UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Analysis of Fluid Flows

Permalink
bttgs:ggescholarshiQ.orgéucéitemﬂnggng
Author

Luu, Huong

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at

bttgs:gécreativecommons.orgélicensesgbx-nc-nd44.od

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7qk5g6pn
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Analysis of Fluid Flows

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by
Huong Luu

March 2024

Dissertation Committee:

Dr. Marek Chrobak, Chairperson
Dr. Ahmed Eldawy

Dr. Evangelos Papalexakis

Dr. Philip Brisk

Copyright by
Huong Luu
2024

The Dissertation of Huong Luu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Marek Chrobak. His unwavering
guidance and patience have been crucial in shaping the outcome of this research. Without
his support, I would not have been here.

I would also like to thank the other members of my dissertation committee, namely
Dr. Ahmed Eldawy, Dr. Evangelos Papalexakis, and Dr. Philip Brisk, for their valuable
insights and thoughtful feedback.

Finally, I want to thank my family, fur babies, and friends who have provided
encouragement and support throughout this academic journey. Your belief in me has been

a constant source of inspiration and motivation.

v

ABSTRACT OF THE DISSERTATION

Analysis of Fluid Flows
by
Huong Luu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2024
Dr. Marek Chrobak, Chairperson

Fluid dynamics is the field of study that examines the motion of fluids such as liquids and
gases. It can be used to investigate large-scale phenomena, such as ocean currents, as well
as small-scale systems, like blood circulation. Fluid flows can be classified into two broad
categories: laminar and turbulent flows. Laminar flows are smooth and streamlined, while
turbulent flows are irregular and unpredictable. One of the fundamental tasks in analyzing
fluid flows is to determine the flow rates and pressure values in a flow network, given its
topology, channel dimensions, fluid properties, and boundary conditions.

In the first project, we study fluid mixing in microfluidic chips (MFCs), which are
micro-scale fluid systems. In MFCs, flows are laminar, and for laminar flows, computing
flow rates and pressure values are straightforward, but simulating the mixing process is
computationally challenging. We present an approach for modeling concentration profiles
in grid-based MFCs. Our algorithm outperforms COMSOL Multiphysics®) software —
commercial software that uses finite element analysis method to model physics processes —

in terms of runtime while producing results that approximate those of COMSOL.

In the second project, we study turbulent flows in large-scale pipe systems such
as water distribution systems and sewage networks. Unlike laminar flow systems, solving
flows in turbulent models involves a system of nonlinear equations, and iterative algorithms
have been widely applied in practice. We focus on the Hardy Cross loop-based algorithm
(HC-loop) and the Newton-Raphson loop-based algorithm (NR-loop). We provide a math-
ematical analysis of the local convergence of these two algorithms, showing that, under
certain conditions, NR~loop algorithm achieves quadratic convergence while HC-loop algo-
rithm only converges linearly. This confirms earlier experimental observations reported in
the literature.

In the third project, we investigate the minimum spanning tree congestion problem
(STC), motivated by its application to improve the efficiency of the NR-loop algorithm for
pipe flows analysis. We study the complexity of K-STC (STC for a fixed integer K) and
prove that K-STC is NP-complete for K > 5, improving the earlier hardness result and
leaving only the case K = 4 open. We also investigate K -STC restricted to graphs of
radius 2, establishing that this variant is NPP-complete for K > 6. Additionally, we explore
a variant of STC, denoted K-STCD, where the objective is to determine if a graph has a
depth-D spanning three of congestion K. We provide a tight bound for bipartite graphs by
proving that 6-STC2 is NIP-complete, while 5-STC2 is solvable in polynomial time. Finally,
we present polynomial-time algorithms for two special cases involving bipartite graphs with

restrictions on vertex degrees.

vi

Contents

List of Figures ix
1 Introduction 1
1.1 Microfluidies 3
1.1.1 Continuous-flow MFCs 3

1.1.2 Fluid mixingo 4

1.1.3 Literature review 5

1.1.4 Overview of contributions 6

1.2 Pipe networks analysiso oo 7
1.2.1 Literature review e e 8

1.2.2 Overview of contributions 10

1.3 The minimum spanning tree congestion problem 10
1.3.1 Literature review e 11

1.3.2 Overview of contributions 13

2 Modeling fluid mixing in microfluidic grids 15
2.1 Statement of the problem 15
2.2 Overview of the algorithm 17
2.3 Concentration profile model 19
2.3.1 True concentration profiles 19

2.3.2 Concentration monotonicity 21

2.3.3 Approximate concentration profiles 24

2.4 Computing flows 25
2.5 Approximate concentration profiles 26
2.5.1 Straight channels, 27

2.5.2 Joining concentration profiles 31

2.5.3 Splitting concentration profiles L. 34

2.5.4 Join-and-split nodes o o 34

2.6 Experimental results L 35
2.7 DISCuSsion e e e e 38

vii

3 Convergence of iterative processes for pipe network analysis
3.1 Preliminaries
3.2 Analysis of Newton-Raphson algorithm
3.3 Analysis of Hardy Cross algorithm
34 Errorsin [2] oo

3.5 An example of non-convergence of algorithm NR-node

4 Hardness results for the minimum spanning tree congestion problem
4.1 Preliminaries
4.2 NP-completeness proof of K-STC for K > 5.

4.3 NP-completeness proof of K-STC for bipartite graphs of radius 2 and K > 6

4.4 Complexity results of K-STC2

4.4.1

NP-completeness proof of K-STC2 for K > 6

4.4.2 An algorithm for K-STC2 in bipartite graphs for K <5
4.5 Polynomial-time solvability of STC2 in bipartite graphs with vertex degree
restrictionso
K -STC2 for bipartite graphs with all degrees in X at most 3
4.5.2 K-STC2 for bipartite graphs with all degrees in C' equal

4.5.1

Bibliography

viii

40
41
45
93
99
61

62
63
69
79
86
86
87

91

95

99

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Examples of (a) an 8x8 grid from [57], and (b) a 10x8 grid in our model . .

(a) The result of mixing of reactant (red) and buffer (blue) due to diffusion.
(b) The graph representing the concentration profile of this mixture at the
end of the channel.

(a) Grid representation graph G (black) and its dual graph G (blue). (b)
Ilustration of moving a vertex v from T"to S.

(a) An SP-function profile. (b) Grid partition: a join node on the top,
followed by a downward straight channel and then a split node.

Updating the concentration profile in a straight channel in (a) case 1, and
(b) case 2. The “before” profile is black and the “after” profile is blue. . . .

Updating the concentration profile in a straight channel in (a) case 3, and
(b)case 4.

Example of joining concentration profiles of two flows (red and black). In
(a), the combined profile, in (b) the tentative SP-function, and in (c) the
final SP-function (in the case when the area under the tentative profile is too

(a) Splitting an SP-function into two SP-functions (red and black). (b) A
join-and-split node.

Randomly constructed 12 x 12 grids with concentration values at the outlets.

X

16

19

21

25

28

30

32

35

2.10 Comparison of concentration values at the outlets for sixteen randomly se-

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

lected grids. Blue bars represent our algorithm and red bars represent COM-
SOL. . . 37

An example planar graph where the clockwise directions of the internal face
cycles are indicated 52

Two different realizations of an edge (u,v) of multiplicity 4. (a) A basic real-
ization using paths of length 2. (b) The spintop realization used in Section 4.3. 64

(a) On the left, an edge (u,v) with double weight 4:5 in G. On the right, the
realization of (u,v) in G’. If one applies the spintop realization of the edges
from v to w;’s, as in Figure 4.1b, then the subgraph on the right realizing
(u,v) is bipartite and all its nodes are within distance 2 from v. Figures (b)
and (c) illustrate the proof of Lemma 10: (b) the traversal of 7" and the cut
of (u,v) when (u,v) € T, (c) the traversal of 77 and the cut containing (u, v)
when (u,v) ¢ T. Solid lines are tree edges and dotted lines are non-tree edges. 65

(a)The z;-gadget. (b) An example of a partial graph G for the boolean
expression ¢ = ¢y Aco Acg A--- where ¢y = T1 V 4, co = x1 V T9 V T3, and
c3 = x1V Za. (The weights of edges inside the variable gadgets are not shown.) 71

The traversal of the x;-gadget by T when x; = 0. Solid lines are tree edges,
dotted lines are non-tree edges. (a) Z; is chosen by clause c¢. (b) Z; is not
chosen by clause c. oo 73

The traversal of the z;-gadget by T when z; = 1. By ¢, ¢, and ¢’ we denote
the clauses that contain literals Z;, x; and 2}, respectively. (a) z; and 2} are
chosen by clauses ¢ and ¢”. (b) 2} is chosen by clause ¢’. (c) z; is chosen by
clause 74

Hlustration of the proof of Claim 14. In (a), ¢ is a two-literal clause; in (b)
and (c), ¢ is a three-literal clause. oL 75

(a) Ilustration of the proof of Claim 15. (b) Illustration of the proof of
Claim 16. Dot-dashed lines are edges that may or may not bein 7. 76

(a) Ilustration of the proof of Claim 17. (b) Illustration of the proof of
Claim 18. 7

Illustration of the proof of Claim 19. 78

4.10

4.11

4.12

4.13

(a) An example of a partial graph G for ¢ = ¢ Aca Aeg A -+ where ¢ =
(1 V Z3),c2 = (x9 V3V 24),03 = (23 V 5). Bold lines represent fat edges
with given double weights. (b) An example of a partial tree T' of G where
x1 is chosen by c¢1, x2 by c2, x5 is by c3. Solid lines are tree edges, dotted
lines are non-tree edges, and dot-dashed lines are edges that may or may not
be in T'. Non-tree double-weighted edges contribute the indicated weights to
edge congestion.o

By ¢, d, ", we denote the 2N-clause, 3P-clause and 2P-clause of x; respec-
tively. In (a), x; is not chosen by any clause, it is chosen by ¢ in (b), by ¢’
in (¢), by both ¢ and ¢’ in (d), and by ¢in (e).

(a) An example of H constructed from G for algorithm 6-STC2 in Phase 2.
(b) Assignments in G built from a perfect matching in H.

(a) An example of the auxiliary network F' (on the right) constructed from
G (on the left). Edges from X to C have capacity 1, all other edges have
capacities as shown. (b) On the left, a maximum flow in F. Dark edges
have flows with shown values and light edges have no flow. On the right, the
assignment obtained from thisflow.

xi

82

84

94

Chapter 1

Introduction

Fluid dynamics is a fundamental discipline of physics and engineering that studies
the motion, interactions, and phenomena observed in fluids, including liquids and gases. Its
applications span various fields, such as medicine, bioengineering, civil engineering, meteo-
rology, and many others. Fluid motion is broadly categorized into two types: laminar flows
and turbulent flows. Laminar flows exhibit a smooth, ordered pattern, whereas turbulent
flows are characterized by unpredictable and chaotic movement. Laminar flows occur when
the flows are slow, the fluid is viscous, and the channels are small, as opposed to turbulent
flows, which occur when the flows are fast, the fluid has low viscosity, and the channels are
large. In this work, we study the underlying physical principles, mathematical foundations,
and practical applications associated with the two distinct flow regimes.

One of the objectives of the analysis of fluid dynamics is to compute the flow rates
and the pressure values within a fluid system. This task can be achieved by solving a system

of governing equations. The two flow regimes share two physical laws: the flow conservation

and the energy conservation. The flow conservation states that at each node the total inflow
is equal to the total outflow. The energy conservation dictates that around a closed loop,
the pressure difference is zero. The main difference between the two flow models lies in the
equation that relates the pressure loss between two ends of a channel to the flow rate in
that channel. In the laminar flow regime, this relationship is linear, as opposed to being
quadratic in the turbulent flow regime.

In laminar flow models, computing the flows and pressure values is straightfor-
ward while simulating the mixing process is more challenging. We study fluid flows and
fluid mixing in microfluidic chips, which fall under the category of laminar flow models.
Specifically, we present an algorithm to model fluid mixing in grid-based microfluidic chips,
a topic extensively discussed in Chapter 2.

For turbulent flow models, the flow analysis problem involves a system of nonlinear
equations. There are different formulations of this system, and we focus on the loop method.
The prevalent choice to solve the loop equations is by using iterative algorithms. Two of
the most widely used iterative algorithms for flow analysis problems are the Hardy Cross
loop-based algorithm (HC-loop) and the Newton-Raphson loop-based algorithm (NR-loop).
We present local convergence analysis of these two algorithms in Chapter 3.

One way to speed up the NR-loop algorithm is to use a sparse edge-cycle matrix.
Motivated by sparsifying this matrix, we study the spanning tree congestion problem (STC)
since a small congestion spanning tree corresponds to a cycle basis with a sparse edge-cycle

matrix. We present several complexity results on STC in Chapter 42.

! A portion of this work appeared in [37]
2A portion of this work appeared in [38]

In the following sections of this chapter, we provide definitions, terminology, and

literature reviews for the three problems mentioned above.

1.1 Microfluidics

Microfluidics is an emerging technology for manipulating nanoliter-scale fluid vol-
umes, with applications in a variety of fields including biology, chemistry, biomedicine,
and materials science. Fast progress in this area led to the development of microfluidic
chips (MFCs), which are integrated microfluidic devices that are increasingly often used in
various laboratory processes such as medical diagnosis [59], DNA purification [30], or cell
lysis [29]. MFCs offer a solution to automate laboratory experiments, saving time, reducing
labor costs, limiting the usage of chemical reagents, and replacing complex and expensive
equipment [54, 29].

The technologies that are currently used in MFCs fall into two broad categories:
droplet-based chips, where the fluid is manipulated in discrete units called droplets, and
flow-based chips, based on continuous flow. We will focus exclusively on the flow-based

model.

1.1.1 Continuous-flow MFCs

Fluid flow within enclosed micro-channels in continuous-flow MFCs is typically
constant and continuous, usually driven by external pumps integrated into inlets and outlets
of the chips. In this model, fluid is pumped into the chip’s inlets at a constant velocity.

The fluid is in a steady state, which is the condition where the flows at any point in the

system do not change over time. In such small-scale channels, the Reynolds number, which
represents the ratio between inertial and viscous forces and predicts flow patterns, becomes
very low, indicating laminar flow. In the laminar flow regime, fluid particles move in smooth
layers with little interaction with adjacent layers. A fundamental physical law governing
laminar flow is the Hagen—Poiseuille equation: Agp = peq. where A.p is the pressure drop
between two endpoints of a channel e, . is the flow resistance, and ¢, is the volumetric

flow on e.

1.1.2 Fluid mixing

One of the key functions often implemented on MFCs is fluid mixing. Fluid mixing
is particularly important in sample preparation, where the objective is to dilute the sample
fluid, also called reactant, using another fluid that we refer to as buffer. For example, in cell
lysis, the sample preparation process includes a step of mixing blood samples with citrate
buffer [29]. For some experimental processes, samples with multiple pre-specified volumes
and concentrations are needed. For instance, such a sample may consist of 5pL. of reactant
with concentration 10%, 10pL of reactant with concentration 20%, and 10uL of reactant
with concentration 40%. Samples involving such multiple target concentrations are common
in preclinical drug development processes, and they are also used for other experiments, for
example, in biochemical assays [8]. For these applications, one needs to design an MFC

that produces the specified target set of concentration/volume pairs of reactant.

1.1.3 Literature review

Several flow-based designs have been proposed in the literature. In [45], the authors
proposed an MFC that uses two-way valves to produce serial dilution. An electrokinetically
driven MFC design was introduced in [26] for serial mixing. The above approaches require
different designs by changing valves, splitter channels placement, or tuning voltage control
to create different target sets. In [9], the authors gave a dilution algorithm for given target
concentration ratios using rotary mixers. However, their method produces waste, and it

also uses valves which can complicate the fabrication process.

Grid mixers

A very different approach was developed by Wang et al. [57]. Their proposed
solution involves creating a library of ready-to-use micromixers that users can query to
find chip designs with desired properties. Their MFCs are simple rectilinear grids with two
inputs (one for reactant and one for buffer) and three outputs, thus capable of producing
a set of three different concentrations. They do not require any valves nor any other
functional elements. A user identifies an appropriate design by submitting a query consisting
of the desired reactant concentrations. In their approach, the design process is eliminated,
and the database is created by exploring a large collection of randomly generated grids.
For each random grid, its outlet concentration values are computed by simulating fluid
flow through the grid using COMSOL Multiphysics@®) software. As shown in [57], these
COMSOL simulation results provide very accurate predictions of outlet concentrations in

actual fabricated MFCs.

Exploring such random designs is extremely time-consuming, as most randomly
generated designs are actually not useful, either because they are redundant or because they
produce concentrations that are of little interest (say, only near-pure reactant or buffer).
Thus, to produce the desired number of designs for the grid library, one may need to examine
many orders of magnitude more random designs. Indeed, in our experiment, to produce
a collection of 2600 sufficiently different concentration triplets, we needed to generate 50
million 12 x 12 random grid designs.

With the need to test so many designs, this approach can only be used for small size
grids because of the simulation bottleneck of COMSOL. The simulation time for each design
in [57] is roughly a minute. It is also not scalable to bigger grids. COMSOL takes about 6
minutes to run a simulation for a 12 x 12 grid with the same mesh setting. The process can
be sped up by using a coarser mesh, but this results in degraded accuracy of concentration
predictions at the outlets. Further, some users may prefer to design custom grids for their
choices of the attributes: velocity, solute, outlets’ locations, diffusion coefficient of reactant,
etc. Such users would need to have access to an often costly computational fluid dynamics
software in order to run the simulations.

The approach based on random grid generation was also considered in [28], where
the authors propose a method to remove redundant channels to make the design process

more efficient, simplifying the fabrication of grid MFCs and reducing reactant usage.

1.1.4 Overview of contributions

Addressing this performance bottleneck in populating the grid library in the ap-

proach from [57], we developed an algorithm to model fluid mixing in microfluidic grids in

order to predict the reactant concentrations at the outlets. In our approach, concentration
profiles in grid channels are approximated using a simple 3-piece linear function, which al-
lows us to simulate the mixing process in time linear in the grid size. The overall algorithm
is scalable, simple, and produces good approximation of concentration values and flow rates
at outlets in grid-based microfluidic chips, as compared to the results from COMSOL Mul-
tiphysics@®). It is also much more general than the model from [57, 28], as it allows grids of

all sizes, any number of outlets, arbitrary inflow velocities, and arbitrary fluids.

1.2 Pipe networks analysis

The analysis of pipe networks is a well-studied problem in civil engineering that
arises in the design and modeling of large-scale hydraulic networks, such as municipal water
systems, sewage systems, or substance distribution networks. In the most common formula-
tion, the objective is to determine the flow rates and pressure differences in all pipe segments
within the network, given its topology, nodal inflows/outflows, and the parameters of the
pipes and fluid (diameter, friction, fluid density, etc.) [55]. At a fundamental level, this
problem is analogous to the analysis of electrical flow in circuits and fluid flows in MFCs.
These problems share similar physical principles: mass (or flow) conservation and energy
conservation. However, in contrast to their electrical and MFC counterparts, in large-scale
pipe networks, the equation governing the relationship between flow and pressure difference
in a pipe segment is nonlinear. This equation, known as the Darcy-Weisbach equation,
asserts that the pressure difference in a pipe segment e is proportional to the square of its

flow: |Aep| = peq?, where |Acp| is the positive pressure difference, g is the flow value,

and pe is a constant coefficient that is inversely proportional to the pipe’s diameter, and
proportional to the friction factor, pipe length, and fluid density.

Pipe network analysis boils down to solving the system of the above-mentioned
equations, namely the flow conservation equations for all nodes and the energy conservation
equations for all pipe segments. The specific choice of variables, be it pressure values or flow
values, leads to different formulations of these equations, with three common approaches
known as the loop method, the flow method, and the node method [12]. (See Section 3.1
and Appendix 3.5.) We focus mainly on algorithms based on the loop method. This method
assumes that some initial flow satisfying the flow conservation conditions is given, and its
unknowns are the flow adjustments along the network’s cycles with respect to this initial
flow. (See Section 3.1 for a detailed description). Note that in either formulation, the
resulting system of equations is nonlinear, and computing its exact solution is not feasible.
Instead, iterative techniques that compute approximate solutions have been widely adopted

in the scientific literature and in practice.

1.2.1 Literature review

One of the earliest approaches to pipe network analysis was proposed by Cross in
1936 [16]. He introduced both the loop and node variants of his method, which he referred
to as the methods of balancing flows and balancing heads. We denote them as HC-loop and
HC-node, respectively. Due to its simplicity, Algorithm HC-loop has been used to analyze
small networks with spreadsheets or hand calculations. Another frequently used approach

involves applying the generic Newton-Raphson algorithm for solving nonlinear equations.

This algorithm can be applied to any of the above three settings: flow, loop, or node, and
we use notations NR-flow, NR-loop and NR-node for their respective variants.

While there is a fair amount of literature on the experimental performance of
these algorithms, relatively little is known about their provable convergence properties.
In [16], Cross claimed that Algorithm HC-loop’s convergence is “sufficiently rapid,” though
this claim was not supported by rigorous analysis. Adams [1] provided an analysis of the
accuracy of the flow corrections generated by Algorithm HC-loop by comparing it with the
exact correction values. This result is useful for the convergence analysis of simple systems
that consist of only one cycle; however, for larger systems, the mathematical analysis is
incomplete. Empirical results in [23] show fast convergence of HC-loop for several networks
in the dataset. Altman and Boulos report in [2] an attempt to analyze the local convergence
of NR-flow; however, as we explain in Section 3.4, their analysis is invalid. In [13], Brkic
conducted a comparative study of NR-loop and HC-loop, and his experimental results
support the earlier observations that NR-loop exhibits faster convergence.

As for other methods, Shamir and Howard commented in [49, 50] that Algo-
rithm NR-node might not converge if it encounters a singular derivative matrix or if it
enters an infinite loop, although no specific examples were given there. In Section 3.5, we
provide an example of which Algorithm NR-node enters an infinite loop. A fairly extensive
empirical comparison of different formulations of both Algorithm HC and Algorithm NR
was presented by Wood [58]. The results indicate that the loop methods encounter fewer
convergence issues than the respective node methods and that the Newton-Raphson algo-

rithm is more reliable for all formulation variants.

1.2.2 Overview of contributions

We present an analysis of the local convergence of Algorithms NR-~loop and HC-
loop in Section 3.2 and Section 3.3. We show that Algorithm NR-loop converges quadrati-
cally fast if the initial flow is sufficiently close to the solution, and we provide a bound on
the radius of its quadratic convergence. The quadratic convergence of the Newton-Raphson
method is not surprising — in fact, it is known to converge quadratically under some fairly
mild assumptions. Our aim here was to correct and refine the analysis of the convergence
radius provided in paper [2].

For Algorithm HC-loop, we prove a similar local convergence property, although
in this case, the convergence rate is only linear. We also show that this bound is tight
by exhibiting an example where Algorithm HC-loop’s convergence is not better than lin-
ear. These results provide a theoretical confirmation of experimental observations discussed

earlier about the superiority of NR-loop over HC-loop.

1.3 The minimum spanning tree congestion problem

Problems involving constructing a spanning tree that satisfies certain requirements
are among the most fundamental tasks in graph theory and algorithmics. One such problem
is the spanning tree congestion problem, STC for short, which has been studied extensively
for many years. In this problem, we seek a spanning tree 7' of a given graph G that roughly
approximates the connectivity structure of G, in the following sense: Embed G into T by

replacing each edge (u,v) of G by the unique u-to-v path in 7'. Define the congestion of an

10

edge e of T as the number of such paths that traverse e. The objective of STC is to find a

spanning tree 7" in which the maximum edge congestion is minimized.

1.3.1 Literature review

The general concept of edge congestion was first introduced in 1986, under the
name of load factor, as a measure of the quality of an embedding of one graph into an-
other [7] (see also the survey in [48]). The problem of computing trees with low congestion
was studied by Khuller et al. [32] in the context of solving commodities network routing
problems. The trees considered there were not required to be spanning subtrees, but the
variant involving spanning trees was also mentioned. In 2003, Ostrovskii provided indepen-
dently a formal definition of STC and established some fundamental properties of spanning
trees with low congestion [42]. Subsequent to its introduction, numerous combinatorial and
algorithmic findings of the problem have been reported in the literature. Otachi’s compre-
hensive survey paper [43] offers an extensive and current overview of these developments.

As established by Lowenstein [36], STC is NP-hard. As usual, this is proved by
showing NP-completeness of its decision version, where we are given a graph G and an
integer K, and we need to determine if G has a spanning tree with congestion at most K.
Otachi et al. [44] strengthened this by proving that the problem remains NP-hard even for
planar graphs. In [40], STC is proven to be NP-hard for chain graphs and split graphs. On
the other hand, computing optimal solutions for STC can be achieved in polynomial time
for some special classes of graphs: complete k-partite graphs, two-dimensional tori [35],

outerplanar graphs [11], and two-dimensional Hamming graphs [34].

11

We focus our study on the decision version of STC where the bound K on con-
gestion is a fixed constant. We denote this variant by K -STC. Several results on the
complexity of K-STC were reported in [44]. For example, the authors of [44] show that
K -STC is decidable in linear time for planar graphs, graphs of bounded treewidth, graphs
of bounded degree, and for all graphs when K = 1,2,3. On the other hand, they show that
the problem is NPP-complete for any fixed K > 10. In [10], Bodlaender et al. proved that
K-STC is linear-time solvable for graphs in apex-minor-free families and chordal graphs.
They also show an improved hardness result of K -STC, namely that it is NP-complete for
K > 8, even in the special case of apex graphs that only have one unbounded degree vertex.
As stated in [43], the complexity status of K-STC for K € {4,5,6,7} remains an open
problem.

Very little is known about the approximability of STC. The trivial upper bound for
the approximation ratio is n/2 — this ratio is achieved, in fact, by any spanning tree [43].
As a direct consequence of the NP-completeness of 8-STC, there is no polynomial-time
algorithm to approximate the optimum spanning tree congestion with a ratio better than

1.125 (unless P = NP).

Other related work The spanning tree congestion problem is closely related to the tree
spanner problem, in which the objective is to find a spanning tree T of G that minimizes the
stretch factor, defined as the maximum ratio, over all vertex pairs, between the length of
the path in T and the length of the shortest path in G connecting these vertices. In fact, for
any planar graph, its spanning tree congestion is equal to its dual’s minimum stretch factor

plus one [20, 44]. This direction of research has been extensively explored, see [14, 18, 19].

12

As an aside, we remark that the complexity of the tree 3-spanner problem has been open
since its first introduction in 1995 [14].

STC is also intimately related to problems involving cycle bases in graphs. As
each spanning tree induces a fundamental cycle basis of the given graph, a spanning tree
with low congestion yields a cycle basis for which the edge-cycle incidence matrix is sparse.
The sparsity of such matrices is desirable in linear-algebraic approaches to solving some
graph optimization problems, for example, analyses of distribution networks such as pipe
flow systems [3].

STC can be thought of as an extreme case of the graph sparsification problem,
where, given a graph G, the objective is to compute a sparse graph H that captures con-
nectivity properties of G. Such H can be used instead of G for the purpose of various
analyses, to improve efficiency. See [6, 21, 53] (and the references therein) for some ap-

proaches to graph sparsification.

1.3.2 Overview of contributions

In Section 4.2, we provide an improved hardness result for K -STC. Theorem 11
combined with the results in [44] leaves only the status of 4-STC open. This theorem also
implies a better lower bound on the approximation ratio for STC, which will be discussed
in Section 4.2.

A common feature of the hardness proofs for STC, including ours, is that they
all use graphs of small constant radius (or, equivalently, diameter). Another property of
STC that makes its approximation challenging is that the minimum congestion value is

not monotone with respect to adding edges. The example graph in [42] showing this non-

13

monotonicity is also of small radius (in fact, only 2). These observations indicate that a
key to further progress may be in better understanding of STC in small-radius graphs.

This motivates our additional hardness result presented in Section 4.3, where we
focus on graphs of radius 2. (For radius 1, the problem is trivial.) We prove that K-STC
remains NPP-complete for this class of graphs for any fixed integer K > 6. In fact, this
holds even if we further restrict such graphs to be bipartite and have only one vertex of
non-constant degree.

Probing further in this direction, in Section 4.4, we consider the variant of STC
denoted K-STCD, in which the objective is to determine if the graph has a spanning
tree of depth at most D and congestion at most K. Note that this is not a restriction
of STC, as the minimum congestion for trees of depth 2 can be larger than the optimum
value of STC. We observe that our NP-completeness proof in Section 4.3 can be adapted
to prove that K-STC2 is NPP-complete for K > 6. This is true even if input graphs are
restricted to bipartite graphs with only one vertex of non-constant degree. For bipartite
graphs, we establish a tight bound by proving that 5-STC2 is polynomial-time solvable.
Complementing this, we present two other natural special cases involving bipartite graphs
and restrictions on vertex degrees, in which the optimal congestion spanning tree can be

computed in polynomial time in Section 4.5.

14

Chapter 2

Modeling fluid mixing in
microfluidic grids

In this chapter, we present an approach to model fluid mixing in grid-based mi-
crofluidic chips (MFCs), an idea developed by Wang et al. [57]. Our algorithm efficiently
predicts the flow velocities and concentrations at the outlets of the MFCs with good accu-

racy compared to COMSOL Multiphysics®) software.

2.1 Statement of the problem

We study grid-based MFCs for fluid mixing introduced in [57]. Their model is 8 x 8
grids with 2 inlets along the top edge of the grid and 3 outlets at the bottom, as shown in
Figure 2.1(a). The left inlet contains a reactant, with concentration value 1, and the right
inlet contains a buffer, with concentration value 0. The channel width is 0.2 mm, and the
channel length (distance between two grid vertices) is 1.5 mm. The fluid velocity in the
inlets is 10 mm/s. The outlets’ pressure is 0 Pa. The reactant is either sodium, fluorescein,

or bovine serum albumin.

15

(a) 1 0 (b) 1 0 0

0.83 0.06 0 0.86 0.82 0.63 0.29 0.01

Figure 2.1: Examples of (a) an 8x8 grid from [57], and (b) a 10x8 grid in our model

We generalize the model from [57] in several ways. We allow arbitrary m x n grids
with any number of inlets and outlets (see Figure 2.1b). The inlets are located along the
top edge of the grid, and the outlets are at the bottom. The inlet solutions can take any
concentration from 0 to 1, but they must satisfy the following inlet monotonicity property:
the inlet concentrations need to be non-increasing from left to right. The inflows are of a
given constant rate, and the pressure values at all outlets are 0. Our model assumes that the
flow throughout the grid is laminar, which is the case in standard microfluidic applications.

In this setting, the problem we address can be formulated as follows: We are given
(1) the specification of a grid design, and (2) fluid properties, namely its concentration
and velocity at each inlet and its diffusion coefficient. The goal is to determine the fluid

concentration and velocity values at the outlets.

16

2.2 Overview of the algorithm

Our algorithm for predicting reactant concentrations at the outlets is based on
modeling its concentration profiles in the grid’s channels. Such a concentration profile is a
function that represents concentration values of the reactant along a line perpendicular to
the channel. When fluid flows through straight segments of the grid, this profile changes
according to the laws of diffusion. In a node of the grid, a flow may be split, or several flows
may be joined, and the profile changes accordingly, producing complex nonlinear functions.
The main idea behind our algorithm is to approximate this profile using a simple 3-piece
linear function. Once the profile at an output channel is computed, it determines the
reactant concentration at this outlet.

We now give an overview of our algorithm, with more detailed descriptions given

in the sections that follow.

1. Verify the correctness of the grid design, namely whether each edge (channel) is on at
least one inlet-to-outlet path. (In our implementation, spurious fragments of the grid

are automatically removed.)

2. Compute the flow rates in each channel and pressure values at each node (see Sec-

tion 2.4).

3. Partition the grid into parts, each part being either a straight channel or a node.
Depending on flow direction, a node can be one of three types: a join node (2-way or
3-way), a split node (2-way or 3-way), or a combined join/split node (with 2 inflows

and 2 outflows). Sort these parts in an order consistent with the flow direction. (Once

17

the flows are computed, one can think of the grid design as an acyclic directed graph.

The desired order is then any topological sort of this acyclic graph.)

4. Process the grid parts, in the earlier determined order, computing approximate con-

centration profiles (see Section 2.5):

e For straight channels, the concentration profile at the end of the channel is de-
termined from the profile at the beginning of the channel based on the time the
flow spends in this channel. This time is computed from the channel length and

flow velocity.

e For nodes representing flow splits, split the incoming profile into outgoing profiles

according to flow velocity ratios.

e For nodes representing flow joins, join the incoming profiles into the outgoing
profile according to velocity ratios. This outgoing profile is then approximated

by a 3-piece linear function.

5. Once all flow profiles in the grid are determined, for each outlet, compute its fluid

concentration as the integral of its concentration profile divided by the channel width.

Running time The algorithm for profile computations takes only constant time to update
the profile for each node and channel, so the running time of this step is linear with respect
to the size of the grid design. (Thus, it is never worse than O(mn) for an m x n grid.) The
overall running time is dominated by solving the linear system in part (2). For grid sizes

that might be of use in grid libraries, say up to 20 x 20, Gaussian elimination is sufficiently

18

(b) [0

@ =T T T T 1T 7 T
0.9 08 7
0.8 1
0.7 i " il
0.6 K 7
0.5 & 7
0.4 2 |
0.3 0.2]
0.2 1l
e 0 0.4 0.8 19 16 2.0

i Arc length

=]
o

Concentration

Concentration
o
>

Figure 2.2: (a) The result of mixing of reactant (red) and buffer (blue) due to diffusion. (b)
The graph representing the concentration profile of this mixture at the end of the channel.

fast. For larger grids, one can take advantage of the sparsity of the linear system to speed

up the computation.

2.3 Concentration profile model

2.3.1 True concentration profiles

Consider a mixture of two fluids, one reactant (with concentration 1) and the other
buffer (with concentration 0), flowing along a straight channel of some width w and length
l. For any distance I’ < [from the beginning of this channel, a concentration profile at I’
is a function that gives concentrations of all points in the channel along the line segment
(of length w) that is perpendicular to the channel and directed counter-clockwise to the
flow. We will be interested in how this profile evolves with time, that is with the value of

I' increasing.

19

Figure 2.2 shows an example. Reactant and buffer are injected at the same
rate into the top opening of a vertical straight channel and allowed to mix while they flow.
Initially, the two fluids are separated, with the reactant to the left of the buffer, so the profile
will be a 1/0 function. The flow is assumed to be laminar, and the two fluids will gradually
mix as a result of diffusion. After a period of time, this mixing produces a non-uniform
concentration profile as shown in Figure 2.2(b). This concentration profile is a smooth curve
with the leftmost region having concentration 1, the rightmost region having concentration
0, and the middle region contains partially mixed fluids with concentration decreasing from
left to right. Using the diffusion model, this profile function can be determined from the
mixing time, which is the time it takes for the fluid to flow through the channel. Half of
the width of this middle region is referred to as diffusion length and denoted L (normal to

the flow direction, units m). It can be computed from the formula (see [33]):

L =2VDt. (2.1)

where ¢ is the mixing time and D is the diffusion coefficient of the fluid (units m?/s).

In microfluidic grids, the flow may be repeatedly split, or different flows may get
combined, and the resulting concentration profile will not have the form in Figure 2.2(b)
anymore; in fact, profile functions that arise in such grids are too complex to be captured
analytically. Below, we prove, however, that these profiles have a certain monotonicity
property that will allow us to approximate them by a simpler function. Interestingly, this
monotonicity property involves the concept of the partial order that is dual to the flow

pattern.

20

Figure 2.3: (a) Grid representation graph G (black) and its dual graph G (blue). (b)
Tllustration of moving a vertex v from 7" to S.

2.3.2 Concentration monotonicity

The intuition behind the monotonicity property is illustrated in Figure 2.2(b);
intuitively, the profile function in a channel should be monotonely decreasing from left to
right. This property is trivial if we start with a 1/0 profile (with pure reactant to the left of
pure buffer) at the top of a vertical channel and allow the fluid to diffuse when it flows down
along the channel. However, in a mixing grid, the flow pattern may be quite complex. For
example, depending on a grid’s structure and flow velocities at its inlets, the flow direction
in a vertical channel could be down or up. As a result, even the notions of “left” and “right”
are not well defined anymore. Joins and splits complicate this issue even more. Thus, to
define this monotonicity property, we need to capture the notion of “left-to-right direction”
not only with respect to one channel, but also between different channels. This notion will
be formalized using a partial ordering of the grid’s channels. This partial order is defined

as the dual order of the flow pattern in the grid. Below, we formalize these concepts.

21

Once the flow directions are computed, the flow pattern through the grid design
can be naturally represented as a straight-line planar drawing of a DAG (directed acyclic
graph) whose nodes are grid points (including inlets and outlets) and edges are channels
with directions determined by the flow. We will denote this graph by G.

Next, we construct a dual DAG G. To this end, enclose the grid in an axis-parallel
rectangle, slightly wider than the grid, with the inlets on its top edge and outlets on its
bottom edge, as in Figure 2.3(a). The grid (that is, the embedding of GG) partitions this
rectangle into regions. For each region of G, we create a vertex of G. Two vertices ¢, ¢
of G are connected by an edge if the boundaries of their corresponding regions share at
least one edge of G. The direction of the edge between ¢ and v is determined as follows:
pick any edge (u,v) of G shared by the regions of ¢ and . This edge (u,v) must have a
different orientation in the boundaries of ¢ and v (clockwise in one and counter-clockwise
in the other). Then the edge between ¢ and 1 is directed from the node where (u,v) is
clockwise to the node where it is counter-clockwise. This definition does not depend on the
choice of (u,v). We will refer to this edge as being dual to (u,v). It can be shown that G
is a DAG with a unique source § and unique sink # that correspond to the regions on the
left and right of the grid design, respectively. (Except for secondary technical differences,
the construction of such a dual can be found, for example, in [56, 5].)

We now use G to define a partial order on the edges of G (that is, the channels
of our grid design). Call two edges e, €' of G related in G if they are both on the same
inlet-to-outlet path; otherwise, call them wunrelated in G. If e and €' are unrelated in G

then, denoting by o and o’ their dual edges, there must exist a path from § to ¢ in G that

22

contains o and ¢’. If o is before ¢’ on this path, then we write e <¢e’ and say that e dually
precedes €. Figure 2.3(a) shows an example. It is not difficult to verify that relation “<”

is a partial order on G’s edges.

Theorem 1. (Concentration profile monotonicity.) Consider a grid design as described in
Section 2.1 (in particular, the inlet concentrations are non-increasing) with some flow, and

its corresponding graph G. The concentration profiles in G satisfy the following properties:

(cpm1) For any edge e of G, each concentration profile across e is a non-increasing func-

tion.

(cpm2) For any two edges e, €' of G, if e €', then each concentration value in each profile

across e is at least as large as each concentration value in each profile across €.

Proof. The formal proof of Theorem 1 is omitted here due to lack of space; we only give a
brief sketch. For any two edges e, ¢’ of G, we write e = ¢’ to indicate that all concentration
values in each profile across e are as large as all concentration values in each profile across
¢/. With this definition, part (cpm2) says that e <¢e’ implies e 3= €.

Observe first that property (cpml) is preserved as we move a profile along e in
the flow direction due to the properties of mixing (which shifts reactant mass from higher
to lower values). With this in mind, it is sufficient to arbitrarily select one “representative”
profile for each edge and to prove properties (cpml) and (cpm2) only for these selected
profiles.

Define a cut (S,T) of G in a natural way, as the partition of its vertices such
that each inlet-to-outlet path visits vertices in S before visiting vertices in T. We prove

by induction on |S| that all edges with tail vertex in S satisfy the theorem. This is true

23

in the base case when S contains only inlets. In the inductive step, the definition of cuts
implies that there is a vertex v that has all predecessors in S. Choose any such v. We
move v from T to S (see Figure 2.3b) and show that the inductive claim is preserved.
The clockwise ordering of v’s incoming edges eq, s, ... is the same as their < order. The
same applies to the counter-clockwise order of its outgoing edges, €} <e, <J.... We also
know that the concentration profile at v is the joined profile of e1, eo, ... and then it is split
into decreasing concentration profiles of €], ¢e,.... If there exist edges e and € in S that
satisfy e Je; deg ... e, then e and € are also a predecessor and successor, respectively,
of €], €, ... in the < ordering. These observations and the inductive assumption applied to

= ... = e O

N~

e and € imply that e = €] = e

2.3.3 Approximate concentration profiles

In our technique, we approximate concentration profiles by simple 3-piece linear
functions specified by four parameters: a,, ag, d,, and dg, as shown in Figure 2.4(a). In
interval [0, d,], the concentration is a,; in interval [w—dg, w], the concentration is ar, and the
concentration linearly decreases in interval [d,, w—dg], from a,, to az. Throughout the paper
we will refer to such simplified profile functions as SP-functions. We have w—d, —dgr = 2L,
where L is the diffusion length value. The area under the profile curve, divided by the
channel width w, represents the overall (average) concentration value of the fluid in this

channel.

24

(a) (b) P1 D2
U1 . V9
——Joine———

b3
V3| | Straight

s

s}
=
<----to-->

Split——=—»

P4 Ps

Vg

Figure 2.4: (a) An SP-function profile. (b) Grid partition: a join node on the top, followed
by a downward straight channel and then a split node.

We remark that Theorem 1 remains valid for our approximate concentration pro-
files instead of real ones. This is because its proof remains correct for any (not necessarily
physically valid) mixing process that preserves the mass of reactant and buffer, and moves
reactant mass rightward over time. Our approximate profile model has this property.

In Section 2.5, we explain how we can use SP-functions to compute approximate

concentration profiles for each part of the grid design.

2.4 Computing flows

The computation of the flow direction, flow rate, and pressure value in each channel
of the grid is quite straightforward, and it can be achieved by solving a system of linear
equations. The unknowns are pressure values at every grid node and flow velocities in
every channel. The first set of equations in this system are flow conservation equations: at
every grid node the total inflow is equal to the total outflow. The second set of equations
are Hagen-Poiseuille equations which give the relationship between the flow rate and the

pressure drop between the two ends of a channel e: |A.p| = peq?, where g, is the volumetric

25

flow, and R is the flow resistance. As the resistance value is the same in every channel
segment and the input data specifies the velocity at the grid inlets, the exact value for pu is
not needed and can be assumed to be 1.

One thing to note is that in our setting, we assume there is no friction at the
walls of the channel, thus implying that the velocity is uniform across the channel, which
simplifies the formulas for updating the profiles. (With friction, the velocity profile is a
parabolic function.) We found, however, that this assumption has only a negligible effect

on the computed concentration values.

2.5 Approximate concentration profiles

The core of our algorithm is a procedure for updating approximate concentration
profiles (represented by SP-functions) along the grid, namely part 4 of the overall algorithm
in Section 2.2. We describe this procedure in this section.

As mentioned earlier in Section 2.2, the grid is partitioned into parts: straight
channels and nodes, where nodes can be of several types depending on the flow directions
of its channels: join nodes (2-way or 3-way), split nodes (2-way or 3-way), and combined
join/split nodes (2 inflows and 2 outflows). This partitioning is illustrated in Figure 2.4(b).
In this figure, the channels are cut at points pi, p2, p3, ps, pa and ps, producing one join

node, one straight channel, and one split node.

26

In the join node at the top, flows 1 and 2 are joined into flow 3. The concentration
profile at point ps is computed by combining SP-functions at points p; and po, taking the
velocity ratios into account. The combined function may not be an SP-function, and if so,
we approximate it by an SP-function.

The straight channel stretches from the beginning of the channel at point p3 to its
end point ps. The approximate SP-function at point pf is computed from the SP-function
at point p3 using the diffusion formula. (To account for mixing in the grid nodes, instead
of the original channel length [, the algorithm uses a slightly larger value I=1l+w /2, with
w is the width of the channel.)

In the split node at the bottom, we use the SP-function at point ps and the flow ve-
locities to compute the split SP-functions at points ps and ps. This case is relatively simple,
as splitting an SP-function profile produces SP-functions, so no additional simplification is

needed here.

2.5.1 Straight channels

For a straight channel, the concentration profile changes over time with diffusion
length increasing, that is with the middle portion of the SP-function gradually becoming
longer and flatter. The SP-function may also change its form, with d, becoming 0 or dj
becoming 0. We divide the evolution of the SP-function along a straight channel into time
intervals short enough so that in each such time interval the profile function has the same
form.

We now demonstrate how the SP-function changes in a straight channel during one

of these time intervals. The fundamental idea behind our approach is this: Suppose that

27

(a)

{—
dy dp

Figure 2.5: Updating the concentration profile in a straight channel in (a) case 1, and (b)
case 2. The “before” profile is black and the “after” profile is blue.

d;, > 0 and di > 0 in Figure 2.5a (Case 1 below). We then think of the current profile as
being a result of a mixing process in a straight channel (or for stationary fluid) that started
from the original 1/0-valued profile and lasted for some unknown time ¢. This allows us to
compute ¢ from the diffusion length formula (2.1). Once we have ¢, we can compute the
new SP-function at a time t' = ¢t + At, where At is chosen to be the time until the next
“event,” which is the time when either the end of the channel is reached or when the profile
form changes (that is, d, or di becomes 0). This leads to a relatively simple solution for
updating concentration profiles that satisfy d, > 0 and d; > 0, that is for SP-functions
that have three non-empty segments. If d, = 0 or d; = w, or both, a slightly less direct
approach is required (Cases 2, 3 and 4 below).
Case 1: d;, > 0 and dy > 0 (see Figure 2.5a).

As explained above, using formula (2.1) we compute t = L?/4D. Next, we compute

the new diffusion length L’ after time At:

L' =2y/D(t+ At) = VL2 + 4DAt

28

This will give us the new SP-function at time ', defined by parameters:

d,=d,— (L' = L) and d), =dx— (L' — L)

We choose At to be the time until either the end of the channel is reached, or until one of
dy, dr becomes 0, whichever happens first.
Case 2: d;, =0 and dy = 0 (see Figure 2.5b).

The channel boundaries introduce some distortion into the diffusion process that is
difficult to model. Our approach here is based on the observation (verified experimentally)
that this distortion has negligible effect on the overall profile. Thus, we think about the

“virtual”

current concentration profile as the linearly decreasing part of the profile in a
wider channel in which the concentration profile has the same form as in Case 1, with
L = w/2 = 2v/Dt. The goal is to estimate the change of a, and a, in time interval [t,#].
For 7 € [t,t], define a,(7) and ax(7) to be the concentrations at the left and right
wall at time 7, and a(7) = (a,(7) — ar(7))/2. We want to estimate the derivative da/dr.
To this end, let dL and da denote the changes of L and «(-) in a time interval

[7,7 + dr|, where dr > 0 is very small. (In the calculations below, we will approximate

some values assuming that dr approaches 0.) We have:

dL = 2\/D(r + dr) — 2V D1 = 2/ D dr /(T + dr + /T) = dr \/D/7

and by simple geometry,

do = —a(7)dL/(L + dL)

29

(a) (b)

2L
alL x
dp

Figure 2.6: Updating the concentration profile in a straight channel in (a) case 3, and (b)
case 4.

Substituting, we get:

do ~ —dr o(T) /27

Thus, the derivative is:

da(r)/dT = —a(T)/(27)

Solving this differential equation and using the initial condition at ¢ gives us:

o7) = at)\/t/7 where a(t) = (a; — az)/2

Thus, at time t’ we have:

alt) = a(t) /¥

From this, we can calculate the new concentration values at the channel walls:

d, = a, — a(t)(1 - VE/F) and df = aq+ a(t)(1 - V/2]T)

Here, t' is taken to be the time when the end of the channel is reached.

30

Case 3: d, > 0 and dy = 0 (see Figure 2.6a).
The new concentration profile in this case is computed based on the assumption
that the value of d, will decrease according to formula (2.1). This gives us the new value

d’ for the new SP-function, namely

d,=d, — (L' = L) where L' =2\/D(t+ At) = \/ADAt + (w — d;)?

Then we use molecular preservation property (that is the area under the concentration
profile does not change) and straightforward calculation to obtain the new concentration at
the right wall,

a,=a,— Lla, —ag)/L

Here, At is taken to be the time until either the end of the channel is reached or until d,

becomes 0, whichever happens first.

Case 4: d;, = 0 and dy > 0 (see Figure 2.6b).
This case is symmetric to Case 3, and a similar calculation gives us the values of

/ /
d’, and a;.

2.5.2 Joining concentration profiles

To join flows, we first simply combine together the SP-functions of two or three
joined channels, with the portion of the channel width that each joined flow occupies being
proportional to the velocities of the inflows, as shown in Figure 2.7(a). We will refer to

this profile as the combined profile. In general, the combined profile will not be an SP-

31

1 : 1 1
. x . o o \
s ; TN | ,
: B 1: . 2 1: a
L _ &2, dy f—t |02, d} R
dL : :d2
R e S - R
: 2
aR

Figure 2.7: Example of joining concentration profiles of two flows (red and black). In (a),
the combined profile, in (b) the tentative SP-function, and in (c) the final SP-function (in
the case when the area under the tentative profile is too small).

function. If this is the case, we will need to simplify it to an SP-function. This will be
done in two steps. First, we will convert the combined profile into a tentative SP-function
(see Figure 2.7b), which will be later adjusted to satisfy the reactant volume preservation
property.

The correctness of joining profiles depends critically on Theorem 1. This theorem
implies that the concentration of the combined profile is non-increasing from left to right,
as illustrated in Figure 2.7a. This figure shows two profiles being combined. The case of
combining three profiles is essentially the same, as the middle channel’s SP-function is only
needed to compute the area under the combined function; its parameters can be ignored.
Thus, to simplify the description below, we will assume that we are dealing with a 2-way
join node.

Let a! and d! represent the parameters of the combined profile inherited from the
corresponding parameters of the left joined channel. (So a! is the concentration along the
left wall in the left channel, and d! is the length of its SP-function’s left flat segment, but

rescaled according to the channel’s flow velocity.) By a% and d? we denote the correspond-

32

ing parameters inherited from the right joined channel. We take these four values as the
parameters of our tentative SP-function profile (see Figure 2.7(b) for an example). This
function is only tentative, because the area under this SP-function may be different than
that under the combined profile.

The final SP-function, whose parameters will be denoted a, d), o), and d}, is
computed from the tentative SP-function by adjusting its parameters to make sure that the
reactant volume (the area under the profile) is preserved. This is done as follows. Let A be
the area under the original combined profile (before converting it into the tentative form).
If the area under the tentative profile is smaller than A, then the left segment of the final

profile is the same as in the tentative profile, that is

r_ 1 r gl
a; =a; and d;, =d;

while the middle and right segments are adjusted to increase the area to A: We start with

2 2
d, =d; and d, = a’
We then decrease d’, until either the area equals A or d), is reduced to 0. If d, becomes 0,
we then increase o/, until the area becomes A. The case when the area under the tentative
profile is larger than A is symmetric; in this case, the right segment of the final profile is
the same as in the tentative profile, and we gradually lower the middle and left segment to

reduce the area to A. See Figure 2.7 (c) for an example of a final SP-function.

33

(b)

: 102
>)
viw/ (v +)t vaw/(v1 + v2) 4

Figure 2.8: (a) Splitting an SP-function into two SP-functions (red and black). (b) A
join-and-split node.

2.5.3 Splitting concentration profiles

To split the flow at a node (either 2-way or 3-way), the split profiles are determined
by dividing the profile of the inflow proportionally to the velocity ratios of the outflows (see
Figure 2.8a) and rescaling appropriately. For example, for two-way splits, if the velocities
of the left and right outflows are v; and wvs, then the inflow profile is divided into two
parts: the left one of width vjw/(v; + v2) and the right one of width vow/(vy 4 v2). This
produces two profiles which are then rescaled to have width w. Conveniently, splitting
a profile represented by an SP-function produces profiles that are also in the same form,
and the parameters of these new SP-functions can be determined with a straightforward
computation, by rescaling. Thus, in this case no further simplification of the new profiles

is needed.

2.5.4 Join-and-split nodes

In the grid, there may also be nodes with two inflows and two outflows. These
nodes must have the form shown in Figure 2.8(b), namely the inflow channels are adjacent,

and so are the outflow channels. (The other option, with the two inflows being opposite

34

of each other, is impossible, as this would imply the existence of a flow circulation in the
grid.)

We treat this case by reducing it to simple joins and splits, for which we provided
solutions earlier. This is done by breaking the computation of the new profile into two

sub-steps:
1. Join the two inflow SP-functions, following the method described in Section 2.5.2.

2. Take the computed SP-function profile and split it into two SP-functions for the

outflow channels, following the method in Section 2.5.3.

2.6 Experimental results

" 7
’ L B L
L, hfe o =

0.75 0.39 0.18 0.73 0.02 0.60 0.58 0.45

Figure 2.9: Randomly constructed 12 x 12 grids with concentration values at the outlets.

We used MATLAB®) with COMSOL Multiphysics®) via LiveLink™ [15] to gener-
ate our test grids. Note that in the method from [57], most generated chips have unreachable

or “dead-end” channels, namely channels that do not appear on any inlet-to-outlet path.

35

Such channels are redundant, as they have no effect on the mixing process. Our generator
uses a similar approach as in [28] to generate only grids that are connected and have no
redundant channels. Figure 2.9 shows three examples of random 12 x 12 grids obtained
from our generator as well as their outlet concentrations.

Our concentration prediction algorithm is implemented in Python and tested on a
3.50GHz quad core 32GB RAM workstation. We conducted an experimental comparison of
our algorithm with COMSOL simulation. In our experiment, we used 200 12 x 12 sample
random grids (obtained from our generator) with two inlets (the left has reactant with
concentration 1 and the right has buffer with concentration 0) and three outlets. The
flow velocities at the inlets are both of constant rate 1 mm/s. The reactant is sodium, with
diffusion coefficient value 1.33 x 10~4*mm?/s. We used slower velocities than the chips of [57]
in order to increase the time the fluid spends in the chip, which improves the variability of
concentration values at the outlets.

For COMSOL simulations, we used very fine triangular meshes containing 5-10
million elements. This mesh size was determined through a mesh refinement study to ensure
that this setting provides accurate values for outlet concentrations. The basic procedure
is to gradually vary the mesh size to determine the size at which the desired parameters
have converged to the correct solution. In our case, using a random 12 x 12 grid, we did a
sweep on mesh element size by reducing it at each step and observed the changes in outlet
concentrations, repeating until these changes were less than 1% of maximum concentration.

The results for fluid velocities at the 3 outlets are very consistent with COMSOL

simulation, with the average percentage difference of velocity values being 0.8%. For concen-

36

05% 04% 00% 24% 98% 00% 0.1% 77% 56% 63% 2.6% 0.1% 98% 04% 09% 0.8%
T T T T T

0.8 | [

02 1 L 1 1 1 L 1 1
2 4 8 8 10 12 14 16

Concentration at outlet 1 (mal/m3)
o
=
T
|

08% 0.0% 20% 0.5% 14% 25% 68% 142% 07% 63% 2.0% 03% 1.8% 57% 05% 13%
T T T T T

02 1 L 1 1 L L 1 L
2 4 6 8 10 12 14 16

Concentration at outlet 2 (mU\JmSJ
o
=
T
|

14.2% 0.0% 1.7% 7.0% 294% 155% 68% 145% 77% 35% 11.7% 03% 155% 67% 04% 2.8%
T T T T T T

0.8 — | I Algorithm —
o I comsoL |

0.2 =1

02 1 | | 1 | | 1 |

Concentration at outlet 3 (mUVmSJ
o
®
|

Grid number

Figure 2.10: Comparison of concentration values at the outlets for sixteen randomly selected
grids. Blue bars represent our algorithm and red bars represent COMSOL.

tration values at the outlets, the average absolute difference is 0.006 mol/m?, which is 0.6%
of the maximum concentration. The maximum absolute difference is 0.07 mol/m?. Fig-
ure 2.10 shows the difference of concentration values at the 3 outlets between the algorithm
and COMSOL on 16 randomly selected grid designs.

Execution times are measured on the same sample set of 200 grids. On average,
with our mesh setting, COMSOL takes approximately 21.3 minutes to finish the computa-
tion of one 12 x 12 grid. These times also vary significantly among different grids, with the
fastest time of about 6 minutes and the longest around 30 minutes. Our algorithm is several
orders of magnitude faster, requiring on average only 0.0075 second to process one grid. It

also uses much less memory: the memory used for concentration profile computations is

37

only linear in the size of the mixing grid design. COMSOL memory requirements are orders
of magnitude higher, as it depends on the size of the mesh used for the simulation.

We also performed an experiment to show that randomly generated 12 x 12 grid
designs can produce a large collection of sufficiently different concentration vectors, and
that a useful library of mixing grids can be successfully populated using our random grid
generator and concentration prediction algorithm. We generated 50 million random designs
on which we ran our algorithm to compute output concentrations. We then filtered out
grids that were redundant, in the sense that their output concentration values differed by
no more than 0.01. The resulting grid library consisted of 2600 different concentration
vectors.

In an additional side experiment, we confirmed that significant reduction in mesh
size would not allow us to construct such a database. Reducing the number of mesh elements
in COMSOL to the 30,000 — 100, 000 range reduces the simulation time to about 45 seconds
— still far too slow for our purpose. It also increases the approximation error to about 10%,
which would significantly exceed the 1% granularity of our database, making its content

essentially meaningless.

2.7 Discussion

While our current implementation of the algorithm assumes that the input is a grid
design, the overall technique applies to arbitrary acyclic planar graphs. The only required
assumptions involve inlets and outlets: all inlets and outlets must be located on the external

face, cannot interleave, and the inlet concentrations must be non-decreasing in the clockwise

38

direction along the external face. This is not a significant restriction, as in a microfluidic
device its inlets and outlets would normally be located along its external boundary.
Another possible enhancement of our method is related to the assumption that
the mixing process in microfluidic grids is exclusively caused by diffusion. This is a valid
assumption for flows along straight channels, and it gives a good approximation of outlet
concentrations for slow fluid velocity, typical for most microfluidic chips. Prior work in [4]
showed, however, that with increased velocities, convection generated in channel bends
affects mixing as well. (This will also likely apply to the split and join nodes.) Taking such

convections effects into account could further improve the accuracy of our method.

39

Chapter 3

Convergence of iterative processes
for pipe network analysis

In this chapter, we study turbulent flows in large-scale pipe networks, such as water
distribution systems and sewage networks. Given the network’s topology, the properties of
the pipes and fluid, and the nodal inflows/outflows, the objective is to compute flow rates
and pressure values within the network. This task involves solving a nonlinear system of
governing equations, including the flow conservation equations and the pressure difference
equations. The choice of variables in this system leads to different formulations, among
which we primarily focus on the loop method. Computing the exact solutions for a pipe
network is not feasible, so iterative algorithms that compute approximate solutions have
been widely adopted in practice. We focus on the loop-based Newton-Raphson method
(NR-loop) and the loop-based Hardy Cross method (HC-loop). We provide a bound on
the radius of quadratic convergence for Algorithm NR-loop in Section 3.2. We establish a
similar local convergence property for Algorithm HC-loop in Section 3.3; however, in this

case, the convergence rate is only linear.

40

Additionally, in Section 3.4, we explain the errors in [2], and in Section 3.5, we
provide an example in which the node-based Newton-Raphson method encounters an infinite

loop.

3.1 Preliminaries

Flow graphs. A pipe system can be represented by an undirected graph G = (V, E'), where
|[V| =n, |[E] = m. In G, the pipe junctions are represented by vertices and pipe segments
by edges. We assume that G is biconnected, as otherwise its biconnected components can
be analyzed separately. For notational reasons, it will be convenient to assign orientations
to edges. To this end, we assume that V' = {1,2,...,n}, and we define the orientation of an
edge e between two different vertices v and v as being from u to v if u < v, and from v to u
otherwise. For simplicity, the edges in E will be identified by numbers 1,2, ...,m. Let D be
the m X n incident matriz where D, = 1 if edge e is incident with vertex v and is oriented
toward v, D, = —1 if e is oriented away from v, and D, = 0 if e is not incident with v.
The specification of a flow graph also involves the consumption vector w € R™ that satisfies
> _jw, = 0. This vector represents external inflows and outflows, that is the boundary

conditions of the flows in the network.

Cycles. A closed loop in the pipe network corresponds to a cycle in its flow graph G. More
generally, we define a cycle in G as an even-degree subgraph of G. A cycle is called simple
if it is connected and all of its vertices have degree two. If we view cycles as vectors in Z5"
(Zs is the finite field of two elements 0 and 1), the set of all cycles in G forms a linear space

over Zo with vector addition being the operation of symmetric difference. The dimension

41

of this space is k = m —n + 1. A cycle basis in G is a collection of k linearly independent
simple cycles. Each cycle in G can be obtained as a linear combination of the cycles in
the basis. For our analysis, we assume that an arbitrary cycle basis C is provided for the
flow graph G. The total length of C, denoted ¢¢, is defined as the sum of the lengths of its
cycles.

Each simple cycle in a basis C' has two possible orientations, which we refer to
as clockwise and counter-clockwise. These orientations are determined by the two cyclic
orderings of vertices in the cycle. The clockwise orientation can be chosen arbitrarily and
independently for each cycle in the basis. An edge e on cycle ¢ is called clockwise on ¢ if
its orientation agrees with the clockwise orientation of ¢, and otherwise e is called counter-
clockwise on c. It is worth noting that an edge can be part of multiple cycles and may be
clockwise in one cycle while being counter-clockwise in another.

Given a cycle base C, we will number its cycles 1,2, ..., k. We can then define the
edge-cycle matriz A of size m x k representing C. The value A.. € {—1,0,1} indicates the
relationship between the orientations of edge e and cycle c. Specifically, it is 1 if edge e is
clockwise on cycle ¢, —1 if e is counter-clockwise, and 0 if e is not part of c.

The flow method. A flow in G is represented by a vector ¢ € R™, with ¢. denoting the
flow on edge e. The sign of g, indicates the flow direction: ¢, > 0 iff the flow direction of ¢
agrees with the orientation of e and vice versa. The goal of the flow method is to compute

a flow ¢ that satisfies:

42

where U = diag(|ge|) for e = 1,2,--- ,m, that is, U is the diagonal matrix whose entries are
the absolute values of the flows.

Equation (3.1) is the flow conservation, and Equation (3.2) is the energy conserva-
tion. For simplicity, we assume that the coefficient p. in the Darcy-Weisbach equations is
equal 1 for all edges. However, our derivation can be easily adapted to arbitrary coefficients.
With this setup, the pressure difference A.p along an edge e can be written as Acp = |ge| ge.
Equation (3.2) states that the pressure differences along each cycle need to add up to 0.
The energy conservation principle applies to all cycles in G, although for our purposes, it

is sufficient to include only the k equations for cycles in the given cycle basis C.

The loop method. The loop method is fundamentally equivalent to the flow method. In
the loop method, the flow conservation equations (3.1) are eliminated by the introduction
of an arbitrary reference flow ¢ € R™ that already satisfies this equation. Then, the flows
in G can be expressed as:

q(z) = Y+ Aux, (3.3)

where 2 € R” is a variable whose value represents the flow adjustments along cycles in C.
Thus, the flow on an edge e is ge(z) = e + Zlgzl Acce. In other words, along each cycle
¢, x. is added to flows on clockwise edges and subtracted from flows on counter-clockwise
edges. In this setting, we define the error function F' : R* s R¥ to represent the deviation
from the energy conservation equations, and using this function we can express the loop
method as:

F(z) = ATU(®@)qz) =0 (3.4)

43

where U(z) is the m x m diagonal matrix defined above for the flow ¢(z). That is, if
F(z) = [f1(2), fo(@), oo fu@)]T then fu(@) = S, Aceqe(@)lae(@)] = 0, for each cycle
c=1,2,...,k in the cycle basis C.

We assume that this system has a solution and that the solution is unique. Both
existence and uniqueness can be established by using the equivalence to the flow method and
reducing the flow method equations to solve a convex optimization problem [51]. In [51], a

different proof of uniqueness is also given.

Iterative algorithms. Our focus is on the analysis of solving the nonlinear system (3.4)
using two iterative algorithms discussed in the introduction: NR-loop and HC-loop. In
general, an iterative algorithm starts with some initial candidate solution z(?), and then it
produces successive approximate solutions z(*), attempting to reduce the value of || F(z®)].
The process repeats until some stopping criteria are satisfied. Such criteria may involve,
for example, an upper bound on the maximum number of iterations, or the improvement
being below a desired value. This improvement can be measured either by ||z®) — z(t=1)||
or | F(z®) — F(a=V)]].

An iterative algorithm is called convergent if it generates a sequence of values that
converges to the actual solution, that is F' (.TU(t)) y 0, if it’s allowed to run indefinitely. The
efficiency of an iterative process can be measured by its rate of convergence, which captures
how quickly the generated sequence approaches the solution. The sequence {a:(t)} is said
to converge to a solution x* with w-order [27], for some w > 1, if there exist two constants

€ >0 and ¢t > 1 such that for all ¢ > ¢:

|12 — 2| < a1 — 2|

44

For w = 1 the convergence is said to be linear, and for w = 2 it is called quadratic.

3.2 Analysis of Newton-Raphson algorithm

The Newton-Raphson algorithm is an iterative process widely used for finding zeros
of nonlinear functions. For single-argument functions R — R, the algorithm obtains a new
approximation value as the intersection of the tangent line to its graph at the current value
with the x-axis. This concept can be naturally extended to multi-variate functions R — R”
by using the k x k Jacobian matrix, which represents the first-order partial derivatives.

Given a flow graph G, a cycle basis C' of G and a reference flow 1, we apply the
Newton-Raphson algorithm (NR-loop) to solve the system of equations (3.4) starting from

some initial solution x(®)

. (Note that we can as well assume that z(%) = 0, for otherwise
we can add z(® to the reference flow and set up the equations for this modified reference

flow.) At each step ¢ > 1, the new solution z(®) is obtained from the previous one using the

formula:

x(t) _ x(t—l) - F,($(t_1))_1 F($(t_1)) (35)

where F’(x) denotes the Jacobian of F' at x which can be expressed compactly in matrix
form as:

F'(z) = 2ATU(z) A (3.6)

45

It is interesting to note that from the setup, it might seem that the flows q(x(t))
obtained by applying the adjustment 2® would be different for different cycle bases of G.
However, upon closer examination, we find that this is not the case. This observation aligns

with Nielsen’s finding in [39]. We offer a straightforward proof below.

Proposition 2. Given a flow graph G, a reference flow v, and an initial approrimation
), the flows obtained at each step of Algorithm NR-loop are independent of the choice of

cycle basis for G.

Proof. Let A, B be two edge-cycle matrices that correspond to two different cycle bases
of G. Using A and B, set up the two error functions Fy4, Fp and let their respective
Jacobians be F"j, Fj;. Denote by x%), xg,) the adjustments at step t acquired from applying
Algorithm NR-loop on F4, Fp respectively. Setting x(f) = wg) = 0, we first show that
AI’S) =B xg).

We can express B = AW for some k x k change of basis matrix W. Assuming

that I,(0) and F'5(0) are invertible, we have:

46

Baly) = —BFL(0)~! F5(0)
= —5 - BIB'U(0) B] "' B Us(0)v
— L AW WT AT UL0)AW] ' WT AT U4(0) ¢
= L AWW AT UA) AL (W) WT AT UA(0)

CA[ATUA(0)A] 7Y AT U4(0) 4

|
N[

= —AF}(0)"' F4(0) = Az}

Since the new flows are the same, we have Uy (3:541)) =U B(:J:g)) which implies that

the new Jacobian Fj; (xg)) is invertible if and only if FA(Q?S)) is invertible. This completes

the proof.

O]

The convergence of the Newton-Raphson algorithm for nonlinear systems has been
studied extensively for decades. The rate of convergence can be as fast as quadratic if
the function satisfies certain conditions, for example, when the initial approximation is
in close neighborhood of the root and the Jacobians at all successive approximations are
invertible. However, the root itself being unknown, it is generally difficult to determine if
the initial point is “sufficiently” close to it. The Kantorovich [52] theorem circumvents this
challenge by giving the local convergence conditions in terms of the initial point and some
general properties of the function. Our statement of this theorem, given below, follows the

formulation in [41] but is adapted to functions on Euclidean spaces with one unique root.

47

For s € R* and r € R, by B(s,r) we denote the ball centered at s with radius r,

that is B(s,r) = {z € R" : |z — s|| < r}.

Theorem 3 (Kantorovich). Let F : RF s R¥ be a differentiable function, F'(x) be the kxk
Jacobian matriz of F(x), and z© e R¥ be an initial approzimation of the Newton-Raphson

process for F(x) = 0. Assume that:
(1) F'(2(9) is invertible and |F' ()1 < 3

2) [|F' (@) Fa@)] <n

(3) |1F'(2) = F'(y)| < Lllx —yl| for allz,y € R*

for some B,n, L > 0.

With these assumptions, if h = BnL < % then the sequence {x(t)} generated by
the Newton-Raphson’s iteration process starting at 20 is well-defined, contained in the ball
Bz) for r = (1 — /1 =2h)/(BL), and converges quadratically to the unique solution

x* of F(z) =0.

Any induced matrix norm ||-|| can be used in this theorem. In our work, we assume
the infinity norm on R¥, that is ||-|| = ||-||... Specifically, the norm of a vector x € R¥ is
||| = max;<.<k | Zc |, and the norm of a matrix M € R¥** is || M| = maxj<.<y, 2221 | Mg |.

Given a flow graph G, we can use Theorem 3 to estimate the radius r of quadratic
convergence expressed in terms of properties of F' and attributes of G. To this end, we
need to estimate the constants in (1), (2) and (3) from Theorem 3. Computing F(z()) is

straightforward, while the inverse of F’ (33(0)) requires more computation. However, since

48

no provably accurate and efficient estimates for ||[F”(x)~!|| are known, we can use 3 =
|/ (@©) 1 and 5 = | F/(2(©) 1 F(z0)].

Our attention is directed towards the bound (3), which involves the Lipschitz
condition on the Jacobian matrix F’. Even though the Newton steps are independent of
the choice of cycle basis C, as proven in Proposition 2, the Lipschitz constant may take on
different values depending on C'. Let £ = £¢ be the total length of C'. We present a general

estimate in terms of ¢:

Claim 4. ||[F'(z) — F'(y)| <2k ((—k+1) ||z —yl, for allxz,y € RF.

Proof. The derivation for this bound uses the formula (3.6) for the Jacobian of F(x)

and (3.3) for the flow values. First, compute:

m k
dfe
F/(x)cd = 8£d (SU) = 2 Z Aec Aed | ¢e + Z Aei T4 |
i=1

e=1

Then,

k
1F(@) - Pl = max 3| @y - 9eqy)|

ek d=1 83:6[B 8$d
k m k .
= 1213;% 2‘ZAecAed(‘we‘i‘ZAeixi‘_‘we‘i‘ZA@iyi‘)’
= =t =1 =1
k m k
> fgggxk 2 Z | Aec ‘ | Aed |‘ Z Aez (ﬂ?z yl)
d=1 e=1 i—
E m k
< 2 max > > Al [Aeal D1 Acil o =yl
d=1e=1 i=1
< 2(0—k+1)k|z -yl

49

because Zle | Aei | < k and maxj<.<j Zzzl Yoot | Aee| | Aea| < € —k + 1, with the last
inequality follows from the observation that for each cycle d # ¢, at least one of its edges is

not on c. O

We are now ready to state sufficient conditions for quadratic convergence of Algo-
rithm NR-loop on the loop equation (3.4). This condition applies to a flow graph G = (V, E),
a cycle basis C of G with total length ¢, a reference flow 1, and an initial solution (9 where

F'(2©) is invertible:

Theorem 5 (Convergence conditions of Algorithm NR-loop). Let 8 = ||[F'(z(©)~Y|, n =
|E (O F(zO)|, and L = 2k(¢ —k+1). If fnL < %, then Algorithm NR-loop converges

to the unique solution x* of F(x) = 0 with quadratic order.

In what follows, we discuss more specific estimates for L. The estimate of the
convergence radius in Theorem 5 critically depends on the choice of the cycle basis. Trivially,
for any basis, we have £ < kn. Therefore, in Theorem 5, ¢ can be replaced by kn if this
bound is sufficient. However, in general, using a cycle basis C' with small total length £ is
likely to improve the convergence radius. The problem of computing cycle bases with small
total length has been well studied. In [47], Rizzi introduced an O(mn)-time algorithm that
generates a cycle basis of total length ¢ = O(mlogn), which is within a 2logn factor of
the optimum length. This length bound was further refined to ¢ = O(mlogn/log(m/n))
by Kaufmann and Michail, as mentioned in [31, Theorem 4.5]. If the loop equations are
built upon the aforementioned cycle basis, the enhanced Lipschitz constant L becomes

2k(tmlogn/log(m/n) — k + 1) for some constant 7.

50

For certain types of graphs, better estimates are possible. In particular, planar
graphs emerge naturally when studying flows in pipe networks. If G is planar, the bound
on the Lipschitz constant L can be improved by using the face cycle bases in which every

edge belongs to at most two cycles (faces):

L < 8n. (3.7)

Unlike the formula for L in Theorem 5, the proof of (3.7) does not follow from Claim 4

directly. Instead, we argue as follows: For every edge e, Zle | Aei | < 2. Furthermore, for

every cycle ¢, Zd# Ofc | < 9fc Thys,

Oxg | — Oxc

/ _ / _
IF'(@) = F'y)]] < max, 2| 55 (@) — 72 (0) |

m k
< 1%1(:&%(]64 E:IAEC ‘ ;Aei (-Tz — yi)
e= i=
m k
< 4 A2 A _
< e d ALY Al -l
< 8nllz -y

because Y 7' | A2, < n for any simple cycle c.

Example. We illustrate the local convergence conditions on the simple flow graph depicted
in the figure below. The graph is planar and has 4 vertices, 6 edges, 2 inlets and 1 outlet.
The cycle basis that is used to set up the loop equations is the cycle basis consisting of

internal faces.

51

Figure 3.1: An example planar graph where the clockwise directions of the internal face
cycles are indicated

The cycle matrix in this example is:

—1 0 0

-1 0 1

1 -1 0

0 -1 1

0 1 0

0 0 -1

Let the reference flow be ¥ = [1,1,0, 1,0, 2]. The loop equations are:

fl(:L') = —|1—£L'1|(1—{L‘1)—|1—ZE1+IE3|(1—1’1—|—£L'3)—|—|IL‘1—$2|(l’1—l’2)
fo() = —lo1—ao|(x1 — @2) — |1 — 22 + a3|(1 — @2 + 23) + [22[(22)
fg(ZL') = |1—l’l—|—£L’3|(1—ZE1+1‘3)—|—’1—([32-{—1‘3‘(1—%’24—1’3)—|2—:L’3|(2—ZE3)

\

and, the Jacobian is: F'(z) = [g—gi(a:), g—é(x), g—i(x)], where

52

OF (1 — 21| 4+ 1 — 21 + 23| + |21 — 22
%(.f) =2 _|$1 _J"Ql
1 I —|1 — 21 + z3]
OF ~lo1 =z
%(1}):2 |:E1—$2‘+|1—[L‘2+333’+|x2|
2 i —|1 — 23 + x3]
9F I —|1 — 21 + x3]
%(;E) —9 —[1 — @ + x3]
3 _|1—x1+x3]+|1—x2+m3]+|2—x3]

Let the initial guess be z(®) = [1.38,1,0.93]. It can be verified that F'(z()) is
invertible. The constants in (1) and (2) are || F'(z(©)~1|| < 0.7 = 3, | F'(z©)~' F(z©)| <
0.005 = n As for the constant in (3), we can set L = 8n = 32 since the face cycle basis
is used. This gives SnL < 0.12, so the convergence condition is satisfied, and the system

converges with quadratic order starting at the given z(%).

3.3 Analysis of Hardy Cross algorithm

In order to simplify the calculation of the new solution z(® in equation (3.5), a
linear operator H(x), typically associated with the Jacobian F’(z), can be used in lieu of
it:

2@ = 20D _ F (D)7 peptD) (3-8)

53

This variation of the Newton-Raphson method has been thoroughly explored in
the literature. In the context of pipe network analysis, Algorithm HC-loop can be viewed
as a simplified version of the Newton-Raphson method where the Jacobian matrix F” is

replaced by the linear operator H, defined as follows:

H(x) = diag[($)}forc:1,2,---,k

0x,

where 0f./0x. are the diagonal entries of the matrix F’(z), defined in equation (3.6).

As the computation of H(x) is relatively straightforward, Algorithm HC-loop was
designed to support manual analysis of small-scale water distribution systems. The process
also begins with a reference flow 1 that satisfies the flow conservation equation (3.1). It then
iteratively produces new flow adjustments using equation (3.8) until the energy conservation
equation (3.2) is satisfied, within some specified tolerance, for all cycles in a given cycle basis
C of G.

It is important to note that although equation (3.8) may give the impression that
the adjustments for all cycles need to be computed simultaneously, they can be performed
for each cycle ¢ € C' separately as follows:

of = > Ace o™V (")
2O = p=1) _ [Gle (pt=1))} Fo(ztD) = gD _ =L

Oz 22Aa =)

where qut*l) = e + Zle Ag; :cz(tfl) is the flow value on edge e at step t — 1.

The difference between Algorithm HC-loop and Algorithm NR-loop lies in the

fact that in Algorithm NR-loop each adjustment takes into account the interaction be-

54

tween overlapping cycles, whereas in Algorithm HC-loop these adjustments are computed
independently for each cycle.

Local convergence analysis of the variant of the Newton-Raphson algorithm, where
a linear operator is used instead of the Jacobian matrix, was studied by Rheinboldt in [46,

Theorem 4.3]. Below, we state his results, adapting them to functions in Euclidean spaces

with one unique root.

Theorem 6. Let ' : R* s R be a differentiable function, F'(xz) be the k x k Jacobian
matriz of F(z), H : R* — RF be a linear operator, and 20 € R¥ be an initial approzimation
of the iterative process (3.8) for F(x) = 0. Assume that:

(1) H(z®) is invertible and | H(z()~1| < B

(2) [[H (=)~ Fa @) <n

(3) IF' (@) - F'(y)| < Llja — yl| for z,y € R*
(4) |H(z) - H@O)| < K|z — 2| for « € R*

(5) [|F(x) = H(x)|| < 8o + d1lla — 2V for z € R
for some B,n, L, K > 0 and dgy, 61 > 0.
With these assumptions, if 33o < 1 and h = BnL max(1, (K +681)/L)/(1—B3)? <
%, then the sequence {x(t)} generated by equation (3.8) starting at 20 s well-defined,

contained in the ball B(z(©,r) for r = n(1 — /1 —2h)/h(1 — Bdy), and converges linearly

to the unique solution x* of F(z) = 0.

We apply Theorem 6 to Algorithm HC-loop for a given flow graph G in a similar

manner to our use of Theorem 3 for Algorithm NR-loop. The bound in (3) involving L

55

remains consistent with those outlined in Section 3.2. For (1), the computation of the

inverse of the diagonal matrix H(z(?)) is straightforward:

1<c<k | Oz,

-1
5= 1) = o |20

Similarly, the bound in (2) can be taken as 7 = ||H (2(®)~1 F(z(®)||. For (4) and
(5), the estimates for K, dg, and §; depend on the cycle basis C, similar to L. We show the

general estimates of these constants in the following claims.
Claim 7. |[H(z) — H(z)|| <200 — k+ 1) ||z — 2O

The derivation for this bound is as follows:

dfe, . Of

a
1I£C§Xk Oz, (z) Oz,

m k)
= 1??§)(k2’ ;Azc(‘we‘i‘;fleix”— |¢€+;A61$£0)|> ‘

m k
2 Z A _ 0
max 23 42 37| Au| o 2]
e=1 i=1

|H (z) - H(=O)| =

()|

IN

= 200 —k+1) |z -z

because 37 S A2 | Ay | <l—k+1.

Claim 8. ||F'(z) — H(x)|| < 60 + 61 ||z — x(0)|| where 8o = 2(£ — k — 2) (Ymax + ka(O)H),

0 = 2k(€—k‘-2), and wmax = 12162%};1’¢6"

56

The derivation for this bound is as follows:

IF'(@) - H@)| = max 3| o)
=SS g

1<c<k

m k
= max 2’ZAecAed‘¢e+ZAeixi|
d#c e=1 i=1

max 2 ZZ|A60"Aed‘(wmax"i_k”x”)

1<c<Lk
- d#c e=1

IN

IN

200 — k — 2) (Ymax + k|2 O + kljz — @)

IN

200 — k — 2) (Ymax + k)| 2O + 2k (6 — k — 2) ||z — 2O

because 37, > 00 | Aec|[Aea| < €—k+1—3={—Fk—2. (This uses the fact that each
cycle ¢ has at least 3 edges.)

The following theorem states the sufficient condition for linear convergence of
Algorithm HC-loop on loop equation F : RF — R*, for a flow graph G = (V, E) with a
given cycle basis C' of total length ¢, a reference flow ¢ with the maximum absolute flow

value flow ¥max, and an initial solution z(©) for which H (x(o)) is invertible:

Theorem 9 (Convergence conditions of Algorithm HC-loop). Let 8 = ||H(z(O)~Y|, n =
||H(:U(O))_1 F(x(0)|’) K = 2(£_k+1)} L =2k (ﬁ—k—l—l), 50 = Q(E_k_Q) (¢max + k”‘r(o)”);
and &1 = 2k (0 — k —2). If B8 < 1 and BnLmax(1, (K + 6,)/L)/(1 — Bd)? < 3, then

Algorithm HC-loop converges to the unique solution x* of F'(x) = 0 with linear order.

We remark, similar to Section 3.2, more specific estimates of the constants K, dy
and §; can be obtained by substituting the value for £ corresponding to the cycle basis used

in the algorithm.

57

In the case where G is planar and the face cycle basis is used, the constant K can

be improved to 4n. This bound can be derived as follows:

m k
o0 < 2 Nl — (0
)~ HEO < a2 A 3 A)

m
< 2 _ 20
< max 2} %2z -
e=1
< 4nljz — 2O

Furthermore, utilizing the property that for any edge e, Zle | Aei| < 2, the
constants &y and &; can also be improved to 2(¢ — k — 2) (tmax + 2/[z(©||) and 4(¢ — k —2),

respectively.

Lower bound on convergence. We now demonstrate that, in general, the guaranteed
local convergence rate of Algorithm HC-loop is not better than linear. To illustrate this,
consider the flow graph G with 2 vertices, 3 edges, 1 inlet and 1 outlet. The cycle basis

consists of two cycles, whose clockwise directions are shown in the figure below.

58

Let the reference flow be ¢ = [0, 0, 3]. The loop equations are:

filz) = |z1|(x1) = 3 — 21 — 22|(3 — 21 — 22)

fo(x) = |w2|(22) — 13 — 21 — 22|(3 — 21 — 22)

The solution is 7 = x5 = 1. We are interested in the case where the initial adjustment

20 is sufficiently close to the solution, particularly when ZL'gO) = $§0) = 1 4 ¢ for some
0 < € < 1. The first adjustment is:
(1) _ () _ 3e(2+¢)
.',Ul —$2 —1:‘:6:F2(27j:6)—1:|:€/2
Thus, ||z®) —2* || = ¢/2 = 1 || 2(®) — 2* ||. The convergence rate is exactly 3.

3.4 Errors in [2]

Altman and Boulos [2] attempted to provide local convergence conditions of Algo-
rithm NR-loop and Algorithm NR-flow for solving flow equations. However, their analysis
has two errors that make their bounds on convergence invalid. The first one is an algebraic

mistake when substituting the variables in [2, eq. (13)]:

Tl = M1Te1 +M2Ter2 + -+ NuTe + a1

Ty = M1Tep1 + M2Ter2 + -+ NeeXe + Ot

59

into [2, eq. (12)]:

V16187 4+ Y126028 + -+ Yieberi + B = 0

Ym1€122 + Ymabots 4 - + Ymeet: + By = 0

(The indices in the last equation in [2] were also incorrectly given as n instead of m. We
corrected these above.) With a change of variables from z;y1, 442, , Te to 21,22, - , 2y,

they obtained [2, eq. (14)]:

fi = puat 4 proas + -+ puxd +biwy +biowg + -+ by +dp =0

fi = puat+pprs + -+ puad +bpwr +bpre + -+ by +dp =0

All the terms x;x; where ¢ # j do not appear in the above equations which affect the
computation of the partial derivatives 0f;/0x; later on in their analysis.
The other mistake involves the sign issue in the energy equation for each cycle.

The authors used a fixed indicator 7, for the orientation of flow in cycle w in [2, eq. (6)]:

e
®, + Z ’Ywuqui =0
u=1

This would be true if all low directions remained the same, in other words, if the sign of

each Q, was constant through the whole iterative process. However, it is not guaranteed.

60

Thus, when @Q,, flips sign, y,, needs to be changed accordingly for the energy equation to

be valid.

3.5 An example of non-convergence of algorithm NR-node

Shamir mentioned the issue with non-convergence encountered in certain systems
in [49]. We provide a simple flow graph in which Algorithm NR-node enters an infinite loop.
Using similar setup for the node method as in [49], the unknowns are pressure p, at node
v for v =1,2,--- ,n, and the system of equations includes flow conservation equations for

each node of the form:

Pu—D
fv(p17p2,"' 7pn):wv+ Z Dey ge = wy + Z Dev#

—0 (39
e=(u,v)EE e=(u,v)EE |pu o pv|

The below example demonstrates an oscillation case of Algorithm HR-node for
solving the described node method equation. Consider the simple flow graph G with only
two vertices v; and vy connected by a single edge as shown in the figure below. Set the

external flow on the two vertices to be 0 and the corresponding pressures to be p; = x # 0

and po = 0.
The equation (3.9) is then f(z) = \7|%| = 0. The iteration step is: = — —J{,((z)) =
-2/ |z|

= —z. So for any initial value = # 0, the algorithm will oscillate between z and

Vel

61

Chapter 4

Hardness results for the minimum
spanning tree congestion problem

In this chapter, we study the minimum spanning tree congestion problem (STC).
In Section 4.2, we address an open problem in [43] by providing an improved hardness result
for K-STC (STC for a fixed integer K). We prove that K -STC is NP-complete for K > 5,
leaving only 4-STC open.

In Section 4.3, we explore K-STC for bipartite graphs with a radius of 2. We
establish that for K > 6, K-STC remains NP-complete for this class of graphs. In Sec-
tion 4.4, we consider K -STCD, a variant of STC in which the objective is to determine if
the graph has a spanning tree of depth at most D and congestion at most K. We establish
a tight bound for bipartite graphs by providing an NIP-completeness proof for 6-STC2 and
a polynomial-time algorithm for 5-STC2. Additionally, we present two polynomial-time

algorithms for STC2 for bipartite graphs with restrictions on vertex degrees.

62

4.1 Preliminaries

Basic graph terminology. Let G be a simple graph with vertex set V and edge set F.
We use notation Ng(v) for the neighborhood of a vertex v € V' and v for its degree. For
a vertex v € V, its eccentricity eccg(v) is defined as the maximum distance from v to any
other vertex. The radius of G is rad(G) = min,ey eccg(v).

Consider a spanning tree T C E of G. If e = (u,v) € T, removing e from T
splits T" into two subtrees. We denote by T, , the subtree that contains u and by T, , the
subtree that contains v. Let the cut-set of e, denoted Og r(e), be the set of edges in E
that have one endpoint in T3, and the other in T}, ,. In other words, Jg r(e) consists of
the edges (u’,v") € E for which the unique (simple) path in T from u’ to v' goes through
e. Note that e € dg,r(e). The congestion of e, denoted by cng r(e), is the cardinality of
Oc,r(e). The congestion of tree T is cngq(T) = maxeer engg r(e). Finally, the spanning
tree congestion of graph G, denoted by stc(G), is defined as the minimum value of cng (7))

over all spanning trees T of G.

Weighted edges. The concept of the spanning tree congestion extends naturally to edge-
weighted graphs. An edge e with integer weight w > 1 contributes w to the congestion
of any edge f for which e € g7 (f). One can think of e as representing w parallel edges
between v and v. We refer to these parallel edges as a non-weighted realization of a weighed
edge e. Indeed, replacing e by this realization does not affect the minimum congestion
value, because in a multigraph only one edge between any two given vertices can be in
a spanning tree, but all of them belong to the cut-set dg 7 (f) of any edge f € T whose

removal separates these vertices in 7' (and thus all contribute to cngg 1 (f))-

63

We can also realize a weighted edge using a simple graph (without multiple edges).
As observed in [44] (and is easy to prove), edge subdivision does not affect the spanning tree
congestion of a graph, so instead of using parallel edges we can realize an edge of weight
w using w parallel disjoint paths. (See Figure 4.1 for illustration.) We state our results in
terms of simple graphs, but we use weighted graphs in our proofs with the understanding
that they actually represent simple graphs. As all weights used in the paper are constant,
the computational complexity of K-STC is not affected. The proof in Section 4.2 does
not depend on what realization of weighted edges we use, while the proof in Section 4.3
uses a specific realization that we refer to as spintop: an edge (u,v) of weight w is realized
using w — 1 length-three u-to-v paths in addition to a non-weighted edge (u,v) itself (see

Figure 4.1Db).

v (a) v (b) .

IS
<

Figure 4.1: Two different realizations of an edge (u,v) of multiplicity 4. (a) A basic real-
ization using paths of length 2. (b) The spintop realization used in Section 4.3.

Double weights. In fact, it is convenient to generalize this further by introducing edges
with double weights. A double weight of an edge e is denoted w :w’, where w and w’ are
positive integers such that w < w’ < K — 1, and its interpretation in the context of K-STC

is as follows:

64

Given a spanning tree T',

e if e € /\ T then e contributes w to the congestion cngg 7(f) of any edge f € T for

which e € dg 7 (f), and
e if e € T then e contributes w’ to its own congestion, cngg r(e).

The lemma below provides a simple-graph realization of double-weighted edges. It implies
that including such edges does not affect the computational complexity of K -STC, allowing

us to formulate our proofs in terms of graphs where some edges have double weights.

Lemma 10. Let (u,v) be an edge in G with double weight w:w', where w < W' < K — 1.
Consider another graph G' obtained from G by removing (u,v), and for each i =1,2,--- ,w
adding a new vertex w; with two edges: edge (u,w;) of weight 1 and edge (w;,v) of weight

W' —w—+1 (see Figure 4.2a for an example). Then, stc(G) < K if and only if ste(G') < K.

@ o , ,

4:5

S

Figure 4.2: (a) On the left, an edge (u,v) with double weight 4:5 in G. On the right, the
realization of (u,v) in G’. If one applies the spintop realization of the edges from v to w;’s,
as in Figure 4.1b, then the subgraph on the right realizing (u,v) is bipartite and all its
nodes are within distance 2 from v. Figures (b) and (c) illustrate the proof of Lemma 10:
(b) the traversal of 7" and the cut of (u,v) when (u,v) € T, (c) the traversal of 7" and
the cut containing (u,v) when (u,v) ¢ T. Solid lines are tree edges and dotted lines are
non-tree edges.

65

Proof. Denote by W = {wy, wa, ..., w, } the set of new vertices, and by W,, = {(u, w;) | w; € W}
and W, = {(w;,v) | w; € W} the sets of new edges added to G'.
(=) Suppose that G has a spanning tree T with cng(7T) < K. We will show that there
exists a spanning tree 7" of G’ with cngq/(7”) < K. We break the proof into two cases, in
both cases showing that cngg 1v(e) < K for each edge e € T".
Case 1: (u,v) € T.

Consider the spanning tree 77 = T\ {(u, v) JUW,U{ (w1, u)} of G’ (see Figure 4.2b).
For every edge (z,y) € E\{(u,v)}, the x-to-y paths in T" and T” are the same, except that if
the z-to-y path in T traverses edge (u,v) then the z-to-y path in T” traverses (u,w1), (w1, v)

instead. Therefore,

If e € T\ (W, U{(u, w1)}), then dg' 1v(e) = dg,r(e). So cnge 1+(e) = engg r(e) < K.

o If e = (u,w1), then O 77(e) = Og,r(u,v) \ {(u,v)} UW,. By the definition of double
weights, (u,v) contributes w’ to cngg r(u,v) while each edge in W, contributes 1 to

cnger pv(€). Hence, enger v (e) = engg p(u, v) — W' +w < engg p(e) < K.

o If e = (wy,v), then O¢r 17 (e) = Og1(u,v) \ {(u,v)} U{e} U (W, \ {(wi,u)}). Since e
contributes w’ — w + 1 to its own congestion, we have: cnggr pv(e) = engg p(u,v) —

Wt (W -w+ 1)+ (w—1) = cngg r(u,v) < K.

e Lastly, if e € W, \ {(w1,v)} then it is a leaf edge, we have cngg () = w' —w +2 <

w+1<K.

66

Case 2: (u,v) ¢ T.
Let 7! = T U W, which is a spanning tree of G’ (see Figure 4.2c). We consider

the following sub-cases:

o If e € W, then, as e is a leaf edge, we have cngg v(e) =w' —w+2 < +1 < K.

e If e € T\ W, and e is not on the u-to-v path in 77, then g 17(e) = dar(e). So
cnggr v (e) = engg r(e) < K.

o If e € T\ W, and e is on the u-to-v path in 7", then d¢r 717 (e) = O 7 (€) \{(u,v) }UW,,.
Since (u,v) contributes w to cngg r(e) and W), also contributes w to cnger 7 (€), we

have 8@/771/(6) = agvT(e) < K.

We have shown that cngq (77) < K in all cases, which completes the proof for the forward

implication. We now proceed to the proof of the converse implication.

(<) Let T” be the spanning tree of G’ with congestion cngq (T”) < K. We will show that
there exists a spanning tree T' of G with cng,(T) < K. Note that, for any w; € W, T”
traverses at least one of the two edges (u,w;) and (w;,v). Furthermore, at most one vertex
in W is a non-leaf. We consider three cases. In the first two cases the arguments follow the
same pattern as in the proof for the (=) implication, in essence reversing the modification
of the spanning tree. Then the third case reduces to the second case.
Case 1: Exactly one vertex in W is a non-leaf in T".

Without loss of generality, we can assume w; is a non-leaf vertex (that is, both
(u,wy) and (wq,v) are in T') and W \ {w;} are leaves. We construct 7" by adding (u,v) to
T’ and removing all vertices of W and their incident edges from T'. By the construction, T'

is a spanning tree of G. We have:

67

o If e c T\ {(u,v)}, then cngg r(e) = cnger 1 (e) < K.
e If e = (u,v), then cngg r(e) < enggr (v, w1) < K.

Case 2: All vertices in W are leaves and T” traverse all edges in W,,.

Let T =T’ \ W,, which is a spanning tree of G. Then
e If e € T' and e is not on the u-to-v path in 7', then cngg r(e) = cnger 1 (e) < K.

e If e € T and e is on the u-to-v path in T, then (u,v) and W, contribute the same
amount w to the congestion of e in T and 7", respectively, implying that cngG’T(e) =

CngG/7T/(€) S K.

Case 3: All vertices in W are leaves and T” traverses at least one edge in W,.

In this case, we consider another spanning tree T” of G’ that traverses all edges in
W, and does not use any edge in W,,. It is sufficient to show that cngq (T") < cnge (T7),
since it implies that cng/ (T”) < K, and then we can apply Case 2 to T”. We examine the

congestion values of each edge e € T":

o If e € 7"\ W, and e is not on the u-to-v path in T”, then e € 7" and Jgr v (€) =

Ocr 1 (€), implying enger 7 (€) = engey 1 (e).

e If e € T"\ W, and e is on the u-to-v path in 7", then for each vertex w; € W either
(u, w;) contributes 1 or (w;,v) contributes w’ —w+1 > 1 to cnggs 7v(e). On the other
hand, in 7", all edges in W, are in dgr 7+ (e) and contribute a total of w to cnggr 7 (e).

ThUS, cngG,’Tu(e) S CngG’,T’(e)'
o If e € Wy, then cnggr pv(e) =w' —w+2 < W' +1 < K.

68

In all cases, we have proved that there is a spanning tree T" of G that has congestion at

most K establishing the validity of the backward implication. O

As explained earlier, in Section 4.3 we will use the spintop realization for weighted
edges. With this, the realization of an edge e = (u,v) with double weight w:w’ will use the
spintop realization for the edges of weight w’ — w + 1 between v and the w;’s. The property
of this realization that will be crucial in Section 4.3 is that it is bipartite and all its nodes

are within distance 2 from v.

Remark. There is a simpler way to realize an edge (u, v) with a double weight w:w’: replace
it by a length-2 path (u,w), (w,v), where w is a new vertex, edge (u,w) has weight w, and
edge (w,v) has weight w’. This indeed works, but can be used only when w + ' < K.
This is because, in this construction, if w is a leaf of a spanning tree, the congestion of
the tree edge from w will be w + «’, and this congestion value cannot exceed K. This
realization of double-weighted edges would suffice for our proof in Section 4.2, but not the

one in Section 4.3.

4.2 NP-completeness proof of K-STC for K > 5
In this section, we present the following hardness results for K-STC:
Theorem 11. For any fixed integer K > 5, K-STC is NP-complete.

Our proof uses an NP-complete variant of the satisfiability problem called (2P1N)-
SAT [17, 60]. An instance of (2P1N)-SAT is a boolean expression ¢ in conjunctive normal

form, where each variable occurs exactly three times, twice positively and once negatively,

69

and each clause contains exactly two or three literals of different variables. The objective
is to decide if ¢ is satisfiable, that is if there is a satisfying assignment that makes ¢ true.

For each constant K, K-STC is clearly in NPP. We will present a polynomial-time
reduction from (2P1N)-SAT. In this reduction, given an instance ¢ of (2P1N)-SAT, we

construct a graph G with the following property:
() ¢ has a satisfying truth assignment if and only if stc(G) < K.

Throughout the proof, the three literals of x; in ¢ will be denoted by z;, z, and Z;,
where z;, x; are the two positive occurrences of x; and Z; is the negative occurrence of x;.
We will also use notation Z; to refer to an unspecified literal of z;, that is &; € {x;, 2}, 7;}.

We now describe the reduction. Set k; = K — i for i = 1,2,3,4. (In particular, for
K =5, we have ky = 4, ky = 3, ks = 2, kg = 1). G will consist of gadgets corresponding
to variables, with the gadget corresponding to z; having three vertices z;, «}, and z;, that
represent its three occurrences in the clauses. G will also have vertices representing clauses
and edges connecting literals with the clauses where they occur (see Figure 4.3b for an
example). As explained in Section 4.1, without any loss of generality, we can allow edges
in G to have constant-valued weights, single or double. Specifically, starting with G empty,

the construction of G proceeds as follows:

e Add a root vertez r.

e For each variable z;, construct the x;-gadget (see Figure 4.3a). This gadget has three
vertices corresponding to the literals: a negative literal vertex T; and two positive
literal vertices x;, x;, and two auxiliary vertices y; and z;. Its edges and their weights

are given in the table below:

70

edge

(Zi, 2i)

(21, i)

(miv x;

)

(r, 27)

(T, yl)

(yi» 2i)

(yi, %)

weight

12k3

12k3

12]{?2

k3

k4

ky

12]{22

e For each clause ¢, create a clause vertex c. For each literal Z; in ¢, add the corre-

sponding clause-to-literal edge (c,Z;) of weight 1:ky. Importantly, as all literals in ¢

correspond to different variables, these edges will go to different variable gadgets.

e For each two-literal clause ¢, add a root-to-clause edge (r,c) of weight 1:k;.

(b)

Figure 4.3: (a)The z;-gadget. (b) An example of a partial graph G for the boolean expres-

sion g =ci Aco Acg A ---

where ¢; = Z1 Vx4, c2 = 21 V22 V T3, and ¢35 = x1 V Ta. (The
weights of edges inside the variable gadgets are not shown.)

We now show that G has the required property (x), proving the two implications

separately.

(=) Suppose that ¢ has a satisfying assignment. Using this assignment, we con-

struct a spanning tree T of G as follows:

e For every x;-gadget, include in T edges (r,z}), (r,vi), and (yi, z). If z; = 0, include

in T edges (Z;, z;) and (z;,2}), otherwise include in T edges (y;, Z;) and (z;, ;).

e For each clause c, include in T' one clause-to-literal edge that is incident to any literal

vertex that satisfies ¢ in our chosen truth assignment for ¢.

71

By routine inspection, T is indeed a spanning tree of G: Each x;-gadget is traversed
from r without cycles, and all clause vertices are leaves of T'. Figures 4.4 and 4.5 show how
T traverses an x;-gadget in different cases, depending on whether x; = 0 or z; = 1 in the
truth assignment for ¢, and on which literals are chosen to satisfy each clause. Note that
the edges with double weights satisfy the assumption of Lemma 10 in Section 4.1, that is
each such weight 1:w' satisfies 1 <’ < K — 1.

We need to verify that each edge in T has congestion at most K. All the clause
vertices are leaves in T', thus the congestion of each clause-to-literal edge is ko +2 = K
(this holds for both three-literal and two-literal clauses). To analyze the congestion of the
edges inside an x;-gadget, we consider two cases, depending on the value of x; in our truth
assignment.

When z; = 0, we have two sub-cases (a) and (b) as shown in Figure 4.4. The

congestions of the edges in the z;-gadget are as follows:

In both cases, cngg 7 (r, ;) = k3 + 3.
e In case (a), cngg (7, vi) = k4 + 3. In case (b), it is kg + 2.
e In case (a), cngg 1 (vi, zi) = k4 + 4. In case (b), it is k4 + 3.

e In case (a), cngg (%4, 2;) = k3 + 3. In case (b), it is k3 + 2.

In both cases, cngg (i, 2]) = kg + 2.

On the other hand, when x; = 1, we have four sub-cases. Figure 4.4 illustrates

cases (a)—(c). In case (d) (not shown in Figure 4.4), none of the positive literal vertices

72

Figure 4.4: The traversal of the x;-gadget by T" when z; = 0. Solid lines are tree edges,
dotted lines are non-tree edges. (a) Z; is chosen by clause c. (b) Z; is not chosen by clause
c.

x;, x, is chosen to satisfy their corresponding clauses. The congestions of the edges in the

x;-gadget are as follows:
e In cases (a) and (b), cngg (7, 7;) = k3 + 3. In cases (c) and (d), it is k3 + 2.

e In cases (a) and (c), ecngg (7, ¥i) = k4 + 4. In cases (b) and (d), it is k4 + 3.

In cases (a) and (c), cngg 1 (¥i, 2i) = k4 + 4. In cases (b) and (d), it is k4 + 3.

e In cases (a) and (c), engg r(2i, 7)) = k3 + 3. In cases (b) and (d), it is k3 + 2.

In all cases, engg (v, Ti) = ka2 + 2.

In summary, the congestion of each edge of T" is at most K. Thus cngn(7T) < K;
in turn, stc(G) < K, as claimed.

(<) We now prove the other implication in (x). We assume that G has a spanning
tree T with cng(T) < K. We will show how to convert 7" into a satisfying truth assignment
for ¢. The proof consists of a sequence of claims showing that 7" must have a special form

that will allow us to define this truth assignment.

73

Figure 4.5: The traversal of the z;-gadget by T when x; = 1. By ¢, ¢/, and ¢’ we denote the
clauses that contain literals Z;, z; and =}, respectively. (a) x; and 2 are chosen by clauses
¢ and ¢’. (b)) is chosen by clause ¢”. (c¢) z; is chosen by clause ¢'.

Claim 12. Fach x;-gadget satisfies the following property: for each literal vertex Z;, if
some edge e of T' (not necessarily in the x;-gadget) is on the r-to-&; path in T, then Og r(e)

contains at least two distinct edges from this gadget other than (y;, z;).

This claim is straightforward: it follows directly from the fact that there are two

edge-disjoint paths from r to any literal vertex Z; € {Z;, z;, 2}} that do not use edge (y;, ;).

Claim 13. For each two-literal clause ¢, edge (r,c) is not in T.

For each literal Z; of clause ¢, there is an r-to-c path via the x;-gadget, so, together
with edge (r,c¢), G has three disjoint r-to-¢ paths. Thus, if (r,¢) were in T', its congestion

would be at least k1 + 2 > K, proving Claim 13.

Claim 14. All clause vertices are leaves in T.

To prove Claim 14, suppose there is a clause c that is not a leaf. Then, by Claim 13,
c has at least two clause-to-literal edges in T', say (c, ;) and (c,Z;). We can assume that

the last edge on the r-to-c path in T"is e = (¢, ;). Clearly, r € T3, . and Z; € T.3,. By

74

Claim 12, at least two edges of the xj-gadget are in dg r(e), and they contribute at least 2
to cngg 7(e). We now have some cases to consider.

If ¢ is a two-literal clause, its root-to-clause edge (r,c) is also in dgr(e), by
Claim 13. Thus, cngg p(e) > ko +3 > K (see Figure 4.6a). So assume now that c is
a three-literal clause, and let Z; # Z;,Z; be the third literal of c¢. If T' contains (c,;),
the z;-gadget would also contribute at least 2 to cngg r(e), so engg p(e) > ko +4 > K
(see Figure 4.6b). Otherwise, (c,7;) ¢ T, and (c, ;) itself contributes 1 to cngg 7 (e), so
cngg r(e) > ko +3 > K (see Figure 4.6¢).

We have shown that if a clause vertex c¢ is not a leaf in 7', then in all cases the
congestion of T" would exceed K, completing the proof of Claim 14.

(a) (©

Figure 4.6: Illustration of the proof of Claim 14. In (a), ¢ is a two-literal clause; in (b)
and (c), ¢ is a three-literal clause.

Claim 15. For each x;-gadget, edge (r,x}) is in T.

Towards contradiction, suppose that (r,z}) is not in 7. Let (2, c) be the clause-
to-literal edge of 2. If only one of the two edges (x},x;), (¢}, ¢) is in T, making 2/ a leaf,

then the congestion of that edge is k3 + k2 + 1 > K. Otherwise, both (2}, z;), («},¢) are in

75

/

) is the last edge on the r-to-z path in

T. Because c is a leaf in T' by Claim 14, e = (x;, 2]

T. As shown in Figure 4.7a, cngg r(e) > k3 + k2 +2 > K. This proves Claim 15.
Claim 16. For each z;-gadget, edge (r,y;) is in T.

To prove this claim, suppose (r,y;) is not in 7. We consider the congestion of the
first edge e on the r-to-y; path in 7. By Claims 14 and 15, we have e = (r,z}), all vertices
of the x;-gadget have to be in T, zl s and Tx;m does not contain literal vertices of another
variable z; # x;. For each literal Z; of x;, if a clause-to-literal edge (c, Z;) is in T', then the
two other edges of ¢ contribute 2 to cngg 1(e), otherwise (c, ;) contributes 1 to cngg r(e).

Then, cngg r(e) > k4 + k3 +3 > K (see Figure 4.7b), proving Claim 16.

r r r
(@ ® |
Yi. Yi
kg kS

L T ® xﬁ] 7’:’ LA P

h I I Bl I I

[] [] [] []
:’ c ‘.. c C/ L// c C/ I

Figure 4.7: (a) Illustration of the proof of Claim 15. (b) Illustration of the proof of Claim 16.
Dot-dashed lines are edges that may or may not be in 7.

Claim 17. For each x;-gadget, exactly one of edges (z;, z;) and (x;,x}) is in T.

By Claims 15 and 16, edges (r,y;) and (r,2}) are in T. Since the clause neighbor
d of z; is a leaf of T, by Claim 14, if none of (z;, z;), (x;, x}) were in T, z; would not be
reachable from r in 7. Thus, at least one of them is in 7. Now, assume both (z;,z;) and

(xi,«}) are in T (see Figure 4.8a). Then, edge (y;,z;) is not in T, as otherwise we would

76

create a cycle. Let us consider the congestion of edge e = (r,). Clearly, z; and z are in

T

v - The edges of the two clause neighbors ¢’ and ¢’ of z; and zj contribute at least 2 to

cngg r(e), by Claim 14. In addition, by Claim 12, besides e and (y;,2;), Og,r(e) contains
another edge of the x;-gadget which contributes at least another 1 to cngg r(e). Thus,

cngg r(e) > kg + k3 + 3 > K — a contradiction. This proves Claim 17.
Claim 18. For each x;-gadget, edge (y;, z;) is in T .

By Claims 15 and 16, the two edges (r,2}) and (r,y;) are in 7. Now assume,
towards contradiction, that (y;,z;) is not in T' (see Figure 4.8b). By Claim 17, only one
of (z;,x;) and (x;,}) is in T. Furthermore, the clause neighbor ¢’ of z; is a leaf of T, by
Claim 14. As a result, (z;, ;) cannot be on the y;-to-z; path in T. To reach z; from y;, the
two edges (yi, i), (Ti, 2;) have to be in T. Let us consider the congestion of e = (y;, Z;).
The edges of the clause neighbor ¢ of Z; contribute at least 1 to the congestion of e, by
Claim 14. Also, by Claim 12, besides e and (y;, 2;), Ogr(e) contains another edge of the
ri-gadget which contributes at least 1 to cngg r(e). In total, cngg 7(e) > kg + ko +2 > K,

reaching a contradiction and completing the proof of Claim 18.

(a) A (b) A

Figure 4.8: (a) Illustration of the proof of Claim 17. (b) Illustration of the proof of Claim 18.

77

Claim 19. For each z;-gadget, if its clause-to-literal edge (Z;,c) is in T, then its other two

clause-to-literal edges (x;, ") and (z},") are not in T.

Assume the clause-to-literal edge (Z;,c) of the x;-gadget is in 7. By Claim 18,
edge (y;,z;) is in T. If (y;,Z;) is also in T', edge (Z;, z;) cannot be in T, and it contributes
1 to cngg 7(yi, T;). As shown in Figure 4.9a, cngg r(yi, 7)) = k2 +3 > K. Thus, (y;, ;)
cannot be in T. Since c is a leaf of T, edge (Z;, z;) has to be in T, for otherwise Z; would
not be reachable from r. By Claim 17, one of edges (z;, x;) and (z;,z}) is in T. If (z;,z;)
is in T' (see Figure 4.9b), engg v (yi, 2i) > ka +5 > K. Hence, (2, ;) is not in T', which

) is in T.

implies that (x;, x;

(a) A (d)

Figure 4.9: Illustration of the proof of Claim 19.

Now, we proceed by contradiction assuming that at least one other clause-to-literal
edge of the x;-gadget is in T'. If edge (2,) is in T, engg (4, 75) > ko +3 > K, as shown
in Figure 4.9c. Similarly, if (2},c”) is in T, cngg (7, 2}) > k3 +4 > K (see Figure 4.9d).

So we reach a contradiction in both cases, thus proving Claim 19.

We are now ready to complete the proof of the (<) implication in the equivalence

(). We use our spanning tree 7" of congestion at most K to create a truth assignment for

78

¢ by setting x; = 0 if the clause-to-literal edge of Z; is in T', otherwise x; = 1. By Claim 19,
this truth assignment is well-defined. Each clause has one clause-to-literal edge in T which

ensures that all clauses are indeed satisfied.

Lower Bound on the Approximation Ratio for STC The proof of Theoremll im-

mediately improves the lower bound on the approximation ratio for STC:

Corollary 20. For c < 1.2 there is no polynomial-time c-approzimation algorithm for STC,

unless P = NP.

We remark that this hardness result remains valid even if an additive constant is
allowed in the approximation bound. This follows by an argument in [10]. (In essence, the
reason is that assigning a positive integer weight § to each edge increases its congestion by

a factor .)

4.3 NP-completeness proof of K -STC for bipartite graphs of
radius 2 and K > 6

In this section we establish the following result:

Theorem 21. For any fized integer K > 6, K-STC is NP-complete for bipartite graphs of

radius 2, even if they have only one vertex of degree greater than max(6, K — 2).

First, we introduce a restricted variant of the satisfiability problem, which we name
(M2P1N)-SAT, that is used in the reduction. An instance of (M2P1N)-SAT is a boolean

expression in conjunctive normal form with the following properties:

79

e Each clause either contains three positive literals (a 3P-clause), or two positive literals
(a 2P-clause), or two negative literals (a 2N-clause). Also, literals in the same clause

are of different variables.

e Each variable appears exactly three times: once in a 3P-clause, once in a 2P-clause

and once in a 2N-clause.

e Two clauses share at most one variable.

Lemma 22. (M2P1N)-SAT is NP-complete.

Proof. 1t is clear that (M2P1N)-SAT belongs to NP. To demonstrate NP-completeness,
we show a polynomial-time reduction from the NP-complete problem called BALANCED-
3SAT [25]. BALANCED-3SAT is a restriction of the satisfiability problem to boolean
expressions in conjunctive normal form where, for each variable x, the positive literal x
appears the same number of times as the negative literal Z. We can further assume that
every variable appears at least four times, and that, for each clause, all variables that appear
in this clause are different.

Given an instance ¢ of BALANCED-3SAT, we construct an instance ¢ of (M2P1N)-

SAT as follows:

e For each variable z in v, if x appears 2t times (for some integer ¢ > 2), create 2t new

variables xg, x1,...,%ot_1.
e Replace the t positive occurrences of = by even-indexed variables xq, 2, ..., T2,
and replace its ¢ negative occurrences by odd-indexed variables x1,x3,...,Xo—1.

80

e Add ¢ clauses of the form (z; V x;41) for i =0,2,...,2t — 2, and ¢ clauses of the form

(.fz‘ V 'f(i-i-l) mod Qt) for i = 1,3, ey 2t — 1.

By the construction, ¢ is a correct instance of (M2P1N)-SAT. For each variable
x of 9, its corresponding “cycle” of the newly added two-literal clauses in ¢ ensures that
Tog = T1 = To = T3 = ... = X9 = To—1. Thus, a truth assignment that satisfies
1 can be converted into a truth assignment that satisfies ¢ by setting the even-indexed
variables to the truth value of the original variable in v, and the odd-indexed variables to
the opposite value. Conversely, a truth assignment that satisfies ¢ can be converted into a
truth assignment that satisfies ¢ by reversing this process. This shows that) is satisfiable

if and only if ¢ is satisfiable, completing the proof of the lemma. O

In order to prove Theorem 21, we show a polynomial-time reduction from (M2P1N)-

SAT. Given an instance ¢ of (M2P1N)-SAT, we construct a graph G such that
() ¢ has a satisfying truth assignment if and only if stc(G) < K.

Graph G will be bipartite, of radius 2, and will have only one vertex of degree
larger than max(6, K — 2). We will describe G using some double-weighted edges, that
we refer to as fat edges. As previously discussed in Section 4.1, here we need a specific
realization of these double weighted edges, in which weights are realized using the spintop
graph. (See Figures 4.1 and 4.2.) For i € {1,2,3,4,5}, let k; = K —i. We start with an

empty graph G and proceed as follows:
e Add a root vertex r.

e For each variable x of ¢, add a variable verter x and a root-to-vertex edge (r,x).

81

e For each clause ¢, add a clause vertex ¢, and add edges from ¢ to the vertices repre-
senting variables whose literals (positive or negative) appear in c¢. If clause ¢ contains
all positive literals, we call its clause-to-variable edges positive-clause edges, otherwise

its clause-to-variable edges are negative-clause edges.
e For each 2P-clause vertex ¢, add a fat edge (r,c¢) of double weight k5 :k;.

e For each 2N-clause vertex ¢, add a fat edge (r, ¢) of double weight ky4:k;.

See Figure 4.10a for an example of a partial graph constructed using the above
rules. By routine inspection, taking into account that the weighted edges use the spintop
realization, G is bipartite, all vertices are at distance at most 2 from r, and r is the only
vertex of degree larger than max(6, K — 2). We now proceed to show that G satisfies
property (x).

(a) "

kyiky ks: k1
C1 Co C3

Figure 4.10: (a) An example of a partial graph G for ¢ = ¢y Aca A ez A --+ where ¢; =
(Z1 V &3),co = (x2 V23V 24),c3 = (x3 V x5). Bold lines represent fat edges with given
double weights. (b) An example of a partial tree T of G where x; is chosen by ¢1, z3 by
ca, x5 is by c3. Solid lines are tree edges, dotted lines are non-tree edges, and dot-dashed
lines are edges that may or may not be in T. Non-tree double-weighted edges contribute
the indicated weights to edge congestion.

(=) Assume that ¢ has a satisfying truth assignment. From this assignment we

construct a spanning tree T' of G by adding all root-to-vertex edges, and, for each clause c,

82

adding to T an edge from ¢ to any variable vertex whose literal satisfies ¢ (see Figure 4.10b).
By the construction, T is a spanning tree of G. Note that all clause vertices in T are leaves
and all fat edges are non-tree edges.

Now, we proceed to verify that all tree edges of T" have congestion at most K. We
start with leaf edges of T. The congestion of the leaf edge of a 3P-clause is 3. For a 2P-
clause, the congestion of its leaf edge is K — 3, because its fat edge contributes ks = K — 5.
For a 2N-clause, the congestion of its leaf edge is K — 2, because its fat edge contributes
ky =K —4.

Next, consider the root-to-vertex edge of a variable z;. If x; is not chosen to satisfy
any clauses, then cngg (7, z;) = 4 (see Figure 4.11a). If it is chosen to satisfy only its 3P-
clause, then cngg (7, ;) = 5 (see Figure 4.11b). If it is chosen to satisfy only its 2P-clause,
then cngg (1, ;) = ks +4 = K — 1 (see Figure 4.11c). If it is chosen to satisfy both its
3P-clause and its 2P-clause, then cngg (7, ;) = ks +5 = K (see Figure 4.11d). Finally, if
it is chosen to satisfy its 2N-clause, then cngg (7, 7;) = k4 +4 = K (see Figure 4.11e).

There are also edges inside the realizations of fat edges, but their congestion does
not exceed K, by Lemma 10. We have thus shown that the congestions of all edges in T’

are at most K; that is, stc(G) < K.

(<) Assume T is a spanning tree of G with cngg(7) < K. From T, we will
construct a satisfying truth assignment for ¢. The argument here, while much shorter,
has a subtle aspect that was not present in the proof in Section 4.2, namely now it is not
necessarily true that all clause vertices in T" are leaves. (It’s not hard to see that for large

K a single branch out of r may visit multiple variables via their 3P-clause vertices.)

83

(o}
Q)
o
(o)
Q

Figure 4.11: By ¢, c, ’, we denote the 2N-clause, 3P-clause and 2P-clause of z; respectively.
In (a), x; is not chosen by any clause, it is chosen by ¢’ in (b), by ¢ in (c), by both ¢’ and
" in (d), and by ¢ in (e).

We present two claims showing that 7' must have a special form that will allow us

to define the truth assignment for ¢.

Claim 23. For each two-literal clause ¢, its fat edge (r,c) is not in T'.

For each literal of ¢, there is an r-to-c path via the variable vertex of this literal.
So, together with edge (7, c), G has three disjoint r-to-c paths. Thus, if (7, ¢) were in T', its

congestion would be at least k1 +2 > K, proving Claim 23.

Claim 24. For each wvariable vertex x;, if its negative-clause edge is in T then its two

positive-clause edges are not in T.

Denote by ¢, c,¢” the 2N, 3P, 2P-clause vertices of x; respectively. Since ¢, c”
all contain variable x;, they cannot share any other variables (by the definition of (M2P1N)-
SAT). Therefore, the four literals in ¢, ¢, ¢’ other than x; and Z; must all involve different
variables.

Toward contradiction, suppose (x;,¢) and at least one of (z;,), (z;,¢") are in T.

We will estimate the congestion of the first edge e = (r,v) on the r-to-¢ path in 7.

84

By Claim 23, fat edge (r,c) contributes k4 to cngg 7(e). The rest of the argument
is based on the following two observations: (i) If a clause ¢ € {¢,,c"} is in T, ., and some
variable z is in ¢, then either (r,z) or (z,¢) is in dg r(e); that is, this = contributes 1 to
cngg r(e). (This is true whether or not v = 2. And if z = z; and ¢ = ¢, then (r,z;) is the
edge that contributes to cngg 1(e).) On the other hand, (ii) if a clause ¢ € {¢/,¢"} is not in
Ty, then (x;,¢) contributes 1 to cngg 7 (e).

Now we have some cases to consider. First, if ¢ € T;,, and ¢’ ¢ T, ., by the above
observations, four different variables in c, ¢’ contribute 4 to cngg r(e) and (z;, ¢”) contributes
1. In total, cngg r(e) > kg+4+1 > K. On the other hand, when ¢’ € T, and ¢’ ¢ T, ., the
three different variables of ¢, ¢” contribute 3 while (2;, ¢’) contributes 1 to cngg r(e). Also,
the fat edge (r,c”) contributes k5, by Claim 23. Thus, cngg r(e) > ks + ks +3 +1 > K.
Lastly, when both ¢,¢” are in T),,, the five different variables of ¢,c’,¢” contribute to
cngg r(e), so engg p(e) > ka+5 > K. We have thus shown that the congestion of e exceeds

K in all cases, completing the proof of Claim 24.

We are now ready to describe the truth assignment for ¢ using T'. For each variable
xi, assign x; = 0 if its negative clause edge is in T, otherwise, x; = 1. By Claim 24, the
truth assignment is well-defined. By Claim 23, each clause vertex has at least one edge
to a variable vertex, which ensures all clauses are satisfied. This completes the proof of

Theorem 21.

85

4.4 Complexity results of K-STC2

In this section, we consider problem K -STCD where, given a graph G, the objec-
tive is to determine if G has a depth-D spanning tree of congestion at most K. Here, as

before, K is a fixed positive integer. We present the following results:

Theorem 25. For any fized integer K > 6, K-STC2 is NIP-complete for bipartite graphs,

even if they have only one vertex of degree greater than max(6, K — 2).

Theorem 26. For any fixed integer K <5, K-S5TC2 is polynomial-time solvable for bipar-

tite graphs.

We remark that the complexity status of K -STC2 is independent of whether the
root of the spanning tree is specified or not, because there are at most n choices for r. This
establish the equivalence of these two versions (with or without the root specified) in terms

of polynomial-time solvability or NIP-hardness.

4.4.1 NP-completeness proof of K-STC2 for K > 6

The proof of Theorem 25 can be easily derived from the proof of Theorem 21 in
Section 4.3. The reduction remains unchanged. In that construction, the bipartite partition
of G has two parts: X, which includes vertices adjacent to the root r (the variable vertices
and parts of the spintop gadgets), and C' U {r}, which includes the remaining vertices
(the clause vertices, the root, and the vertices not adjacent to r in the spintop gadgets).
The proof for the forward direction is also identical, since the depth of the spanning tree

generated from the proposed construction is already two.

86

For the reverse implication, suppose T is the depth-two spanning tree with con-

gestion at most K. We present a simple claim about the structure of 7"

Claim 27. All edges incident to r are in T, and aoll vertices in C are leaves of T'.

Since G does not have any eccentricity-one vertex and the only vertex in G of
eccentricity two is r, T has to be rooted at r, which implies that the paths from r to other
vertices in T have length at most 2. If an edge (r,z) € G were not in T, the r-to-x path in
T would have length at least 3, which is a contradiction. Thus, T traverses all edges of r.
The second part of the claim follows directly from the first part.

In addition to Claim 27, T also has the two properties described in Claim 23 (which
can be established using the same argument) and Claim 24 (its proof can be made simpler
by considering the fact about clause vertices being leaves of T').

Finally, the truth assignment for ¢ can be created the same way as in Section 4.3.

4.4.2 An algorithm for K-STC2 in bipartite graphs for K <5

We now prove Theorem 26. We only give an explicit algorithm for K = 5. This
is because K-STC2 is trivial for K = 1, and for K = 2, the problem can be solved by
a straighforward adaptation of the algorithm in [44], even for general graphs. The cases
when K = 3,4 can be handled by slightly modifying (in fact, simplifying) the algorithm for
K =5 below. (Alternatively, for K = 3, one can adapt the algorithm from [44].)

So let’s assume that K = 5 and let G be a given bipartite graph. If rad(G) > 2,
then G does not have any spanning tree of depth two. If rad(G) = 1, then G must be a

complete bipartite graph where one partition contains only one vertex, that is G itself is a

87

tree of depth one and its congestion is one. Thus, we can assume rad(G) = 2, which means
that any depth-two spanning tree of G has to be rooted at a vertex with eccentricity two.
There are at most n such vertices, and for each we can check, using the procedure described
below, whether there is a depth-two spanning tree T rooted at r such that cng, (7)) < 5.
Therefore from now on we can assume that this r is already given.

Let X and C U {r} be the two parts of the bipartition of G. Let E, be the set of
edges incident to r, and Es = E \ E,. We can make the following assumptions (that can be

implemented in a pre-processing stage):

e We can assume that all vertices in G have degree at least 2, since removing (repeatedly)

degree-one vertices does not affect the spanning tree congestion of the graph.

e By Claim 27, each vertex ¢ € C has to be a leaf in any depth-two spanning tree rooted
at r, and the congestion of its leaf edge is equal to ¢. Thus, we can also assume that

c<b5forall ce(C.

e Similarly, each edge (r, x) must be in a spanning tree of depth two. With the assump-
tions above, each edge (z,c¢) from = to ¢ € C contributes to the congestion of (r,z),
either directly, if it’s not in the tree, or indirectly, if it’s in the tree (as then the other
edges from this ¢ contribute, and there is at least one). Therefore, if z > 5 for some

r € X, we would have cngg (7,) > 5. So we can assume that x <5 for all x € X.

Algorithm outline The general idea of the algorithm is to start with a tree T that
contains only edges in F, and gradually add leaf edges for all vertices ¢ € C'. This can be

naturally interpreted as assigning vertices in C' to vertices in X. If ¢ € C' and = € Ng(c),

88

then assigning ¢ to = means that edge (¢, z) is being added to 7. If it is possible to assign
all vertices in C' to some vertices in X, while ensuring that the congestions of the edges in
E,. do not exceed 5, then T" will be the desired spanning tree. In the first phase, we will do
this assignment one vertex at a time. Call the assignment ¢ — x feasible if it does not cause
the current congestion of (r,z) to exceed 5. Such a feasible assignment can be made safely
if it either is forced (say, if ¢ can be assigned to only one vertex in X without exceeding
the congestion bound), or it can be made without loss of generality (that is, if we can show
that if there is any spanning tree with congestion at most 5, then there is also one that
makes this specific assignment). To achieve this, we will carefully track the congestion of the
edges in E, throughout the construction. The first phase will end with all yet unassigned
vertices in C' of degree 3 or 4. Then the only way to complete the assignments is by adding

a matching between C and X, and this is done in the second phase.

Phase 1 Initially T contains only the edges from r to X. During the process, besides
these edges, T will also contain one edge (¢, x) for each ¢ € C that is already assigned to
x € Ng(c). For this (not yet spanning) tree 7', define the congestion of a vertex x € X in

the current stage of T as:

eng(r,z) = x + Z[c — 2] (4.1)

c—a
where the sum is over all ¢ € C' that are assigned to x. Thus, when a vertex ¢ € C get
assigned to a vertex x € Ng(c), the congestion of (r,z) increases by ¢ —2 > 0. Note that
after this assignment, cng(e) remains unchanged for e € E, \ {(r,z)} and the congestions

of (r,x) is non-decreasing.

89

Assigning degree-2 vertices. For a vertex c of degree 2, let (z, ¢) be any of its edges,
and assign ¢ to . The congestion of (r,z) remains unchanged.

Assigning degree-5 vertices. For a vertex ¢ of degree 5, if we assign ¢ to a vertex
x, the congestion of (r,z) would increase by 3. Therefore, ¢ can only be assigned to x if
the congestion of (r,x) is 2 prior to the assignment, which implies that the only edge in
E; that is incident to x is (¢,z). Including (c¢,z) in T" would not affect the congestion of
(r,x) in subsequent steps, as c is the only vertex in C' that can be assigned to z. If there is
no x that satisfies the requirement, we terminate and report failure. If there are multiple
feasible choices for such z, we can choose any of them. This is valid, because if 2/ € X is
another candidate, then 2’ will not be assigned to any vertices in C' and the congestion of
(r,2) will remain 2.

Assigning pairs of degree-3 vertices to the same vertex. If there are two degree-3
vertices c1,co € C that share the same neighbor z, and Ng(z) = {r,c1,c2}, we can assign
both ¢; and ¢z to x. The congestion of (r,x) will increase to 5, and it will remain 5 since x
cannot be assigned to any other vertices in C'. Similar to the previous step, if there is more

than one such choice of z, any option is valid.

Phase 2 After the first phase, we denote by C’ the set of yet unassigned vertices in C.
The vertices in C’ have degree either 3 or 4. Unlike the previous phase, assignments for
vertices in C” cannot be made independently. We observe that each of these vertices must
be assigned to a different vertex in X because assigning two or more of them to the same
x would cause the congestion of (r,z) to exceed 5. (This is because after Phase 1, if two

vertices in C” share a neighbor in X then they cannot both have degree 3.) Based on this

90

observation, we can assume that |X| > |C’| — if not, we can report that the congestion is
larger than 5. Then an assignment of all vertices in C’ forms a perfect matching between
C’ and X, that is, a matching that covers all vertices in C' (but not necessarily in X). Our
goal now is to find this matching.

Towards this end, we consider a bipartite subgraph G’ of G where one partition
consists of the vertices of C’, the other partition consists of the vertices in X, and an edge
between ¢ € C' and z € X is included in G’ iff x — ¢ is a feasible assignment. We then
determine, in polynomial-time [24], whether G’ has a perfect matching. This matching
will define the assignments for vertices in C’, ensuring that after all assignments are made,
the resulting 7" is now a spanning tree with congestion at most 5. If there is no perfect

matching, we report failure.

4.5 Polynomial-time solvability of STC2 in bipartite graphs
with vertex degree restrictions

Building upon Section 4.4, we continue to explore the variant of STC2, which
involves finding a depth-2 spanning tree with minimum congestion in bipartite graphs. We

provide two polynomial-time algorithms for cases when vertex degrees are restricted:

Theorem 28. STC2 can be solved in polynomial time when all vertices in X have degree

at most 3.

Theorem 29. STC2 can be solved in polynomial time when all degrees in C have the same

degree.

91

To prove each theorem, given any positive integer K, we provide an algorithm
to construct a depth-2 spanning tree T' with congestion at most K (if such a tree exists).
This implies the polynomial-time solvability of STC2 in these cases. The proofs are given
in Sections 4.5.1 and 4.5.2, respectively.

We use the same notation and terminology as in Section 4.4.2, and we adopt,
without loss of generality, similar simplifying assumptions. Let G be the given bipartite
graph. We can assume that rad(G) = 2 and the root r of the desired spanning tree is given.
We use X and C'U{r} to refer to the two partitions of the vertices of G, and E, to refer to
the set of edges incident to r.

Using the results described in Section 4.4.2, we can solve K-STC2 for K < 5.
Thus, we will assume K > 6. Also, as in Section 4.4.2, we can assume that 2 < v < K for
any v € CUX and r > 2.

Both algorithms start with a tree T that contains only edges in F,. The goal is
adding leaf edges for all vertices in C' while ensuring that the congestion of edges in E, does
not exceed K. For a vertex z € X, the congestion of edge (r,x) in T is defined in the same

way as in Equation 4.1.

4.5.1 K-STC2 for bipartite graphs with all degrees in X at most 3

We now present the proof of Theorem 28, namely a polynomial-time algorithm
for K-STC2 restricted to bipartite graphs G where the degree of the vertices in X is at
most 3. The general idea of this algorithm is similar to the 5-STC2 algorithm described in
Section 4.4.2. The process consists of two phases: in the first phase we create assignments

for vertices in C' that are adjacent to degree-2 vertices in X. Then, in the second phase,

92

the remaining assignments are determined by a perfect matching in an auxiliary graph H
constructed in polynomial time from G. If there is no perfect matching in H, we report
failure.

The two phases of the algorithm are as follows:

Phase 1: Assigning to degree-2 vertices. For a vertex z € X with degree 2, we denote
Ng(z) = {r, c}, we assign ¢ — x. This assignment is safe because the congestion of (r,x) is
equal to ¢, which is at most K by assumption. Moreover, this x cannot be assigned to any

other vertices in C' which implies that cngg 1 (7, x) will remain unchanged.

Phase 2: Assigning to degree-3 vertices. After the first phase, the remaining vertices
in X that are available for assignments have degree 3. Let X’ be the set of such vertices,
and C’ be the set of unassigned vertices in C. Unlike in the 5-STC2 algorithm, we cannot
directly use a matching from C’ to X’ to create feasible assignments because it is possible
for two vertices in C’ to be assigned to the same vertex in X (not allowed in the second
phase of 5-STC2 algorithm). However, we can still capture assigning a pair of vertices in
C’ to the same vertex in X’ by matching this pair to themselves. To accomplish this, we
reduce the assignment problem from C’ to X’ to the problem of finding a perfect matching
in an auxiliary graph H (not necessarily bipartite).

The vertices of H consist of all vertices in X’ U C’. In addition, if | X" U C’| is
odd, we also add 7 to H. For each ¢ € C’, we add an edge (¢, z) to H where € Ng(c) if
¢+ 1 < K. This condition ensures that ¢ — z is a feasible assignment. Furthermore, for
each pair of vertices cy,co € C' that share the same neighbor x € X', if ¢; + o — 1 < K,

we add the edge (c1,c2) to H. This condition is equivalent to cngg (7,) < K after both

93

assignments ¢; — x and ca — x have been made. Finally, we add edges between any pair
of vertices in X’ and, if r is in H, we add edges from r to all vertices in X’. Figure 4.12a

shows an example construction of H.
(a) r
G H
Figure 4.12: (a) An example of H constructed from G for algorithm 6-STC2 in Phase 2.
(b) Assignments in G built from a perfect matching in H.

(b) r

We proceed to find a maximum matching M in H, which can be done in polynomial
time [22]. If M is a perfect matching, it will define assignments for all vertices in C” such
that these edges combined with the tree T result in a spanning tree of congestion at most
K for the graph G. If M is not a perfect matching, we report failure. The following lemma

establishes the correctness of this phase:

Lemma 30. There exist feasible assignments for all vertices in C' if and only if H has a

perfect matching.

Proof. (=) Let A denotes the assignments for vertices in C’ that represents a depth-2
spanning tree rooted at r with congestion at most K. We will show that H admits a
perfect matching M: For each assignment ¢ — x, if x is not assigned to any other vertex
in ¢, we add (¢, z) to M; otherwise, x is assigned to exactly one other vertex ¢’ € C’, we
add (e,) to M. The remaining vertices that have not been matched are in X’ and r (if it

is in H). These vertices can be matched arbitrarily since they form a clique of even size.

94

(<) Suppose M is a perfect matching of H. We make assignments for a vertex

c € C' as follows (refer to Figure 4.12b for an example):

e If ¢ is matched with a vertex x € X’ in M, we assign ¢ — z. This assignment is
feasible by the construction of H, and we also know that x cannot be assigned to any

other vertex according to the condition of the matching.

e If ¢ is matched with another vertex ¢ € C’, then there exists a vertex x € X’ such
that Ng(z) = {r,c,d'}. In this case, we assign both ¢, ¢’ to z. By the construction of
H, both assignments are feasible, and x is also not used for assignment to any other

vertex in C'.

This assignment represents a depth-2 spanning tree rooted at r with congestion at most

K. O

4.5.2 K-STC2 for bipartite graphs with all degrees in C' equal

We now describe a polynomial time algorithm for K -STC2 restricted to bipartite
graph G when all vertices in C' have degree «, for some positive integer .. This will prove
Theorem 29. We can assume that @ < K, for otherwise the congestion of the leaf edges
will exceed K. As before, we focus on finding feasible assignments that map each vertex
in C to its neighbor in X. These assignments represent a spanning tree rooted at r whose
congestion of all edges in F, do not exceedK.

We first consider the case when o = 2. For each ¢ € C, if Ng(c) = {z1,22}, we
can assign c arbitrarily to either x1 or z2, because the congestions of both (r, z1) and (r, x2)

are not affected by either assignment.

95

From now on, we assume that o > 3. The idea of the algorithm is to express the
assignments for vertices in C' via the maximum s — ¢ flow in an auxiliary flow network F
that can be constructed in polynomial time from . The graph F' includes all edges and
vertices of G. All the edges are directed from r to X and from X to C. Additionally, F’
has a source vertex s and directed edge (s,r), and a sink vertex ¢ with directed edges from
vertices C' to t. We use ¢(u,v) to denote the capacity of the edge (u,v). The capacities of

all edges in F' are defined as follows:

c(s,r) =|C|

K—=z
a—2

]

For each vertex z € X, ¢(r,x) = |

For each edge (z,c¢) in F where z € X and c € C, ¢(x,c) =1

For each vertex ¢ € C, ¢(c,t) =1

We then find, in polynomial time, a maximum s —t flow f in F'. As we will show,
if f has an s —t flow of value |C|, this flow will define a feasible assignment for all vertices
in C' representing a depth-2 spanning tree rooted at r with congestion at most K. If the
maximum flow value is less than |C|, we report failure. The following lemma establishes

the correctness of the reduction:

Lemma 31. There exists feasible assignments for all vertices in C' if and only if F' has an

s —t flow of value |C].

Proof. (=) Suppose F has an s —t flow f of value |C|. We denote by f(u,v) the flow value

on the edge (u,v). Since |C| is integral and all capacities are integral, we can assume that

96

(a)

Figure 4.13: (a) An example of the auxiliary network F' (on the right) constructed from G
(on the left). Edges from X to C have capacity 1, all other edges have capacities as shown.
(b) On the left, a maximum flow in F. Dark edges have flows with shown values and light
edges have no flow. On the right, the assignment obtained from this flow.

flow values of f on all edges are integral. Therefore, for each vertex c € C, f(c,t) = 1, which
implies that there is exactly one vertex x € X with f(c,z) = 1. We then assign ¢ — z.
Next, we need to verify that in the corresponding tree, the congestions of the
edges in F, are at most K. For each vertex x € X, the number of vertices in C that can be
assigned to this x is bounded by ¢(r, x). By Equation 4.1, eng(r, z) < x+c¢(r,z) (a—2) < K,

which completes the proof of this implication.

(«=) Suppose there exists a feasible assignment for all vertices in C. From this
assignment we will construct an s —t flow f for F' with value |C|. For each vertex ¢ € C, if
¢ is assigned to x € X, then we define f(z,¢) =1 and f(2/,¢) =0 for all 2’ € Ng(c) \ {z}.

Next, for each vertex z € X, we define f(r,z) = n, where n, is the number of vertices

in C that are assigned to x. Due to the congestion bound on (r,z), we have n, < £=5.

However, since n, is integral, we have n, < |2=Z| = ¢(r,z). Lastly, we let f(c,t) =1 for

97

each ¢ € C and f(r,s) = |C|. Clearly, the constructed flow f has value |C|, and it satisfies

flow conservation and capacity constraints of F'.]

98

Bibliography

[1]

Alison Templeton Adams. Flow analysis of distribution systems containing elevated
reservoirs by the Hardy Cross method. PhD thesis, Georgia Institute of Technology,
1955.

T. Altman and P. F. Boulos. Convergence of Newton method in nonlinear network
analysis. Math. Comput. Model., 21(4):35-41, February 1995.

Fernando Alvarruiz Bermejo, Fernando Martinez Alzamora, and Antonio Manuel Vi-
dal Macid. Improving the efficiency of the loop method for the simulation of wa-
ter distribution networks. Journal of Water Resources Planning and Management,
141(10):1-10, 2015.

Nobuaki Aoki, Ryota Umei, Atsufumi Yoshida, and Kazuhiro Mae. Design method for
micromixers considering influence of channel confluence and bend on diffusion length.
Chemical Engineering Journal, 167(2-3):643-650, 2011.

Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61(2):175 — 198, 1988.

Andrés A Benczir and David R Karger. Approximating s — ¢ minimum cuts in O(n?)
time. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
pages 47-55, 1996.

Sandeep Bhatt, Fan Chung, Tom Leighton, and Arnold Rosenberg. Optimal simula-
tions of tree machines. In Proceedings of the 27th Annual Symposium on Foundations
of Computer Science, SFCS ’86, page 274-282, USA, 1986. IEEE Computer Society.

Sukanta Bhattacharjee, Bhargab B. Bhattacharya, and Krishnendu Chakrabarty. Algo-
rithms for Sample Preparation with Microfluidic Lab-on-Chip. River Publishers Series
in Biomedical Engineering. River Publishers, 2019.

Sukanta Bhattacharjee, Sudip Poddar, Sudip Roy, Juinn-Dar Huang, and Bhargab B.
Bhattacharya. Dilution and mixing algorithms for flow-based microfluidic biochips.

IEEE Transactions on Computer-Aided Design of Integrated Clircuits and Systems,
36(4):614-627, April 2017.

99

[10]

[11]

[12]

[13]

Hans Bodlaender, Fedor Fomin, Petr Golovach, Yota Otachi, and Erik Leeuwen. Pa-
rameterized complexity of the spanning tree congestion problem. Algorithmica, 64:1-27,
09 2012.

Hans L. Bodlaender, Kyohei Kozawa, Takayoshi Matsushima, and Yota Otachi. Span-
ning tree congestion of k-outerplanar graphs. Discrete Mathematics, 311(12):1040—
1045, 2011.

Paul F. Boulos, Kevin E. Lansey, and Bryan W. Karney. Comprehensive water distri-
bution systems analysis handbook for engineers and planners. MWH Soft, 2006.

Dejan Brkié. An improvement of Hardy Cross method applied on looped spatial natural
gas distribution networks. Applied Energy, 86:1290-1300, 07 2009.

Leizhen Cai and Derek G. Corneil. Tree spanners. SIAM Journal on Discrete Mathe-
matics, 8(3):359-387, 1995.

COMSOL, Inc. Comsol.

Hardy Cross. Analysis of flow in networks of conduits or conductors. FEngineering
Ezxperiment Station, Bulletin No 286, 1936.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864-894,
1994.

Feodor F. Dragan, Fedor V. Fomin, and Petr A. Golovach. Spanners in sparse graphs.
Journal of Computer and System Sciences, 77(6):1108-1119, 2011.

Yuval Emek and David Peleg. Approximating minimum max-stretch spanning trees
on unweighted graphs. SIAM Journal on Computing, 38(5):1761-1781, 20009.

Sandor P. Fekete and Jana Kremer. Tree spanners in planar graphs. Discrete Ap-
plied Mathematics, 108(1):85-103, 2001. Workshop on Graph Theoretic Concepts in
Computer Science.

Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi.
A general framework for graph sparsification. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing, pages 71-80, 2011.

Zvi Galil. Efficient algorithms for finding maximum matching in graphs. ACM Com-
puting Surveys (CSUR), 18(1):23-38, 1986.

Antonio Gameiro Lopes. Implementation of the Hardy-Cross method for the solution
of piping networks. Computer Applications in Engineering Education, 12:117 — 125, 01
2004.

John E. Hopcroft and Richard M. Karp. An n°/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973.

100

[25]

Klemens Héagele, Colm o) Dunlaing, and Sgren Riis. The complexity of scheduling
tv commercials. Flectronic Notes in Theoretical Computer Science, 40:162-185, 2001.
MFCSIT2000, The First Irish Conference on the Mathematical Foundations of Com-
puter Science and Information Technology.

Stephen C. Jacobson, Timothy E. McKnight, and J. Michael Ramsey. Microfluidic
devices for electrokinetically driven parallel and serial mixing. Analytical Chemistry,
71(20):4455-4459, 1999.

L. Jay. A note on g-order of convergence. BIT Numerical Mathematics, 41:422-429,
03 2001.

Weiqing Ji, Tsung-Yi Ho, and Hailong Yao. More effective randomly-designed microflu-
idics. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2018.

Kim Jungkyu, Johnson Michael, Hill Parker, and Gale Bruce. Microfluidic sample
preparation: cell lysis and nucleic acid purification. Integrative Biology, 1:574-586,
Oct 2009.

Athina S. Kastania, Katerina Tsougeni, George Papadakis, Electra Gizeli, George
Kokkoris, Angeliki Tserepi, and Evangelos Gogolides. Plasma micro-nanotextured
polymeric micromixer for dna purification with high efficiency and dynamic range.
Analytica Chimica Acta, 942:58-67, 2016.

Telikepalli Kavitha, Christian Liebchen, Kurt Mehlhorn, Dimitrios Michail, Romeo
Rizzi, Torsten Ueckerdt, and Katharina A. Zweig. Survey: Cycle bases in graphs
characterization, algorithms, complexity, and applications. Comput. Sci. Rev.,
3(4):199-243, November 2009.

Samir Khuller, Balaji Raghavachari, and Neal Young. Designing multi-commodity flow
trees. Information Processing Letters, 50(1):49-55, 1994.

Brian J. Kirby. Micro- and nanoscale fluid mechanics: transport in microfluidic devices.
Cambridge University Press, 2013.

Kyohei Kozawa and Yota Otachi. Spanning tree congestion of rook’s graphs. Discus-
siones Mathematicae Graph Theory, 31(4):753-761, 2011.

Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki. On spanning tree congestion of
graphs. Discrete Mathematics, 309(13):4215-4224, 2009.

Christian Lowenstein. In the Complement of a Dominating Set. PhD thesis, Technische
Universitat at Ilmenau, 2010.

Huong Luu and Marek Chrobak. Modeling Fluid Mixing in Microfiuidic Grids, pages
149-159.

101

[38]

[41]

[42]
[43]

[44]

Huong Luu and Marek Chrobak. Better hardness results for the minimum spanning
tree congestion problem. In Chun-Cheng Lin, Bertrand M. T. Lin, and Giuseppe Li-
otta, editors, WALCOM: Algorithms and Computation - 17th International Conference
and Workshops, WALCOM 2023, Hsinchu, Taiwan, March 22-24, 2023, Proceedings,
volume 13973 of Lecture Notes in Computer Science, pages 167-178, Cham, 2023.
Springer.

Hans Bruun Nielsen. Methods for analyzing pipe networks. Journal of Hydraulic
Engineering, 115(2):139-157, 1989.

Yoshio Okamoto, Yota Otachi, Ryuhei Uehara, and Takeaki Uno. Hardness results
and an exact exponential algorithm for the spanning tree congestion problem. In
Proceedings of the 8th Annual Conference on Theory and Applications of Models of
Computation, TAMC’11, page 452-462, Berlin, Heidelberg, 2011. Springer-Verlag.

J. M. Ortega. The Newton-Kantorovich theorem. The American Mathematical
Monthly, 75(6):658-660, 1968.

M.I Ostrovskii. Minimal congestion trees. Discrete Mathematics, 285(1):219-226, 2004.

Yota Otachi. A Survey on Spanning Tree Congestion, pages 165—-172. Springer Inter-
national Publishing, Cham, 2020.

Yota Otachi, Hans L. Bodlaender, and Erik Jan Van Leeuwen. Complexity results
for the spanning tree congestion problem. In Proceedings of the 36th International
Conference on Graph-Theoretic Concepts in Computer Science, WG’10, page 3-14,
Berlin, Heidelberg, 2010. Springer-Verlag.

Brian M. Paegel, William H. Grover, Alison M. Skelley, Richard A. Mathies, and
Gerald F. Joyce. Microfluidic serial dilution circuit. Analytical Chemistry, 78(21):7522—
7527, 2006. PMID: 17073422.

Werner C. Rheinboldt. A unified convergence theory for a class of iterative processes.
SIAM Journal on Numerical Analysis, 5(1):42-63, 1968.

Romeo Rizzi. Minimum weakly fundamental cycle bases are hard to find. Algorithmica,
53(3):402-424, March 20009.

Arnold L. Rosenberg. Graph embeddings 1988: Recent breakthroughs, new directions.
In John H. Reif, editor, VLSI Algorithms and Architectures, pages 160-169, New York,
NY, 1988. Springer New York.

Uri Shamir. Water distribution system analysis. J. Hyd. Div. ASCE, 94, 01 1968.

Uri Shamir and Charles Howard. Engineering analysis of water-distribution systems.
Journal American Water Works Association, 69:510-514, 09 1977.

Manish Kumar Singh and Vassilis Kekatos. On the flow problem in water distribution
networks: Uniqueness and solvers. IEEE Transactions on Control of Network Systems,
8(1):462-474, 2021.

102

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

John J. Sopka. Functional analysis in normed spaces (L. V. Kantorovich and G. P.
Akilov). SIAM Review, 11(3):412-413, 1969.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM
Journal on Computing, 40(4):981-1025, 2011.

Todd M. Squires and Stephen R. Quake. Microfluidics: Fluid physics at the nanoliter
scale. Rev. Mod. Phys., 7T7:977-1026, Oct 2005.

D.J. Stephenson. Pipeflow Analysis. ISSN. Elsevier Science, 1984.

Roberto Tamassia and Ioannis G. Tollis. A unified approach to visibility representations
of planar graphs. Discrete €& Computational Geometry, 1(4):321-341, Dec 1986.

Junchao Wang, Philip Brisk, and William H. Grover. Random design of microfluidics.
Lab on a Chip, 16:4212-4219, 2016.

Don J. Wood. Algorithms for pipe network analysis and their reliability. Technical
Report 127, Kentucky Water Resources Research Center, 1981.

Paul Yager, Thayne Edwards, Elain Fu, Kristen Helton, Kjell Nelson, Milton R. Tam,
and Bernhard H. Weigl. Microfluidic diagnostic technologies for global public health.
Nature News, Jul 2006.

Ryo Yoshinaka. Higher-order matching in the linear lambda calculus in the absence of
constants is NP-complete. In Jiirgen Giesl, editor, Term Rewriting and Applications,
pages 235249, 2005.

103

