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ABSTRACT Advances in sequencing technologies have enabled novel insights
into microbial niche differentiation, from analyzing environmental samples to un-
derstanding human diseases and informing dietary studies. However, identifying the
microbial taxa that differentiate these samples can be challenging. These issues stem
from the compositional nature of 16S rRNA gene data (or, more generally, taxon or
functional gene data); the changes in the relative abundance of one taxon influence
the apparent abundances of the others. Here we acknowledge that inferring proper-
ties of individual bacteria is a difficult problem and instead introduce the concept of
balances to infer meaningful properties of subcommunities, rather than properties of
individual species. We show that balances can yield insights about niche differentia-
tion across multiple microbial environments, including soil environments and lung
sputum. These techniques have the potential to reshape how we carry out future
ecological analyses aimed at revealing differences in relative taxonomic abundances
across different samples.

IMPORTANCE By explicitly accounting for the compositional nature of 16S rRNA
gene data through the concept of balances, balance trees yield novel biological in-
sights into niche differentiation. The software to perform this analysis is available
under an open-source license and can be obtained at https://github.com/biocore/
gneiss.

KEYWORDS Aitchison geometry, balance trees, compositionality, cystic fibrosis,
niche, soil microbiology

The ultimate goal for many microbial ecologists is to fully characterize niches of
microbial organisms and understand interactions among taxa. An understanding of

how microbial communities are affected by environmental conditions might yield
insights into microbial interactions and their role in macroecological processes, such as
nitrogen fixation (1) and acidification (2). However, despite the extraordinary increase
in available data brought about by advances in DNA sequencing, characterizing niche
differentiation in microbes remains an outstanding problem, partly due to the difficulty
of correctly interpreting compositional data. Broadly speaking, a compositional data set
is represented by relative abundances, or proportions, that individually carry no mean-
ing for the absolute abundance of a specific feature (i.e., 20% of 100 and 20% of 10,000
are very different absolute abundances). The constraints associated with compositional
data are well known but unfortunately often neglected in microbial ecology, leading to
conflicting interpretations and irreproducible analyses (3, 4).
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We illustrate an example of this problem in Fig. 1. In this scenario, there are two
species, “Red” and “Blue.” At the first time point, there are 100 Red individuals and 100
Blue individuals (Fig. 1a). At the next time point, the number of Red individuals doubles,
yielding 200 Red individuals, and the proportions of Red and Blue individuals become
two-thirds and one-third, respectively (Fig. 1b). Suppose that we do not know the true
total number of individuals in the given environment and can only make inferences
about the observed proportions, a common scenario in microbial ecology, where
absolute quantification is rarely performed. In Fig. 1b, the community has the exact
same proportions at time 1 and time 2 as those in Fig. 1a; however, instead of the Red
individuals doubling at the second time point, the number of Blue individuals is halved
(Fig. 1c).

This is the problem with compositionality; based on proportions alone, it is impos-
sible to determine whether the growth or decline of any individual species has truly
occurred (5), and the inherent feature of one change in abundance driving abundance
changes in another species violates assumptions of independence. Analyses that rely
on such assumptions, as many statistical approaches do, are thus prone to misinter-
pretation. For example, traditional correlation metrics, such as Pearson and Spearman
metrics, can be misleading when estimating microbe-microbe correlations (6–9). As a
result, it becomes a major challenge to specify types of interactions between microbes,
such as parasitism, competition, predation, or mutualism, as shown in correlation
studies of oral, fecal, and vaginal samples from the Human Microbiome Project (6, 10).

FIG 1 (a, b) Hypothetical scenario where 2 samples of 2 proportions may explain two different scenarios in the environment. (c) The balance between these
2 proportions is consistent for both scenarios. (d) Balance of Red and Blue species abundances. (e, f) Balances of Red and Blue individuals across an
environmental variable. The comparison is of proportions and balances of two environments in the scenario where the Purple/Orange population (i.e., the
most-right bin) triples. The balances were calculated using the groupings specified by the tree.
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Even-more-advanced correlation-detection techniques, such as SparCC (3) and
SPIEC-EASI (5), struggle with this and typically require additional assumptions, such
as sparse operational taxonomic unit (OTU) correlations (i.e., few OTUs are actually
correlated with each other). Furthermore, interpreting the resulting network is a
major challenge, making it difficult to differentiate between true ecological rela-
tionships and random processes (10).

The compositionality problem is also problematic for statistically detecting differ-
entially abundant microbes across environments or between groups; consequently, it is
a major barrier to reliably drawing conclusions about realized microbial niches using
community sequencing data. Conventional statistical tools, such as the t test and
Mann-Whitney test, can incorrectly identify nearly 100% of the taxa present in samples
to be significantly different across environments (see Fig. S1 in the supplemental
material), and univariate tests, such as t tests and zero-inflated Gaussian (ZIG)-based
methods (11), have been shown to mislabel microbes as significantly different across
sample groups up to 60% of the time (12). More-advanced tools for differential
abundance detection, such as analysis of compositions of microbiomes (ANCOM) (12),
are typically designed to control for false-positives and reliably detect differentially
abundant species, but they require multiple assumptions (i.e., the number of changing
microbes across environments is small) and may require complex parameter tuning. To
help overcome these issues of compositionality, we explore using the concept of
balances by moving away from inferring changes of individual species to instead
inferring changes of microbial subcommunities to study the niche differentiation of
microbial communities.

CONCEPT

Balances were first introduced as an exploratory technique in geology (13, 14).
Fundamentally, they overcome the problem of inferring changes in abundance from
compositional data by sidestepping it and by instead inferring changes in the balance
between particular subsets of the community. To understand the concept, let us revisit
the scenario in Fig. 1a and b. Instead of examining proportion changes, we can
investigate the balance between Red and Blue individuals by taking the log ratio of Red
and Blue counts (Fig. 1c). By looking at the balance of these two species, we avoid
incorrectly attempting to infer absolute increases or decreases in their abundances.
Instead, we can focus on the balance of the Red and Blue individuals and directly infer
the transition of dominance between these species.

These balances can also be useful for understanding species distributions across
different covariates, a key proximate goal of microbial ecology and one that is both
crucial to the larger goal of niche characterization and heavily impacted by problems
inherent in compositionality. In Fig. 1d, the Red individuals tend to exist at the low-pH
end of the spectrum, while the Blue individuals tend to exist at the high-pH end of the
spectrum. A single balance can capture information about the transition from a high
relative abundance of Red individuals in low-pH environments to a high relative
abundance of Blue individuals in high-pH environments. In low-pH environments, the
balance is positive, since there are proportionally more Red individuals than Blue
individuals. When the Red and Blue individuals are present in roughly equal propor-
tions, the balance is roughly zero, representing a turning point, transitioning from a Red
species-dominated community to a Blue species-dominated community. As the pH
increases, the balances become increasingly negative, since there are more Blue
individuals than Red individuals. This balance effectively encodes the niche separation
of Red and Blue individuals across the pH gradient.

This idea of balances can be extended to multiple dimensions—and to more than
two taxa— using bifurcating trees. A bifurcating tree can be built relating microbial taxa
to each other by using any criterion, and balances can be calculated on the internal
nodes of the tree from the geometric means of the corresponding subtrees. The
appropriate criterion to build a tree depends on the question at hand. A phylogenetic
tree could be used to investigate evolutionary relationships of microbes (15, 16), or
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hierarchical clustering of environmental variables could be used to explore environ-
mental niches of microbes. To gain more intuition about this, consider Fig. 1e, in which
there are five species and 11 individuals. The four balances (internal nodes in the tree)
are calculated by taking the log ratio of geometric means of subtrees, also known as the
isometric log ratio (ILR) transform. The full equation to calculate balances for a single
sample is as follows:

bi � � |iL||iR|
|iL| � |iR|

log� g(iL)

g(iR)
� (1)

where bi is the balance at internal node i, iL is the set of all species proportions
contained in the left subtree at internal node i, iR is the set of all species proportions
contained in the right subtree at the internal node i, g(x) is the geometric mean of all
of the proportions contained in vector x, |iR| is the number of species contained in iR,
and |iL| is the number of species contained in iL (see Materials and Methods for more
details). According to this equation, in Fig. 1f, b1 is calculated by taking the log ratio of
the Yellow species and the geometric mean of the Red, Green, Blue, and Purple species.

It is also important to note that some of the balances do not impact each other. For
instance, the changes in b4 do not impact the changes in b3, just because these
balances do not share any common tips. This is crucial, because this property allows us
to ignore some of the variance of the balances toward the tips of the tree and to focus
on the balances closer to the root of the tree. These balances toward the root of tree
capture the most information, since they contain a significant proportion of tree tips.
As a result, these high-level balances have the potential to explain large shifts in these
microbial communities. The choice of the tree can allow for analysts to embed prior
knowledge into the structure of the tree to test for these large community shifts.

Here, we will discuss two studies from which novel insights were gained from this
application. While many compositionally aware tools that are designed to identify
microbial interactions and abundance fluctuations are available, we will refrain from
benchmarking balances against these tools, as balances answer a conceptually different
question. These analyses are not restricted to analyzing ratios of individual OTUs and
can easily be extended to analyze ratios of subcommunities.

RESULTS
Case study 1: balances of pH-driven subcommunities in soils. In this study (17),

88 soil samples were collected from North and South America, along with many
edaphic measurements. The study reported that there was a strong correlation be-
tween pH and species richness, suggesting that pH was a strong driver behind
fluctuations in soil microbial communities. Acidobacteria were found to be negatively
correlated with pH and Actinobacteria and Bacteroidetes to be positively correlated with
pH, while alpha-, beta-, and gammaproteobacteria were not correlated with pH at all.
These correlation analyses are a little misleading, since the pH was correlated with each
of the phyla independently. The problem with this approach is that it does not account
for all of the other phyla; as with the argument made for the experiment represented
in Fig. 1b, the change in a single phylum might also be explained by correlated changes
in all of the other phyla. Here, the negative correlation between Acidobacteria abun-
dance and pH might also be caused by the positive correlation between Bacteroidetes
abundance and pH. Additionally, we cannot determine whether the alpha-, beta-, and
gammaproteobacteria are correlated with pH or not. Another possibility is that these
three phyla are positively correlated with pH but that Acidobacteria abundance is not
correlated with pH. However, Bacteroidetes may be so strongly correlated with pH that
Acidobacteria appear to be negatively correlated with pH and the other three phyla to
not be correlated with pH at all. This scenario is one of the infinite possible underlying
relationships that can explain these observed correlations.

At a first glance, uncovering the true correlations correctly appears to be a hopeless
cause. This is where balances become useful. Rather than attempting to correlate
individual phyla against pH, we grouped OTUs together according to their difference in
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mean pHs (Fig. 2a) and investigated how these balances of groups change with respect
to pH (see Materials and Methods on hierarchical clustering). This circumvented the
dependence issue noted previously. We do not need to worry about subgroups within
the left and right subtrees of a balance influencing each other, due to the indepen-
dence property shown in Fig. 1e and f.

The balance concept proves to be a very powerful technique for investigating how
these groups of organisms change relative to each other as pH increases. Recall the
cartoon example in Fig. 1d. If there are two distinct unimodal species distributions, the
balance pivots from being weighted by Red individuals in low pH to being weighted by
Blue individuals in high pH. The same phenomenon occurs here, except that there are
multiple species on the left end of the balance and multiple species on the right end
of the balance.

As shown in Fig. 2b, there is a well-defined trend of low-pH OTUs (3.8 � mean
pH � 6.6) gradually being overtaken by high-pH OTUs (6.7 � mean pH � 8.2) as the
pH increases, forming a nice linear trend defined by the top balance in the tree
shown in Fig. 2a. If we were to sort the samples by their mean pHs and the OTUs
by their mean pHs (see equation 3 in Materials and Methods), a well-defined band
pattern appears. Here, it is clear that OTUs with a mean pH less than 3 rarely have
nonzero counts above 8. Likewise, OTUs that have a mean pH of more than 8 rarely
have nonzero counts below 3. If we tie in this band pattern in Fig. 2c together with
the balance-versus-pH trends shown in Fig. 2b, we obtain a very different interpre-
tation from that of the original study. OTUs tend to be observed in very specific pH
ranges but not commonly observed outside these ranges. This ties together with
some concepts in niche theory: OTUs are more suited to live within a designated
range of pHs, and if they are placed outside this pH range, they are outcompeted
by other organisms who are more suited to live within the given pH range.

FIG 2 (a) Hierarchical clustering of closed-reference OTUs based on mean pH; (b) balance of low-pH-associated organisms (3.8 � mean
pH � 6.7) and high-pH-associated organisms (6.8 � mean pH � 8.2); (c) observed OTU counts sorted by pH; (d) predicted OTU proportions
from ordinary least-squares linear regression on balances sorted by pH. The coefficient of determination was 35%, showing that 35% of
the variation in the microbial community abundance data can be predicted by pH alone.
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These patterns were completely missed when we looked only at the phylum level
in the original study. In fact, based on the calculated mean pH values for each OTU, it
was observed that OTUs from all of the phyla mentioned in the study were widely
distributed across the pH gradient (see Table S1 in the supplemental material). As an
extreme example, OTUs from the family Bradyrhizobiaceae were observed to be present
at both ends of the spectrum; some were present at pH values as low as 5.36, while
others were present at a pH value as high as 6.75. These are astronomical differences,
considering that 95% of the OTUs have a mean pH that falls between this range. This
provides additional justification for building a tree based on mean pH rather than
bacterial phylogeny.

Finally, these balances can be used to build predictive models. Using ordinary
least-squares analyses on the calculated balances, the entire microbial community
profile can be predicted using pH alone with an R2 of 0.35. This means that pH alone
explains over 35% of the total variation in entire soil microbial communities across
North and South America. The resulting fit can be transformed back to proportions to
yield the predicted proportions (Fig. 2d). From this heatmap, the key patterns, such as
the band pattern apparent in Fig. 2c, are still retained. There are many published
regression techniques that attempt to use microbial abundances to predict covariates,
such as the postmortem interval (18) or body mass index (19). This approach is the first
of its kind to attempt to address the reverse problem: to predict entire microbial
community distribution based on environmental variables. These predictions were
enabled by the powerful fundamental properties of balances.

Case study 2: balances of pH-driven subcommunities in a lung sputum culture
microcosm. In this study, lung sputum samples were collected from 16 cystic fibrosis
(CF) patients. These sputum samples were then grown in a capillary tube culture system
(Winogradsky cystic fibrosis system) that mimics the conditions of a lung bronchiole
(20). These samples were placed into separate tubes, and the pH of the media was
adjusted from 5 to 8.5 at intervals of 0.5 to determine how the microbial community
changed with respect to pH. After growth in the capillary tubes, the communities were
assessed using 16S rRNA gene amplicon sequencing.

One of the difficulties in this study was characterizing pathogenic bacteria. Early on
in this case study, the only significant finding discovered was that patients had different
lung sputum microbiomes (Fig. 3a). It was hypothesized that there was a subcommu-
nity of low-pH organisms and a subcommunity of high-pH organisms that periodically
appeared and disappeared in CF lung sputum. However, these changes could not be
detected using available statistics, likely due to the compositionality problem. Since the
different CF patients had idiosyncratic lung communities, they ended up having
different OTUs responding across the laboratory pH gradient, yielding insufficient
statistical power to detect changes in any given OTU. As a result, when these lung
sputum communities were placed into different media and studied, it was not clear
exactly what organisms were a part of this low-pH or high-pH subcommunity.

Balances are a natural solution to this problem. In addition to probing for patterns
similar to those observed in the previous study, balances are well adapted as a
transformation for standard statistical analyses. Since Euclidean operations directly
translate into perturbation and powering operations on proportions (21, 22), many of
the publicly available statistical tools can be applied directly to balances. For this study,
we opted to use linear mixed-effects models to test for pH differences while simulta-
neously accounting for all of the differences between lung microbiomes across CF
patients. Based on prior analyses with pH in soils, the tree was built using the exact
same strategy (see Materials and Methods). Significant balances from testing for pH
were determined with a P value cutoff at 0.05 after Bonferroni correction.

A heatmap relating pH to OTU abundances across these samples does not yield clear
trends (Fig. 3a), but even though we do not see a clear pattern in the heatmap with the
balance approach, we can still observe niche differentiation across the pH gradient. In
Fig. 3b, y0 represents the log ratio of all of the high-pH OTUs (7.6 � mean pH � 8.12)
over all of the low-pH OTUs (5.4 � mean pH � 7.4). As the pH of the samples increases,
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the balance increases, likely because the low-pH OTUs are becoming increasingly less
abundant than the high-pH OTUs (P value � 7.5 � 10�46). The same pattern is even
more apparent in y1 (Fig. 3c). The low-pH OTUs (5.4 � mean pH � 6.4) become
increasingly less abundant than high-pH OTUs (6.5 � mean pH � 7.4) as the sample
pH increases (P value � 2.25 � 10�67). When Bonferroni multiple-hypothesis
correction was applied to these tests, the P values were rounded down to zero.
While these patterns were not obvious when looking at the raw proportions, the balance
tree approach shows very well defined trends among groups of OTUs. This can be done
because even though individual OTUs may be sporadically distributed across the
original samples, OTUs that thrive in similar pH niches grouped together on the
environmental balance tree. It is clear from Fig. 3b and c that there is a transition from
low-pH organisms to high-pH organisms along the pH gradient. Even though the CF
patients do not have the same lung microbiomes, they contain OTUs that behave the
same with respect to pH. This pattern would not have been nearly as apparent without
clustering the OTUs by mean pH and accounting for the patient effects in the linear
mixed-effects models.

DISCUSSION

In this study, we have demonstrated the benefits of applying balances to infer niche
differentiation in microbes. In the first case study, we outlined the challenge of
performing correlations of OTUs versus environmental variables and showed how
balances can capture information about species turnover across the pH gradient, which
allowed us to build a model to predict microbial proportions based on pH alone. In the
second case study, we identified the challenges of studying individual OTUs due to
similar niches being occupied by drastically different OTUs across different patients.

FIG 3 (a) Bifurcating tree generated from hierarchical clustering of OTUs based on mean pH. The size of the internal nodes is inversely
proportional to the P value of the linear mixed-effects model test on pH for that given balance. A heatmap of all of the OTU abundances sorted
by patient is shown. OTUs were log transformed and centered across rows and columns. These abundances are aligned with the tips of the tree.
(b) Progression of the top balance over the pH for all of the patients. (c) Progression of the second top balance over the pH for all of the patients.
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Balances coupled with linear mixed-effects models allowed us to obtain more statisti-
cally robust results, which were also more informative with respect to the differences
in distribution of microbes across environmental niches.

There are numerous additional benefits of analyzing species balances instead of
individual species counts. First, balances are known to be scale invariant, so balance
trees naturally correct for differences in sequencing depth without requiring rarefaction
(see Text S1 in the supplemental material) and avoid many of the limitations associated
with this procedure (23). Second, balances are subcompositionally coherent, which
means that changes in nonoverlapping subcommunities do not impact each other. For
instance, in Fig. 1e and f, the Purple population triples, balances, and changes because
the organisms explicitly contain the Purple species. In contrast to proportions, the
balance b3 does not change between these two scenarios because it does not relate to
the Purple species (in fact, it accounts only for the Red and Green species). This is not
the case when observing the raw proportions, from which it appears as though
everything is changing, even though the Purple species is the only changing species.
This phenomenon has previously been noted (12) and can lead to extremely high
false-positivity rates with some standard statistical techniques, such as Pearson corre-
lations or t tests on proportions. More discussion about this issue can be found in
Fig. S1. Third, arithmetic operations on balances directly translate into perturbation and
powering operations on proportions (21, 22), which can capture information about
relative growth and decay of species. This ultimately opens the door for applying
standard statistical techniques, such as multiple linear regression (24) and linear
mixed-effects model nested-design statistics, directly to balances, providing additional
justification for the analyses performed in the case studies. We have shown this in the
two case studies. Finally, balances are permutation invariant. Species can be sorted in
any order deemed appropriate. Along the same lines, these species can be rearranged
into any arbitrary grouping represented as a bifurcating tree. These trees can be built
to address the questions at hand, whether it be studying species turnover across pH
gradients or even uncovering the relationships between phylogenetic clades. In fact,
balances can be thought of as being utilized as an ordination technique, since every
bifurcating tree forms an orthonormal basis in the Aitchison simplex (13).

Although the concept of balances does not address questions about properties of
individual bacteria, it does answer higher-level questions concerning interactions
among groups of organisms, which are arguably much more interesting from an
ecological point of view. These questions can be based either on the phylogenetic tree
of the bacterial community or on environmental clustering. There is still room for
improvement on utilizing balances. For example, the issue of zeroes still remains,
because the logarithm of zero is undefined. Currently, the common approach is to add
a pseudocount (25). However, an appropriate tree choice can mitigate this issue,
because the zeroes can be explicitly aggregated in some scenarios (Fig. S2 and S3).
Along the same lines, issues can arise from low-coverage samples. If sampling is not
saturated, many OTUs have low read counts, and the balances toward the tips of the
trees can be highly volatile. This is because the absolute change between one or two
reads may be small for low-abundance OTUs, but this will lead to large changes in log
ratios, which lead to spurious signals at the tips of the tree. As a rule of thumb, balances
toward the root of the tree are more trustworthy than those at the tips of the tree.

The balance approach will be key for analyzing functional roles of OTUs. It is known
that in environments like the human gut, people share very few OTUs with each other
but have roughly the same proportions of functional genes (26). This suggests that
there is substantial functional redundancy across OTUs, which has been observed
previously in time series studies in the context of infection (27); in other words, in these
microbial communities, many players might be sporadically distributed across similar
niches. This phenomenon might explain the sparse nature of 16S relative abundance
data and why similar environments, such as human guts, share few common OTUs.
Such distributions pose tremendous challenges to analyses based around identifying
the niche occupancy of individual OTUs. By instead permitting the statistical compar-
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isons to be performed across nested groups of OTUs with similar distributions, it
becomes possible to robustly identify patterns of niche differentiation without requir-
ing sufficient information to be present in the abundances of each individual taxon.
Identifying common functional roles of potentially diverse organisms and analyzing the
balances between these groups might significantly simplify analyses in future amplicon
studies. The ability to construct such trees would enable rapid characterizations of
environmental niches and the corresponding functional roles of the microbes occupy-
ing in these niches.

All in all, balance trees are an extremely powerful tool for analyzing relative
abundances and uncovering patterns associated with niche differentiation, while avoid-
ing the issues associated with compositionality and enabling the application of con-
ventional statistical tools. This will ultimately open the door for extensive mining of
ecologically relevant patterns.

MATERIALS AND METHODS
The core functions required to perform the balance basis calculations, the tree visualization tools, and

statistical analyses can be found in https://github.com/biocore/gneiss. The IPython notebooks used to
carry out all of the analyses can be found in the gneiss repository. All code has been extensively unit
tested and documented.

The core compositional statistics and tree data structures were are part of scikit-bio 0.4.1 and beyond.
The hierarchical clustering was performed using SciPy. Pandas and BIOM (23) were used to store and
manipulate the OTU tables and the metadata files. Seaborn, matplotlib, and ETE (24) were used for the
visualizations.

The isometric log ratio transform is an isomorphism (i.e., a function) that can map proportions to
balances one-to-one (21). These balances can be calculated as shown in equation 1. Alternatively, they
can be calculated using a linear transformation with an orthonormal basis e.

This orthonormal basis can be calculated as follows:

el � C�exp(0, ...0,
Ç

k

a, ..., a ,
Ç

r

b, ..., b ,
Ç

s

0, ...0)
Ç

t
�

a �
�s

�r(r � s)
and b �

��r
�s(r � s)

(2)

where el refers to the balance axis aligned with the internal node l, C(x) denotes the normalization
operation to normalize all of the OTU abundances to proportions that add up to 1, r refers to the number
of tips in the left subtree, s refers to the number of tips in the right subtree, k refers to number of tips
to the left of the left subtree, and t refers to the number of tips to the right of the right subtree. Since
e forms an orthonormal basis, it must have unit norm, and every pair of axes in e must be orthogonal.
The square root term in equation 1 is a normalization factor which was required for unit norm in equation
2 (12). Since it is not possible to take a logarithm of zero, a pseudocount of 1 was added to all of the
abundances. While this is a problem being addressed by the field, this technique is one of the more
commonly used techniques (Martín-Fernández et al. [25]).

The mean pH used for the 2 case studies was calculated as follows:

g�x � �
i � 1

N
gi

xi�
j � 1

D
xj

(3)

where xi is the proportion of OTU x in sample i, gx is the mean pH of OTU x, and gi is the sample pH at
sample i. This calculation can be found in the gneiss package under the function mean_niche_estimator.
The function used to sort the tables in Fig. 2c used niche_sort. The resulting tree was built using the
unweighted pair group method using average linkages (UPGMA) (16). Results are shown in Fig. 2a and
3a and can be generated using the SciPy linkage function.

The linear regression on balances and linear mixed-effects models on balances were implemented in
gneiss under the ordinary least-squares (OLS) and mixed functions, and the case study analyses can also
be found in the IPython notebooks in the ipynb folder in 88soils.ipynb (case study 1) and cfstudy.ipynb
(case study 2), respectively. In case study 1, only OTUs that had more than 100 reads in the entire study
were considered. In case study 2, only OTUs that had more than 500 reads were considered.

The WinCF system was used according to the methods in reference 17, except only the pH dye
medium variable was used. The medium was buffered at 0.5 unit of pH from 5 to 8.5 using calculated
proportions of phosphate buffer and NaOH or HCl. Sputum samples were collected from CF patients after
expectoration or induced expectoration of sputum according to UCSD IRB-approved project 081500 and
were inoculated in triplicate into capillary tubes containing the eight different-pH buffered media. These
eight sets of tubes in triplicate from 18 patients were then incubated at 37°C for 48 h. The medium was
then removed, bacterial DNA was extracted, and variable region 4 of the 16S rRNA gene was amplified
and sequenced on the Illumina MiSeq platform using Earth Microbiome Project-benchmarked protocols
(25, 26). Data were processed using Qiita, and OTUs were calculated using closed reference clustering at
the 97% identity cutoff for both the 88 soils and the CF study.
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Data availability. Data for case study 1 were retrieved from Qiita (study identifier 103 [https://
qiita.ucsd.edu/study/description/103]), as were data for case study 2 (study identifier 10511).
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