). We 
explored whether there was a specific pattern of  length or volume of  individual mucus plugs in different 
airway generations but did not find any trend (Supplemental Figure 4, A and B). Although the number of  

Figure 1. Mucus plugs are heterogeneous in size and shape in asthma. (A and B) Overview of annotation and image processing pipeline for mucus plug 
shapes quantification. (A) An elliptical mark placed over each plug generates a center coordinate, width, and height for a region of interest (colored arrows). 
The process is repeated at each axial slice (inset), with z indicating the slice location relative to the initial image and with color denoting annotations 
belonging to the same plug. (B) Annotations are incorporated into an image-processing pipeline for segmentation and feature extraction on plugs, enabling 
calculation of their length, diameter, and volume. (C–E) Results of shape feature quantification of individual mucus plugs (left, n = 778 plugs) and averages 
by patient (right, n = 55 patients) from baseline scans, including plug length (C), plug diameter (D), and plug volume (E). Note that scales are logarithmic. 
Bars indicated interquartile range, and whiskers show minimum and maximum values. (F) Total mucus volume per patient. GK, Gustafson-Kessel.
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mucus plugs did not differ significantly in upper versus lower lobes or in the right versus the left lung, the 
volumes of  individual mucus plugs in the lower lobes were greater than the volumes of  individual mucus 
plugs in the upper and middle lobes (Supplemental Figure 4C).

Mucus plugs persist in the same airways for many years but demonstrate dynamic changes in size over time. Of  
the 57 patients whose baseline CT lung scans were annotated, 43 had a second CT lung scan available at 
their year-3 visit that allowed analysis of  mucus plugs over time. Among scans from the 43 patients, 580 
mucus plugs were visible on the baseline scans and 619 mucus plugs were visible on the year-3 scans. 
We found that the per-patient average plug length, average plug volume, and total mucus plug volume 
did not differ significantly between baseline and year 3 (Figure 4, A–C), indicating overall stability of  
total mucus plug burden within patients over 3 years. To explore the temporal dynamics of  the 580 
mucus plugs identified in the baseline scans from the 43 patients, we tracked mucus plugs that persisted 
in the same airway between the baseline and year-3 scans (Supplemental Video 3), labeling these plugs 
as “persistent.” We also tracked mucus plugs that disappeared between the baseline and year-3 scans, 
labeling these plugs as “transient.” Remarkably, we found that 47% of  the 580 baseline plugs persisted 
in the same airway for 3 years, and 81% of  the 43 patients had at least 1 persistent plug (Figure 4D). 
Persistent mucus plugs, although static in location, exhibited dynamic behavior in size and underwent 
variable changes in length and volume (Figure 4, E and F). Changes were centered around zero and 
appeared normally distributed (Supplemental Figure 5), and there was no statistically significant differ-
ence in average length or volume of  the entire population of  plugs over the 3-year period. In addition, 
the finding that the total mucus volume per patient stayed, on average, constant over time (Figure 4C) 
was consistent with the observation that the disappearance of  transient mucus plugs sometimes coincid-
ed with the appearance of  new mucus plugs in different airways at year 3.

In comparing the characteristics of  persistent and transient mucus plugs, we found that persistent 
mucus plugs were longer, more frequently stringy, and more frequently located in the upper lobes (Table 
3 and Figure 4, G and H). We analyzed the CT attenuation of  the pixels in each plug by computing the 
median value in Hounsfield units (HU) and found that transient plugs were more radiodense (Table 3). In 
analyzing the 3-year behavior of  stringy versus stubby plugs using Sankey plot and state-transition analyses, 
we found that, among plugs that persisted, stubby plugs were more likely to stay stubby and stringy plugs 
were more likely to stay stringy (Figure 4, I and J).

Mucus plugs in proximal airways have larger effects on spirometric measures of  lung function than plugs in distal 
airways. Consistent with our previously reported results (2, 3), overall mucus plug burden as assessed by 

Table 1. Clinical characteristics of patients with asthma

(n = 57)
Age (yr), mean (SD) 51.2 ± 15.2

BMI (kg/m2), mean (SD) 31.9 ± 8.4
Race, n (%) 6 (10.5%)

Asian
Black/African American 9 (15.8%)

White 38 (66.7%)
More than 1 race 4 (7.0%)

Female, n (%) 38 (66.7%)
Severe AsthmaA,n (%) 51 (89.5%)

ACT, median (IQR) 15 (13, 20)
High dose ICS usage, n (%) 53 (94.6%)

Daily oral corticosteroid, n (%) 8 (14.3%)
Pre-BD FEV1 (% pred), mean (SD) 63.6 ± 17.8
Pre-BD FVC (% pred), mean (SD) 79.8 ±17.0
Pre-BD FEV1/FVC (%), mean (SD) 63.6 ± 9.3

IgE (kU/L), median (IQR) 175 (71, 319)
Blood eosinophil count (cells / μL), median (IQR) 327 (181,535)

ASevere asthma is defined by ATS/ERS consensus. ACT, asthma control test; BD, bronchodilator response; FEV1, forced 
expiratory volume in 1 second; FVC, forced vital capacity; ICS, inhaled corticosteroid
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mucus segment score, mucus plug score, and mucus slice score was inversely associated with forced expi-
ratory volume in 1 second (FEV1) (Supplemental Figure 6). Our localization of  mucus plugging to specific 
airway branches, however, allowed us to compare the relative effects of  mucus plugs in proximal airways 
(generations 7 or less), intermediate airways (generations 8 and 9), and distal airways (generation 10 and 
greater). We used correlation coefficients and SHapley Additive exPlanation (SHAP) values (which con-
sider plug count in each generation as an independent feature in a linear regression) to compare the relative 
effects of  mucus plug count in proximal, intermediate, and distal airways on spirometric measures of  air-
flow. In these analyses, the mucus plugs were grouped independently by airway generation for each patient, 
and the number of  mucus plugs per generation was counted for each patient. The plug count by generation 
was correlated with spirometry, either the postbronchodilator FEV1 or the forced expiratory flow between 
25% and 75% of  forced vital capacity (FEF25–75), to estimate a Spearman coefficient. For these analyses, 
the CT scans and lung physiology data from the baseline and year-3 visits were pooled so that 97 CT scans 
from 57 patients were analyzed. We found that the correlation coefficients (rs) for mucus plugs in proximal 
airways (generation ≤ 7) and FEV1 or FEF25–75 were more negative than the coefficients for mucus plugs 
and FEV1 or FEF25–75 in distal airways (generation ≥ 10; Figure 5A), indicating a stronger negative effect 
of  those plugs on airflow. In addition, the magnitude of  SHAP values for mucus plugs in proximal airways 
was larger than those in distal airways (Figure 5B), also indicating a stronger effect from proximal plugs.

Mucus plugs are associated with airway-specific increases in resistance score and air trapping. We hypothesized 
that mucus plugs occlude airways, causing airflow obstruction in the conducting airway tree and air trap-
ping in the lung parenchyma distal to affected airways. To explore this hypothesis, we developed simpli-
fied models of  airflow and air trapping that explicitly incorporate mucus plugs as obstructing airflow in 
plugged airways. These patient-specific models intake the segmented airways, lungs, and mucus plugs for 
each individual CT scan and output 2 measures: (a) the resistance score (RS), an estimated effect on the large 
airway resistance due to mucus plugs (Figure 6A), and (b) the obstructed lung volume percentage (OLVP), 
an estimate of  percentage of  lung parenchyma distal to airways occluded by mucus plugs and likely to 
exhibit air trapping (Figure 6B). Consistent with wide variation in total mucus plug burden between patients 
(Figure 1F), we found that RS and OLVP values also varied widely between patients (Figure 6, C and F). 
In cross-sectional analyses of  data from the baseline CT lung scans, both values showed significant inverse 
associations with FEV1 (Figure 6, D and G) and FEF25–75 (Supplemental Figure 7, A and C). In addition, 
the changes in RS and in OLVP from baseline to year 3 correlated with changes in FEV1 (Figure 6, E and H) 
and FEF25–75 (Supplemental Figure 7, B and D). For the analyses in Figure 6E, we performed a sensitivity 
analysis to determine the effects of  an outlier with ΔRS of  201 and ΔFEV1 of  –14%. We found that the rs was 
–0.50 (P = 0.001) with this outlier included and –0.46 (P = 0.003) with the outlier excluded.

Our air trapping model posits that air trapping is spatially associated with occluded airway branches. 
To test this assumption, we generated lung lobe-specific data for OLVP (Figure 6I) and analyzed the rela-
tionship between OLVP and the disease probability measure of  functional small airway disease (DPM-
fSAD), a previously described measure of  air trapping (10). DPM-fSAD is quantified from CT lung scans 
by registering images acquired at inspiration to images acquired at expiration and, on a voxel-by-voxel 
basis, identifying regions of  the lung that trap gas (10). We found that lobe-specific OLVP measures cor-
related significantly with fSAD at baseline (Figure 6J) and that the change in lobe-specific OLVP from 
baseline to year 3 correlated with changes in fSAD (Figure 6K). OLVP also significantly correlated with 
2 other CT-based functional measures related to air trapping, (a) the Jacobian mean (the inspiratory 
to expiratory local lung volume ratio) and (b) expiratory low attenuation area percent below –856 HU 

Table 2. Quantitative measures of mucus plug shape features in asthma

Plug measurement PerpPlug 
median value (IQR)

Average per-patient  
median value (IQR)

Total per-patient  
median value (IQR)

(n = 778) (n = 55) (n = 55)

Length (mm) 10.2 (6.9–18.6) 11.1 (8.3–14.2)

Diameter (mm) 3.1 (2.5–3.9) 3.1 (2.6–3.6)
Volume (μL) 63.4 (32.8–115.6) 70.2 (43.3–106.5) 831 (154–1698)
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(LAA856%), on a lobar basis (Supplemental Figure 8). Analysis from linear mixed-effects models to con-
trol for multiple measurements from the same patient as well as multivariate regression controlling for 
age, BMI, sex, and airway wall thickness (covariates determined by our directed acyclic graph in Supple-
mental Figure 9) were consistent with these results (Table 4). In particular, all measures relating OLVP to 
measures of  airflow and air trapping remained statistically significant when controlling for all covariates. 
Taken together, these data support the interpretation that mucus plugs specifically cause air trapping in 
the lung region distal to the airways they occlude.

We next used the RS to further test if  mucus plugs located in more proximal locations are more 
consequential for airflow obstruction. For this analysis, we calculated the RS in each patient divided 
by mucus plug score (i.e., plug count) to estimate RS per plug as a measure of  each individual plug’s 
effect on airflow obstruction. We stratified mucus plugs by proximal (generation ≤ 7), intermediate 
(generation 8–9), and distal (generation ≥ 10) airway generation and found that plugs in proximal gen-
erations had significantly higher RS per plug than intermediate or distal generations (Figure 7A). We 
similarly stratified plugs from patients with high and low mucus plug scores based on the median value 
of  baseline patients, 11 plugs. We found that plugs in patients with high mucus plug scores had a higher 
RS-per-plug score (Figure 7B), consistent with the interpretation that, as mucus plugs begin to occlude 
a substantial fraction of  large airways and leave fewer airways patent, subsequent mucus plugs have a 
higher marginal effect on net airway resistance. These data support our hypothesis that more numerous 
mucus plugs in more proximal locations are more consequential for airflow obstruction and air trapping 
than sparser and more distal mucus plugs.

Figure 2. Mucus plugs exhibit multiple underlying length phenotypes. (A) Distribution of mucus plug lengths with best-fit Gaussian mixture model by 
Akaike information criterion, with separation between short (“stubby”) plugs and long (“stringy”) plugs at 12 mm. Very long plugs (component 3) make 
up a small portion of total population. The inset shows 3D renderings of stubby and stringy mucus plugs. (B) Distribution of mucus plug volume in each 
patient (n = 55) ordered by predominance of stubby versus stringy mucus plugs within each patient. The inset image provides renderings of mucus plugs 
(red) within the lung of a patient with a majority stubby plug volume (patient 1) and majority stringy plug volume (patient 55).
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Quantitative assessment of  airway mucus plug pathology. The analysis of  mucus plugs in CT lung 
scans in asthma presented above yields multiple potentially novel quantitative measures of  mucus 
plug pathology in the lung. Since these measures may serve as biomarkers of  mucus pathology, we 
have summarized them as the Quantitative Assessment of  Airway Mucus Plug Pathology (qAAMP) in 
Table 5. All of  the qAAMP measures can be generated in CT lung scans using the workflow described 
above and in Methods.

Discussion
Previous studies of  the size features of  mucus plugs in asthma and their location in the airway tree 
have relied on analyses of  mucus plugs in lung tissues from cases of  fatal asthma (11) or of  mucus 
plugs extracted from the lungs using bronchoscopy (12). These studies have analyzed limited numbers 
of  mucus plugs from small numbers of  patients and have been unable to assess the effect of  mucus plugs 
on lung function. Here we have provided detailed size and shape information on 1,397 mucus plugs in 
57 patients with asthma, and we identified the airway tree locations occluded by these plugs and their 
lung function consequences. We show that radiographically visible mucus plugs in asthma were hetero-
geneous in their size and shape, are located primarily in 2 to 4 mm airways, and persist for many years, 
often in the same airway. Our modeling data also indicate that mucus plugs increase airway resistance 
and air trapping in lung regions distal to mucus-occluded airways and provide strong rationale to treat 
mucus plugs as a strategy to improve airflow in asthma.

We found that the length distribution of  mucus plugs in asthma is multimodal, and best fit model-
ing showed that a plug length of  12 mm defines short (“stubby”) and long (“stringy”) plug phenotypes. 
Although only 40% of  the mucus plugs were stringy, these plugs contributed the most mucus volume 
in patients with the highest mucus burden. The heterogeneity we describe for the number and size of  
mucus plugs has great relevance for the design of  clinical trials that test interventions to treat mucus 
plugs. For example, it is likely that more numerous mucus plugs or plugs with a stringy phenotype 
will take longer to respond to treatment (especially inhaled treatments) than less numerous or stubby 
plugs. In addition, our 3-year longitudinal data inform thinking about the required duration of  mucus 
plug treatments. We show some cases where the same airway location has persistent plugging for 3 
years and other cases where mucus plugs disappear from an airway over time or form in a new airway 
location (Supplemental Figure 10). Based on our observation that the average plug length and volume 
in these airways is centered around zero and have a normally distributed change in length and volume, 
we infer that these plugs persist in the airways and undergo a stochastic process of  formation and 
resolution. These observations indicate that many patients with asthma have a persistent mucus plug 
phenotype that results from a dynamic balance of  mucus plug persistence, resolution, and new forma-
tion. Our data give insight into the natural kinetic processes of  airway mucus plugs and suggest that, 
while one-time removal of  mucus plugs may have clinical benefit, repeated treatments may be needed 
to prevent formation of  newly formed plugs in susceptible airways.

Figure 3. Mucus plugs are primarily located in proximal airway generations in asthma. (A) Rendering of segmented lung parenchyma (blue), airways 
(gray), and mucus plugs (red) in a patient with asthma. (B) Mucus plug map showing topological location of mucus plugs in the airway for the same 
patient. Generation number is counted by each airway bifurcation with trachea as generation 0. (C) Histogram showing that mucus plugs are located 
primarily in airway generations 6–9, which have a diameter of 2–4 mm. Data are from 778 plugs visible in 55 baseline CT lung scans, and the mean airway 
diameter is the average diameter measured at each airway generation across the 55 scans.
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Prior work in postmortem autopsies in fatal asthma has emphasized the presence of  mucus plugs in 
airways less than 2 mm in diameter, which are typically twelfth generation and smaller in the branch-
ing airway tree (13). Our lung image–based approach shows that mucus plugs in asthma also occur in 
airways that are 2–4 mm in diameter, and these airways include the fourth- and fifth-generation air-
ways that aerate the proximal portions of  bronchopulmonary segments. This finding that mucus plugs 
in asthma occur in segmental and larger subsegmental airways is important because they are likely to 

Figure 4. Mucus plugs persist for years in the same airways and demonstrate dynamic changes in size over time. (A–C) Comparison of patient-level 
measurements for patients with matched baseline and year-3 scans with average plug length per patient (A), average plug volume per patient (B), and 
total plug volume per patient (C) all showing similar between baseline and year 3. Data in A–C are from 580 baseline plugs and 619 year-3 plugs visible in 
86 CT lung scans from 43 patients. Bars indicate interquartile range (IQR), and whiskers indicate 1.5 IQR. (D) Percentage of individual plugs classified as 
persistent or transient using analyses of scans at baseline and year 3 (upper pie chart). Percentage of patients with at least 1 persistent plug in the same 
airway at baseline and at year 3 (lower pie chart). (E) Frequency distribution plot showing the change in mucus plug length from baseline to year 3. (F) 
Frequency distribution plot showing the change in mucus plug volume from baseline to year 3. Data in E and F are from 270 persistent mucus plugs. (G) 
Compared with mucus plugs in lower lobe locations, mucus plugs in upper lobe locations are more likely to persist for 3 years. ***P < 0.001 (Kruskal-Wallis 
test). (H) Compared with stubby plugs, stringy mucus plugs are more likely to persist for 3 years. *P < 0.05 (Kruskal-Wallis test). (I) Sankey plot showing 
how stringy, stubby, and absent mucus plug phenotypes vary from baseline to year 3. (J) State-transition diagram showing the probability of transition 
between stubby, stringy, and absent plug group from baseline to year 3.
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have larger effects on lung function in these proximal airway locations. Indeed, compared with mucus 
plugs in more distal airway locations, we show that mucus plugs in proximal airway locations are more 
consequential for spirometry-based measures of  lung function and model-based estimates of  airway 
resistance. Removal of  these mucus plugs is, therefore, a rational strategy to improve lung function 
in asthma. In this context, our modeling of  airway resistance, which is computed by comparing the 
resistance of  the airway tree in the presence and absence of  mucus plugs, can be thought of  as a “vir-
tual plug extraction.” Our virtual plug extraction data support removal of  mucus plugs as a strategy to 
improve lung function in asthma.

Development of  muco-active drugs for lung disease has been slowed by lack of  predictive and 
monitoring biomarkers and by limited information about mucus plug phenotypes to guide drug dosing 
and formulation. We propose that the qAAMP metrics provided here will have great utility to select 
patients with mucus plug–high phenotypes for clinical trials of  muco-active drugs and to monitor the 
effects of  treatment on mucus plugs in these patients. For example, the qAAMP measures will allow 
determination of  whether a muco-active treatment affects total mucus plug burden and whether this 
occurs globally in the airway tree or is restricted to specific locations in the airway tree. In terms of  
guiding drug dosing and drug formulation, the mucus plug volume data will be useful in calculating 
the delivered drug dose required to lyse mucus plugs. In addition, the airway mucus plug map data and 
3D visualizations of  the location of  persistent plugs (Supplemental Figure 10) will guide optimization 
of  the physiochemical properties of  aerosols or mechanical interventions needed to reach mucus plugs 
in fourth- to tenth-generation airways.

We note 2 limitations of  the current study. First, our assessment of  airway mucus plugs is limited 
by the resolution of  CT lung scans. This means that our data do not include information about mucus 
plugs in small airways. Despite this limitation, our data for mucus plugs in larger airways emphasize 
the presence of  plugs in these airways and demonstrate the consequences of  these plugs for lung 
function. Second, the process of  generating annotations is time intensive and requires expertise by 
specialty-trained thoracic radiologists. Prior work has shown promising results in automating plug 
segmentation using deep learning (14), and the volumetric segmentation data generated here can be 
used to train analogous algorithms in the asthma population.

In summary, heterogeneously sized mucus plugs in asthma persist for many years and show dynamic 
changes in their shape and size over time. These mucus plugs in proximal airway locations affect lung 
function, and they are amendable to treatment by aerosolized drugs or by interventional bronchoscopy. 
Treatments to remove mucus plugs and prevent their reformation in severe asthma constitutes a rational 
strategy to improve airflow obstruction in treatment-refractory disease.

Table 3. Size and shape features of transient and persistent mucus plugs in asthma

Transient Persistent P value
(n = 310) (n = 270)

Volume (μL), median (IQR) 58 (30, 96) 63 (30, 117) 0.174
Length (mm), median (IQR) 9.1 (6.4, 15.7) 10.3 (7.2, 18.4) 0.012

Diameter (mm), median (IQR) 3.1 (2.4, 3.8) 3.0 (2.5,3.9) 0.938
Length:diameter ratio, 

median (IQR) 2.9 (2.3, 4.4) 3.4 (2.5, 5.2) 0.004

Median density (HU), median (IQR) –529 (–623, –405) –575 (–645,–476) <0.001
Airway generation, median (IQR) 7 (6, 9) 7 (6, 8) 0.099

Stringy 
N, (%) 103 (33.2%) 115 (42.6%) 0.025

Stubby 
N, (%) 207 (66.8%) 155 (57.4%)

Left 
N, (%) 164 (52.9%) 123 (45.6%) 0.093

Upper 
N, (%) 117 (37.7%) 143 (53.0%) <0.001

P values calculated as χ2 for categorical variables and Kruskal-Wallis for continuous nonparametric variables.
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Methods
Patients. Patient data were obtained from the NHLBI SARP database, a multiinstitutional cohort designed 
to obtain longitudinal clinical, serologic, physiologic, and imaging data of  patients with severe asthma (15). 
CT scans were acquired after use of  a bronchodilator using a previously described protocol (16). A sample 
size of  54 was calculated based on an initial power estimate needed to demonstrate an association between 
mucus plugs in proximal generations and FEV1. Based on this estimate, we selected 57 patients from a larg-
er cohort of  patients whose CT lung scans had previously been scored by radiologists and shown to have 
mucus plugs (3). Of  the 57 patients, 43 had a second CT lung at year 3. Scans were included in the study 
reported here if  they had at least 1 mucus plug either at baseline or year 3. In total, at the baseline visit, 
CT scans from 55 patients had mucus plugs that were analyzed and included in the baseline data set; at the 
year-3 visit, CT scans from 42 patients had mucus plugs that were analyzed and included in the year-3 data 
set. Scans were excluded if  they demonstrated radiographic evidence of  active infections, allergic broncho-
pulmonary aspergillosis, lung scarring, or motion degradation limiting the ability to evaluate for mucus 
plugs. All eligible SARP-3 scans acquired at the UCSF center were included in the study, and additional 
scans were randomly sampled from the remainder of  the SARP-3 CT lung imaging database.

Mucus plug annotations. Thoracic radiologists annotated the chest CTs in this study. The annotation 
process is illustrated in Figure 1A. Readers used a DICOM viewer (OsiriX; Pixmeo) to place an elliptical 
marking over each mucus plug within an axial slice. Per previous protocol (17), window width was 1,200 
HU and window center was 600 HU during visualization. Voxel spacing of  the reconstructed volumes 
ranged from 0.5 to 0.7 mm in the axial (x and y axes) plane, and spacing between axial slices (z axis) ranged 
from 0.5 to 0.6 mm. Each annotation yielded a center coordinate, width, and height for a region of  interest 
(ROI) containing the plug at that slice. This process was repeated for every plug and every axial slice in 
the scan (Figure 1A, inset). Annotations that belonged to a single contiguous plug were designated with a 
single numerical label.

The annotation process was performed independently twice by 2 radiologists for each scan (Figure 1B). 
Plugs that were identified by only 1 of  2 readers were considered discordant and reviewed by a third reader 
for adjudication. Supplemental Video 1 shows the annotations in a CT scan resulting from the 3-reader 
adjudication process. From the finalized annotation, the mucus segment score was calculated after manual 
identification of  the bronchopulmonary segment containing each mucus plug. The mucus slice score was 
calculated as the sum of  the number of  elliptical annotations, and mucus plug score was calculated as the 
sum of  the number of  individual mucus plugs.

Figure 5. Proximal plugs are more consequential for spirometric measures of airflow obstruction in asthma. (A) Correla-
tion analysis of mucus plugs grouped independently by proximal airway generations (7 or less), intermediate airway gener-
ations (8 and 9), and distal airway generations (10 and greater) as well as spirometry measures. The estimated Spearman 
coefficients for each generation group, which correlate plug count by generation group with FEV1 and FEF25–75, are shown 
for proximal, intermediate, and distal airway generations along with 95% CI. *P < 0.05, different from distal airway gener-
ations for FEV1 (by bootstrapping). **P < 0.01, different from distal airway generation (by bootstrapping). Data presented 
includes pooled baseline and year-3 follow-up scans (n = 97). (B) Absolute SHAP values for FEV1 and FEF25–75 at proximal, 
intermediate, and distal airway generations (n = 97).
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Figure 6. Mucus plugs are 
associated with an increase in 
modeled airway resistance and 
in measured air trapping in lung 
regions distal to mucus-occluded 
airways. (A) Schematic illustrat-
ing computation of resistance 
score (RS) by incorporating mucus 
plugging into the airway tree. The 
airway tree is divided into differ-
ent segments with an effective 
resistance Rn given by the length 
and radius of the airway at that 
location. After combining all 
segments, the net resistance of 
the airway tree in the presence 
of plugging (Rp) is compared with 
the resistance of the native airway 
tree in the absence of plugs (Ra) 
to yield the increased percentage 
in airway resistance RS = (100 
× [Rp – Ra]/Ra) due to plugs. (B) 
Estimation of obstructed lung 
volume percentage (OLVP). The 
voxel volume of the lung region 
distal to a mucus occluded airway 
(Vo) was divided by the total voxel 
volume in the lobe (Vt) to generate 
the estimated obstructed lung 
volume percentage (100 × Vo/Vt). 
(C) Distribution of RS for patients 
at baseline (n = 54). (D) Relation-
ship between predicted RS and 
FEV1 at baseline. (E) Relationship 
between changes in predicted 
RS and changes in FEV1 over 3 
years for matched patients (n = 
40). (F) Distribution of OLVP per 
patient at baseline (n = 53). (G) 
Relationship between OLVP and 
FEV1 at baseline. (H) Relationship 
between changes in predicted 
OLVP and changes in FEV1 over 3 
years for matched patients (n = 
40). Sensitivity analysis of outlier 
point (ΔRS = 201, ΔFEV1 = –14%) 
shows similar correlation coeffi-
cient (rs = –0.50, P = 0.001 with 
outlier included and rs = –0.46, P 
= 0.003 with outlier excluded). (I) 
Distribution of OLVP per lobe at 
baseline (n = 260). (J) Relationship 
between OLVP and disease prob-
ability measure functional small 
airways disease (DPM-fSAD) per 
lobe at baseline. (K) Relationship 
between changes in OLVP and 
DPM-fSAD per lobe over 3 years 
(n = 195). rs denotes Spearman 
correlation coefficient. Statistical 
results of linear mixed model and 
multivariate regression are shown 
in Table 4.
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Annotation of  year 3 scans. Annotations of  the year-3 scans occurred after the baseline scans, and the 
radiologists had access to the finalized baseline scans results during annotation. Similar to the baseline 
scan process, 2 radiologists independently annotated each year-3 scan, followed by adjudication by a third 
radiologist. In certain cases, the annotator of  the year-3 scan identified a likely plug on the baseline scan that 
had not been annotated during the initial process. These possible baseline plugs were collectively reviewed 
by the entire team of  4 radiologists, and a consensus vote was taken to determine if  the plug should be 
retroactively annotated on the baseline scan. In this manner, an additional 34 plugs in the baseline cohort 
were identified and annotated. This consensus read was undertaken to obtain higher fidelity data in mucus 
plug tracking (Figure 4) and in identifying mucus plug persistence over time.

Mucus plug segmentation, quantification, and visualization. To segment and analyze individual plugs, we 
developed a custom computational workflow to ingest and process annotations (Figure 1B). Each anno-
tation was first used to extract an elliptical ROI surrounding each mucus plug in a particular slice. The 
extracted voxels from all slices belonging to a single mucus plug were combined into a single volumetric 
subset. A fuzzy clustering algorithm known as Gustafson-Kessel (GK) clustering was used to segment the 
mucus plug from surrounding lung parenchyma and airway lumen in a manner similar to that described 
for segmentation of  lung nodules (9). In our pipeline, the GK clustering algorithm was run on the extracted 
volumetric subset and was used to separate voxels into 2 clusters based on imaging intensity (radiodensity). 
The foreground was taken to be the cluster with the highest intensity value. The single largest contiguous 

Table 4. Results of statistical analysis using linear mixed-effects or multivariate regression models for resistance score and obstructed 
lung volume percentage

Independent variable Dependent variable

Linear regression or linear mixed effect 
model — unadjustedA  

(Random effect = patient; 
coeff (CI), P value)

Multivariate linear regression or linear 
mixed effect model — adjustedA 

(random effect = patient; 
covariate = age, BMI, Sex, Pi10; 

coeff [CI], P value)
RS, baseline FEV1 (% Pred) –0.214 (–0.430–0.003), P = 0.053 –0.181 (–0.420–0.058), P = 0.134

ΔRS, 
Baselineto year 3 ΔFEV1 (% Pred)

–0.082 (–0.161 to 
–0.003), P = 0.042 –0.096 (–0.174 to 

–0.019), P = 0.016

RS, baseline FEF25–75 (% Pred) –0.376 (–0.624 to –0.128), P = 0.004 –0.327 (–0.586 to 
–0.068), P = 0.014

ΔRS, 
Baselineto year 3 ΔFEF25–75 (% Pred) –0.068 (–0.171–0.035), P = 0.189 –0.091 (–0.198–0.015), P = 0.090

OLVP, baseline FEV1 (% Pred) –0.389 (–0.721 to 
–0.058), P = 0.022

–0.386 (–0.751 to 
–0.020), P = 0.039

ΔOLVP, 
Baselineto year 3 ΔFEV1 (% Pred) –0.284 (–0.505 to –0.064), P = 0.013 –0.324 (–0.538 to –0.111), P = 0.004

OLVP, baseline FEF25–75 (% Pred) –0.749 (–1.122 to –0.375), P < 0.001 –0.728 (–1.119 to –0.338), P < 0.001
ΔOLVP, 

Baselineto year 3 ΔFEF25–75 (% Pred) –0.365 (–0.643 to –0.087), P = 0.011 –0.423 (–0.706 to –0.140), P = 0.005

OLVP by lobe, 
baseline DPM-fSAD 0.152 (0.079 – 

0.225), P < 0.001
0.153 (0.080 – 

0.226), P < 0.001
ΔOLVP by Lobe, 

Baselineto year 3
ΔDPM-fSAD 0.095 (0.040 – 

0.151), P = 0.001
0.083 (0.022 – 

0.144), P = 0.008
OLVP by lobe, baseline Jacobian mean –0.003 (–0.005 to –0.001), P = 0.001 –0.003 (–0.005 to –0.001), P = 0.001

ΔOLVP by lobe, 
Baselineto year 3 ΔJacobian mean –0.002 (–0.003 to –0.000), P = 0.024 –0.002 (–0.003 to –0.000), P = 0.042

OLVP by lobe, baseline LAA856% 0.226 (0.146 – 
0.305), P < 0.001

0.233 (0.151 – 
0.315), P < 0.001

ΔOLVP by lobe, 
Baselineto year 3 ΔLAA856% 0.083 (0.038 – 

0.128), P < 0.001
0.089 (0.040 – 

0.139), P < 0.001
AMeasurements per patient (FEV1, FEF25–75) analyzed with linear regression, and measurements per lobe (DPM-fSAD, Jacobian mean, LAA856%) analyzed 
with linear mixed-effects model. DPM-fSAD, disease probability measure of functional small airway disease; FEF25–75, forced expiratory flow between 
25% and 75% of forced vital capacity; FEV1, forced expiratory volume in 1 second; LAA856%, expiratory low attenuation area percent below –856 HU; OLVP, 
obstructed lung volume percentage; Pi10, square root of wall area of a 10 mm lumen perimeter; RS, resistance score; Δ, change.
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foreground region by volume was then selected as the mucus plug. Results of  an example plug segmenta-
tion are shown in Supplemental Video 1.

Once individual mucus plugs were segmented on a volumetric basis, their size was estimated using 
voxel and mesh-based methods (18). The length of  each plug was computed by employing principal com-
ponent analysis on the ROI to calculate eigenvalues along the 3 principal axes (λmaj > λmin > λleast) and esti-
mating the length L by the following formula: L = 4 √ λmaj (18). The diameter was calculated by fitting the 
3D mucus ROI to a cylinder and using the resultant best-fit value for the cylinder diameter (19). The CT 
radiodensity of  segmented pixels was analyzed per plug to compute the median density value for each indi-
vidual plug. For visualization of  individual mucus plugs, a triangular mesh representing the surface of  the 
mucus plugs was generated using the marching cubes algorithm (9) with an additional surface smoothing 
algorithm (20) applied prior to rendering (Figure 2A and Supplemental Video 2).

Lung and airway segmentation and skeletonization. Lung parenchyma was segmented on a lobar basis 
using previously described methods (21) with software available in an open source software package 
(22). Airway segmentation was performed by combining a region-growing method (22), which yields 
an estimate of  central airways, with a convolutional neural network–based approach (23), which has 
improved performance in smaller airways. The segmented airway was taken to be the largest contiguous 
region resulting from the voxel-wise union of  the 2 methods. The airway tree was then skeletonized 
(22) yielding a centerline estimation of  the airway tree. A topological representation of  the airway tree 
was generated that contained information for each portion of  the airway tree, including the location 
of  centerline points, branching points, length of  each segment, local airway radius estimates, airway 
generation number, and lobar location as well as information about connectivity to more distal (child) 
branches. Airway termination points were defined as the most distal points of  the centerline that no 
longer had child branches.

Airway mucus plug map generation. After individual mucus plugs were segmented, each plug was then 
localized to a position in the airway tree. For each mucus plug, a search was performed for the nearest 
airway termination point by Euclidean distance. Mucus plugs were then incorporated into the topological 
diagram of  the airway tree. The lobe of  each plug was assigned based on the lobe of  the airway to which 
it localized, and the generation was computed by counting the number of  airway bifurcations from the 
trachea, with the trachea considered generation 0.

Estimation of  RS. To estimate the total effect of  mucus plugs on airflow obstruction, we used the infor-
mation generated in the airway mucus plug map for each CT scan to calculate a potentially novel mea-
sure of  airway resistance (RS). First, the total airflow Q through the visible airway tree due to an applied 

Figure 7. Mucus plugs in proximal generations have a great effect on resistance score than distal generations. (A) 
Resistance score (RS) per plug grouped independently by proximal airway generations (7 or less), intermediate airway 
generations (8 and 9), and distal airway generations (10 and greater) (n = 1,327 plugs). The RS values for each genera-
tion group are shown for proximal, intermediate, and distal airway generations. ***P < 0.001 by Kruskal-Wallis test; P = 
0.008 and P = 0.002 for comparison with proximal versus intermediate and proximal versus distal generations, respec-
tively, using linear mixed model with random effects for patient. (B) RS per plug grouped independently by mucus plug 
score-high (>11 plugs) and plug score-low (≤11 plugs) (n = 94 patients). **P < 0.01 by Kruskal-Wallis test; P = 0.014 for 
linear mixed model with random effects for patient.
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pressure ΔP was computed by converting the airway tree into a network of  resistive elements (Figure 6A, 
right). The length Ln and radius rn of  each airway segment n was used to estimate the resistance Rn through 
that portion of  the airway using Rn = 8 μ Ln/π rn

4, where μ is the dynamic viscosity of  humidified air. The 
resulting series of  flow and pressure equations at each node was then solved using previously published 
methods to obtain Q (24). Of  note, the formula for Rn reflects Poiseuille flow. Prior work has shown that, 
even if  certain assumptions of  Poiseuille flow are violated, the resistance of  airway segments in the lung 
is still inversely proportional to the fourth power of  airway radius (25). The effective resistance Ra of  the 
entire tree in the absence of  mucus plugs was calculated as Ra = ΔP/Qa. In the next step, we considered 
each terminal branch of  the airway tree to be obstructed by associated mucus plugs, as determined in our 
airway mucus plug map. We recomputed Rp as the net resistance with these branches blocked — i.e., flow is 
set at zero at those nodes. The RS was then calculated as the percentage increase in resistance due to plugs 
above the unplugged airway by RS = (100 × [Rp – Ra]/Ra). We were unable to estimate RS in 3 of  97 scans 
(3%) because the processing pipeline did not converge on the parameter estimates for the entire airway. The 
Pearson correlation coefficient for Ra between baseline and year-3 scans was 0.72.

Estimation of  OLVP. After lobar segmentation, the voxels within each lobe were assigned to a specific 
airway branch by finding the nearest airway termination point, similar to ref. 26. Each subregion was 
then labeled as obstructed if  a mucus plug occluded the terminal airway and unobstructed if  a mucus 
plug was absent (Figure 6B). The OLVP for each lobe was estimated as the volume of  voxels associated 
with an obstructed airway (Vo) divided by the total voxel volume of  the lobe (Vt), or OLVP = (100 × Vo/
Vt). The computation was performed on a lobar basis to ensure that lung parenchyma was not assigned to 
an airway branch opposite a fissure, after which the OLVP was then estimated for the entire lung. OLVP 
could not be computed in 3 of  97 scans (3%) where lobar segmentation failed.

Measurement of  regional air trapping. Automated quantitative CT analysis was performed by Vida Diagnos-
tics to estimate DPM air trapping, Jacobian mean, and LAA856% on a lobar level as previously described (10).

Clinical survey data and physiologic measurements. Clinical surveys of  asthma control, comorbid condi-
tions, spirometry, hematologic testing, and sputum characterization were collected and analyzed as part of  
the SARP-3 protocol (8, 15). Values were taken from the visit closest to the date of  the designated CT scan. 
Not all patients had data for every study outcome, and analyses used available data.

Statistics. Statistical analyses were carried out using the SciPy, scikit-learn, and statsmodel packages 
in Python (27). Numeric nonparametric variables were evaluated by nonparametric methods including 
Kruskal-Wallis, Mann-Whitney U, or Wilcoxon signed-rank test (matched samples). Categorical vari-
ables were evaluated by χ2 analysis. Regression of  numeric variables was quantified using the Spearman 
correlation coefficient (rs). For linear regressions on variables with repeated measurements from the 
same patient, P values were additionally confirmed using a linear mixed model with random effects for 
patient. A P value of  less than 0.05 was considered significant. For analysis of  proximal versus distal 

Table 5. Quantitative assessment of airway mucus pathology

1. Measures of total mucus plug burden in the lungs
Mucus segment score
Mucus slice score
Mucus plug score
Total mucus plug volume

2. Measures of the size and shape of individual airway mucus plugs
Length of each mucus plug and the average length of all plugs in the lungs
Diameter of each mucus plug and the average diameter of all plugs in the lungs
Volume of each mucus plug and the average volume of all plugs in the lungs
Categorization of each mucus plug and each patient as stubby or stringy phenotype

3. Airway mucus plug map
Provides a visual representation (map) of the airway location of each mucus plug in the airway tree

4. Integrated measures of predicted mucus plug impact
Resistance score
Obstructed lung volume percentage
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airway mucus plugs, confidence intervals for rs of  plug count by generation versus FEV1 and FEF25–75 
were obtained by bootstrapping. In each bootstrapping sample, a set of  55 patients was generated using 
random resampling with replacement. The process was repeated 1,000 times. Statistical significance in 
comparing rs for generation ≤ 7 and generation ≥ 10 was determined by estimating the 95 (P < 0.05) 
or 99 (P < 0.01) percentile value of  the quantity (rs

gen≤7 – rs
gen≥10) from the bootstrap distribution. SHAP 

value analysis was carried out using the SHAP Python package (28). Directed acyclic graph analysis 
was performed using DAGitty (29).

Study approval. Written informed consent approved by each center’s IRB was received from participants 
prior to inclusion in the study. Study procedures and sample collection were carried out using standardized 
protocols approved by each center’s IRB.

Data availability. The Supporting Data Values file provides the values underlying the graphed data 
and the means reported in the main manuscript and in the supplement. The SARP-3 cohort database is 
available through dbGaP (https://www.ncbi.nlm.nih.gov/gap/) under the accession no. phs002788.v1.p1. 
Requests for access to lung images from participants in SARP-3 are considered by the SARP-3 steering 
committee on a case-by-case basis, and any such request can be facilitated by the corresponding author.
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